1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Aggregate Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "CGObjCRuntime.h" 17 #include "clang/AST/ASTContext.h" 18 #include "clang/AST/DeclCXX.h" 19 #include "clang/AST/StmtVisitor.h" 20 #include "llvm/Constants.h" 21 #include "llvm/Function.h" 22 #include "llvm/GlobalVariable.h" 23 #include "llvm/Intrinsics.h" 24 using namespace clang; 25 using namespace CodeGen; 26 27 //===----------------------------------------------------------------------===// 28 // Aggregate Expression Emitter 29 //===----------------------------------------------------------------------===// 30 31 namespace { 32 class AggExprEmitter : public StmtVisitor<AggExprEmitter> { 33 CodeGenFunction &CGF; 34 CGBuilderTy &Builder; 35 AggValueSlot Dest; 36 bool IgnoreResult; 37 38 ReturnValueSlot getReturnValueSlot() const { 39 // If the destination slot requires garbage collection, we can't 40 // use the real return value slot, because we have to use the GC 41 // API. 42 if (Dest.requiresGCollection()) return ReturnValueSlot(); 43 44 return ReturnValueSlot(Dest.getAddr(), Dest.isVolatile()); 45 } 46 47 AggValueSlot EnsureSlot(QualType T) { 48 if (!Dest.isIgnored()) return Dest; 49 return CGF.CreateAggTemp(T, "agg.tmp.ensured"); 50 } 51 52 public: 53 AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest, 54 bool ignore) 55 : CGF(cgf), Builder(CGF.Builder), Dest(Dest), 56 IgnoreResult(ignore) { 57 } 58 59 //===--------------------------------------------------------------------===// 60 // Utilities 61 //===--------------------------------------------------------------------===// 62 63 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 64 /// represents a value lvalue, this method emits the address of the lvalue, 65 /// then loads the result into DestPtr. 66 void EmitAggLoadOfLValue(const Expr *E); 67 68 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 69 void EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore = false); 70 void EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore = false); 71 72 void EmitGCMove(const Expr *E, RValue Src); 73 74 bool TypeRequiresGCollection(QualType T); 75 76 //===--------------------------------------------------------------------===// 77 // Visitor Methods 78 //===--------------------------------------------------------------------===// 79 80 void VisitStmt(Stmt *S) { 81 CGF.ErrorUnsupported(S, "aggregate expression"); 82 } 83 void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); } 84 void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); } 85 86 // l-values. 87 void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); } 88 void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); } 89 void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); } 90 void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); } 91 void VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 92 EmitAggLoadOfLValue(E); 93 } 94 void VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 95 EmitAggLoadOfLValue(E); 96 } 97 void VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) { 98 EmitAggLoadOfLValue(E); 99 } 100 void VisitPredefinedExpr(const PredefinedExpr *E) { 101 EmitAggLoadOfLValue(E); 102 } 103 104 // Operators. 105 void VisitCastExpr(CastExpr *E); 106 void VisitCallExpr(const CallExpr *E); 107 void VisitStmtExpr(const StmtExpr *E); 108 void VisitBinaryOperator(const BinaryOperator *BO); 109 void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO); 110 void VisitBinAssign(const BinaryOperator *E); 111 void VisitBinComma(const BinaryOperator *E); 112 113 void VisitObjCMessageExpr(ObjCMessageExpr *E); 114 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 115 EmitAggLoadOfLValue(E); 116 } 117 void VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E); 118 void VisitObjCImplicitSetterGetterRefExpr(ObjCImplicitSetterGetterRefExpr *E); 119 120 void