1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Aggregate Expr nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCXXABI.h" 14 #include "CGObjCRuntime.h" 15 #include "CodeGenFunction.h" 16 #include "CodeGenModule.h" 17 #include "ConstantEmitter.h" 18 #include "TargetInfo.h" 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/Attr.h" 21 #include "clang/AST/DeclCXX.h" 22 #include "clang/AST/DeclTemplate.h" 23 #include "clang/AST/StmtVisitor.h" 24 #include "llvm/IR/Constants.h" 25 #include "llvm/IR/Function.h" 26 #include "llvm/IR/GlobalVariable.h" 27 #include "llvm/IR/IntrinsicInst.h" 28 #include "llvm/IR/Intrinsics.h" 29 using namespace clang; 30 using namespace CodeGen; 31 32 //===----------------------------------------------------------------------===// 33 // Aggregate Expression Emitter 34 //===----------------------------------------------------------------------===// 35 36 namespace { 37 class AggExprEmitter : public StmtVisitor<AggExprEmitter> { 38 CodeGenFunction &CGF; 39 CGBuilderTy &Builder; 40 AggValueSlot Dest; 41 bool IsResultUnused; 42 43 AggValueSlot EnsureSlot(QualType T) { 44 if (!Dest.isIgnored()) return Dest; 45 return CGF.CreateAggTemp(T, "agg.tmp.ensured"); 46 } 47 void EnsureDest(QualType T) { 48 if (!Dest.isIgnored()) return; 49 Dest = CGF.CreateAggTemp(T, "agg.tmp.ensured"); 50 } 51 52 // Calls `Fn` with a valid return value slot, potentially creating a temporary 53 // to do so. If a temporary is created, an appropriate copy into `Dest` will 54 // be emitted, as will lifetime markers. 55 // 56 // The given function should take a ReturnValueSlot, and return an RValue that 57 // points to said slot. 58 void withReturnValueSlot(const Expr *E, 59 llvm::function_ref<RValue(ReturnValueSlot)> Fn); 60 61 public: 62 AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest, bool IsResultUnused) 63 : CGF(cgf), Builder(CGF.Builder), Dest(Dest), 64 IsResultUnused(IsResultUnused) { } 65 66 //===--------------------------------------------------------------------===// 67 // Utilities 68 //===--------------------------------------------------------------------===// 69 70 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 71 /// represents a value lvalue, this method emits the address of the lvalue, 72 /// then loads the result into DestPtr. 73 void EmitAggLoadOfLValue(const Expr *E); 74 75 enum ExprValueKind { 76 EVK_RValue, 77 EVK_NonRValue 78 }; 79 80 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 81 /// SrcIsRValue is true if source comes from an RValue. 82 void EmitFinalDestCopy(QualType type, const LValue &src, 83 ExprValueKind SrcValueKind = EVK_NonRValue); 84 void EmitFinalDestCopy(QualType type, RValue src); 85 void EmitCopy(QualType type, const AggValueSlot &dest, 86 const AggValueSlot &src); 87 88 void EmitMoveFromReturnSlot(const Expr *E, RValue Src); 89 90 void EmitArrayInit(Address DestPtr, llvm::ArrayType *AType, 91 QualType ArrayQTy, InitListExpr *E); 92 93 AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) { 94 if (CGF.getLangOpts().getGC() && TypeRequiresGCollection(T)) 95 return AggValueSlot::NeedsGCBarriers; 96 return AggValueSlot::DoesNotNeedGCBarriers; 97 } 98 99 bool TypeRequiresGCollection(QualType T); 100 101 //===--------------------------------------------------------------------===// 102 // Visitor Methods 103 //===--------------------------------------------------------------------===// 104 105 void Visit(Expr *E) { 106 ApplyDebugLocation DL(CGF, E); 107 StmtVisitor<AggExprEmitter>::Visit(E); 108 } 109 110 void VisitStmt(Stmt *S) { 111 CGF.ErrorUnsupported(S, "aggregate expression"); 112 } 113 void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); } 114 void VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 115 Visit(GE->getResultExpr()); 116 } 117 void VisitCoawaitExpr(CoawaitExpr *E) { 118 CGF.EmitCoawaitExpr(*E, Dest, IsResultUnused); 119 } 120 void VisitCoyieldExpr(CoyieldExpr *E) { 121 CGF.EmitCoyieldExpr(*E, Dest, IsResultUnused); 122 } 123 void VisitUnaryCoawait(UnaryOperator *E) { Visit(E->getSubExpr()); } 124 void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); } 125 void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 126 return Visit(E->getReplacement()); 127 } 128 129 void VisitConstantExpr(ConstantExpr *E) { 130 if (llvm::Value *Result = ConstantEmitter(CGF).tryEmitConstantExpr(E)) { 131 CGF.EmitAggregateStore(Result, Dest.getAddress(), 132 E->getType().isVolatileQualified()); 133 return; 134 } 135 return Visit(E->getSubExpr()); 136 } 137 138 // l-values. 139 void VisitDeclRefExpr(DeclRefExpr *E) { EmitAggLoadOfLValue(E); } 140 void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); } 141 void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); } 142 void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); } 143 void VisitCompoundLiteralExpr(CompoundLiteralExpr *E); 144 void VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 145 EmitAggLoadOfLValue(E); 146 } 147 void VisitPredefinedExpr(const PredefinedExpr *E) { 148 EmitAggLoadOfLValue(E); 149 } 150 151 // Operators. 152 void VisitCastExpr(CastExpr *E); 153 void VisitCallExpr(const CallExpr *E); 154 void VisitStmtExpr(const StmtExpr *E); 155 void VisitBinaryOperator(const BinaryOperator *BO); 156 void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO); 157 void VisitBinAssign(const BinaryOperator *E); 158 void VisitBinComma(const BinaryOperator *E); 159 void VisitBinCmp(const BinaryOperator *E); 160 void VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) { 161 Visit(E->getSemanticForm()); 162 } 163 164 void VisitObjCMessageExpr(ObjCMessageExpr *E); 165 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 166 EmitAggLoadOfLValue(E); 167 } 168 169 void VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E); 170 void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO); 171 void VisitChooseExpr(const ChooseExpr *CE); 172 void VisitInitListExpr(InitListExpr *E); 173 void VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E, 174 llvm::Value *outerBegin = nullptr); 175 void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E); 176 void VisitNoInitExpr(NoInitExpr *E) { } // Do nothing. 177 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 178 CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE); 179 Visit(DAE->getExpr()); 180 } 181 void VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 182 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE); 183 Visit(DIE->getExpr()); 184 } 185 void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E); 186 void VisitCXXConstructExpr(const CXXConstructExpr *E); 187 void VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E); 188 void VisitLambdaExpr(LambdaExpr *E); 189 void VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E); 190 void VisitExprWithCleanups(ExprWithCleanups *E); 191 void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E); 192 void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); } 193 void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E); 194 void VisitOpaqueValueExpr(OpaqueValueExpr *E); 195 196 void VisitPseudoObjectExpr(PseudoObjectExpr *E) { 197 if (E->isGLValue()) { 198 LValue LV = CGF.EmitPseudoObjectLValue(E); 199 return EmitFinalDestCopy(E->getType(), LV); 200 } 201 202 CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType())); 203 } 204 205 void VisitVAArgExpr(VAArgExpr *E); 206 207 void EmitInitializationToLValue(Expr *E, LValue Address); 208 void EmitNullInitializationToLValue(LValue Address); 209 // case Expr::ChooseExprClass: 210 void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); } 211 void VisitAtomicExpr(AtomicExpr *E) { 212 RValue Res = CGF.EmitAtomicExpr(E); 213 EmitFinalDestCopy(E->getType(), Res); 214 } 215 }; 216 } // end anonymous namespace. 217 218 //===----------------------------------------------------------------------===// 219 // Utilities 220 //===----------------------------------------------------------------------===// 221 222 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 223 /// represents a value lvalue, this method emits the address of the lvalue, 224 /// then loads the result into DestPtr. 225 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) { 226 LValue LV = CGF.EmitLValue(E); 227 228 // If the type of the l-value is atomic, then do an atomic load. 229 if (LV.getType()->isAtomicType() || CGF.LValueIsSuitableForInlineAtomic(LV)) { 230 CGF.EmitAtomicLoad(LV, E->getExprLoc(), Dest); 231 return; 232 } 233 234 EmitFinalDestCopy(E->getType(), LV); 235 } 236 237 /// True if the given aggregate type requires special GC API calls. 238 bool AggExprEmitter::TypeRequiresGCollection(QualType T) { 239 // Only record types have members that might require garbage collection. 240 const RecordType *RecordTy = T->getAs<RecordType>(); 241 if (!RecordTy) return false; 242 243 // Don't mess with non-trivial C++ types. 244 RecordDecl *Record = RecordTy->getDecl(); 245 if (isa<CXXRecordDecl>(Record) && 246 (cast<CXXRecordDecl>(Record)->hasNonTrivialCopyConstructor() || 247 !cast<CXXRecordDecl>(Record)->hasTrivialDestructor())) 248 return false; 249 250 // Check whether the type has an object member. 251 return Record->hasObjectMember(); 252 } 253 254 void AggExprEmitter::withReturnValueSlot( 255 const Expr *E, llvm::function_ref<RValue(ReturnValueSlot)> EmitCall) { 256 QualType RetTy = E->getType(); 257 bool RequiresDestruction = 258 !Dest.isExternallyDestructed() && 259 RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct; 260 261 // If it makes no observable difference, save a memcpy + temporary. 262 // 263 // We need to always provide our own temporary if destruction is required. 