1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Aggregate Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "CGObjCRuntime.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/DeclTemplate.h"
20 #include "clang/AST/StmtVisitor.h"
21 #include "llvm/Constants.h"
22 #include "llvm/Function.h"
23 #include "llvm/GlobalVariable.h"
24 #include "llvm/Intrinsics.h"
25 using namespace clang;
26 using namespace CodeGen;
27 
28 //===----------------------------------------------------------------------===//
29 //                        Aggregate Expression Emitter
30 //===----------------------------------------------------------------------===//
31 
32 namespace  {
33 class AggExprEmitter : public StmtVisitor<AggExprEmitter> {
34   CodeGenFunction &CGF;
35   CGBuilderTy &Builder;
36   AggValueSlot Dest;
37   bool IgnoreResult;
38 
39   /// We want to use 'dest' as the return slot except under two
40   /// conditions:
41   ///   - The destination slot requires garbage collection, so we
42   ///     need to use the GC API.
43   ///   - The destination slot is potentially aliased.
44   bool shouldUseDestForReturnSlot() const {
45     return !(Dest.requiresGCollection() || Dest.isPotentiallyAliased());
46   }
47 
48   ReturnValueSlot getReturnValueSlot() const {
49     if (!shouldUseDestForReturnSlot())
50       return ReturnValueSlot();
51 
52     return ReturnValueSlot(Dest.getAddr(), Dest.isVolatile());
53   }
54 
55   AggValueSlot EnsureSlot(QualType T) {
56     if (!Dest.isIgnored()) return Dest;
57     return CGF.CreateAggTemp(T, "agg.tmp.ensured");
58   }
59 
60 public:
61   AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest,
62                  bool ignore)
63     : CGF(cgf), Builder(CGF.Builder), Dest(Dest),
64       IgnoreResult(ignore) {
65   }
66 
67   //===--------------------------------------------------------------------===//
68   //                               Utilities
69   //===--------------------------------------------------------------------===//
70 
71   /// EmitAggLoadOfLValue - Given an expression with aggregate type that
72   /// represents a value lvalue, this method emits the address of the lvalue,
73   /// then loads the result into DestPtr.
74   void EmitAggLoadOfLValue(const Expr *E);
75 
76   /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
77   void EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore = false);
78   void EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore = false,
79                          unsigned Alignment = 0);
80 
81   void EmitMoveFromReturnSlot(const Expr *E, RValue Src);
82 
83   void EmitStdInitializerList(InitListExpr *InitList);
84   void EmitArrayInit(llvm::Value *DestPtr, llvm::ArrayType *AType,
85                      QualType elementType, InitListExpr *E);
86 
87   AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) {
88     if (CGF.getLangOptions().getGC() && TypeRequiresGCollection(T))
89       return AggValueSlot::NeedsGCBarriers;
90     return AggValueSlot::DoesNotNeedGCBarriers;
91   }
92 
93   bool TypeRequiresGCollection(QualType T);
94 
95   //===--------------------------------------------------------------------===//
96   //                            Visitor Methods
97   //===--------------------------------------------------------------------===//
98 
99   void VisitStmt(Stmt *S) {
100     CGF.ErrorUnsupported(S, "aggregate expression");
101   }
102   void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
103   void VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
104     Visit(GE->getResultExpr());
105   }
106   void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
107   void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
108     return Visit(E->getReplacement());
109   }
110 
111   // l-values.
112   void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); }
113   void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
114   void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
115   void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
116   void VisitCompoundLiteralExpr(CompoundLiteralExpr *E);
117   void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
118     EmitAggLoadOfLValue(E);
119   }
120   void VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
121     EmitAggLoadOfLValue(E);
122   }
123   void VisitPredefinedExpr(const PredefinedExpr *E) {
124     EmitAggLoadOfLValue(E);
125   }
126 
127   // Operators.
128   void VisitCastExpr(CastExpr *E);
129   void VisitCallExpr(const CallExpr *E);
130   void VisitStmtExpr(const StmtExpr *E);
131   void VisitBinaryOperator(const BinaryOperator *BO);
132   void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO);
133   void VisitBinAssign(const BinaryOperator *E);
134   void VisitBinComma(const BinaryOperator *E);
135 
136   void VisitObjCMessageExpr(ObjCMessageExpr *E);
137   void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
138     EmitAggLoadOfLValue(E);
139   }
140 
141   void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
142   void VisitChooseExpr(const ChooseExpr *CE);
143   void VisitInitListExpr(InitListExpr *E);
144   void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E);
145   void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
146     Visit(DAE->getExpr());
147   }
148   void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E);
149   void VisitCXXConstructExpr(const CXXConstructExpr *E);
150   void VisitLambdaExpr(LambdaExpr *E);
151   void VisitExprWithCleanups(ExprWithCleanups *E);
152   void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E);
153   void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); }
154   void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E);
155   void VisitOpaqueValueExpr(OpaqueValueExpr *E);
156 
157   void VisitPseudoObjectExpr(PseudoObjectExpr *E) {
158     if (E->isGLValue()) {
159       LValue LV = CGF.EmitPseudoObjectLValue(E);
160       return EmitFinalDestCopy(E, LV);
161     }
162 
163     CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType()));
164   }
165 
166   void VisitVAArgExpr(VAArgExpr *E);
167 
168   void EmitInitializationToLValue(Expr *E, LValue Address);
169   void EmitNullInitializationToLValue(LValue Address);
170   //  case Expr::ChooseExprClass:
171   void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); }
172   void VisitAtomicExpr(AtomicExpr *E) {
173     CGF.EmitAtomicExpr(E, EnsureSlot(E->getType()).getAddr());
174   }
175 };
176 }  // end anonymous namespace.
177 
178 //===----------------------------------------------------------------------===//
179 //                                Utilities
180 //===----------------------------------------------------------------------===//
181 
182 /// EmitAggLoadOfLValue - Given an expression with aggregate type that
183 /// represents a value lvalue, this method emits the address of the lvalue,
184 /// then loads the result into DestPtr.
185 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
186   LValue LV = CGF.EmitLValue(E);
187   EmitFinalDestCopy(E, LV);
188 }
189 
190 /// \brief True if the given aggregate type requires special GC API calls.