VisitConditionalOperator(const ConditionalOperator *CO); 121 void VisitChooseExpr(const ChooseExpr *CE); 122 void VisitInitListExpr(InitListExpr *E); 123 void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E); 124 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 125 Visit(DAE->getExpr()); 126 } 127 void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E); 128 void VisitCXXConstructExpr(const CXXConstructExpr *E); 129 void VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E); 130 void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E); 131 void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); } 132 133 void VisitVAArgExpr(VAArgExpr *E); 134 135 void EmitInitializationToLValue(Expr *E, LValue Address, QualType T); 136 void EmitNullInitializationToLValue(LValue Address, QualType T); 137 // case Expr::ChooseExprClass: 138 void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); } 139 }; 140 } // end anonymous namespace. 141 142 //===----------------------------------------------------------------------===// 143 // Utilities 144 //===----------------------------------------------------------------------===// 145 146 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 147 /// represents a value lvalue, this method emits the address of the lvalue, 148 /// then loads the result into DestPtr. 149 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) { 150 LValue LV = CGF.EmitLValue(E); 151 EmitFinalDestCopy(E, LV); 152 } 153 154 /// \brief True if the given aggregate type requires special GC API calls. 155 bool AggExprEmitter::TypeRequiresGCollection(QualType T) { 156 // Only record types have members that might require garbage collection. 157 const RecordType *RecordTy = T->getAs<RecordType>(); 158 if (!RecordTy) return false; 159 160 // Don't mess with non-trivial C++ types. 161 RecordDecl *Record = RecordTy->getDecl(); 162 if (isa<CXXRecordDecl>(Record) && 163 (!cast<CXXRecordDecl>(Record)->hasTrivialCopyConstructor() || 164 !cast<CXXRecordDecl>(Record)->hasTrivialDestructor())) 165 return false; 166 167 // Check whether the type has an object member. 168 return Record->hasObjectMember(); 169 } 170 171 /// \brief Perform the final move to DestPtr if RequiresGCollection is set. 172 /// 173 /// The idea is that you do something like this: 174 /// RValue Result = EmitSomething(..., getReturnValueSlot()); 175 /// EmitGCMove(E, Result); 176 /// If GC doesn't interfere, this will cause the result to be emitted 177 /// directly into the return value slot. If GC does interfere, a final 178 /// move will be performed. 179 void AggExprEmitter::EmitGCMove(const Expr *E, RValue Src) { 180 if (Dest.requiresGCollection()) { 181 std::pair<uint64_t, unsigned> TypeInfo = 182 CGF.getContext().getTypeInfo(E->getType()); 183 unsigned long size = TypeInfo.first/8; 184 const llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType()); 185 llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size); 186 CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, Dest.getAddr(), 187 Src.getAggregateAddr(), 188 SizeVal); 189 } 190 } 191 192 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 193 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore) { 194 assert(Src.isAggregate() && "value must be aggregate value!"); 195 196 // If Dest is ignored, then we're evaluating an aggregate expression 197 // in a context (like an expression statement) that doesn't care 198 // about the result. C says that an lvalue-to-rvalue conversion is 199 // performed in these cases; C++ says that it is not. In either 200 // case, we don't actually need to do anything unless the value is 201 // volatile. 