264 // Otherwise, EmitCall will emit its own, notice that it's "unused", and end 265 // its lifetime before we have the chance to emit a proper destructor call. 266 bool UseTemp = Dest.isPotentiallyAliased() || Dest.requiresGCollection() || 267 (RequiresDestruction && !Dest.getAddress().isValid()); 268 269 Address RetAddr = Address::invalid(); 270 Address RetAllocaAddr = Address::invalid(); 271 272 EHScopeStack::stable_iterator LifetimeEndBlock; 273 llvm::Value *LifetimeSizePtr = nullptr; 274 llvm::IntrinsicInst *LifetimeStartInst = nullptr; 275 if (!UseTemp) { 276 RetAddr = Dest.getAddress(); 277 } else { 278 RetAddr = CGF.CreateMemTemp(RetTy, "tmp", &RetAllocaAddr); 279 uint64_t Size = 280 CGF.CGM.getDataLayout().getTypeAllocSize(CGF.ConvertTypeForMem(RetTy)); 281 LifetimeSizePtr = CGF.EmitLifetimeStart(Size, RetAllocaAddr.getPointer()); 282 if (LifetimeSizePtr) { 283 LifetimeStartInst = 284 cast<llvm::IntrinsicInst>(std::prev(Builder.GetInsertPoint())); 285 assert(LifetimeStartInst->getIntrinsicID() == 286 llvm::Intrinsic::lifetime_start && 287 "Last insertion wasn't a lifetime.start?"); 288 289 CGF.pushFullExprCleanup<CodeGenFunction::CallLifetimeEnd>( 290 NormalEHLifetimeMarker, RetAllocaAddr, LifetimeSizePtr); 291 LifetimeEndBlock = CGF.EHStack.stable_begin(); 292 } 293 } 294 295 RValue Src = 296 EmitCall(ReturnValueSlot(RetAddr, Dest.isVolatile(), IsResultUnused, 297 Dest.isExternallyDestructed())); 298 299 if (!UseTemp) 300 return; 301 302 assert(Dest.getPointer() != Src.getAggregatePointer()); 303 EmitFinalDestCopy(E->getType(), Src); 304 305 if (!RequiresDestruction && LifetimeStartInst) { 306 // If there's no dtor to run, the copy was the last use of our temporary. 307 // Since we're not guaranteed to be in an ExprWithCleanups, clean up 308 // eagerly. 309 CGF.DeactivateCleanupBlock(LifetimeEndBlock, LifetimeStartInst); 310 CGF.EmitLifetimeEnd(LifetimeSizePtr, RetAllocaAddr.getPointer()); 311 } 312 } 313 314 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 315 void AggExprEmitter::EmitFinalDestCopy(QualType type, RValue src) { 316 assert(src.isAggregate() && "value must be aggregate value!"); 317 LValue srcLV = CGF.MakeAddrLValue(src.getAggregateAddress(), type); 318 EmitFinalDestCopy(type, srcLV, EVK_RValue); 319 } 320 321 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 322 void AggExprEmitter::EmitFinalDestCopy(QualType type, const LValue &src, 323 ExprValueKind SrcValueKind) { 324 // If Dest is ignored, then we're evaluating an aggregate expression 325 // in a context that doesn't care about the result. Note that loads 326 // from volatile l-values force the existence of a non-ignored 327 // destination. 328 if (Dest.isIgnored()) 329 return; 330 331 // Copy non-trivial C structs here. 332 LValue DstLV = CGF.MakeAddrLValue( 333 Dest.getAddress(), Dest.isVolatile() ? type.withVolatile() : type); 334 335 if (SrcValueKind == EVK_RValue) { 336 if (type.isNonTrivialToPrimitiveDestructiveMove() == QualType::PCK_Struct) { 337 if (Dest.isPotentiallyAliased()) 338 CGF.callCStructMoveAssignmentOperator(DstLV, src); 339 else 340 CGF.callCStructMoveConstructor(DstLV, src); 341 return; 342 } 343 } else { 344 if (type.isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) { 345 if (Dest.isPotentiallyAliased()) 346 CGF.callCStructCopyAssignmentOperator(DstLV, src); 347 else 348 CGF.callCStructCopyConstructor(DstLV, src); 349 return; 350 } 351 } 352 353 AggValueSlot srcAgg = AggValueSlot::forLValue( 354 src, CGF, AggValueSlot::IsDestructed, needsGC(type), 355 AggValueSlot::IsAliased, AggValueSlot::MayOverlap); 356 EmitCopy(type, Dest, srcAgg); 357 } 358 359 /// Perform a copy from the source into the destination. 360 /// 361 /// \param type - the type of the aggregate being copied; qualifiers are 362 /// ignored 363 void AggExprEmitter::EmitCopy(QualType type, const AggValueSlot &dest, 364 const AggValueSlot &src) { 365 if (dest.requiresGCollection()) { 366 CharUnits sz = dest.getPreferredSize(CGF.getContext(), type); 367 llvm::Value *size = llvm::ConstantInt::get(CGF.SizeTy, sz.getQuantity()); 368 CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, 369 dest.getAddress(), 370 src.getAddress(), 371 size); 372 return; 373 } 374 375 // If the result of the assignment is used, copy the LHS there also. 376 // It's volatile if either side is. Use the minimum alignment of 377 // the two sides. 378 LValue DestLV = CGF.MakeAddrLValue(dest.getAddress(), type); 379 LValue SrcLV = CGF.MakeAddrLValue(src.getAddress(), type); 380 CGF.EmitAggregateCopy(DestLV, SrcLV, type, dest.mayOverlap(), 381 dest.isVolatile() || src.isVolatile()); 382 } 383 384 /// Emit the initializer for a std::initializer_list initialized with a 385 /// real initializer list. 386 void 387 AggExprEmitter::VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E) { 388 // Emit an array containing the elements. The array is externally destructed 389 // if the std::initializer_list object is. 390 ASTContext &Ctx = CGF.getContext(); 391 LValue Array = CGF.EmitLValue(E->getSubExpr()); 392 assert(Array.isSimple() && "initializer_list array not a simple lvalue"); 393 Address ArrayPtr = Array.getAddress(CGF); 394 395 const ConstantArrayType *ArrayType = 396 Ctx.getAsConstantArrayType(E->getSubExpr()->getType()); 397 assert(ArrayType && "std::initializer_list constructed from non-array"); 398 399 // FIXME: Perform the checks on the field types in SemaInit. 400 RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl(); 401 RecordDecl::field_iterator Field = Record->field_begin(); 402 if (Field == Record->field_end()) { 403 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 404 return; 405 } 406 407 // Start pointer. 408 if (!Field->getType()->isPointerType() || 409 !Ctx.hasSameType(Field->getType()->getPointeeType(), 410 ArrayType->getElementType())) { 411 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 412 return; 413 } 414 415 AggValueSlot Dest = EnsureSlot(E->getType()); 416 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType()); 417 LValue Start = CGF.EmitLValueForFieldInitialization(DestLV, *Field); 418 llvm::Value *Zero = llvm::ConstantInt::get(CGF.PtrDiffTy, 0); 419 llvm::Value *IdxStart[] = { Zero, Zero }; 420 llvm::Value *ArrayStart = 421 Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxStart, "arraystart"); 422 CGF.EmitStoreThroughLValue(RValue::get(ArrayStart), Start); 423 ++Field; 424 425 if (Field == Record->field_end()) { 426 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 427 return; 428 } 429 430 llvm::Value *Size = Builder.getInt(ArrayType->getSize()); 431 LValue EndOrLength = CGF.EmitLValueForFieldInitialization(DestLV, *Field); 432 if (Field->getType()->isPointerType() && 433 Ctx.hasSameType(Field->getType()->getPointeeType(), 434 ArrayType->getElementType())) { 435 // End pointer. 436 llvm::Value *IdxEnd[] = { Zero, Size }; 437 llvm::Value *ArrayEnd = 438 Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxEnd, "arrayend"); 439 CGF.EmitStoreThroughLValue(RValue::get(ArrayEnd), EndOrLength); 440 } else if (Ctx.hasSameType(Field->getType(), Ctx.getSizeType())) { 441 // Length. 442 CGF.EmitStoreThroughLValue(RValue::get(Size), EndOrLength); 443 } else { 444 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 445 return; 446 } 447 } 448 449 /// Determine if E is a trivial array filler, that is, one that is 450 /// equivalent to zero-initialization. 451 static bool isTrivialFiller(Expr *E) { 452 if (!E) 453 return true; 454 455 if (isa<ImplicitValueInitExpr>(E)) 456 return true; 457 458 if (auto *ILE = dyn_cast<InitListExpr>(E)) { 459 if (ILE->getNumInits()) 460 return false; 461 return isTrivialFiller(ILE->getArrayFiller()); 462 } 463 464 if (auto *Cons = dyn_cast_or_null<CXXConstructExpr>(E)) 465 return Cons->getConstructor()->isDefaultConstructor() && 466 Cons->getConstructor()->isTrivial(); 467 468 // FIXME: Are there other cases where we can avoid emitting an initializer? 469 return false; 470 } 471 472 /// Emit initialization of an array from an initializer list. 473 void AggExprEmitter::EmitArrayInit(Address DestPtr, llvm::ArrayType *AType, 474 QualType ArrayQTy, InitListExpr *E) { 475 uint64_t NumInitElements = E->getNumInits(); 476 477 uint64_t NumArrayElements = AType->getNumElements(); 478 assert(NumInitElements <= NumArrayElements); 479 480 QualType elementType = 481 CGF.getContext().getAsArrayType(ArrayQTy)->getElementType(); 482 483 // DestPtr is an array*. Construct an elementType* by drilling 484 // down a level. 485 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 486 llvm::Value *indices[] = { zero, zero }; 487 llvm::Value *begin = 488 Builder.CreateInBoundsGEP(DestPtr.getPointer(), indices, "arrayinit.begin"); 489 490 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType); 491 CharUnits elementAlign = 492 DestPtr.getAlignment().alignmentOfArrayElement(elementSize); 493 494 // Consider initializing the array by copying from a global. For this to be 495 // more efficient than per-element initialization, the size of the elements 496 // with explicit initializers should be large enough. 497 if (NumInitElements * elementSize.getQuantity() > 16 && 498 elementType.isTriviallyCopyableType(CGF.getContext())) { 499 CodeGen::CodeGenModule &CGM = CGF.CGM; 500 ConstantEmitter Emitter(CGF); 501 LangAS AS = ArrayQTy.getAddressSpace(); 502 if (llvm::Constant *C = Emitter.tryEmitForInitializer(E, AS, ArrayQTy)) { 503 auto GV = new llvm::GlobalVariable( 504 CGM.getModule(), C->getType(), 505 CGM.isTypeConstant(ArrayQTy, /* ExcludeCtorDtor= */ true), 506 llvm::GlobalValue::PrivateLinkage, C, "constinit", 507 /* InsertBefore= */ nullptr, llvm::GlobalVariable::NotThreadLocal, 508 CGM.getContext().getTargetAddressSpace(AS)); 509 Emitter.finalize(GV); 510 CharUnits Align = CGM.getContext().getTypeAlignInChars(ArrayQTy); 511 GV->setAlignment(Align.getAsAlign()); 512 EmitFinalDestCopy(ArrayQTy, CGF.MakeAddrLValue(GV, ArrayQTy, Align)); 513 return; 514 } 515 } 516 517 // Exception safety requires us to destroy all the 518 // already-constructed members if an initializer throws. 519 // For that, we'll need an EH cleanup. 520 QualType::DestructionKind dtorKind = elementType.isDestructedType(); 521 Address endOfInit = Address::invalid(); 522 EHScopeStack::stable_iterator cleanup; 523 llvm::Instruction *cleanupDominator = nullptr; 524 if (CGF.needsEHCleanup(dtorKind)) { 525 // In principle we could tell the cleanup where we are more 526 // directly, but the control flow can get so varied here that it 527 // would actually be quite complex. Therefore we go through an 528 // alloca. 