1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Aggregate Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "clang/AST/ASTContext.h" 17 #include "clang/AST/StmtVisitor.h" 18 #include "llvm/Constants.h" 19 #include "llvm/Function.h" 20 #include "llvm/GlobalVariable.h" 21 #include "llvm/Support/Compiler.h" 22 #include "llvm/Intrinsics.h" 23 using namespace clang; 24 using namespace CodeGen; 25 26 //===----------------------------------------------------------------------===// 27 // Aggregate Expression Emitter 28 //===----------------------------------------------------------------------===// 29 30 namespace { 31 class VISIBILITY_HIDDEN AggExprEmitter : public StmtVisitor<AggExprEmitter> { 32 CodeGenFunction &CGF; 33 CGBuilderTy &Builder; 34 llvm::Value *DestPtr; 35 bool VolatileDest; 36 public: 37 AggExprEmitter(CodeGenFunction &cgf, llvm::Value *destPtr, bool volatileDest) 38 : CGF(cgf), Builder(CGF.Builder), 39 DestPtr(destPtr), VolatileDest(volatileDest) { 40 } 41 42 //===--------------------------------------------------------------------===// 43 // Utilities 44 //===--------------------------------------------------------------------===// 45 46 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 47 /// represents a value lvalue, this method emits the address of the lvalue, 48 /// then loads the result into DestPtr. 49 void EmitAggLoadOfLValue(const Expr *E); 50 51 //===--------------------------------------------------------------------===// 52 // Visitor Methods 53 //===--------------------------------------------------------------------===// 54 55 void VisitStmt(Stmt *S) { 56 CGF.ErrorUnsupported(S, "aggregate expression"); 57 } 58 void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); } 59 void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); } 60 61 // l-values. 62 void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); } 63 void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); } 64 void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); } 65 void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); } 66 void VisitCompoundLiteralExpr(CompoundLiteralExpr *E) 67 { EmitAggLoadOfLValue(E); } 68 69 void VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 70 EmitAggLoadOfLValue(E); 71 } 72 73 void VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) 74 { EmitAggLoadOfLValue(E); } 75 76 // Operators. 77 // case Expr::UnaryOperatorClass: 78 // case Expr::CastExprClass: 79 void VisitCStyleCastExpr(CStyleCastExpr *E); 80 void VisitImplicitCastExpr(ImplicitCastExpr *E); 81 void VisitCallExpr(const CallExpr *E); 82 void VisitStmtExpr(const StmtExpr *E); 83 void VisitBinaryOperator(const BinaryOperator *BO); 84 void VisitBinAssign(const BinaryOperator *E); 85 void VisitBinComma(const BinaryOperator *E); 86 87 void VisitObjCMessageExpr(ObjCMessageExpr *E); 88 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 89 EmitAggLoadOfLValue(E); 90 } 91 void VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E); 92 void VisitObjCKVCRefExpr(ObjCKVCRefExpr *E); 93 94 void VisitConditionalOperator(const ConditionalOperator *CO); 95 void VisitInitListExpr(InitListExpr *E); 96 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 97 Visit(DAE->getExpr()); 98 } 99 void VisitVAArgExpr(VAArgExpr *E); 100 101 void EmitInitializationToLValue(Expr *E, LValue Address); 102 void EmitNullInitializationToLValue(LValue Address, QualType T); 103 // case Expr::ChooseExprClass: 104 105 }; 106 } // end anonymous namespace. 107 108 //===----------------------------------------------------------------------===// 109 // Utilities 110 //===----------------------------------------------------------------------===// 111 112 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 113 /// represents a value lvalue, this method emits the address of the lvalue, 114 /// then loads the result into DestPtr. 