191 bool AggExprEmitter::TypeRequiresGCollection(QualType T) {
192   // Only record types have members that might require garbage collection.
193   const RecordType *RecordTy = T->getAs<RecordType>();
194   if (!RecordTy) return false;
195 
196   // Don't mess with non-trivial C++ types.
197   RecordDecl *Record = RecordTy->getDecl();
198   if (isa<CXXRecordDecl>(Record) &&
199       (!cast<CXXRecordDecl>(Record)->hasTrivialCopyConstructor() ||
200        !cast<CXXRecordDecl>(Record)->hasTrivialDestructor()))
201     return false;
202 
203   // Check whether the type has an object member.
204   return Record->hasObjectMember();
205 }
206 
207 /// \brief Perform the final move to DestPtr if for some reason
208 /// getReturnValueSlot() didn't use it directly.
209 ///
210 /// The idea is that you do something like this:
211 ///   RValue Result = EmitSomething(..., getReturnValueSlot());
212 ///   EmitMoveFromReturnSlot(E, Result);
213 ///
214 /// If nothing interferes, this will cause the result to be emitted
215 /// directly into the return value slot.  Otherwise, a final move
216 /// will be performed.
217 void AggExprEmitter::EmitMoveFromReturnSlot(const Expr *E, RValue Src) {
218   if (shouldUseDestForReturnSlot()) {
219     // Logically, Dest.getAddr() should equal Src.getAggregateAddr().
220     // The possibility of undef rvalues complicates that a lot,
221     // though, so we can't really assert.
222     return;
223   }
224 
225   // Otherwise, do a final copy,
226   assert(Dest.getAddr() != Src.getAggregateAddr());
227   EmitFinalDestCopy(E, Src, /*Ignore*/ true);
228 }
229 
230 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
231 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore,
232                                        unsigned Alignment) {
233   assert(Src.isAggregate() && "value must be aggregate value!");
234 
235   // If Dest is ignored, then we're evaluating an aggregate expression
236   // in a context (like an expression statement) that doesn't care
237   // about the result.  C says that an lvalue-to-rvalue conversion is
238   // performed in these cases; C++ says that it is not.  In either
239   // case, we don't actually need to do anything unless the value is
240   // volatile.
241   if (Dest.isIgnored()) {
242     if (!Src.isVolatileQualified() ||
243         CGF.CGM.getLangOptions().CPlusPlus ||
244         (IgnoreResult && Ignore))
245       return;
246 
247     // If the source is volatile, we must read from it; to do that, we need
248     // some place to put it.
249     Dest = CGF.CreateAggTemp(E->getType(), "agg.tmp");
250   }
251 
252   if (Dest.requiresGCollection()) {
253     CharUnits size = CGF.getContext().getTypeSizeInChars(E->getType());
254     llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType());
255     llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity());
256     CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF,
257                                                       Dest.getAddr(),
258                                                       Src.getAggregateAddr(),
259                                                       SizeVal);
260     return;
261   }
262   // If the result of the assignment is used, copy the LHS there also.
263   // FIXME: Pass VolatileDest as well.  I think we also need to merge volatile
264   // from the source as well, as we can't eliminate it if either operand
265   // is volatile, unless copy has volatile for both source and destination..
266   CGF.EmitAggregateCopy(Dest.getAddr(), Src.getAggregateAddr(), E->getType(),
267                         Dest.isVolatile()|Src.isVolatileQualified(),
268                         Alignment);
269 }
270 
271 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
272 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore) {
273   assert(Src.isSimple() && "Can't have aggregate bitfield, vector, etc");
274 
275   CharUnits Alignment = std::min(Src.getAlignment(), Dest.getAlignment());
276   EmitFinalDestCopy(E, Src.asAggregateRValue(), Ignore, Alignment.getQuantity());
277 }
278 
279 static QualType GetStdInitializerListElementType(QualType T) {
280   // Just assume that this is really std::initializer_list.
281   ClassTemplateSpecializationDecl *specialization =
282       cast<ClassTemplateSpecializationDecl>(T->castAs<RecordType>()->getDecl());
283   return specialization->getTemplateArgs()[0].getAsType();
284 }
285 
286 /// \brief Prepare cleanup for the temporary array.
287 static void EmitStdInitializerListCleanup(CodeGenFunction &CGF,
288                                           QualType arrayType,
289                                           llvm::Value *addr,
290                                           const InitListExpr *initList) {
291   QualType::DestructionKind dtorKind = arrayType.isDestructedType();
292   if (!dtorKind)
293     return; // Type doesn't need destroying.
294   if (dtorKind != QualType::DK_cxx_destructor) {
295     CGF.ErrorUnsupported(initList, "ObjC ARC type in initializer_list");
296     return;
297   }
298 
299   CodeGenFunction::Destroyer *destroyer = CGF.getDestroyer(dtorKind);
300   CGF.pushDestroy(NormalAndEHCleanup, addr, arrayType, destroyer,
301                   /*EHCleanup=*/true);
302 }
303 
304 /// \brief Emit the initializer for a std::initializer_list initialized with a
305 /// real initializer list.
306 void AggExprEmitter::EmitStdInitializerList(InitListExpr *initList) {
307   // We emit an array containing the elements, then have the init list point
308   // at the array.
309   ASTContext &ctx = CGF.getContext();
310   unsigned numInits = initList->getNumInits();
311   QualType element = GetStdInitializerListElementType(initList->getType());
312   llvm::APInt size(ctx.getTypeSize(ctx.getSizeType()), numInits);
313   QualType array = ctx.getConstantArrayType(element, size, ArrayType::Normal,0);
314   llvm::Type *LTy = CGF.ConvertTypeForMem(array);
315   llvm::AllocaInst *alloc = CGF.CreateTempAlloca(LTy);
316   alloc->setAlignment(ctx.getTypeAlignInChars(array).getQuantity());
317   alloc->setName(".initlist.");
318 
319   EmitArrayInit(alloc, cast<llvm::ArrayType>(LTy), element, initList);
320 
321   // FIXME: The diagnostics are somewhat out of place here.
322   RecordDecl *record = initList->getType()->castAs<RecordType>()->getDecl();
323   RecordDecl::field_iterator field = record->field_begin();
324   if (field == record->field_end()) {
325     CGF.ErrorUnsupported(initList, "weird std::initializer_list");
326   }
327 
328   QualType elementPtr = ctx.getPointerType(element.withConst());
329   llvm::Value *destPtr = Dest.getAddr();
330 
331   // Start pointer.