202 if (Dest.isIgnored()) { 203 if (!Src.isVolatileQualified() || 204 CGF.CGM.getLangOptions().CPlusPlus || 205 (IgnoreResult && Ignore)) 206 return; 207 208 // If the source is volatile, we must read from it; to do that, we need 209 // some place to put it. 210 Dest = CGF.CreateAggTemp(E->getType(), "agg.tmp"); 211 } 212 213 if (Dest.requiresGCollection()) { 214 std::pair<uint64_t, unsigned> TypeInfo = 215 CGF.getContext().getTypeInfo(E->getType()); 216 unsigned long size = TypeInfo.first/8; 217 const llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType()); 218 llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size); 219 CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, 220 Dest.getAddr(), 221 Src.getAggregateAddr(), 222 SizeVal); 223 return; 224 } 225 // If the result of the assignment is used, copy the LHS there also. 226 // FIXME: Pass VolatileDest as well. I think we also need to merge volatile 227 // from the source as well, as we can't eliminate it if either operand 228 // is volatile, unless copy has volatile for both source and destination.. 229 CGF.EmitAggregateCopy(Dest.getAddr(), Src.getAggregateAddr(), E->getType(), 230 Dest.isVolatile()|Src.isVolatileQualified()); 231 } 232 233 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 234 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore) { 235 assert(Src.isSimple() && "Can't have aggregate bitfield, vector, etc"); 236 237 EmitFinalDestCopy(E, RValue::getAggregate(Src.getAddress(), 238 Src.isVolatileQualified()), 239 Ignore); 240 } 241 242 //===----------------------------------------------------------------------===// 243 // Visitor Methods 244 //===----------------------------------------------------------------------===// 245 246 void AggExprEmitter::VisitCastExpr(CastExpr *E) { 247 if (Dest.isIgnored() && E->getCastKind() != CK_Dynamic) { 248 Visit(E->getSubExpr()); 249 return; 250 } 251 252 switch (E->getCastKind()) { 253 default: assert(0 && "Unhandled cast kind!"); 254 255 case CK_Dynamic: { 256 assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?"); 257 LValue LV = CGF.EmitCheckedLValue(E->getSubExpr()); 258 // FIXME: Do we also need to handle property references here? 259 if (LV.isSimple()) 260 CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E)); 261 else 262 CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast"); 263 264 if (!Dest.isIgnored()) 265 CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination"); 266 break; 267 } 268 269 case CK_ToUnion: { 270 // GCC union extension 271 QualType Ty = E->getSubExpr()->getType(); 272 QualType PtrTy = CGF.getContext().getPointerType(Ty); 273 llvm::Value *CastPtr = Builder.CreateBitCast(Dest.getAddr(), 274 CGF.ConvertType(PtrTy)); 275 EmitInitializationToLValue(E->getSubExpr(), CGF.MakeAddrLValue(CastPtr, Ty), 276 Ty); 277 break; 278 } 279 280 case CK_DerivedToBase: 281 case CK_BaseToDerived: 282 case CK_UncheckedDerivedToBase: { 283 assert(0 && "cannot perform hierarchy conversion in EmitAggExpr: " 284 "should have been unpacked before we got here"); 285 break; 286 } 287 288 case CK_NoOp: 289 case CK_UserDefinedConversion: 290 case CK_ConstructorConversion: 291 assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(), 292 E->getType()) && 293 "Implicit cast types must be compatible"); 294 Visit(E->getSubExpr()); 295 break; 296 297 case CK_LValueBitCast: 298 llvm_unreachable("there are no lvalue bit-casts on aggregates"); 299 break; 300 } 301 } 302 303 void AggExprEmitter::VisitCallExpr(const CallExpr *E) { 304 if (E->getCallReturnType()->isReferenceType()) { 305 EmitAggLoadOfLValue(E); 306 return; 307 } 308 309 RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot()); 310 EmitGCMove(E, RV); 311 } 312 313 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) { 314 RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot()); 315 EmitGCMove(E, RV); 316 } 317 318 void AggExprEmitter::VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) { 319 RValue RV = CGF.EmitObjCPropertyGet(E, getReturnValueSlot()); 320 EmitGCMove(E, RV); 321 } 322 323 void AggExprEmitter::VisitObjCImplicitSetterGetterRefExpr( 324 ObjCImplicitSetterGetterRefExpr *E) { 325 RValue RV = CGF.EmitObjCPropertyGet(E, getReturnValueSlot()); 326 EmitGCMove(E, RV); 327 } 328 329 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) { 330 CGF.EmitAnyExpr(E->getLHS(), AggValueSlot::ignored(), true); 331 Visit(E->getRHS()); 332 } 333 334 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) { 335 CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest); 336 } 337 338 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) { 339 if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI) 340 VisitPointerToDataMemberBinaryOperator(E); 341 else 342 CGF.ErrorUnsupported(E, "aggregate binary expression"); 343 } 344 345 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator( 346 const BinaryOperator *E) { 347 LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E); 348 EmitFinalDestCopy(E, LV); 349 } 350 351 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) { 352 // For an assignment to work, the value on the right has 353 // to be compatible with the value on the left. 354 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), 355 E->getRHS()->getType()) 356 && "Invalid assignment"); 357 LValue LHS = CGF.EmitLValue(E->getLHS()); 358 359 // We have to special case property setters, otherwise we must have 360 // a simple lvalue (no aggregates inside vectors, bitfields). 361 if (LHS.isPropertyRef()) { 362 AggValueSlot Slot = EnsureSlot(E->getRHS()->getType()); 363 CGF.EmitAggExpr(E->getRHS(), Slot); 364 CGF.EmitObjCPropertySet(LHS.getPropertyRefExpr(), Slot.asRValue()); 365 } else if (LHS.isKVCRef()) { 366 AggValueSlot Slot = EnsureSlot(E->getRHS()->getType()); 367 CGF.EmitAggExpr(E->getRHS(), Slot); 368 CGF.EmitObjCPropertySet(LHS.getKVCRefExpr(), Slot.asRValue()); 369 } else { 370 bool GCollection = false; 371 if (CGF.getContext().getLangOptions().getGCMode()) 372 GCollection = TypeRequiresGCollection(E->getLHS()->getType()); 373 374 // Codegen the RHS so that it stores directly into the LHS. 375 AggValueSlot LHSSlot = AggValueSlot::forLValue(LHS, true, 376 GCollection); 377 CGF.EmitAggExpr(E->getRHS(), LHSSlot, false); 378 EmitFinalDestCopy(E, LHS, true); 379 } 380 } 381 382 void AggExprEmitter::VisitConditionalOperator(const ConditionalOperator *E) { 383 if (!E->getLHS()) { 384 CGF.ErrorUnsupported(E, "conditional operator with missing LHS"); 385 return; 386 } 387 388 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 389 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 390 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 391 392 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock); 393 394 CGF.BeginConditionalBranch(); 395 CGF.EmitBlock(LHSBlock); 396 397 // Handle the GNU extension for missing LHS. 398 assert(E->getLHS() && "Must have LHS for aggregate value"); 399 400 Visit(E->getLHS()); 401 CGF.EndConditionalBranch(); 402 CGF.EmitBranch(ContBlock); 403 404 CGF.BeginConditionalBranch(); 405 CGF.EmitBlock(RHSBlock); 406 407 Visit(E->getRHS()); 408 CGF.EndConditionalBranch(); 409 CGF.EmitBranch(ContBlock); 410 411 CGF.EmitBlock(ContBlock); 412 } 413 414 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) { 415 Visit(CE->getChosenSubExpr(CGF.getContext())); 416 } 417 418 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 419 llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr()); 420 llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType()); 421 422 if (!ArgPtr) { 423 CGF.ErrorUnsupported(VE, "aggregate va_arg expression"); 424 return; 425 } 426 427 EmitFinalDestCopy(VE, CGF.MakeAddrLValue(ArgPtr, VE->getType())); 428 } 429 430 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 431 // Ensure that we have a slot, but if we already do, remember 432 // whether its lifetime was externally managed. 433 bool WasManaged = Dest.isLifetimeExternallyManaged(); 434 Dest = EnsureSlot(E->getType()); 435 Dest.setLifetimeExternallyManaged(); 436 437 Visit(E->getSubExpr()); 438 439 // Set up the temporary's destructor if its lifetime wasn't already 440 // being managed. 