115 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) { 116 LValue LV = CGF.EmitLValue(E); 117 assert(LV.isSimple() && "Can't have aggregate bitfield, vector, etc"); 118 llvm::Value *SrcPtr = LV.getAddress(); 119 120 // If the result is ignored, don't copy from the value. 121 if (DestPtr == 0) 122 // FIXME: If the source is volatile, we must read from it. 123 return; 124 125 CGF.EmitAggregateCopy(DestPtr, SrcPtr, E->getType()); 126 } 127 128 //===----------------------------------------------------------------------===// 129 // Visitor Methods 130 //===----------------------------------------------------------------------===// 131 132 void AggExprEmitter::VisitCStyleCastExpr(CStyleCastExpr *E) { 133 // GCC union extension 134 if (E->getType()->isUnionType()) { 135 RecordDecl *SD = E->getType()->getAsRecordType()->getDecl(); 136 LValue FieldLoc = CGF.EmitLValueForField(DestPtr, *SD->field_begin(), true, 0); 137 EmitInitializationToLValue(E->getSubExpr(), FieldLoc); 138 return; 139 } 140 141 Visit(E->getSubExpr()); 142 } 143 144 void AggExprEmitter::VisitImplicitCastExpr(ImplicitCastExpr *E) { 145 assert(CGF.getContext().typesAreCompatible( 146 E->getSubExpr()->getType().getUnqualifiedType(), 147 E->getType().getUnqualifiedType()) && 148 "Implicit cast types must be compatible"); 149 Visit(E->getSubExpr()); 150 } 151 152 void AggExprEmitter::VisitCallExpr(const CallExpr *E) { 153 RValue RV = CGF.EmitCallExpr(E); 154 assert(RV.isAggregate() && "Return value must be aggregate value!"); 155 156 // If the result is ignored, don't copy from the value. 157 if (DestPtr == 0) 158 // FIXME: If the source is volatile, we must read from it. 159 return; 160 161 CGF.EmitAggregateCopy(DestPtr, RV.getAggregateAddr(), E->getType()); 162 } 163 164 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) { 165 RValue RV = CGF.EmitObjCMessageExpr(E); 166 assert(RV.isAggregate() && "Return value must be aggregate value!"); 167 168 // If the result is ignored, don't copy from the value. 169 if (DestPtr == 0) 170 // FIXME: If the source is volatile, we must read from it. 171 return; 172 173 CGF.EmitAggregateCopy(DestPtr, RV.getAggregateAddr(), E->getType()); 174 } 175 176 void AggExprEmitter::VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) { 177 RValue RV = CGF.EmitObjCPropertyGet(E); 178 assert(RV.isAggregate() && "Return value must be aggregate value!"); 179 180 // If the result is ignored, don't copy from the value. 181 if (DestPtr == 0) 182 // FIXME: If the source is volatile, we must read from it. 183 return; 184 185 CGF.EmitAggregateCopy(DestPtr, RV.getAggregateAddr(), E->getType()); 186 } 187 188 void AggExprEmitter::VisitObjCKVCRefExpr(ObjCKVCRefExpr *E) { 189 RValue RV = CGF.EmitObjCPropertyGet(E); 190 assert(RV.isAggregate() && "Return value must be aggregate value!"); 191 192 // If the result is ignored, don't copy from the value. 193 if (DestPtr == 0) 194 // FIXME: If the source is volatile, we must read from it. 195 return; 196 197 CGF.EmitAggregateCopy(DestPtr, RV.getAggregateAddr(), E->getType()); 198 } 199 200 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) { 201 CGF.EmitAnyExpr(E->getLHS()); 202 CGF.EmitAggExpr(E->getRHS(), DestPtr, false); 203 } 204 205 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) { 206 CGF.EmitCompoundStmt(*E->getSubStmt(), true, DestPtr, VolatileDest); 207 } 208 209 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) { 210 CGF.ErrorUnsupported(E, "aggregate binary expression"); 211 } 212 213 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) { 214 // For an assignment to work, the value on the right has 215 // to be compatible with the value on the left. 216 assert(CGF.getContext().typesAreCompatible( 217 E->getLHS()->getType().getUnqualifiedType(), 218 E->getRHS()->getType().getUnqualifiedType()) 219 && "Invalid assignment"); 220 LValue LHS = CGF.EmitLValue(E->getLHS()); 221 222 // We have to special case property setters, otherwise we must have 223 // a simple lvalue (no aggregates inside vectors, bitfields). 