332   if (!ctx.hasSameType(field->getType(), elementPtr)) {
333     CGF.ErrorUnsupported(initList, "weird std::initializer_list");
334   }
335   LValue start = CGF.EmitLValueForFieldInitialization(destPtr, *field, 0);
336   llvm::Value *arrayStart = Builder.CreateStructGEP(alloc, 0, "arraystart");
337   CGF.EmitStoreThroughLValue(RValue::get(arrayStart), start);
338   ++field;
339 
340   if (field == record->field_end()) {
341     CGF.ErrorUnsupported(initList, "weird std::initializer_list");
342   }
343   LValue endOrLength = CGF.EmitLValueForFieldInitialization(destPtr, *field, 0);
344   if (ctx.hasSameType(field->getType(), elementPtr)) {
345     // End pointer.
346     llvm::Value *arrayEnd = Builder.CreateStructGEP(alloc,numInits, "arrayend");
347     CGF.EmitStoreThroughLValue(RValue::get(arrayEnd), endOrLength);
348   } else if(ctx.hasSameType(field->getType(), ctx.getSizeType())) {
349     // Length.
350     CGF.EmitStoreThroughLValue(RValue::get(Builder.getInt(size)), endOrLength);
351   } else {
352     CGF.ErrorUnsupported(initList, "weird std::initializer_list");
353   }
354 
355   if (!Dest.isExternallyDestructed())
356     EmitStdInitializerListCleanup(CGF, array, alloc, initList);
357 }
358 
359 /// \brief Emit initialization of an array from an initializer list.
360 void AggExprEmitter::EmitArrayInit(llvm::Value *DestPtr, llvm::ArrayType *AType,
361                                    QualType elementType, InitListExpr *E) {
362   uint64_t NumInitElements = E->getNumInits();
363 
364   uint64_t NumArrayElements = AType->getNumElements();
365   assert(NumInitElements <= NumArrayElements);
366 
367   // DestPtr is an array*.  Construct an elementType* by drilling
368   // down a level.
369   llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
370   llvm::Value *indices[] = { zero, zero };
371   llvm::Value *begin =
372     Builder.CreateInBoundsGEP(DestPtr, indices, "arrayinit.begin");
373 
374   // Exception safety requires us to destroy all the
375   // already-constructed members if an initializer throws.
376   // For that, we'll need an EH cleanup.
377   QualType::DestructionKind dtorKind = elementType.isDestructedType();
378   llvm::AllocaInst *endOfInit = 0;
379   EHScopeStack::stable_iterator cleanup;
380   llvm::Instruction *cleanupDominator = 0;
381   if (CGF.needsEHCleanup(dtorKind)) {
382     // In principle we could tell the cleanup where we are more
383     // directly, but the control flow can get so varied here that it
384     // would actually be quite complex.  Therefore we go through an
385     // alloca.
386     endOfInit = CGF.CreateTempAlloca(begin->getType(),
387                                      "arrayinit.endOfInit");
388     cleanupDominator = Builder.CreateStore(begin, endOfInit);
389     CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType,
390                                          CGF.getDestroyer(dtorKind));
391     cleanup = CGF.EHStack.stable_begin();
392 
393   // Otherwise, remember that we didn't need a cleanup.
394   } else {
395     dtorKind = QualType::DK_none;
396   }
397 
398   llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1);
399 
400   // The 'current element to initialize'.  The invariants on this
401   // variable are complicated.  Essentially, after each iteration of
402   // the loop, it points to the last initialized element, except
403   // that it points to the beginning of the array before any
404   // elements have been initialized.
405   llvm::Value *element = begin;
406 
407   // Emit the explicit initializers.
408   for (uint64_t i = 0; i != NumInitElements; ++i) {
409     // Advance to the next element.
410     if (i > 0) {
411       element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element");
412 
413       // Tell the cleanup that it needs to destroy up to this
414       // element.  TODO: some of these stores can be trivially
415       // observed to be unnecessary.
416       if (endOfInit) Builder.CreateStore(element, endOfInit);
417     }
418 
419     LValue elementLV = CGF.MakeAddrLValue(element, elementType);
420     EmitInitializationToLValue(E->getInit(i), elementLV);
421   }
422 
423   // Check whether there's a non-trivial array-fill expression.
424   // Note that this will be a CXXConstructExpr even if the element
425   // type is an array (or array of array, etc.) of class type.
426   Expr *filler = E->getArrayFiller();
427   bool hasTrivialFiller = true;
428   if (CXXConstructExpr *cons = dyn_cast_or_null<CXXConstructExpr>(filler)) {
429     assert(cons->getConstructor()->isDefaultConstructor());
430     hasTrivialFiller = cons->getConstructor()->isTrivial();
431   }
432 
433   // Any remaining elements need to be zero-initialized, possibly
434   // using the filler expression.  We can skip this if the we're
435   // emitting to zeroed memory.
436   if (NumInitElements != NumArrayElements &&
437       !(Dest.isZeroed() && hasTrivialFiller &&
438         CGF.getTypes().isZeroInitializable(elementType))) {
439 
440     // Use an actual loop.  This is basically
441     //   do { *array++ = filler; } while (array != end);
442 
443     // Advance to the start of the rest of the array.
444     if (NumInitElements) {
445       element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start");
446       if (endOfInit) Builder.CreateStore(element, endOfInit);
447     }
448 
449     // Compute the end of the array.
450     llvm::Value *end = Builder.CreateInBoundsGEP(begin,
451                       llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements),
452                                                  "arrayinit.end");
453 
454     llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
455     llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
456 
457     // Jump into the body.
458     CGF.EmitBlock(bodyBB);
459     llvm::PHINode *currentElement =
460       Builder.CreatePHI(element->getType(), 2, "arrayinit.cur");
461     currentElement->addIncoming(element, entryBB);
462 
463     // Emit the actual filler expression.
464     LValue elementLV = CGF.MakeAddrLValue(currentElement, elementType);
465     if (filler)
466       EmitInitializationToLValue(filler, elementLV);
467     else
468       EmitNullInitializationToLValue(elementLV);
469 
470     // Move on to the next element.