529 endOfInit = CGF.CreateTempAlloca(begin->getType(), CGF.getPointerAlign(), 530 "arrayinit.endOfInit"); 531 cleanupDominator = Builder.CreateStore(begin, endOfInit); 532 CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType, 533 elementAlign, 534 CGF.getDestroyer(dtorKind)); 535 cleanup = CGF.EHStack.stable_begin(); 536 537 // Otherwise, remember that we didn't need a cleanup. 538 } else { 539 dtorKind = QualType::DK_none; 540 } 541 542 llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1); 543 544 // The 'current element to initialize'. The invariants on this 545 // variable are complicated. Essentially, after each iteration of 546 // the loop, it points to the last initialized element, except 547 // that it points to the beginning of the array before any 548 // elements have been initialized. 549 llvm::Value *element = begin; 550 551 // Emit the explicit initializers. 552 for (uint64_t i = 0; i != NumInitElements; ++i) { 553 // Advance to the next element. 554 if (i > 0) { 555 element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element"); 556 557 // Tell the cleanup that it needs to destroy up to this 558 // element. TODO: some of these stores can be trivially 559 // observed to be unnecessary. 560 if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit); 561 } 562 563 LValue elementLV = 564 CGF.MakeAddrLValue(Address(element, elementAlign), elementType); 565 EmitInitializationToLValue(E->getInit(i), elementLV); 566 } 567 568 // Check whether there's a non-trivial array-fill expression. 569 Expr *filler = E->getArrayFiller(); 570 bool hasTrivialFiller = isTrivialFiller(filler); 571 572 // Any remaining elements need to be zero-initialized, possibly 573 // using the filler expression. We can skip this if the we're 574 // emitting to zeroed memory. 575 if (NumInitElements != NumArrayElements && 576 !(Dest.isZeroed() && hasTrivialFiller && 577 CGF.getTypes().isZeroInitializable(elementType))) { 578 579 // Use an actual loop. This is basically 580 // do { *array++ = filler; } while (array != end); 581 582 // Advance to the start of the rest of the array. 583 if (NumInitElements) { 584 element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start"); 585 if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit); 586 } 587 588 // Compute the end of the array. 589 llvm::Value *end = Builder.CreateInBoundsGEP(begin, 590 llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements), 591 "arrayinit.end"); 592 593 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 594 llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body"); 595 596 // Jump into the body. 597 CGF.EmitBlock(bodyBB); 598 llvm::PHINode *currentElement = 599 Builder.CreatePHI(element->getType(), 2, "arrayinit.cur"); 600 currentElement->addIncoming(element, entryBB); 601 602 // Emit the actual filler expression. 603 { 604 // C++1z [class.temporary]p5: 605 // when a default constructor is called to initialize an element of 606 // an array with no corresponding initializer [...] the destruction of 607 // every temporary created in a default argument is sequenced before 608 // the construction of the next array element, if any 609 CodeGenFunction::RunCleanupsScope CleanupsScope(CGF); 610 LValue elementLV = 611 CGF.MakeAddrLValue(Address(currentElement, elementAlign), elementType); 612 if (filler) 613 EmitInitializationToLValue(filler, elementLV); 614 else 615 EmitNullInitializationToLValue(elementLV); 616 } 617 618 // Move on to the next element. 619 llvm::Value *nextElement = 620 Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next"); 621 622 // Tell the EH cleanup that we finished with the last element. 623 if (endOfInit.isValid()) Builder.CreateStore(nextElement, endOfInit); 624 625 // Leave the loop if we're done. 626 llvm::Value *done = Builder.CreateICmpEQ(nextElement, end, 627 "arrayinit.done"); 628 llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end"); 629 Builder.CreateCondBr(done, endBB, bodyBB); 630 currentElement->addIncoming(nextElement, Builder.GetInsertBlock()); 631 632 CGF.EmitBlock(endBB); 633 } 634 635 // Leave the partial-array cleanup if we entered one. 636 if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator); 637 } 638 639 //===----------------------------------------------------------------------===// 640 // Visitor Methods 641 //===----------------------------------------------------------------------===// 642 643 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){ 644 Visit(E->getSubExpr()); 645 } 646 647 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) { 648 // If this is a unique OVE, just visit its source expression. 649 if (e->isUnique()) 650 Visit(e->getSourceExpr()); 651 else 652 EmitFinalDestCopy(e->getType(), CGF.getOrCreateOpaqueLValueMapping(e)); 653 } 654 655 void 656 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 657 if (Dest.isPotentiallyAliased() && 658 E->getType().isPODType(CGF.getContext())) { 659 // For a POD type, just emit a load of the lvalue + a copy, because our 660 // compound literal might alias the destination. 661 EmitAggLoadOfLValue(E); 662 return; 663 } 664 665 AggValueSlot Slot = EnsureSlot(E->getType()); 666 667 // Block-scope compound literals are destroyed at the end of the enclosing 668 // scope in C. 669 bool Destruct = 670 !CGF.getLangOpts().CPlusPlus && !Slot.isExternallyDestructed(); 671 if (Destruct) 672 Slot.setExternallyDestructed(); 673 674 CGF.EmitAggExpr(E->getInitializer(), Slot); 675 676 if (Destruct) 677 if (QualType::DestructionKind DtorKind = E->getType().isDestructedType()) 678 CGF.pushLifetimeExtendedDestroy( 679 CGF.getCleanupKind(DtorKind), Slot.getAddress(), E->getType(), 680 CGF.getDestroyer(DtorKind), DtorKind & EHCleanup); 681 } 682 683 /// Attempt to look through various unimportant expressions to find a 684 /// cast of the given kind. 685 static Expr *findPeephole(Expr *op, CastKind kind, const ASTContext &ctx) { 686 op = op->IgnoreParenNoopCasts(ctx); 687 if (auto castE = dyn_cast<CastExpr>(op)) { 688 if (castE->getCastKind() == kind) 689 return castE->getSubExpr(); 690 } 691 return nullptr; 692 } 693 694 void AggExprEmitter::VisitCastExpr(CastExpr *E) { 695 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E)) 696 CGF.CGM.EmitExplicitCastExprType(ECE, &CGF); 697 switch (E->getCastKind()) { 698 case CK_Dynamic: { 699 // FIXME: Can this actually happen? We have no test coverage for it. 700 assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?"); 701 LValue LV = CGF.EmitCheckedLValue(E->getSubExpr(), 702 CodeGenFunction::TCK_Load); 703 // FIXME: Do we also need to handle property references here? 704 if (LV.isSimple()) 705 CGF.EmitDynamicCast(LV.getAddress(CGF), cast<CXXDynamicCastExpr>(E)); 706 else 707 CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast"); 708 709 if (!Dest.isIgnored()) 710 CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination"); 711 break; 712 } 713 714 case CK_ToUnion: { 715 // Evaluate even if the destination is ignored. 716 if (Dest.isIgnored()) { 717 CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(), 718 /*ignoreResult=*/true); 719 break; 720 } 721 722 // GCC union extension 723 QualType Ty = E->getSubExpr()->getType(); 724 Address CastPtr = 725 Builder.CreateElementBitCast(Dest.getAddress(), CGF.ConvertType(Ty)); 726 EmitInitializationToLValue(E->getSubExpr(), 727 CGF.MakeAddrLValue(CastPtr, Ty)); 728 break; 729 } 730 731 case CK_LValueToRValueBitCast: { 732 if (Dest.isIgnored()) { 733 CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(), 734 /*ignoreResult=*/true); 735 break; 736 } 737 738 LValue SourceLV = CGF.EmitLValue(E->getSubExpr()); 739 Address SourceAddress = 740 Builder.CreateElementBitCast(SourceLV.getAddress(CGF), CGF.Int8Ty); 741 Address DestAddress = 742 Builder.CreateElementBitCast(Dest.getAddress(), CGF.Int8Ty); 743 llvm::Value *SizeVal = llvm::ConstantInt::get( 744 CGF.SizeTy, 745 CGF.getContext().getTypeSizeInChars(E->getType()).getQuantity()); 746 Builder.CreateMemCpy(DestAddress, SourceAddress, SizeVal); 747 break; 748 } 749 750 case CK_DerivedToBase: 751 case CK_BaseToDerived: 752 case CK_UncheckedDerivedToBase: { 753 llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: " 754 "should have been unpacked before we got here"); 755 } 756 757 case CK_NonAtomicToAtomic: 758 case CK_AtomicToNonAtomic: { 759 bool isToAtomic = (E->getCastKind() == CK_NonAtomicToAtomic); 760 761 // Determine the atomic and value types. 762 QualType atomicType = E->getSubExpr()->getType(); 763 QualType valueType = E->getType(); 764 if (isToAtomic) std::swap(atomicType, valueType); 765 766 assert(atomicType->isAtomicType()); 767 assert(CGF.getContext().hasSameUnqualifiedType(valueType, 768 atomicType->castAs<AtomicType>()->getValueType())); 769 770 // Just recurse normally if we're ignoring the result or the 771 // atomic type doesn't change representation. 772 if (Dest.isIgnored() || !CGF.CGM.isPaddedAtomicType(atomicType)) { 773 return Visit(E->getSubExpr()); 774 } 775 776 CastKind peepholeTarget = 777 (isToAtomic ? CK_AtomicToNonAtomic : CK_NonAtomicToAtomic); 778 779 // These two cases are reverses of each other; try to peephole them. 780 if (Expr *op = 781 findPeephole(E->getSubExpr(), peepholeTarget, CGF.getContext())) { 782 assert(CGF.getContext().hasSameUnqualifiedType(op->getType(), 783 E->getType()) && 784 "peephole significantly changed types?"); 785 return Visit(op); 786 } 787 788 // If we're converting an r-value of non-atomic type to an r-value 789 // of atomic type, just emit directly into the relevant sub-object. 790 if (isToAtomic) { 791 AggValueSlot valueDest = Dest; 792 if (!valueDest.isIgnored() && CGF.CGM.isPaddedAtomicType(atomicType)) { 793 // Zero-initialize. (Strictly speaking, we only need to initialize 794 // the padding at the end, but this is simpler.) 795 if (!Dest.isZeroed()) 796 CGF.EmitNullInitialization(Dest.getAddress(), atomicType); 797 798 // Build a GEP to refer to the subobject. 