224 if (LHS.isPropertyRef()) { 225 // FIXME: Volatility? 226 llvm::Value *AggLoc = DestPtr; 227 if (!AggLoc) 228 AggLoc = CGF.CreateTempAlloca(CGF.ConvertType(E->getRHS()->getType())); 229 CGF.EmitAggExpr(E->getRHS(), AggLoc, false); 230 CGF.EmitObjCPropertySet(LHS.getPropertyRefExpr(), 231 RValue::getAggregate(AggLoc)); 232 } 233 else if (LHS.isKVCRef()) { 234 // FIXME: Volatility? 235 llvm::Value *AggLoc = DestPtr; 236 if (!AggLoc) 237 AggLoc = CGF.CreateTempAlloca(CGF.ConvertType(E->getRHS()->getType())); 238 CGF.EmitAggExpr(E->getRHS(), AggLoc, false); 239 CGF.EmitObjCPropertySet(LHS.getKVCRefExpr(), 240 RValue::getAggregate(AggLoc)); 241 } else { 242 // Codegen the RHS so that it stores directly into the LHS. 243 CGF.EmitAggExpr(E->getRHS(), LHS.getAddress(), false /*FIXME: VOLATILE LHS*/); 244 245 if (DestPtr == 0) 246 return; 247 248 // If the result of the assignment is used, copy the RHS there also. 249 CGF.EmitAggregateCopy(DestPtr, LHS.getAddress(), E->getType()); 250 } 251 } 252 253 void AggExprEmitter::VisitConditionalOperator(const ConditionalOperator *E) { 254 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 255 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 256 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 257 258 llvm::Value *Cond = CGF.EvaluateExprAsBool(E->getCond()); 259 Builder.CreateCondBr(Cond, LHSBlock, RHSBlock); 260 261 CGF.EmitBlock(LHSBlock); 262 263 // Handle the GNU extension for missing LHS. 264 assert(E->getLHS() && "Must have LHS for aggregate value"); 265 266 Visit(E->getLHS()); 267 CGF.EmitBranch(ContBlock); 268 269 CGF.EmitBlock(RHSBlock); 270 271 Visit(E->getRHS()); 272 CGF.EmitBranch(ContBlock); 273 274 CGF.EmitBlock(ContBlock); 275 } 276 277 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 278 llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr()); 279 llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType()); 280 281 if (!ArgPtr) { 282 CGF.ErrorUnsupported(VE, "aggregate va_arg expression"); 283 return; 284 } 285 286 if (DestPtr) 287 // FIXME: volatility 288 CGF.EmitAggregateCopy(DestPtr, ArgPtr, VE->getType()); 289 } 290 291 void AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV) { 292 // FIXME: Are initializers affected by volatile? 293 if (isa<ImplicitValueInitExpr>(E)) { 294 EmitNullInitializationToLValue(LV, E->getType()); 295 } else if (E->getType()->isComplexType()) { 296 CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false); 297 } else if (CGF.hasAggregateLLVMType(E->getType())) { 298 CGF.EmitAnyExpr(E, LV.getAddress(), false); 299 } else { 300 CGF.EmitStoreThroughLValue(CGF.EmitAnyExpr(E), LV, E->getType()); 301 } 302 } 303 304 void AggExprEmitter::EmitNullInitializationToLValue(LValue LV, QualType T) { 305 if (!CGF.hasAggregateLLVMType(T)) { 306 // For non-aggregates, we can store zero 307 llvm::Value *Null = llvm::Constant::getNullValue(CGF.ConvertType(T)); 308 CGF.EmitStoreThroughLValue(RValue::get(Null), LV, T); 309 } else { 310 // Otherwise, just memset the whole thing to zero. This is legal 311 // because in LLVM, all default initializers are guaranteed to have a 312 // bit pattern of all zeros. 