471     llvm::Value *nextElement =
472       Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next");
473 
474     // Tell the EH cleanup that we finished with the last element.
475     if (endOfInit) Builder.CreateStore(nextElement, endOfInit);
476 
477     // Leave the loop if we're done.
478     llvm::Value *done = Builder.CreateICmpEQ(nextElement, end,
479                                              "arrayinit.done");
480     llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
481     Builder.CreateCondBr(done, endBB, bodyBB);
482     currentElement->addIncoming(nextElement, Builder.GetInsertBlock());
483 
484     CGF.EmitBlock(endBB);
485   }
486 
487   // Leave the partial-array cleanup if we entered one.
488   if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator);
489 }
490 
491 //===----------------------------------------------------------------------===//
492 //                            Visitor Methods
493 //===----------------------------------------------------------------------===//
494 
495 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){
496   Visit(E->GetTemporaryExpr());
497 }
498 
499 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) {
500   EmitFinalDestCopy(e, CGF.getOpaqueLValueMapping(e));
501 }
502 
503 void
504 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
505   if (E->getType().isPODType(CGF.getContext())) {
506     // For a POD type, just emit a load of the lvalue + a copy, because our
507     // compound literal might alias the destination.
508     // FIXME: This is a band-aid; the real problem appears to be in our handling
509     // of assignments, where we store directly into the LHS without checking
510     // whether anything in the RHS aliases.
511     EmitAggLoadOfLValue(E);
512     return;
513   }
514 
515   AggValueSlot Slot = EnsureSlot(E->getType());
516   CGF.EmitAggExpr(E->getInitializer(), Slot);
517 }
518 
519 
520 void AggExprEmitter::VisitCastExpr(CastExpr *E) {
521   switch (E->getCastKind()) {
522   case CK_Dynamic: {
523     assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?");
524     LValue LV = CGF.EmitCheckedLValue(E->getSubExpr());
525     // FIXME: Do we also need to handle property references here?
526     if (LV.isSimple())
527       CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E));
528     else
529       CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast");
530 
531     if (!Dest.isIgnored())
532       CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination");
533     break;
534   }
535 
536   case CK_ToUnion: {
537     if (Dest.isIgnored()) break;
538 
539     // GCC union extension
540     QualType Ty = E->getSubExpr()->getType();
541     QualType PtrTy = CGF.getContext().getPointerType(Ty);
542     llvm::Value *CastPtr = Builder.CreateBitCast(Dest.getAddr(),
543                                                  CGF.ConvertType(PtrTy));
544     EmitInitializationToLValue(E->getSubExpr(),
545                                CGF.MakeAddrLValue(CastPtr, Ty));
546     break;
547   }
548 
549   case CK_DerivedToBase:
550   case CK_BaseToDerived:
551   case CK_UncheckedDerivedToBase: {
552     llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: "
553                 "should have been unpacked before we got here");
554   }
555 
556   case CK_LValueToRValue: // hope for downstream optimization
557   case CK_NoOp:
558   case CK_AtomicToNonAtomic:
559   case CK_NonAtomicToAtomic:
560   case CK_UserDefinedConversion:
561   case CK_ConstructorConversion:
562     assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(),
563                                                    E->getType()) &&
564            "Implicit cast types must be compatible");
565     Visit(E->getSubExpr());
566     break;
567 
568   case CK_LValueBitCast:
569     llvm_unreachable("should not be emitting lvalue bitcast as rvalue");
570 
571   case CK_Dependent:
572   case CK_BitCast:
573   case CK_ArrayToPointerDecay:
574   case CK_FunctionToPointerDecay:
575   case CK_NullToPointer:
576   case CK_NullToMemberPointer:
577   case CK_BaseToDerivedMemberPointer:
578   case CK_DerivedToBaseMemberPointer:
579   case CK_MemberPointerToBoolean:
580   case CK_ReinterpretMemberPointer:
581   case CK_IntegralToPointer:
582   case CK_PointerToIntegral:
583   case CK_PointerToBoolean:
584   case CK_ToVoid:
585   case CK_VectorSplat:
586   case CK_IntegralCast:
587   case CK_IntegralToBoolean:
588   case CK_IntegralToFloating:
589   case CK_FloatingToIntegral:
590   case CK_FloatingToBoolean:
591   case CK_FloatingCast:
592   case CK_CPointerToObjCPointerCast:
593   case CK_BlockPointerToObjCPointerCast:
594   case CK_AnyPointerToBlockPointerCast:
595   case CK_ObjCObjectLValueCast:
596   case CK_FloatingRealToComplex:
597   case CK_FloatingComplexToReal:
598   case CK_FloatingComplexToBoolean:
599   case CK_FloatingComplexCast:
600   case CK_FloatingComplexToIntegralComplex:
601   case CK_IntegralRealToComplex:
602   case CK_IntegralComplexToReal:
603   case CK_IntegralComplexToBoolean:
604   case CK_IntegralComplexCast:
605   case CK_IntegralComplexToFloatingComplex:
606   case CK_ARCProduceObject:
607   case CK_ARCConsumeObject:
608   case CK_ARCReclaimReturnedObject:
609   case CK_ARCExtendBlockObject:
610     llvm_unreachable("cast kind invalid for aggregate types");
611   }
612 }
613 
614 void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
615   if (E->getCallReturnType()->isReferenceType()) {
616     EmitAggLoadOfLValue(E);
617     return;
618   }
619 
620   RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot());
621   EmitMoveFromReturnSlot(E, RV);
622 }
623 
624 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
625   RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot());
626   EmitMoveFromReturnSlot(E, RV);
627 }
628 
629 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
630   CGF.EmitIgnoredExpr(E->getLHS());
631   Visit(E->getRHS());
632 }
633 
634 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
635   CodeGenFunction::StmtExprEvaluation eval(CGF);
636   CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest);
637 }
638 
639 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
640   if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI)
641     VisitPointerToDataMemberBinaryOperator(E);
642   else
643     CGF.ErrorUnsupported(E, "aggregate binary expression");
644 }
645 
646 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator(
647                                                     const BinaryOperator *E) {
648   LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E);
649   EmitFinalDestCopy(E, LV);
650 }
651 
652 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
653   // For an assignment to work, the value on the right has
654   // to be compatible with the value on the left.