441 if (!WasManaged) 442 CGF.EmitCXXTemporary(E->getTemporary(), Dest.getAddr()); 443 } 444 445 void 446 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) { 447 AggValueSlot Slot = EnsureSlot(E->getType()); 448 CGF.EmitCXXConstructExpr(E, Slot); 449 } 450 451 void AggExprEmitter::VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E) { 452 CGF.EmitCXXExprWithTemporaries(E, Dest); 453 } 454 455 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) { 456 QualType T = E->getType(); 457 AggValueSlot Slot = EnsureSlot(T); 458 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T), T); 459 } 460 461 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) { 462 QualType T = E->getType(); 463 AggValueSlot Slot = EnsureSlot(T); 464 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T), T); 465 } 466 467 void 468 AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV, QualType T) { 469 // FIXME: Ignore result? 470 // FIXME: Are initializers affected by volatile? 471 if (isa<ImplicitValueInitExpr>(E)) { 472 EmitNullInitializationToLValue(LV, T); 473 } else if (T->isReferenceType()) { 474 RValue RV = CGF.EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0); 475 CGF.EmitStoreThroughLValue(RV, LV, T); 476 } else if (T->isAnyComplexType()) { 477 CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false); 478 } else if (CGF.hasAggregateLLVMType(T)) { 479 CGF.EmitAggExpr(E, AggValueSlot::forAddr(LV.getAddress(), false, true)); 480 } else { 481 CGF.EmitStoreThroughLValue(CGF.EmitAnyExpr(E), LV, T); 482 } 483 } 484 485 void AggExprEmitter::EmitNullInitializationToLValue(LValue LV, QualType T) { 486 if (!CGF.hasAggregateLLVMType(T)) { 487 // For non-aggregates, we can store zero 488 llvm::Value *Null = llvm::Constant::getNullValue(CGF.ConvertType(T)); 489 CGF.EmitStoreThroughLValue(RValue::get(Null), LV, T); 490 } else { 491 // There's a potential optimization opportunity in combining 492 // memsets; that would be easy for arrays, but relatively 493 // difficult for structures with the current code. 494 CGF.EmitNullInitialization(LV.getAddress(), T); 495 } 496 } 497 498 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) { 499 #if 0 500 // FIXME: Assess perf here? Figure out what cases are worth optimizing here 501 // (Length of globals? Chunks of zeroed-out space?). 502 // 503 // If we can, prefer a copy from a global; this is a lot less code for long 504 // globals, and it's easier for the current optimizers to analyze. 505 if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) { 506 llvm::GlobalVariable* GV = 507 new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true, 508 llvm::GlobalValue::InternalLinkage, C, ""); 509 EmitFinalDestCopy(E, CGF.MakeAddrLValue(GV, E->getType())); 510 return; 511 } 512 #endif 513 if (E->hadArrayRangeDesignator()) 514 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 515 516 llvm::Value *DestPtr = Dest.getAddr(); 517 518 // Handle initialization of an array. 519 if (E->getType()->isArrayType()) { 520 const llvm::PointerType *APType = 521 cast<llvm::PointerType>(DestPtr->getType()); 522 const llvm::ArrayType *AType = 523 cast<llvm::ArrayType>(APType->getElementType()); 524 525 uint64_t NumInitElements = E->getNumInits(); 526 527 if (E->getNumInits() > 0) { 528 QualType T1 = E->getType(); 529 QualType T2 = E->getInit(0)->getType(); 530 if (CGF.getContext().hasSameUnqualifiedType(T1, T2)) { 531 EmitAggLoadOfLValue(E->getInit(0)); 532 return; 533 } 534 } 535 536 uint64_t NumArrayElements = AType->getNumElements(); 537 QualType ElementType = CGF.getContext().getCanonicalType(E->getType()); 538 ElementType = CGF.getContext().getAsArrayType(ElementType)->getElementType(); 539 540 // FIXME: were we intentionally ignoring address spaces and GC attributes? 