799 Address valueAddr = 800 CGF.Builder.CreateStructGEP(valueDest.getAddress(), 0); 801 valueDest = AggValueSlot::forAddr(valueAddr, 802 valueDest.getQualifiers(), 803 valueDest.isExternallyDestructed(), 804 valueDest.requiresGCollection(), 805 valueDest.isPotentiallyAliased(), 806 AggValueSlot::DoesNotOverlap, 807 AggValueSlot::IsZeroed); 808 } 809 810 CGF.EmitAggExpr(E->getSubExpr(), valueDest); 811 return; 812 } 813 814 // Otherwise, we're converting an atomic type to a non-atomic type. 815 // Make an atomic temporary, emit into that, and then copy the value out. 816 AggValueSlot atomicSlot = 817 CGF.CreateAggTemp(atomicType, "atomic-to-nonatomic.temp"); 818 CGF.EmitAggExpr(E->getSubExpr(), atomicSlot); 819 820 Address valueAddr = Builder.CreateStructGEP(atomicSlot.getAddress(), 0); 821 RValue rvalue = RValue::getAggregate(valueAddr, atomicSlot.isVolatile()); 822 return EmitFinalDestCopy(valueType, rvalue); 823 } 824 case CK_AddressSpaceConversion: 825 return Visit(E->getSubExpr()); 826 827 case CK_LValueToRValue: 828 // If we're loading from a volatile type, force the destination 829 // into existence. 830 if (E->getSubExpr()->getType().isVolatileQualified()) { 831 bool Destruct = 832 !Dest.isExternallyDestructed() && 833 E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct; 834 if (Destruct) 835 Dest.setExternallyDestructed(); 836 EnsureDest(E->getType()); 837 Visit(E->getSubExpr()); 838 839 if (Destruct) 840 CGF.pushDestroy(QualType::DK_nontrivial_c_struct, Dest.getAddress(), 841 E->getType()); 842 843 return; 844 } 845 846 LLVM_FALLTHROUGH; 847 848 849 case CK_NoOp: 850 case CK_UserDefinedConversion: 851 case CK_ConstructorConversion: 852 assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(), 853 E->getType()) && 854 "Implicit cast types must be compatible"); 855 Visit(E->getSubExpr()); 856 break; 857 858 case CK_LValueBitCast: 859 llvm_unreachable("should not be emitting lvalue bitcast as rvalue"); 860 861 case CK_Dependent: 862 case CK_BitCast: 863 case CK_ArrayToPointerDecay: 864 case CK_FunctionToPointerDecay: 865 case CK_NullToPointer: 866 case CK_NullToMemberPointer: 867 case CK_BaseToDerivedMemberPointer: 868 case CK_DerivedToBaseMemberPointer: 869 case CK_MemberPointerToBoolean: 870 case CK_ReinterpretMemberPointer: 871 case CK_IntegralToPointer: 872 case CK_PointerToIntegral: 873 case CK_PointerToBoolean: 874 case CK_ToVoid: 875 case CK_VectorSplat: 876 case CK_IntegralCast: 877 case CK_BooleanToSignedIntegral: 878 case CK_IntegralToBoolean: 879 case CK_IntegralToFloating: 880 case CK_FloatingToIntegral: 881 case CK_FloatingToBoolean: 882 case CK_FloatingCast: 883 case CK_CPointerToObjCPointerCast: 884 case CK_BlockPointerToObjCPointerCast: 885 case CK_AnyPointerToBlockPointerCast: 886 case CK_ObjCObjectLValueCast: 887 case CK_FloatingRealToComplex: 888 case CK_FloatingComplexToReal: 889 case CK_FloatingComplexToBoolean: 890 case CK_FloatingComplexCast: 891 case CK_FloatingComplexToIntegralComplex: 892 case CK_IntegralRealToComplex: 893 case CK_IntegralComplexToReal: 894 case CK_IntegralComplexToBoolean: 895 case CK_IntegralComplexCast: 896 case CK_IntegralComplexToFloatingComplex: 897 case CK_ARCProduceObject: 898 case CK_ARCConsumeObject: 899 case CK_ARCReclaimReturnedObject: 900 case CK_ARCExtendBlockObject: 901 case CK_CopyAndAutoreleaseBlockObject: 902 case CK_BuiltinFnToFnPtr: 903 case CK_ZeroToOCLOpaqueType: 904 905 case CK_IntToOCLSampler: 906 case CK_FloatingToFixedPoint: 907 case CK_FixedPointToFloating: 908 case CK_FixedPointCast: 909 case CK_FixedPointToBoolean: 910 case CK_FixedPointToIntegral: 911 case CK_IntegralToFixedPoint: 912 llvm_unreachable("cast kind invalid for aggregate types"); 913 } 914 } 915 916 void AggExprEmitter::VisitCallExpr(const CallExpr *E) { 917 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) { 918 EmitAggLoadOfLValue(E); 919 return; 920 } 921 922 withReturnValueSlot(E, [&](ReturnValueSlot Slot) { 923 return CGF.EmitCallExpr(E, Slot); 924 }); 925 } 926 927 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) { 928 withReturnValueSlot(E, [&](ReturnValueSlot Slot) { 929 return CGF.EmitObjCMessageExpr(E, Slot); 930 }); 931 } 932 933 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) { 934 CGF.EmitIgnoredExpr(E->getLHS()); 935 Visit(E->getRHS()); 936 } 937 938 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) { 939 CodeGenFunction::StmtExprEvaluation eval(CGF); 940 CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest); 941 } 942 943 enum CompareKind { 944 CK_Less, 945 CK_Greater, 946 CK_Equal, 947 }; 948 949 static llvm::Value *EmitCompare(CGBuilderTy &Builder, CodeGenFunction &CGF, 950 const BinaryOperator *E, llvm::Value *LHS, 951 llvm::Value *RHS, CompareKind Kind, 952 const char *NameSuffix = "") { 953 QualType ArgTy = E->getLHS()->getType(); 954 if (const ComplexType *CT = ArgTy->getAs<ComplexType>()) 955 ArgTy = CT->getElementType(); 956 957 if (const auto *MPT = ArgTy->getAs<MemberPointerType>()) { 958 assert(Kind == CK_Equal && 959 "member pointers may only be compared for equality"); 960 return CGF.CGM.getCXXABI().EmitMemberPointerComparison( 961 CGF, LHS, RHS, MPT, /*IsInequality*/ false); 962 } 963 964 // Compute the comparison instructions for the specified comparison kind. 965 struct CmpInstInfo { 966 const char *Name; 967 llvm::CmpInst::Predicate FCmp; 968 llvm::CmpInst::Predicate SCmp; 969 llvm::CmpInst::Predicate UCmp; 970 }; 971 CmpInstInfo InstInfo = [&]() -> CmpInstInfo { 972 using FI = llvm::FCmpInst; 973 using II = llvm::ICmpInst; 974 switch (Kind) { 975 case CK_Less: 976 return {"cmp.lt", FI::FCMP_OLT, II::ICMP_SLT, II::ICMP_ULT}; 977 case CK_Greater: 978 return {"cmp.gt", FI::FCMP_OGT, II::ICMP_SGT, II::ICMP_UGT}; 979 case CK_Equal: 980 return {"cmp.eq", FI::FCMP_OEQ, II::ICMP_EQ, II::ICMP_EQ}; 981 } 982 llvm_unreachable("Unrecognised CompareKind enum"); 983 }(); 984 985 if (ArgTy->hasFloatingRepresentation()) 986 return Builder.CreateFCmp(InstInfo.FCmp, LHS, RHS, 987 llvm::Twine(InstInfo.Name) + NameSuffix); 988 if (ArgTy->isIntegralOrEnumerationType() || ArgTy->isPointerType()) { 989 auto Inst = 990 ArgTy->hasSignedIntegerRepresentation() ? InstInfo.SCmp : InstInfo.UCmp; 991 return Builder.CreateICmp(Inst, LHS, RHS, 992 llvm::Twine(InstInfo.Name) + NameSuffix); 993 } 994 995 llvm_unreachable("unsupported aggregate binary expression should have " 996 "already been handled"); 997 } 998 999 void AggExprEmitter::VisitBinCmp(const BinaryOperator *E) { 1000 using llvm::BasicBlock; 1001 using llvm::PHINode; 1002 using llvm::Value; 1003 assert(CGF.getContext().hasSameType(E->getLHS()->getType(), 1004 E->getRHS()->getType())); 1005 const ComparisonCategoryInfo &CmpInfo = 1006 CGF.getContext().CompCategories.getInfoForType(E->getType()); 1007 assert(CmpInfo.Record->isTriviallyCopyable() && 1008 "cannot copy non-trivially copyable aggregate"); 1009 1010 QualType ArgTy = E->getLHS()->getType(); 1011 1012 if (!ArgTy->isIntegralOrEnumerationType() && !ArgTy->isRealFloatingType() && 1013 !ArgTy->isNullPtrType() && !ArgTy->isPointerType() && 1014 !ArgTy->isMemberPointerType() && !ArgTy->isAnyComplexType()) { 1015 return CGF.ErrorUnsupported(E, "aggregate three-way comparison"); 1016 } 1017 bool IsComplex = ArgTy->isAnyComplexType(); 1018 1019 // Evaluate the operands to the expression and extract their values. 1020 auto EmitOperand = [&](Expr *E) -> std::pair<Value *, Value *> { 1021 RValue RV = CGF.EmitAnyExpr(E); 1022 if (RV.isScalar()) 1023 return {RV.getScalarVal(), nullptr}; 1024 if (RV.isAggregate()) 1025 return {RV.getAggregatePointer(), nullptr}; 1026 assert(RV.isComplex()); 1027 return RV.getComplexVal(); 1028 }; 1029 auto LHSValues = EmitOperand(E->getLHS()), 1030 RHSValues = EmitOperand(E->getRHS()); 1031 1032 auto EmitCmp = [&](CompareKind K) { 1033 Value *Cmp = EmitCompare(Builder, CGF, E, LHSValues.first, RHSValues.first, 1034 K, IsComplex ? ".r" : ""); 1035 if (!IsComplex) 1036 return Cmp; 1037 assert(K == CompareKind::CK_Equal); 1038 Value *CmpImag = EmitCompare(Builder, CGF, E, LHSValues.second, 1039 RHSValues.second, K, ".i"); 1040 return Builder.CreateAnd(Cmp, CmpImag, "and.eq"); 1041 }; 1042 auto EmitCmpRes = [&](const ComparisonCategoryInfo::ValueInfo *VInfo) { 1043 return Builder.getInt(VInfo->getIntValue()); 1044 }; 1045 1046 Value *Select; 1047 if (ArgTy->isNullPtrType()) { 1048 Select = EmitCmpRes(CmpInfo.getEqualOrEquiv()); 1049 } else if (!CmpInfo.isPartial()) { 1050 Value *SelectOne = 1051 Builder.CreateSelect(EmitCmp(CK_Less), EmitCmpRes(CmpInfo.getLess()), 1052 EmitCmpRes(CmpInfo.getGreater()), "sel.lt"); 1053 Select = Builder.CreateSelect(EmitCmp(CK_Equal), 1054 EmitCmpRes(CmpInfo.getEqualOrEquiv()), 1055 SelectOne, "sel.eq"); 1056 } else { 1057 Value *SelectEq = Builder.CreateSelect( 1058 EmitCmp(CK_Equal), EmitCmpRes(CmpInfo.getEqualOrEquiv()), 1059 EmitCmpRes(CmpInfo.getUnordered()), "sel.eq"); 1060 Value *SelectGT = Builder.CreateSelect(EmitCmp(CK_Greater), 1061 EmitCmpRes(CmpInfo.getGreater()), 1062 SelectEq, "sel.gt"); 1063 Select = Builder.CreateSelect( 1064 EmitCmp(CK_Less), EmitCmpRes(CmpInfo.getLess()), SelectGT, "sel.lt"); 1065 } 1066 // Create the return value in the destination slot. 1067 EnsureDest(E->getType()); 1068 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType()); 1069 1070 // Emit the address of the first (and only) field in the comparison category 1071 // type, and initialize it from the constant integer value selected above. 1072 LValue FieldLV = CGF.EmitLValueForFieldInitialization( 1073 DestLV, *CmpInfo.Record->field_begin()); 1074 CGF.EmitStoreThroughLValue(RValue::get(Select), FieldLV, /*IsInit*/ true); 1075 1076 // All done! The result is in the Dest slot. 1077 } 1078 1079 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) { 1080 if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI) 1081 VisitPointerToDataMemberBinaryOperator(E); 1082 else 1083 CGF.ErrorUnsupported(E, "aggregate binary expression"); 1084 } 1085 1086 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator( 1087 const BinaryOperator *E) { 1088 LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E); 1089 EmitFinalDestCopy(E->getType(), LV); 1090 } 1091 1092 /// Is the value of the given expression possibly a reference to or 1093 /// into a __block variable? 1094 static bool isBlockVarRef(const Expr *E) { 1095 // Make sure we look through parens. 