655   assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
656                                                  E->getRHS()->getType())
657          && "Invalid assignment");
658 
659   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->getLHS()))
660     if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
661       if (VD->hasAttr<BlocksAttr>() &&
662           E->getRHS()->HasSideEffects(CGF.getContext())) {
663         // When __block variable on LHS, the RHS must be evaluated first
664         // as it may change the 'forwarding' field via call to Block_copy.
665         LValue RHS = CGF.EmitLValue(E->getRHS());
666         LValue LHS = CGF.EmitLValue(E->getLHS());
667         Dest = AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed,
668                                        needsGC(E->getLHS()->getType()),
669                                        AggValueSlot::IsAliased);
670         EmitFinalDestCopy(E, RHS, true);
671         return;
672       }
673 
674   LValue LHS = CGF.EmitLValue(E->getLHS());
675 
676   // Codegen the RHS so that it stores directly into the LHS.
677   AggValueSlot LHSSlot =
678     AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed,
679                             needsGC(E->getLHS()->getType()),
680                             AggValueSlot::IsAliased);
681   CGF.EmitAggExpr(E->getRHS(), LHSSlot, false);
682   EmitFinalDestCopy(E, LHS, true);
683 }
684 
685 void AggExprEmitter::
686 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
687   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
688   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
689   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
690 
691   // Bind the common expression if necessary.
692   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
693 
694   CodeGenFunction::ConditionalEvaluation eval(CGF);
695   CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock);
696 
697   // Save whether the destination's lifetime is externally managed.
698   bool isExternallyDestructed = Dest.isExternallyDestructed();
699 
700   eval.begin(CGF);
701   CGF.EmitBlock(LHSBlock);
702   Visit(E->getTrueExpr());
703   eval.end(CGF);
704 
705   assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!");
706   CGF.Builder.CreateBr(ContBlock);
707 
708   // If the result of an agg expression is unused, then the emission
709   // of the LHS might need to create a destination slot.  That's fine
710   // with us, and we can safely emit the RHS into the same slot, but
711   // we shouldn't claim that it's already being destructed.
712   Dest.setExternallyDestructed(isExternallyDestructed);
713 
714   eval.begin(CGF);
715   CGF.EmitBlock(RHSBlock);
716   Visit(E->getFalseExpr());
717   eval.end(CGF);
718 
719   CGF.EmitBlock(ContBlock);
720 }
721 
722 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) {
723   Visit(CE->getChosenSubExpr(CGF.getContext()));
724 }
725 
726 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
727   llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
728   llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
729 
730   if (!ArgPtr) {
731     CGF.ErrorUnsupported(VE, "aggregate va_arg expression");
732     return;
733   }
734 
735   EmitFinalDestCopy(VE, CGF.MakeAddrLValue(ArgPtr, VE->getType()));
736 }
737 
738 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
739   // Ensure that we have a slot, but if we already do, remember
740   // whether it was externally destructed.
741   bool wasExternallyDestructed = Dest.isExternallyDestructed();
742   Dest = EnsureSlot(E->getType());
743 
744   // We're going to push a destructor if there isn't already one.
745   Dest.setExternallyDestructed();
746 
747   Visit(E->getSubExpr());
748 
749   // Push that destructor we promised.
750   if (!wasExternallyDestructed)
751     CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddr());
752 }
753 
754 void
755 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) {
756   AggValueSlot Slot = EnsureSlot(E->getType());
757   CGF.EmitCXXConstructExpr(E, Slot);
758 }
759 
760 void
761 AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) {
762   AggValueSlot Slot = EnsureSlot(E->getType());
763   CGF.EmitLambdaExpr(E, Slot);
764 }
765 
766 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
767   CGF.enterFullExpression(E);
768   CodeGenFunction::RunCleanupsScope cleanups(CGF);
769   Visit(E->getSubExpr());
770 }
771 
772 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
773   QualType T = E->getType();
774   AggValueSlot Slot = EnsureSlot(T);
775   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T));
776 }
777 
778 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
779   QualType T = E->getType();
780   AggValueSlot Slot = EnsureSlot(T);
781   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T));
782 }
783 
784 /// isSimpleZero - If emitting this value will obviously just cause a store of
785 /// zero to memory, return true.  This can return false if uncertain, so it just
786 /// handles simple cases.
787 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) {
788   E = E->IgnoreParens();
789 
790   // 0
791   if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E))
792     return IL->getValue() == 0;
793   // +0.0
794   if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E))
795     return FL->getValue().isPosZero();
796   // int()
797   if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) &&
798       CGF.getTypes().isZeroInitializable(E->getType()))
799     return true;
800   // (int*)0 - Null pointer expressions.
801   if (const CastExpr *ICE = dyn_cast<CastExpr>(E))
802     return ICE->getCastKind() == CK_NullToPointer;
803   // '\0'
804   if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E))
805     return CL->getValue() == 0;
806 
807   // Otherwise, hard case: conservatively return false.
808   return false;
809 }
810 
811 
812 void
813 AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV) {
814   QualType type = LV.getType();
815   // FIXME: Ignore result?
816   // FIXME: Are initializers affected by volatile?
817   if (Dest.isZeroed() && isSimpleZero(E, CGF)) {
818     // Storing "i32 0" to a zero'd memory location is a noop.
819   } else if (isa<ImplicitValueInitExpr>(E)) {
820     EmitNullInitializationToLValue(LV);
821   } else if (type->isReferenceType()) {
822     RValue RV = CGF.EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0);
823     CGF.EmitStoreThroughLValue(RV, LV);
824   } else if (type->isAnyComplexType()) {
825     CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false);
826   } else if (CGF.hasAggregateLLVMType(type)) {
827     CGF.EmitAggExpr(E, AggValueSlot::forLValue(LV,
828                                                AggValueSlot::IsDestructed,
829                                       AggValueSlot::DoesNotNeedGCBarriers,
830                                                AggValueSlot::IsNotAliased,
831                                                Dest.isZeroed()));
832   } else if (LV.isSimple()) {
833     CGF.EmitScalarInit(E, /*D=*/0, LV, /*Captured=*/false);
834   } else {
835     CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV);
836   }
837 }
838 
839 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) {
840   QualType type = lv.getType();
841 
842   // If the destination slot is already zeroed out before the aggregate is
843   // copied into it, we don't have to emit any zeros here.