541 542 for (uint64_t i = 0; i != NumArrayElements; ++i) { 543 llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array"); 544 LValue LV = CGF.MakeAddrLValue(NextVal, ElementType); 545 if (i < NumInitElements) 546 EmitInitializationToLValue(E->getInit(i), LV, ElementType); 547 548 else 549 EmitNullInitializationToLValue(LV, ElementType); 550 } 551 return; 552 } 553 554 assert(E->getType()->isRecordType() && "Only support structs/unions here!"); 555 556 // Do struct initialization; this code just sets each individual member 557 // to the approprate value. This makes bitfield support automatic; 558 // the disadvantage is that the generated code is more difficult for 559 // the optimizer, especially with bitfields. 560 unsigned NumInitElements = E->getNumInits(); 561 RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl(); 562 563 if (E->getType()->isUnionType()) { 564 // Only initialize one field of a union. The field itself is 565 // specified by the initializer list. 566 if (!E->getInitializedFieldInUnion()) { 567 // Empty union; we have nothing to do. 568 569 #ifndef NDEBUG 570 // Make sure that it's really an empty and not a failure of 571 // semantic analysis. 572 for (RecordDecl::field_iterator Field = SD->field_begin(), 573 FieldEnd = SD->field_end(); 574 Field != FieldEnd; ++Field) 575 assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed"); 576 #endif 577 return; 578 } 579 580 // FIXME: volatility 581 FieldDecl *Field = E->getInitializedFieldInUnion(); 582 LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestPtr, Field, 0); 583 584 if (NumInitElements) { 585 // Store the initializer into the field 586 EmitInitializationToLValue(E->getInit(0), FieldLoc, Field->getType()); 587 } else { 588 // Default-initialize to null 589 EmitNullInitializationToLValue(FieldLoc, Field->getType()); 590 } 591 592 return; 593 } 594 595 // Here we iterate over the fields; this makes it simpler to both 596 // default-initialize fields and skip over unnamed fields. 597 unsigned CurInitVal = 0; 598 for (RecordDecl::field_iterator Field = SD->field_begin(), 599 FieldEnd = SD->field_end(); 600 Field != FieldEnd; ++Field) { 601 // We're done once we hit the flexible array member 602 if (Field->getType()->isIncompleteArrayType()) 603 break; 604 605 if (Field->isUnnamedBitfield()) 606 continue; 607 608 // FIXME: volatility 609 LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestPtr, *Field, 0); 610 // We never generate write-barries for initialized fields. 611 FieldLoc.setNonGC(true); 612 if (CurInitVal < NumInitElements) { 613 // Store the initializer into the field. 614 EmitInitializationToLValue(E->getInit(CurInitVal++), FieldLoc, 615 Field->getType()); 616 } else { 617 // We're out of initalizers; default-initialize to null 618 EmitNullInitializationToLValue(FieldLoc, Field->getType()); 619 } 620 } 621 } 622 623 //===----------------------------------------------------------------------===// 624 // Entry Points into this File 625 //===----------------------------------------------------------------------===// 626 627 /// EmitAggExpr - Emit the computation of the specified expression of aggregate 628 /// type. The result is computed into DestPtr. Note that if DestPtr is null, 629 /// the value of the aggregate expression is not needed. If VolatileDest is 630 /// true, DestPtr cannot be 0. 631 /// 632 /// \param IsInitializer - true if this evaluation is initializing an 633 /// object whose lifetime is already being managed. 634 // 635 // FIXME: Take Qualifiers object. 