313 // There's a potential optimization opportunity in combining 314 // memsets; that would be easy for arrays, but relatively 315 // difficult for structures with the current code. 316 const llvm::Type *SizeTy = llvm::Type::Int64Ty; 317 llvm::Value *MemSet = CGF.CGM.getIntrinsic(llvm::Intrinsic::memset, 318 &SizeTy, 1); 319 uint64_t Size = CGF.getContext().getTypeSize(T); 320 321 const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 322 llvm::Value* DestPtr = Builder.CreateBitCast(LV.getAddress(), BP, "tmp"); 323 Builder.CreateCall4(MemSet, DestPtr, 324 llvm::ConstantInt::get(llvm::Type::Int8Ty, 0), 325 llvm::ConstantInt::get(SizeTy, Size/8), 326 llvm::ConstantInt::get(llvm::Type::Int32Ty, 0)); 327 } 328 } 329 330 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) { 331 #if 0 332 // FIXME: Disabled while we figure out what to do about 333 // test/CodeGen/bitfield.c 334 // 335 // If we can, prefer a copy from a global; this is a lot less 336 // code for long globals, and it's easier for the current optimizers 337 // to analyze. 338 // FIXME: Should we really be doing this? Should we try to avoid 339 // cases where we emit a global with a lot of zeros? Should 340 // we try to avoid short globals? 341 if (E->isConstantInitializer(CGF.getContext(), 0)) { 342 llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, &CGF); 343 llvm::GlobalVariable* GV = 344 new llvm::GlobalVariable(C->getType(), true, 345 llvm::GlobalValue::InternalLinkage, 346 C, "", &CGF.CGM.getModule(), 0); 347 CGF.EmitAggregateCopy(DestPtr, GV, E->getType()); 348 return; 349 } 350 #endif 351 if (E->hadArrayRangeDesignator()) { 352 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 353 } 354 355 // Handle initialization of an array. 356 if (E->getType()->isArrayType()) { 357 const llvm::PointerType *APType = 358 cast<llvm::PointerType>(DestPtr->getType()); 359 const llvm::ArrayType *AType = 360 cast<llvm::ArrayType>(APType->getElementType()); 361 362 uint64_t NumInitElements = E->getNumInits(); 363 364 if (E->getNumInits() > 0) { 365 QualType T1 = E->getType(); 366 QualType T2 = E->getInit(0)->getType(); 367 if (CGF.getContext().getCanonicalType(T1).getUnqualifiedType() == 368 CGF.getContext().getCanonicalType(T2).getUnqualifiedType()) { 369 EmitAggLoadOfLValue(E->getInit(0)); 370 return; 371 } 372 } 373 374 uint64_t NumArrayElements = AType->getNumElements(); 375 QualType ElementType = CGF.getContext().getCanonicalType(E->getType()); 376 ElementType = CGF.getContext().getAsArrayType(ElementType)->getElementType(); 377 378 unsigned CVRqualifier = ElementType.getCVRQualifiers(); 379 380 for (uint64_t i = 0; i != NumArrayElements; ++i) { 381 llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array"); 382 if (i < NumInitElements) 383 EmitInitializationToLValue(E->getInit(i), 384 LValue::MakeAddr(NextVal, CVRqualifier)); 385 else 386 EmitNullInitializationToLValue(LValue::MakeAddr(NextVal, CVRqualifier), 387 ElementType); 388 } 389 return; 390 } 391 392 assert(E->getType()->isRecordType() && "Only support structs/unions here!"); 393 394 // Do struct initialization; this code just sets each individual member 395 // to the approprate value. This makes bitfield support automatic; 396 // the disadvantage is that the generated code is more difficult for 397 // the optimizer, especially with bitfields. 398 unsigned NumInitElements = E->getNumInits(); 399 RecordDecl *SD = E->getType()->getAsRecordType()->getDecl(); 400 unsigned CurInitVal = 0; 401 402 if (E->getType()->isUnionType()) { 403 // Only initialize one field of a union. The field itself is 404 // specified by the initializer list. 405 if (!E->getInitializedFieldInUnion()) { 406 // Empty union; we have nothing to do. 407 408 #ifndef NDEBUG 409 // Make sure that it's really an empty and not a failure of 410 // semantic analysis. 