1096 E = E->IgnoreParens(); 1097 1098 // Check for a direct reference to a __block variable. 1099 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { 1100 const VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl()); 1101 return (var && var->hasAttr<BlocksAttr>()); 1102 } 1103 1104 // More complicated stuff. 1105 1106 // Binary operators. 1107 if (const BinaryOperator *op = dyn_cast<BinaryOperator>(E)) { 1108 // For an assignment or pointer-to-member operation, just care 1109 // about the LHS. 1110 if (op->isAssignmentOp() || op->isPtrMemOp()) 1111 return isBlockVarRef(op->getLHS()); 1112 1113 // For a comma, just care about the RHS. 1114 if (op->getOpcode() == BO_Comma) 1115 return isBlockVarRef(op->getRHS()); 1116 1117 // FIXME: pointer arithmetic? 1118 return false; 1119 1120 // Check both sides of a conditional operator. 1121 } else if (const AbstractConditionalOperator *op 1122 = dyn_cast<AbstractConditionalOperator>(E)) { 1123 return isBlockVarRef(op->getTrueExpr()) 1124 || isBlockVarRef(op->getFalseExpr()); 1125 1126 // OVEs are required to support BinaryConditionalOperators. 1127 } else if (const OpaqueValueExpr *op 1128 = dyn_cast<OpaqueValueExpr>(E)) { 1129 if (const Expr *src = op->getSourceExpr()) 1130 return isBlockVarRef(src); 1131 1132 // Casts are necessary to get things like (*(int*)&var) = foo(). 1133 // We don't really care about the kind of cast here, except 1134 // we don't want to look through l2r casts, because it's okay 1135 // to get the *value* in a __block variable. 1136 } else if (const CastExpr *cast = dyn_cast<CastExpr>(E)) { 1137 if (cast->getCastKind() == CK_LValueToRValue) 1138 return false; 1139 return isBlockVarRef(cast->getSubExpr()); 1140 1141 // Handle unary operators. Again, just aggressively look through 1142 // it, ignoring the operation. 1143 } else if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E)) { 1144 return isBlockVarRef(uop->getSubExpr()); 1145 1146 // Look into the base of a field access. 1147 } else if (const MemberExpr *mem = dyn_cast<MemberExpr>(E)) { 1148 return isBlockVarRef(mem->getBase()); 1149 1150 // Look into the base of a subscript. 1151 } else if (const ArraySubscriptExpr *sub = dyn_cast<ArraySubscriptExpr>(E)) { 1152 return isBlockVarRef(sub->getBase()); 1153 } 1154 1155 return false; 1156 } 1157 1158 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) { 1159 // For an assignment to work, the value on the right has 1160 // to be compatible with the value on the left. 1161 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), 1162 E->getRHS()->getType()) 1163 && "Invalid assignment"); 1164 1165 // If the LHS might be a __block variable, and the RHS can 1166 // potentially cause a block copy, we need to evaluate the RHS first 1167 // so that the assignment goes the right place. 1168 // This is pretty semantically fragile. 1169 if (isBlockVarRef(E->getLHS()) && 1170 E->getRHS()->HasSideEffects(CGF.getContext())) { 1171 // Ensure that we have a destination, and evaluate the RHS into that. 1172 EnsureDest(E->getRHS()->getType()); 1173 Visit(E->getRHS()); 1174 1175 // Now emit the LHS and copy into it. 1176 LValue LHS = CGF.EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 1177 1178 // That copy is an atomic copy if the LHS is atomic. 1179 if (LHS.getType()->isAtomicType() || 1180 CGF.LValueIsSuitableForInlineAtomic(LHS)) { 1181 CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false); 1182 return; 1183 } 1184 1185 EmitCopy(E->getLHS()->getType(), 1186 AggValueSlot::forLValue(LHS, CGF, AggValueSlot::IsDestructed, 1187 needsGC(E->getLHS()->getType()), 1188 AggValueSlot::IsAliased, 1189 AggValueSlot::MayOverlap), 1190 Dest); 1191 return; 1192 } 1193 1194 LValue LHS = CGF.EmitLValue(E->getLHS()); 1195 1196 // If we have an atomic type, evaluate into the destination and then 1197 // do an atomic copy. 1198 if (LHS.getType()->isAtomicType() || 1199 CGF.LValueIsSuitableForInlineAtomic(LHS)) { 1200 EnsureDest(E->getRHS()->getType()); 1201 Visit(E->getRHS()); 1202 CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false); 1203 return; 1204 } 1205 1206 // Codegen the RHS so that it stores directly into the LHS. 1207 AggValueSlot LHSSlot = AggValueSlot::forLValue( 1208 LHS, CGF, AggValueSlot::IsDestructed, needsGC(E->getLHS()->getType()), 1209 AggValueSlot::IsAliased, AggValueSlot::MayOverlap); 1210 // A non-volatile aggregate destination might have volatile member. 1211 if (!LHSSlot.isVolatile() && 1212 CGF.hasVolatileMember(E->getLHS()->getType())) 1213 LHSSlot.setVolatile(true); 1214 1215 CGF.EmitAggExpr(E->getRHS(), LHSSlot); 1216 1217 // Copy into the destination if the assignment isn't ignored. 1218 EmitFinalDestCopy(E->getType(), LHS); 1219 } 1220 1221 void AggExprEmitter:: 1222 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 1223 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 1224 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 1225 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 1226 1227 // Bind the common expression if necessary. 1228 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 1229 1230 CodeGenFunction::ConditionalEvaluation eval(CGF); 1231 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock, 1232 CGF.getProfileCount(E)); 1233 1234 // Save whether the destination's lifetime is externally managed. 1235 bool isExternallyDestructed = Dest.isExternallyDestructed(); 1236 1237 eval.begin(CGF); 1238 CGF.EmitBlock(LHSBlock); 1239 CGF.incrementProfileCounter(E); 1240 Visit(E->getTrueExpr()); 1241 eval.end(CGF); 1242 1243 assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!"); 1244 CGF.Builder.CreateBr(ContBlock); 1245 1246 // If the result of an agg expression is unused, then the emission 1247 // of the LHS might need to create a destination slot. That's fine 1248 // with us, and we can safely emit the RHS into the same slot, but 1249 // we shouldn't claim that it's already being destructed. 1250 Dest.setExternallyDestructed(isExternallyDestructed); 1251 1252 eval.begin(CGF); 1253 CGF.EmitBlock(RHSBlock); 1254 Visit(E->getFalseExpr()); 1255 eval.end(CGF); 1256 1257 CGF.EmitBlock(ContBlock); 1258 } 1259 1260 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) { 1261 Visit(CE->getChosenSubExpr()); 1262 } 1263 1264 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 1265 Address ArgValue = Address::invalid(); 1266 Address ArgPtr = CGF.EmitVAArg(VE, ArgValue); 1267 1268 // If EmitVAArg fails, emit an error. 1269 if (!ArgPtr.isValid()) { 1270 CGF.ErrorUnsupported(VE, "aggregate va_arg expression"); 1271 return; 1272 } 1273 1274 EmitFinalDestCopy(VE->getType(), CGF.MakeAddrLValue(ArgPtr, VE->getType())); 1275 } 1276 1277 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 1278 // Ensure that we have a slot, but if we already do, remember 1279 // whether it was externally destructed. 1280 bool wasExternallyDestructed = Dest.isExternallyDestructed(); 1281 EnsureDest(E->getType()); 1282 1283 // We're going to push a destructor if there isn't already one. 1284 Dest.setExternallyDestructed(); 1285 1286 Visit(E->getSubExpr()); 1287 1288 // Push that destructor we promised. 1289 if (!wasExternallyDestructed) 1290 CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddress()); 1291 } 1292 1293 void 1294 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) { 1295 AggValueSlot Slot = EnsureSlot(E->getType()); 1296 CGF.EmitCXXConstructExpr(E, Slot); 1297 } 1298 1299 void AggExprEmitter::VisitCXXInheritedCtorInitExpr( 1300 const CXXInheritedCtorInitExpr *E) { 1301 AggValueSlot Slot = EnsureSlot(E->getType()); 1302 CGF.EmitInheritedCXXConstructorCall( 1303 E->getConstructor(), E->constructsVBase(), Slot.getAddress(), 1304 E->inheritedFromVBase(), E); 1305 } 1306 1307 void 1308 AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) { 1309 AggValueSlot Slot = EnsureSlot(E->getType()); 1310 LValue SlotLV = CGF.MakeAddrLValue(Slot.getAddress(), E->getType()); 1311 1312 // We'll need to enter cleanup scopes in case any of the element 1313 // initializers throws an exception. 1314 SmallVector<EHScopeStack::stable_iterator, 16> Cleanups; 1315 llvm::Instruction *CleanupDominator = nullptr; 1316 1317 CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin(); 1318 for (LambdaExpr::const_capture_init_iterator i = E->capture_init_begin(), 1319 e = E->capture_init_end(); 1320 i != e; ++i, ++CurField) { 1321 // Emit initialization 1322 LValue LV = CGF.EmitLValueForFieldInitialization(SlotLV, *CurField); 1323 if (CurField->hasCapturedVLAType()) { 1324 CGF.EmitLambdaVLACapture(CurField->getCapturedVLAType(), LV); 1325 continue; 1326 } 1327 1328 EmitInitializationToLValue(*i, LV); 1329 1330 // Push a destructor if necessary. 1331 if (QualType::DestructionKind DtorKind = 1332 CurField->getType().isDestructedType()) { 1333 assert(LV.isSimple()); 1334 if (CGF.needsEHCleanup(DtorKind)) { 1335 if (!CleanupDominator) 1336 CleanupDominator = CGF.Builder.CreateAlignedLoad( 1337 CGF.Int8Ty, 1338 llvm::Constant::getNullValue(CGF.Int8PtrTy), 1339 CharUnits::One()); // placeholder 1340 1341 CGF.pushDestroy(EHCleanup, LV.getAddress(CGF), CurField->getType(), 1342 CGF.getDestroyer(DtorKind), false); 1343 Cleanups.push_back(CGF.EHStack.stable_begin()); 1344 } 1345 } 1346 } 1347 1348 // Deactivate all the partial cleanups in reverse order, which 1349 // generally means popping them. 1350 for (unsigned i = Cleanups.size(); i != 0; --i) 1351 CGF.DeactivateCleanupBlock(Cleanups[i-1], CleanupDominator); 1352 1353 // Destroy the placeholder if we made one. 1354 if (CleanupDominator) 1355 CleanupDominator->eraseFromParent(); 1356 } 1357 1358 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) { 1359 CodeGenFunction::RunCleanupsScope cleanups(CGF); 1360 Visit(E->getSubExpr()); 1361 } 1362 1363 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) { 1364 QualType T = E->getType(); 1365 AggValueSlot Slot = EnsureSlot(T); 1366 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T)); 1367 } 1368 1369 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) { 1370 QualType T = E->getType(); 1371 AggValueSlot Slot = EnsureSlot(T); 1372 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T)); 1373 } 1374 1375 /// Determine whether the given cast kind is known to always convert values 1376 /// with all zero bits in their value representation to values with all zero 1377 /// bits in their value representation. 