844   if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type))
845     return;
846 
847   if (!CGF.hasAggregateLLVMType(type)) {
848     // For non-aggregates, we can store zero
849     llvm::Value *null = llvm::Constant::getNullValue(CGF.ConvertType(type));
850     CGF.EmitStoreThroughLValue(RValue::get(null), lv);
851   } else {
852     // There's a potential optimization opportunity in combining
853     // memsets; that would be easy for arrays, but relatively
854     // difficult for structures with the current code.
855     CGF.EmitNullInitialization(lv.getAddress(), lv.getType());
856   }
857 }
858 
859 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
860 #if 0
861   // FIXME: Assess perf here?  Figure out what cases are worth optimizing here
862   // (Length of globals? Chunks of zeroed-out space?).
863   //
864   // If we can, prefer a copy from a global; this is a lot less code for long
865   // globals, and it's easier for the current optimizers to analyze.
866   if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) {
867     llvm::GlobalVariable* GV =
868     new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true,
869                              llvm::GlobalValue::InternalLinkage, C, "");
870     EmitFinalDestCopy(E, CGF.MakeAddrLValue(GV, E->getType()));
871     return;
872   }
873 #endif
874   if (E->hadArrayRangeDesignator())
875     CGF.ErrorUnsupported(E, "GNU array range designator extension");
876 
877   if (E->initializesStdInitializerList()) {
878     EmitStdInitializerList(E);
879     return;
880   }
881 
882   llvm::Value *DestPtr = Dest.getAddr();
883 
884   // Handle initialization of an array.
885   if (E->getType()->isArrayType()) {
886     if (E->getNumInits() > 0) {
887       QualType T1 = E->getType();
888       QualType T2 = E->getInit(0)->getType();
889       if (CGF.getContext().hasSameUnqualifiedType(T1, T2)) {
890         EmitAggLoadOfLValue(E->getInit(0));
891         return;
892       }
893     }
894 
895     QualType elementType = E->getType().getCanonicalType();
896     elementType = CGF.getContext().getQualifiedType(
897                     cast<ArrayType>(elementType)->getElementType(),
898                     elementType.getQualifiers() + Dest.getQualifiers());
899 
900     llvm::PointerType *APType =
901       cast<llvm::PointerType>(DestPtr->getType());
902     llvm::ArrayType *AType =
903       cast<llvm::ArrayType>(APType->getElementType());
904 
905     EmitArrayInit(DestPtr, AType, elementType, E);
906     return;
907   }
908 
909   assert(E->getType()->isRecordType() && "Only support structs/unions here!");
910 
911   // Do struct initialization; this code just sets each individual member
912   // to the approprate value.  This makes bitfield support automatic;
913   // the disadvantage is that the generated code is more difficult for
914   // the optimizer, especially with bitfields.
915   unsigned NumInitElements = E->getNumInits();
916   RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl();
917 
918   if (record->isUnion()) {
919     // Only initialize one field of a union. The field itself is
920     // specified by the initializer list.
921     if (!E->getInitializedFieldInUnion()) {
922       // Empty union; we have nothing to do.
923 
924 #ifndef NDEBUG
925       // Make sure that it's really an empty and not a failure of
926       // semantic analysis.
927       for (RecordDecl::field_iterator Field = record->field_begin(),
928                                    FieldEnd = record->field_end();
929            Field != FieldEnd; ++Field)
930         assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed");
931 #endif
932       return;
933     }
934 
935     // FIXME: volatility
936     FieldDecl *Field = E->getInitializedFieldInUnion();
937 
938     LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestPtr, Field, 0);
939     if (NumInitElements) {
940       // Store the initializer into the field
941       EmitInitializationToLValue(E->getInit(0), FieldLoc);
942     } else {
943       // Default-initialize to null.
944       EmitNullInitializationToLValue(FieldLoc);
945     }
946 
947     return;
948   }
949 
950   // We'll need to enter cleanup scopes in case any of the member
951   // initializers throw an exception.
952   SmallVector<EHScopeStack::stable_iterator, 16> cleanups;
953   llvm::Instruction *cleanupDominator = 0;
954 
955   // Here we iterate over the fields; this makes it simpler to both
956   // default-initialize fields and skip over unnamed fields.
957   unsigned curInitIndex = 0;
958   for (RecordDecl::field_iterator field = record->field_begin(),
959                                fieldEnd = record->field_end();
960        field != fieldEnd; ++field) {
961     // We're done once we hit the flexible array member.
962     if (field->getType()->isIncompleteArrayType())
963       break;
964 
965     // Always skip anonymous bitfields.
966     if (field->isUnnamedBitfield())
967       continue;
968 
969     // We're done if we reach the end of the explicit initializers, we
970     // have a zeroed object, and the rest of the fields are
971     // zero-initializable.
972     if (curInitIndex == NumInitElements && Dest.isZeroed() &&
973         CGF.getTypes().isZeroInitializable(E->getType()))
974       break;
975 
976     // FIXME: volatility
977     LValue LV = CGF.EmitLValueForFieldInitialization(DestPtr, *field, 0);
978     // We never generate write-barries for initialized fields.
979     LV.setNonGC(true);
980 
981     if (curInitIndex < NumInitElements) {
982       // Store the initializer into the field.
983       EmitInitializationToLValue(E->getInit(curInitIndex++), LV);
984     } else {
985       // We're out of initalizers; default-initialize to null
986       EmitNullInitializationToLValue(LV);
987     }
988 
989     // Push a destructor if necessary.
990     // FIXME: if we have an array of structures, all explicitly
991     // initialized, we can end up pushing a linear number of cleanups.
992     bool pushedCleanup = false;
993     if (QualType::DestructionKind dtorKind
994           = field->getType().isDestructedType()) {
995       assert(LV.isSimple());
996       if (CGF.needsEHCleanup(dtorKind)) {
997         if (!cleanupDominator)
998           cleanupDominator = CGF.Builder.CreateUnreachable(); // placeholder
999 
1000         CGF.pushDestroy(EHCleanup, LV.getAddress(), field->getType(),
1001                         CGF.getDestroyer(dtorKind), false);
1002         cleanups.push_back(CGF.EHStack.stable_begin());
1003         pushedCleanup = true;
1004       }
1005     }
1006 
1007     // If the GEP didn't get used because of a dead zero init or something
1008     // else, clean it up for -O0 builds and general tidiness.