411 for (RecordDecl::field_iterator Field = SD->field_begin(), 412 FieldEnd = SD->field_end(); 413 Field != FieldEnd; ++Field) 414 assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed"); 415 #endif 416 return; 417 } 418 419 // FIXME: volatility 420 FieldDecl *Field = E->getInitializedFieldInUnion(); 421 LValue FieldLoc = CGF.EmitLValueForField(DestPtr, Field, true, 0); 422 423 if (NumInitElements) { 424 // Store the initializer into the field 425 EmitInitializationToLValue(E->getInit(0), FieldLoc); 426 } else { 427 // Default-initialize to null 428 EmitNullInitializationToLValue(FieldLoc, Field->getType()); 429 } 430 431 return; 432 } 433 434 // Here we iterate over the fields; this makes it simpler to both 435 // default-initialize fields and skip over unnamed fields. 436 for (RecordDecl::field_iterator Field = SD->field_begin(), 437 FieldEnd = SD->field_end(); 438 Field != FieldEnd; ++Field) { 439 // We're done once we hit the flexible array member 440 if (Field->getType()->isIncompleteArrayType()) 441 break; 442 443 if (Field->isUnnamedBitfield()) 444 continue; 445 446 // FIXME: volatility 447 LValue FieldLoc = CGF.EmitLValueForField(DestPtr, *Field, false, 0); 448 if (CurInitVal < NumInitElements) { 449 // Store the initializer into the field 450 EmitInitializationToLValue(E->getInit(CurInitVal++), FieldLoc); 451 } else { 452 // We're out of initalizers; default-initialize to null 453 EmitNullInitializationToLValue(FieldLoc, Field->getType()); 454 } 455 } 456 } 457 458 //===----------------------------------------------------------------------===// 459 // Entry Points into this File 460 //===----------------------------------------------------------------------===// 461 462 /// EmitAggExpr - Emit the computation of the specified expression of 463 /// aggregate type. The result is computed into DestPtr. Note that if 464 /// DestPtr is null, the value of the aggregate expression is not needed. 465 void CodeGenFunction::EmitAggExpr(const Expr *E, llvm::Value *DestPtr, 466 bool VolatileDest) { 467 assert(E && hasAggregateLLVMType(E->getType()) && 468 "Invalid aggregate expression to emit"); 469 470 AggExprEmitter(*this, DestPtr, VolatileDest).Visit(const_cast<Expr*>(E)); 471 } 472 473 void CodeGenFunction::EmitAggregateClear(llvm::Value *DestPtr, QualType Ty) { 474 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 475 476 EmitMemSetToZero(DestPtr, Ty); 477 } 478 479 void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr, 480 llvm::Value *SrcPtr, QualType Ty) { 481 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 482 483 // Aggregate assignment turns into llvm.memcpy. This is almost valid per 484 // C99 6.5.16.1p3, which states "If the value being stored in an object is 485 // read from another object that overlaps in anyway the storage of the first 486 // object, then the overlap shall be exact and the two objects shall have 487 // qualified or unqualified versions of a compatible type." 488 // 489 // memcpy is not defined if the source and destination pointers are exactly 490 // equal, but other compilers do this optimization, and almost every memcpy 491 // implementation handles this case safely. If there is a libc that does not 492 // safely handle this, we can add a target hook. 493 const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 494 if (DestPtr->getType() != BP) 495 DestPtr = Builder.CreateBitCast(DestPtr, BP, "tmp"); 496 if (SrcPtr->getType() != BP) 497 SrcPtr = Builder.CreateBitCast(SrcPtr, BP, "tmp"); 498 499 // Get size and alignment info for this aggregate. 500 std::pair<uint64_t, unsigned> TypeInfo = getContext().getTypeInfo(Ty); 501 502 // FIXME: Handle variable sized types. 503 const llvm::Type *IntPtr = llvm::IntegerType::get(LLVMPointerWidth); 504 505 Builder.CreateCall4(CGM.getMemCpyFn(), 506 DestPtr, SrcPtr, 507 // TypeInfo.first describes size in bits. 508 llvm::ConstantInt::get(IntPtr, TypeInfo.first/8), 509 llvm::ConstantInt::get(llvm::Type::Int32Ty, 510 TypeInfo.second/8)); 511 } 512