1378 static bool castPreservesZero(const CastExpr *CE) { 1379 switch (CE->getCastKind()) { 1380 // No-ops. 1381 case CK_NoOp: 1382 case CK_UserDefinedConversion: 1383 case CK_ConstructorConversion: 1384 case CK_BitCast: 1385 case CK_ToUnion: 1386 case CK_ToVoid: 1387 // Conversions between (possibly-complex) integral, (possibly-complex) 1388 // floating-point, and bool. 1389 case CK_BooleanToSignedIntegral: 1390 case CK_FloatingCast: 1391 case CK_FloatingComplexCast: 1392 case CK_FloatingComplexToBoolean: 1393 case CK_FloatingComplexToIntegralComplex: 1394 case CK_FloatingComplexToReal: 1395 case CK_FloatingRealToComplex: 1396 case CK_FloatingToBoolean: 1397 case CK_FloatingToIntegral: 1398 case CK_IntegralCast: 1399 case CK_IntegralComplexCast: 1400 case CK_IntegralComplexToBoolean: 1401 case CK_IntegralComplexToFloatingComplex: 1402 case CK_IntegralComplexToReal: 1403 case CK_IntegralRealToComplex: 1404 case CK_IntegralToBoolean: 1405 case CK_IntegralToFloating: 1406 // Reinterpreting integers as pointers and vice versa. 1407 case CK_IntegralToPointer: 1408 case CK_PointerToIntegral: 1409 // Language extensions. 1410 case CK_VectorSplat: 1411 case CK_NonAtomicToAtomic: 1412 case CK_AtomicToNonAtomic: 1413 return true; 1414 1415 case CK_BaseToDerivedMemberPointer: 1416 case CK_DerivedToBaseMemberPointer: 1417 case CK_MemberPointerToBoolean: 1418 case CK_NullToMemberPointer: 1419 case CK_ReinterpretMemberPointer: 1420 // FIXME: ABI-dependent. 1421 return false; 1422 1423 case CK_AnyPointerToBlockPointerCast: 1424 case CK_BlockPointerToObjCPointerCast: 1425 case CK_CPointerToObjCPointerCast: 1426 case CK_ObjCObjectLValueCast: 1427 case CK_IntToOCLSampler: 1428 case CK_ZeroToOCLOpaqueType: 1429 // FIXME: Check these. 1430 return false; 1431 1432 case CK_FixedPointCast: 1433 case CK_FixedPointToBoolean: 1434 case CK_FixedPointToFloating: 1435 case CK_FixedPointToIntegral: 1436 case CK_FloatingToFixedPoint: 1437 case CK_IntegralToFixedPoint: 1438 // FIXME: Do all fixed-point types represent zero as all 0 bits? 1439 return false; 1440 1441 case CK_AddressSpaceConversion: 1442 case CK_BaseToDerived: 1443 case CK_DerivedToBase: 1444 case CK_Dynamic: 1445 case CK_NullToPointer: 1446 case CK_PointerToBoolean: 1447 // FIXME: Preserves zeroes only if zero pointers and null pointers have the 1448 // same representation in all involved address spaces. 1449 return false; 1450 1451 case CK_ARCConsumeObject: 1452 case CK_ARCExtendBlockObject: 1453 case CK_ARCProduceObject: 1454 case CK_ARCReclaimReturnedObject: 1455 case CK_CopyAndAutoreleaseBlockObject: 1456 case CK_ArrayToPointerDecay: 1457 case CK_FunctionToPointerDecay: 1458 case CK_BuiltinFnToFnPtr: 1459 case CK_Dependent: 1460 case CK_LValueBitCast: 1461 case CK_LValueToRValue: 1462 case CK_LValueToRValueBitCast: 1463 case CK_UncheckedDerivedToBase: 1464 return false; 1465 } 1466 } 1467 1468 /// isSimpleZero - If emitting this value will obviously just cause a store of 1469 /// zero to memory, return true. This can return false if uncertain, so it just 1470 /// handles simple cases. 1471 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) { 1472 E = E->IgnoreParens(); 1473 while (auto *CE = dyn_cast<CastExpr>(E)) { 1474 if (!castPreservesZero(CE)) 1475 break; 1476 E = CE->getSubExpr()->IgnoreParens(); 1477 } 1478 1479 // 0 1480 if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) 1481 return IL->getValue() == 0; 1482 // +0.0 1483 if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E)) 1484 return FL->getValue().isPosZero(); 1485 // int() 1486 if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) && 1487 CGF.getTypes().isZeroInitializable(E->getType())) 1488 return true; 1489 // (int*)0 - Null pointer expressions. 1490 if (const CastExpr *ICE = dyn_cast<CastExpr>(E)) 1491 return ICE->getCastKind() == CK_NullToPointer && 1492 CGF.getTypes().isPointerZeroInitializable(E->getType()) && 1493 !E->HasSideEffects(CGF.getContext()); 1494 // '\0' 1495 if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) 1496 return CL->getValue() == 0; 1497 1498 // Otherwise, hard case: conservatively return false. 1499 return false; 1500 } 1501 1502 1503 void 1504 AggExprEmitter::EmitInitializationToLValue(Expr *E, LValue LV) { 1505 QualType type = LV.getType(); 1506 // FIXME: Ignore result? 1507 // FIXME: Are initializers affected by volatile? 1508 if (Dest.isZeroed() && isSimpleZero(E, CGF)) { 1509 // Storing "i32 0" to a zero'd memory location is a noop. 1510 return; 1511 } else if (isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) { 1512 return EmitNullInitializationToLValue(LV); 1513 } else if (isa<NoInitExpr>(E)) { 1514 // Do nothing. 1515 return; 1516 } else if (type->isReferenceType()) { 1517 RValue RV = CGF.EmitReferenceBindingToExpr(E); 1518 return CGF.EmitStoreThroughLValue(RV, LV); 1519 } 1520 1521 switch (CGF.getEvaluationKind(type)) { 1522 case TEK_Complex: 1523 CGF.EmitComplexExprIntoLValue(E, LV, /*isInit*/ true); 1524 return; 1525 case TEK_Aggregate: 1526 CGF.EmitAggExpr( 1527 E, AggValueSlot::forLValue(LV, CGF, AggValueSlot::IsDestructed, 1528 AggValueSlot::DoesNotNeedGCBarriers, 1529 AggValueSlot::IsNotAliased, 1530 AggValueSlot::MayOverlap, Dest.isZeroed())); 1531 return; 1532 case TEK_Scalar: 1533 if (LV.isSimple()) { 1534 CGF.EmitScalarInit(E, /*D=*/nullptr, LV, /*Captured=*/false); 1535 } else { 1536 CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV); 1537 } 1538 return; 1539 } 1540 llvm_unreachable("bad evaluation kind"); 1541 } 1542 1543 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) { 1544 QualType type = lv.getType(); 1545 1546 // If the destination slot is already zeroed out before the aggregate is 1547 // copied into it, we don't have to emit any zeros here. 1548 if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type)) 1549 return; 1550 1551 if (CGF.hasScalarEvaluationKind(type)) { 1552 // For non-aggregates, we can store the appropriate null constant. 1553 llvm::Value *null = CGF.CGM.EmitNullConstant(type); 1554 // Note that the following is not equivalent to 1555 // EmitStoreThroughBitfieldLValue for ARC types. 1556 if (lv.isBitField()) { 1557 CGF.EmitStoreThroughBitfieldLValue(RValue::get(null), lv); 1558 } else { 1559 assert(lv.isSimple()); 1560 CGF.EmitStoreOfScalar(null, lv, /* isInitialization */ true); 1561 } 1562 } else { 1563 // There's a potential optimization opportunity in combining 1564 // memsets; that would be easy for arrays, but relatively 1565 // difficult for structures with the current code. 1566 CGF.EmitNullInitialization(lv.getAddress(CGF), lv.getType()); 1567 } 1568 } 1569 1570 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) { 1571 #if 0 1572 // FIXME: Assess perf here? Figure out what cases are worth optimizing here 1573 // (Length of globals? Chunks of zeroed-out space?). 1574 // 1575 // If we can, prefer a copy from a global; this is a lot less code for long 1576 // globals, and it's easier for the current optimizers to analyze. 1577 if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) { 1578 llvm::GlobalVariable* GV = 1579 new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true, 1580 llvm::GlobalValue::InternalLinkage, C, ""); 1581 EmitFinalDestCopy(E->getType(), CGF.MakeAddrLValue(GV, E->getType())); 1582 return; 1583 } 1584 #endif 1585 if (E->hadArrayRangeDesignator()) 1586 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 1587 1588 if (E->isTransparent()) 1589 return Visit(E->getInit(0)); 1590 1591 AggValueSlot Dest = EnsureSlot(E->getType()); 1592 1593 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType()); 1594 1595 // Handle initialization of an array. 1596 if (E->getType()->isArrayType()) { 1597 auto AType = cast<llvm::ArrayType>(Dest.getAddress().getElementType()); 1598 EmitArrayInit(Dest.getAddress(), AType, E->getType(), E); 1599 return; 1600 } 1601 1602 assert(E->getType()->isRecordType() && "Only support structs/unions here!"); 1603 1604 // Do struct initialization; this code just sets each individual member 1605 // to the approprate value. This makes bitfield support automatic; 1606 // the disadvantage is that the generated code is more difficult for 1607 // the optimizer, especially with bitfields. 1608 unsigned NumInitElements = E->getNumInits(); 1609 RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl(); 1610 1611 // We'll need to enter cleanup scopes in case any of the element 1612 // initializers throws an exception. 1613 SmallVector<EHScopeStack::stable_iterator, 16> cleanups; 1614 llvm::Instruction *cleanupDominator = nullptr; 1615 auto addCleanup = [&](const EHScopeStack::stable_iterator &cleanup) { 1616 cleanups.push_back(cleanup); 1617 if (!cleanupDominator) // create placeholder once needed 1618 cleanupDominator = CGF.Builder.CreateAlignedLoad( 1619 CGF.Int8Ty, llvm::Constant::getNullValue(CGF.Int8PtrTy), 1620 CharUnits::One()); 1621 }; 1622 1623 unsigned curInitIndex = 0; 1624 1625 // Emit initialization of base classes. 1626 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(record)) { 1627 assert(E->getNumInits() >= CXXRD->getNumBases() && 1628 "missing initializer for base class"); 1629 for (auto &Base : CXXRD->bases()) { 1630 assert(!Base.isVirtual() && "should not see vbases here"); 1631 auto *BaseRD = Base.getType()->getAsCXXRecordDecl(); 1632 Address V = CGF.GetAddressOfDirectBaseInCompleteClass( 1633 Dest.getAddress(), CXXRD, BaseRD, 1634 /*isBaseVirtual*/ false); 1635 AggValueSlot AggSlot = AggValueSlot::forAddr( 1636 V, Qualifiers(), 1637 AggValueSlot::IsDestructed, 1638 AggValueSlot::DoesNotNeedGCBarriers, 1639 AggValueSlot::IsNotAliased, 1640 CGF.getOverlapForBaseInit(CXXRD, BaseRD, Base.isVirtual())); 1641 CGF.EmitAggExpr(E->getInit(curInitIndex++), AggSlot); 1642 1643 if (QualType::DestructionKind dtorKind = 1644 Base.getType().isDestructedType()) { 1645 CGF.pushDestroy(dtorKind, V, Base.getType()); 1646 addCleanup(CGF.EHStack.stable_begin()); 1647 } 1648 } 1649 } 1650 1651 // Prepare a 'this' for CXXDefaultInitExprs. 