1009     if (!pushedCleanup && LV.isSimple())
1010       if (llvm::GetElementPtrInst *GEP =
1011             dyn_cast<llvm::GetElementPtrInst>(LV.getAddress()))
1012         if (GEP->use_empty())
1013           GEP->eraseFromParent();
1014   }
1015 
1016   // Deactivate all the partial cleanups in reverse order, which
1017   // generally means popping them.
1018   for (unsigned i = cleanups.size(); i != 0; --i)
1019     CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator);
1020 
1021   // Destroy the placeholder if we made one.
1022   if (cleanupDominator)
1023     cleanupDominator->eraseFromParent();
1024 }
1025 
1026 //===----------------------------------------------------------------------===//
1027 //                        Entry Points into this File
1028 //===----------------------------------------------------------------------===//
1029 
1030 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of
1031 /// non-zero bytes that will be stored when outputting the initializer for the
1032 /// specified initializer expression.
1033 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) {
1034   E = E->IgnoreParens();
1035 
1036   // 0 and 0.0 won't require any non-zero stores!
1037   if (isSimpleZero(E, CGF)) return CharUnits::Zero();
1038 
1039   // If this is an initlist expr, sum up the size of sizes of the (present)
1040   // elements.  If this is something weird, assume the whole thing is non-zero.
1041   const InitListExpr *ILE = dyn_cast<InitListExpr>(E);
1042   if (ILE == 0 || !CGF.getTypes().isZeroInitializable(ILE->getType()))
1043     return CGF.getContext().getTypeSizeInChars(E->getType());
1044 
1045   // InitListExprs for structs have to be handled carefully.  If there are
1046   // reference members, we need to consider the size of the reference, not the
1047   // referencee.  InitListExprs for unions and arrays can't have references.
1048   if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
1049     if (!RT->isUnionType()) {
1050       RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl();
1051       CharUnits NumNonZeroBytes = CharUnits::Zero();
1052 
1053       unsigned ILEElement = 0;
1054       for (RecordDecl::field_iterator Field = SD->field_begin(),
1055            FieldEnd = SD->field_end(); Field != FieldEnd; ++Field) {
1056         // We're done once we hit the flexible array member or run out of
1057         // InitListExpr elements.
1058         if (Field->getType()->isIncompleteArrayType() ||
1059             ILEElement == ILE->getNumInits())
1060           break;
1061         if (Field->isUnnamedBitfield())
1062           continue;
1063 
1064         const Expr *E = ILE->getInit(ILEElement++);
1065 
1066         // Reference values are always non-null and have the width of a pointer.
1067         if (Field->getType()->isReferenceType())
1068           NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits(
1069               CGF.getContext().getTargetInfo().getPointerWidth(0));
1070         else
1071           NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF);
1072       }
1073 
1074       return NumNonZeroBytes;
1075     }
1076   }
1077 
1078 
1079   CharUnits NumNonZeroBytes = CharUnits::Zero();
1080   for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1081     NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF);
1082   return NumNonZeroBytes;
1083 }
1084 
1085 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of
1086 /// zeros in it, emit a memset and avoid storing the individual zeros.
1087 ///
1088 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E,
1089                                      CodeGenFunction &CGF) {
1090   // If the slot is already known to be zeroed, nothing to do.  Don't mess with
1091   // volatile stores.
1092   if (Slot.isZeroed() || Slot.isVolatile() || Slot.getAddr() == 0) return;
1093 
1094   // C++ objects with a user-declared constructor don't need zero'ing.
1095   if (CGF.getContext().getLangOptions().CPlusPlus)
1096     if (const RecordType *RT = CGF.getContext()
1097                        .getBaseElementType(E->getType())->getAs<RecordType>()) {
1098       const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1099       if (RD->hasUserDeclaredConstructor())
1100         return;
1101     }
1102 
1103   // If the type is 16-bytes or smaller, prefer individual stores over memset.
1104   std::pair<CharUnits, CharUnits> TypeInfo =
1105     CGF.getContext().getTypeInfoInChars(E->getType());
1106   if (TypeInfo.first <= CharUnits::fromQuantity(16))
1107     return;
1108 
1109   // Check to see if over 3/4 of the initializer are known to be zero.  If so,
1110   // we prefer to emit memset + individual stores for the rest.
1111   CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF);
1112   if (NumNonZeroBytes*4 > TypeInfo.first)
1113     return;
1114 
1115   // Okay, it seems like a good idea to use an initial memset, emit the call.
1116   llvm::Constant *SizeVal = CGF.Builder.getInt64(TypeInfo.first.getQuantity());
1117   CharUnits Align = TypeInfo.second;
1118 
1119   llvm::Value *Loc = Slot.getAddr();
1120 
1121   Loc = CGF.Builder.CreateBitCast(Loc, CGF.Int8PtrTy);
1122   CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal,
1123                            Align.getQuantity(), false);
1124 
1125   // Tell the AggExprEmitter that the slot is known zero.
1126   Slot.setZeroed();
1127 }
1128 
1129 
1130 
1131 
1132 /// EmitAggExpr - Emit the computation of the specified expression of aggregate
1133 /// type.  The result is computed into DestPtr.  Note that if DestPtr is null,
1134 /// the value of the aggregate expression is not needed.  If VolatileDest is
1135 /// true, DestPtr cannot be 0.
1136 ///
1137 /// \param IsInitializer - true if this evaluation is initializing an
1138 /// object whose lifetime is already being managed.
1139 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot,
1140                                   bool IgnoreResult) {
1141   assert(E && hasAggregateLLVMType(E->getType()) &&
1142          "Invalid aggregate expression to emit");
1143   assert((Slot.getAddr() != 0 || Slot.isIgnored()) &&
1144          "slot has bits but no address");
1145 
1146   // Optimize the slot if possible.