636 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot, 637 bool IgnoreResult) { 638 assert(E && hasAggregateLLVMType(E->getType()) && 639 "Invalid aggregate expression to emit"); 640 assert((Slot.getAddr() != 0 || Slot.isIgnored()) 641 && "slot has bits but no address"); 642 643 AggExprEmitter(*this, Slot, IgnoreResult) 644 .Visit(const_cast<Expr*>(E)); 645 } 646 647 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) { 648 assert(hasAggregateLLVMType(E->getType()) && "Invalid argument!"); 649 llvm::Value *Temp = CreateMemTemp(E->getType()); 650 LValue LV = MakeAddrLValue(Temp, E->getType()); 651 AggValueSlot Slot 652 = AggValueSlot::forAddr(Temp, LV.isVolatileQualified(), false); 653 EmitAggExpr(E, Slot); 654 return LV; 655 } 656 657 void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr, 658 llvm::Value *SrcPtr, QualType Ty, 659 bool isVolatile) { 660 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 661 662 if (getContext().getLangOptions().CPlusPlus) { 663 if (const RecordType *RT = Ty->getAs<RecordType>()) { 664 CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl()); 665 assert((Record->hasTrivialCopyConstructor() || 666 Record->hasTrivialCopyAssignment()) && 667 "Trying to aggregate-copy a type without a trivial copy " 668 "constructor or assignment operator"); 669 // Ignore empty classes in C++. 670 if (Record->isEmpty()) 671 return; 672 } 673 } 674 675 // Aggregate assignment turns into llvm.memcpy. This is almost valid per 676 // C99 6.5.16.1p3, which states "If the value being stored in an object is 677 // read from another object that overlaps in anyway the storage of the first 678 // object, then the overlap shall be exact and the two objects shall have 679 // qualified or unqualified versions of a compatible type." 680 // 681 // memcpy is not defined if the source and destination pointers are exactly 682 // equal, but other compilers do this optimization, and almost every memcpy 683 // implementation handles this case safely. If there is a libc that does not 684 // safely handle this, we can add a target hook. 685 686 // Get size and alignment info for this aggregate. 687 std::pair<uint64_t, unsigned> TypeInfo = getContext().getTypeInfo(Ty); 688 689 // FIXME: Handle variable sized types. 690 691 // FIXME: If we have a volatile struct, the optimizer can remove what might 692 // appear to be `extra' memory ops: 693 // 694 // volatile struct { int i; } a, b; 695 // 696 // int main() { 697 // a = b; 698 // a = b; 699 // } 700 // 701 // we need to use a different call here. We use isVolatile to indicate when 702 // either the source or the destination is volatile. 703 704 const llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType()); 705 const llvm::Type *DBP = 706 llvm::Type::getInt8PtrTy(VMContext, DPT->getAddressSpace()); 707 DestPtr = Builder.CreateBitCast(DestPtr, DBP, "tmp"); 708 709 const llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType()); 710 const llvm::Type *SBP = 711 llvm::Type::getInt8PtrTy(VMContext, SPT->getAddressSpace()); 712 SrcPtr = Builder.CreateBitCast(SrcPtr, SBP, "tmp"); 713 714 if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 715 RecordDecl *Record = RecordTy->getDecl(); 716 if (Record->hasObjectMember()) { 717 unsigned long size = TypeInfo.first/8; 718 const llvm::Type *SizeTy = ConvertType(getContext().getSizeType()); 719 llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size); 720 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 721 SizeVal); 722 return; 723 } 724 } else if (getContext().getAsArrayType(Ty)) { 725 QualType BaseType = getContext().getBaseElementType(Ty); 726 if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) { 727 if (RecordTy->getDecl()->hasObjectMember()) { 728 unsigned long size = TypeInfo.first/8; 729 const llvm::Type *SizeTy = ConvertType(getContext().getSizeType()); 730 llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size); 731 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 732 SizeVal); 733 return; 734 } 735 } 736 } 737 738 Builder.CreateCall5(CGM.getMemCpyFn(DestPtr->getType(), SrcPtr->getType(), 739 IntPtrTy), 740 DestPtr, SrcPtr, 741 // TypeInfo.first describes size in bits. 742 llvm::ConstantInt::get(IntPtrTy, TypeInfo.first/8), 743 Builder.getInt32(TypeInfo.second/8), 744 Builder.getInt1(isVolatile)); 745 } 746