1652 CodeGenFunction::FieldConstructionScope FCS(CGF, Dest.getAddress()); 1653 1654 if (record->isUnion()) { 1655 // Only initialize one field of a union. The field itself is 1656 // specified by the initializer list. 1657 if (!E->getInitializedFieldInUnion()) { 1658 // Empty union; we have nothing to do. 1659 1660 #ifndef NDEBUG 1661 // Make sure that it's really an empty and not a failure of 1662 // semantic analysis. 1663 for (const auto *Field : record->fields()) 1664 assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed"); 1665 #endif 1666 return; 1667 } 1668 1669 // FIXME: volatility 1670 FieldDecl *Field = E->getInitializedFieldInUnion(); 1671 1672 LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestLV, Field); 1673 if (NumInitElements) { 1674 // Store the initializer into the field 1675 EmitInitializationToLValue(E->getInit(0), FieldLoc); 1676 } else { 1677 // Default-initialize to null. 1678 EmitNullInitializationToLValue(FieldLoc); 1679 } 1680 1681 return; 1682 } 1683 1684 // Here we iterate over the fields; this makes it simpler to both 1685 // default-initialize fields and skip over unnamed fields. 1686 for (const auto *field : record->fields()) { 1687 // We're done once we hit the flexible array member. 1688 if (field->getType()->isIncompleteArrayType()) 1689 break; 1690 1691 // Always skip anonymous bitfields. 1692 if (field->isUnnamedBitfield()) 1693 continue; 1694 1695 // We're done if we reach the end of the explicit initializers, we 1696 // have a zeroed object, and the rest of the fields are 1697 // zero-initializable. 1698 if (curInitIndex == NumInitElements && Dest.isZeroed() && 1699 CGF.getTypes().isZeroInitializable(E->getType())) 1700 break; 1701 1702 1703 LValue LV = CGF.EmitLValueForFieldInitialization(DestLV, field); 1704 // We never generate write-barries for initialized fields. 1705 LV.setNonGC(true); 1706 1707 if (curInitIndex < NumInitElements) { 1708 // Store the initializer into the field. 1709 EmitInitializationToLValue(E->getInit(curInitIndex++), LV); 1710 } else { 1711 // We're out of initializers; default-initialize to null 1712 EmitNullInitializationToLValue(LV); 1713 } 1714 1715 // Push a destructor if necessary. 1716 // FIXME: if we have an array of structures, all explicitly 1717 // initialized, we can end up pushing a linear number of cleanups. 1718 bool pushedCleanup = false; 1719 if (QualType::DestructionKind dtorKind 1720 = field->getType().isDestructedType()) { 1721 assert(LV.isSimple()); 1722 if (CGF.needsEHCleanup(dtorKind)) { 1723 CGF.pushDestroy(EHCleanup, LV.getAddress(CGF), field->getType(), 1724 CGF.getDestroyer(dtorKind), false); 1725 addCleanup(CGF.EHStack.stable_begin()); 1726 pushedCleanup = true; 1727 } 1728 } 1729 1730 // If the GEP didn't get used because of a dead zero init or something 1731 // else, clean it up for -O0 builds and general tidiness. 1732 if (!pushedCleanup && LV.isSimple()) 1733 if (llvm::GetElementPtrInst *GEP = 1734 dyn_cast<llvm::GetElementPtrInst>(LV.getPointer(CGF))) 1735 if (GEP->use_empty()) 1736 GEP->eraseFromParent(); 1737 } 1738 1739 // Deactivate all the partial cleanups in reverse order, which 1740 // generally means popping them. 1741 assert((cleanupDominator || cleanups.empty()) && 1742 "Missing cleanupDominator before deactivating cleanup blocks"); 1743 for (unsigned i = cleanups.size(); i != 0; --i) 1744 CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator); 1745 1746 // Destroy the placeholder if we made one. 1747 if (cleanupDominator) 1748 cleanupDominator->eraseFromParent(); 1749 } 1750 1751 void AggExprEmitter::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E, 1752 llvm::Value *outerBegin) { 1753 // Emit the common subexpression. 1754 CodeGenFunction::OpaqueValueMapping binding(CGF, E->getCommonExpr()); 1755 1756 Address destPtr = EnsureSlot(E->getType()).getAddress(); 1757 uint64_t numElements = E->getArraySize().getZExtValue(); 1758 1759 if (!numElements) 1760 return; 1761 1762 // destPtr is an array*. Construct an elementType* by drilling down a level. 1763 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 1764 llvm::Value *indices[] = {zero, zero}; 1765 llvm::Value *begin = Builder.CreateInBoundsGEP(destPtr.getPointer(), indices, 1766 "arrayinit.begin"); 1767 1768 // Prepare to special-case multidimensional array initialization: we avoid 1769 // emitting multiple destructor loops in that case. 1770 if (!outerBegin) 1771 outerBegin = begin; 1772 ArrayInitLoopExpr *InnerLoop = dyn_cast<ArrayInitLoopExpr>(E->getSubExpr()); 1773 1774 QualType elementType = 1775 CGF.getContext().getAsArrayType(E->getType())->getElementType(); 1776 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType); 1777 CharUnits elementAlign = 1778 destPtr.getAlignment().alignmentOfArrayElement(elementSize); 1779 1780 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 1781 llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body"); 1782 1783 // Jump into the body. 1784 CGF.EmitBlock(bodyBB); 1785 llvm::PHINode *index = 1786 Builder.CreatePHI(zero->getType(), 2, "arrayinit.index"); 1787 index->addIncoming(zero, entryBB); 1788 llvm::Value *element = Builder.CreateInBoundsGEP(begin, index); 1789 1790 // Prepare for a cleanup. 1791 QualType::DestructionKind dtorKind = elementType.isDestructedType(); 1792 EHScopeStack::stable_iterator cleanup; 1793 if (CGF.needsEHCleanup(dtorKind) && !InnerLoop) { 1794 if (outerBegin->getType() != element->getType()) 1795 outerBegin = Builder.CreateBitCast(outerBegin, element->getType()); 1796 CGF.pushRegularPartialArrayCleanup(outerBegin, element, elementType, 1797 elementAlign, 1798 CGF.getDestroyer(dtorKind)); 1799 cleanup = CGF.EHStack.stable_begin(); 1800 } else { 1801 dtorKind = QualType::DK_none; 1802 } 1803 1804 // Emit the actual filler expression. 1805 { 1806 // Temporaries created in an array initialization loop are destroyed 1807 // at the end of each iteration. 1808 CodeGenFunction::RunCleanupsScope CleanupsScope(CGF); 1809 CodeGenFunction::ArrayInitLoopExprScope Scope(CGF, index); 1810 LValue elementLV = 1811 CGF.MakeAddrLValue(Address(element, elementAlign), elementType); 1812 1813 if (InnerLoop) { 1814 // If the subexpression is an ArrayInitLoopExpr, share its cleanup. 1815 auto elementSlot = AggValueSlot::forLValue( 1816 elementLV, CGF, AggValueSlot::IsDestructed, 1817 AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased, 1818 AggValueSlot::DoesNotOverlap); 1819 AggExprEmitter(CGF, elementSlot, false) 1820 .VisitArrayInitLoopExpr(InnerLoop, outerBegin); 1821 } else 1822 EmitInitializationToLValue(E->getSubExpr(), elementLV); 1823 } 1824 1825 // Move on to the next element. 1826 llvm::Value *nextIndex = Builder.CreateNUWAdd( 1827 index, llvm::ConstantInt::get(CGF.SizeTy, 1), "arrayinit.next"); 1828 index->addIncoming(nextIndex, Builder.GetInsertBlock()); 1829 1830 // Leave the loop if we're done. 1831 llvm::Value *done = Builder.CreateICmpEQ( 1832 nextIndex, llvm::ConstantInt::get(CGF.SizeTy, numElements), 1833 "arrayinit.done"); 1834 llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end"); 1835 Builder.CreateCondBr(done, endBB, bodyBB); 1836 1837 CGF.EmitBlock(endBB); 1838 1839 // Leave the partial-array cleanup if we entered one. 1840 if (dtorKind) 1841 CGF.DeactivateCleanupBlock(cleanup, index); 1842 } 1843 1844 void AggExprEmitter::VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E) { 1845 AggValueSlot Dest = EnsureSlot(E->getType()); 1846 1847 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType()); 1848 EmitInitializationToLValue(E->getBase(), DestLV); 1849 VisitInitListExpr(E->getUpdater()); 1850 } 1851 1852 //===----------------------------------------------------------------------===// 1853 // Entry Points into this File 1854 //===----------------------------------------------------------------------===// 1855 1856 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of 1857 /// non-zero bytes that will be stored when outputting the initializer for the 1858 /// specified initializer expression. 1859 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) { 1860 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) 1861 E = MTE->getSubExpr(); 1862 E = E->IgnoreParenNoopCasts(CGF.getContext()); 1863 1864 // 0 and 0.0 won't require any non-zero stores! 1865 if (isSimpleZero(E, CGF)) return CharUnits::Zero(); 1866 1867 // If this is an initlist expr, sum up the size of sizes of the (present) 1868 // elements. If this is something weird, assume the whole thing is non-zero. 1869 const InitListExpr *ILE = dyn_cast<InitListExpr>(E); 1870 while (ILE && ILE->isTransparent()) 1871 ILE = dyn_cast<InitListExpr>(ILE->getInit(0)); 1872 if (!ILE || !CGF.getTypes().isZeroInitializable(ILE->getType())) 1873 return CGF.getContext().getTypeSizeInChars(E->getType()); 1874 1875 // InitListExprs for structs have to be handled carefully. If there are 1876 // reference members, we need to consider the size of the reference, not the 1877 // referencee. InitListExprs for unions and arrays can't have references. 1878 if (const RecordType *RT = E->getType()->getAs<RecordType>()) { 1879 if (!RT->isUnionType()) { 1880 RecordDecl *SD = RT->getDecl(); 1881 CharUnits NumNonZeroBytes = CharUnits::Zero(); 1882 1883 unsigned ILEElement = 0; 1884 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(SD)) 1885 while (ILEElement != CXXRD->getNumBases()) 1886 NumNonZeroBytes += 1887 GetNumNonZeroBytesInInit(ILE->getInit(ILEElement++), CGF); 1888 for (const auto *Field : SD->fields()) { 1889 // We're done once we hit the flexible array member or run out of 1890 // InitListExpr elements. 1891 if (Field->getType()->isIncompleteArrayType() || 1892 ILEElement == ILE->getNumInits()) 1893 break; 1894 if (Field->isUnnamedBitfield()) 1895 continue; 1896 1897 const Expr *E = ILE->getInit(ILEElement++); 1898 1899 // Reference values are always non-null and have the width of a pointer. 1900 if (Field->getType()->isReferenceType()) 1901 NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits( 1902 CGF.getTarget().getPointerWidth(0)); 1903 else 1904 NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF); 1905 } 1906 1907 return NumNonZeroBytes; 1908 } 1909 } 1910 1911 // FIXME: This overestimates the number of non-zero bytes for bit-fields. 