1147   CheckAggExprForMemSetUse(Slot, E, *this);
1148 
1149   AggExprEmitter(*this, Slot, IgnoreResult).Visit(const_cast<Expr*>(E));
1150 }
1151 
1152 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) {
1153   assert(hasAggregateLLVMType(E->getType()) && "Invalid argument!");
1154   llvm::Value *Temp = CreateMemTemp(E->getType());
1155   LValue LV = MakeAddrLValue(Temp, E->getType());
1156   EmitAggExpr(E, AggValueSlot::forLValue(LV, AggValueSlot::IsNotDestructed,
1157                                          AggValueSlot::DoesNotNeedGCBarriers,
1158                                          AggValueSlot::IsNotAliased));
1159   return LV;
1160 }
1161 
1162 void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr,
1163                                         llvm::Value *SrcPtr, QualType Ty,
1164                                         bool isVolatile, unsigned Alignment) {
1165   assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
1166 
1167   if (getContext().getLangOptions().CPlusPlus) {
1168     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1169       CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
1170       assert((Record->hasTrivialCopyConstructor() ||
1171               Record->hasTrivialCopyAssignment() ||
1172               Record->hasTrivialMoveConstructor() ||
1173               Record->hasTrivialMoveAssignment()) &&
1174              "Trying to aggregate-copy a type without a trivial copy "
1175              "constructor or assignment operator");
1176       // Ignore empty classes in C++.
1177       if (Record->isEmpty())
1178         return;
1179     }
1180   }
1181 
1182   // Aggregate assignment turns into llvm.memcpy.  This is almost valid per
1183   // C99 6.5.16.1p3, which states "If the value being stored in an object is
1184   // read from another object that overlaps in anyway the storage of the first
1185   // object, then the overlap shall be exact and the two objects shall have
1186   // qualified or unqualified versions of a compatible type."
1187   //
1188   // memcpy is not defined if the source and destination pointers are exactly
1189   // equal, but other compilers do this optimization, and almost every memcpy
1190   // implementation handles this case safely.  If there is a libc that does not
1191   // safely handle this, we can add a target hook.
1192 
1193   // Get size and alignment info for this aggregate.
1194   std::pair<CharUnits, CharUnits> TypeInfo =
1195     getContext().getTypeInfoInChars(Ty);
1196 
1197   if (!Alignment)
1198     Alignment = TypeInfo.second.getQuantity();
1199 
1200   // FIXME: Handle variable sized types.
1201 
1202   // FIXME: If we have a volatile struct, the optimizer can remove what might
1203   // appear to be `extra' memory ops:
1204   //
1205   // volatile struct { int i; } a, b;
1206   //
1207   // int main() {
1208   //   a = b;
1209   //   a = b;
1210   // }
1211   //
1212   // we need to use a different call here.  We use isVolatile to indicate when
1213   // either the source or the destination is volatile.
1214 
1215   llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType());
1216   llvm::Type *DBP =
1217     llvm::Type::getInt8PtrTy(getLLVMContext(), DPT->getAddressSpace());
1218   DestPtr = Builder.CreateBitCast(DestPtr, DBP);
1219 
1220   llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType());
1221   llvm::Type *SBP =
1222     llvm::Type::getInt8PtrTy(getLLVMContext(), SPT->getAddressSpace());
1223   SrcPtr = Builder.CreateBitCast(SrcPtr, SBP);
1224 
1225   // Don't do any of the memmove_collectable tests if GC isn't set.
1226   if (CGM.getLangOptions().getGC() == LangOptions::NonGC) {
1227     // fall through
1228   } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
1229     RecordDecl *Record = RecordTy->getDecl();
1230     if (Record->hasObjectMember()) {
1231       CharUnits size = TypeInfo.first;
1232       llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
1233       llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity());
1234       CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
1235                                                     SizeVal);
1236       return;
1237     }
1238   } else if (Ty->isArrayType()) {
1239     QualType BaseType = getContext().getBaseElementType(Ty);
1240     if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
1241       if (RecordTy->getDecl()->hasObjectMember()) {
1242         CharUnits size = TypeInfo.first;
1243         llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
1244         llvm::Value *SizeVal =
1245           llvm::ConstantInt::get(SizeTy, size.getQuantity());
1246         CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
1247                                                       SizeVal);
1248         return;
1249       }
1250     }
1251   }
1252 
1253   Builder.CreateMemCpy(DestPtr, SrcPtr,
1254                        llvm::ConstantInt::get(IntPtrTy,
1255                                               TypeInfo.first.getQuantity()),
1256                        Alignment, isVolatile);
1257 }
1258 
1259 void CodeGenFunction::MaybeEmitStdInitializerListCleanup(LValue lvalue,
1260                                                     const Expr *init) {
1261   const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(init);
1262   if (!cleanups)
1263     return; // Nothing interesting here.
1264   init = cleanups->getSubExpr();
1265 
1266   if (isa<InitListExpr>(init) &&
1267       cast<InitListExpr>(init)->initializesStdInitializerList()) {
1268     // We initialized this std::initializer_list with an initializer list.
1269     // A backing array was created. Push a cleanup for it.
1270     EmitStdInitializerListCleanup(lvalue, cast<InitListExpr>(init));
1271   }
1272 }
1273 
1274 void CodeGenFunction::EmitStdInitializerListCleanup(LValue lvalue,
1275                                                     const InitListExpr *init) {
1276   ASTContext &ctx = getContext();
1277   QualType element = GetStdInitializerListElementType(init->getType());
1278   unsigned numInits = init->getNumInits();
1279   llvm::APInt size(ctx.getTypeSize(ctx.getSizeType()), numInits);
1280   QualType array =ctx.getConstantArrayType(element, size, ArrayType::Normal, 0);
1281   QualType arrayPtr = ctx.getPointerType(array);
1282   llvm::Type *arrayPtrType = ConvertType(arrayPtr);
1283 
1284   // lvalue is the location of a std::initializer_list, which as its first
1285   // element has a pointer to the array we want to destroy.
1286   llvm::Value *startPointer = Builder.CreateStructGEP(lvalue.getAddress(), 0,
1287                                                       "startPointer");
1288   llvm::Value *arrayAddress =
1289       Builder.CreateBitCast(startPointer, arrayPtrType, "arrayAddress");
1290 
1291   ::EmitStdInitializerListCleanup(*this, array, arrayAddress, init);
1292 }
1293