1912 CharUnits NumNonZeroBytes = CharUnits::Zero(); 1913 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) 1914 NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF); 1915 return NumNonZeroBytes; 1916 } 1917 1918 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of 1919 /// zeros in it, emit a memset and avoid storing the individual zeros. 1920 /// 1921 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E, 1922 CodeGenFunction &CGF) { 1923 // If the slot is already known to be zeroed, nothing to do. Don't mess with 1924 // volatile stores. 1925 if (Slot.isZeroed() || Slot.isVolatile() || !Slot.getAddress().isValid()) 1926 return; 1927 1928 // C++ objects with a user-declared constructor don't need zero'ing. 1929 if (CGF.getLangOpts().CPlusPlus) 1930 if (const RecordType *RT = CGF.getContext() 1931 .getBaseElementType(E->getType())->getAs<RecordType>()) { 1932 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1933 if (RD->hasUserDeclaredConstructor()) 1934 return; 1935 } 1936 1937 // If the type is 16-bytes or smaller, prefer individual stores over memset. 1938 CharUnits Size = Slot.getPreferredSize(CGF.getContext(), E->getType()); 1939 if (Size <= CharUnits::fromQuantity(16)) 1940 return; 1941 1942 // Check to see if over 3/4 of the initializer are known to be zero. If so, 1943 // we prefer to emit memset + individual stores for the rest. 1944 CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF); 1945 if (NumNonZeroBytes*4 > Size) 1946 return; 1947 1948 // Okay, it seems like a good idea to use an initial memset, emit the call. 1949 llvm::Constant *SizeVal = CGF.Builder.getInt64(Size.getQuantity()); 1950 1951 Address Loc = Slot.getAddress(); 1952 Loc = CGF.Builder.CreateElementBitCast(Loc, CGF.Int8Ty); 1953 CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, false); 1954 1955 // Tell the AggExprEmitter that the slot is known zero. 1956 Slot.setZeroed(); 1957 } 1958 1959 1960 1961 1962 /// EmitAggExpr - Emit the computation of the specified expression of aggregate 1963 /// type. The result is computed into DestPtr. Note that if DestPtr is null, 1964 /// the value of the aggregate expression is not needed. If VolatileDest is 1965 /// true, DestPtr cannot be 0. 1966 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot) { 1967 assert(E && hasAggregateEvaluationKind(E->getType()) && 1968 "Invalid aggregate expression to emit"); 1969 assert((Slot.getAddress().isValid() || Slot.isIgnored()) && 1970 "slot has bits but no address"); 1971 1972 // Optimize the slot if possible. 1973 CheckAggExprForMemSetUse(Slot, E, *this); 1974 1975 AggExprEmitter(*this, Slot, Slot.isIgnored()).Visit(const_cast<Expr*>(E)); 1976 } 1977 1978 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) { 1979 assert(hasAggregateEvaluationKind(E->getType()) && "Invalid argument!"); 1980 Address Temp = CreateMemTemp(E->getType()); 1981 LValue LV = MakeAddrLValue(Temp, E->getType()); 1982 EmitAggExpr(E, AggValueSlot::forLValue( 1983 LV, *this, AggValueSlot::IsNotDestructed, 1984 AggValueSlot::DoesNotNeedGCBarriers, 1985 AggValueSlot::IsNotAliased, AggValueSlot::DoesNotOverlap)); 1986 return LV; 1987 } 1988 1989 AggValueSlot::Overlap_t 1990 CodeGenFunction::getOverlapForFieldInit(const FieldDecl *FD) { 1991 if (!FD->hasAttr<NoUniqueAddressAttr>() || !FD->getType()->isRecordType()) 1992 return AggValueSlot::DoesNotOverlap; 1993 1994 // If the field lies entirely within the enclosing class's nvsize, its tail 1995 // padding cannot overlap any already-initialized object. (The only subobjects 1996 // with greater addresses that might already be initialized are vbases.) 1997 const RecordDecl *ClassRD = FD->getParent(); 1998 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(ClassRD); 1999 if (Layout.getFieldOffset(FD->getFieldIndex()) + 2000 getContext().getTypeSize(FD->getType()) <= 2001 (uint64_t)getContext().toBits(Layout.getNonVirtualSize())) 2002 return AggValueSlot::DoesNotOverlap; 2003 2004 // The tail padding may contain values we need to preserve. 2005 return AggValueSlot::MayOverlap; 2006 } 2007 2008 AggValueSlot::Overlap_t CodeGenFunction::getOverlapForBaseInit( 2009 const CXXRecordDecl *RD, const CXXRecordDecl *BaseRD, bool IsVirtual) { 2010 // If the most-derived object is a field declared with [[no_unique_address]], 2011 // the tail padding of any virtual base could be reused for other subobjects 2012 // of that field's class. 2013 if (IsVirtual) 2014 return AggValueSlot::MayOverlap; 2015 2016 // If the base class is laid out entirely within the nvsize of the derived 2017 // class, its tail padding cannot yet be initialized, so we can issue 2018 // stores at the full width of the base class. 2019 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 2020 if (Layout.getBaseClassOffset(BaseRD) + 2021 getContext().getASTRecordLayout(BaseRD).getSize() <= 2022 Layout.getNonVirtualSize()) 2023 return AggValueSlot::DoesNotOverlap; 2024 2025 // The tail padding may contain values we need to preserve. 2026 return AggValueSlot::MayOverlap; 2027 } 2028 2029 void CodeGenFunction::EmitAggregateCopy(LValue Dest, LValue Src, QualType Ty, 2030 AggValueSlot::Overlap_t MayOverlap, 2031 bool isVolatile) { 2032 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 2033 2034 Address DestPtr = Dest.getAddress(*this); 2035 Address SrcPtr = Src.getAddress(*this); 2036 2037 if (getLangOpts().CPlusPlus) { 2038 if (const RecordType *RT = Ty->getAs<RecordType>()) { 2039 CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl()); 2040 assert((Record->hasTrivialCopyConstructor() || 2041 Record->hasTrivialCopyAssignment() || 2042 Record->hasTrivialMoveConstructor() || 2043 Record->hasTrivialMoveAssignment() || 2044 Record->isUnion()) && 2045 "Trying to aggregate-copy a type without a trivial copy/move " 2046 "constructor or assignment operator"); 2047 // Ignore empty classes in C++. 2048 if (Record->isEmpty()) 2049 return; 2050 } 2051 } 2052 2053 if (getLangOpts().CUDAIsDevice) { 2054 if (Ty->isCUDADeviceBuiltinSurfaceType()) { 2055 if (getTargetHooks().emitCUDADeviceBuiltinSurfaceDeviceCopy(*this, Dest, 2056 Src)) 2057 return; 2058 } else if (Ty->isCUDADeviceBuiltinTextureType()) { 2059 if (getTargetHooks().emitCUDADeviceBuiltinTextureDeviceCopy(*this, Dest, 2060 Src)) 2061 return; 2062 } 2063 } 2064 2065 // Aggregate assignment turns into llvm.memcpy. This is almost valid per 2066 // C99 6.5.16.1p3, which states "If the value being stored in an object is 2067 // read from another object that overlaps in anyway the storage of the first 2068 // object, then the overlap shall be exact and the two objects shall have 2069 // qualified or unqualified versions of a compatible type." 2070 // 2071 // memcpy is not defined if the source and destination pointers are exactly 2072 // equal, but other compilers do this optimization, and almost every memcpy 2073 // implementation handles this case safely. If there is a libc that does not 2074 // safely handle this, we can add a target hook. 2075 2076 // Get data size info for this aggregate. Don't copy the tail padding if this 2077 // might be a potentially-overlapping subobject, since the tail padding might 2078 // be occupied by a different object. Otherwise, copying it is fine. 2079 TypeInfoChars TypeInfo; 2080 if (MayOverlap) 2081 TypeInfo = getContext().getTypeInfoDataSizeInChars(Ty); 2082 else 2083 TypeInfo = getContext().getTypeInfoInChars(Ty); 2084 2085 llvm::Value *SizeVal = nullptr; 2086 if (TypeInfo.Width.isZero()) { 2087 // But note that getTypeInfo returns 0 for a VLA. 2088 if (auto *VAT = dyn_cast_or_null<VariableArrayType>( 2089 getContext().getAsArrayType(Ty))) { 2090 QualType BaseEltTy; 2091 SizeVal = emitArrayLength(VAT, BaseEltTy, DestPtr); 2092 TypeInfo = getContext().getTypeInfoInChars(BaseEltTy); 2093 assert(!TypeInfo.Width.isZero()); 2094 SizeVal = Builder.CreateNUWMul( 2095 SizeVal, 2096 llvm::ConstantInt::get(SizeTy, TypeInfo.Width.getQuantity())); 2097 } 2098 } 2099 if (!SizeVal) { 2100 SizeVal = llvm::ConstantInt::get(SizeTy, TypeInfo.Width.getQuantity()); 2101 } 2102 2103 // FIXME: If we have a volatile struct, the optimizer can remove what might 2104 // appear to be `extra' memory ops: 2105 // 2106 // volatile struct { int i; } a, b; 2107 // 2108 // int main() { 2109 // a = b; 2110 // a = b; 2111 // } 2112 // 2113 // we need to use a different call here. We use isVolatile to indicate when 2114 // either the source or the destination is volatile. 2115 2116 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 2117 SrcPtr = Builder.CreateElementBitCast(SrcPtr, Int8Ty); 2118 2119 // Don't do any of the memmove_collectable tests if GC isn't set. 2120 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) { 2121 // fall through 2122 } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 2123 RecordDecl *Record = RecordTy->getDecl(); 2124 if (Record->hasObjectMember()) { 2125 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 2126 SizeVal); 2127 return; 2128 } 2129 } else if (Ty->isArrayType()) { 2130 QualType BaseType = getContext().getBaseElementType(Ty); 2131 if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) { 2132 if (RecordTy->getDecl()->hasObjectMember()) { 2133 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 2134 SizeVal); 2135 return; 2136 } 2137 } 2138 } 2139 2140 auto Inst = Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, isVolatile); 2141 2142 // Determine the metadata to describe the position of any padding in this 2143 // memcpy, as well as the TBAA tags for the members of the struct, in case 2144 // the optimizer wishes to expand it in to scalar memory operations. 2145 if (llvm::MDNode *TBAAStructTag = CGM.getTBAAStructInfo(Ty)) 2146 Inst->setMetadata(llvm::LLVMContext::MD_tbaa_struct, TBAAStructTag); 2147 2148 if (CGM.getCodeGenOpts().NewStructPathTBAA) { 2149 TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForMemoryTransfer( 2150 Dest.getTBAAInfo(), Src.getTBAAInfo()); 2151 CGM.DecorateInstructionWithTBAA(Inst, TBAAInfo); 2152 } 2153 } 2154