1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Aggregate Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCXXABI.h" 16 #include "CGObjCRuntime.h" 17 #include "CodeGenModule.h" 18 #include "ConstantEmitter.h" 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/DeclCXX.h" 21 #include "clang/AST/DeclTemplate.h" 22 #include "clang/AST/StmtVisitor.h" 23 #include "llvm/IR/Constants.h" 24 #include "llvm/IR/Function.h" 25 #include "llvm/IR/GlobalVariable.h" 26 #include "llvm/IR/Intrinsics.h" 27 #include "llvm/IR/IntrinsicInst.h" 28 using namespace clang; 29 using namespace CodeGen; 30 31 //===----------------------------------------------------------------------===// 32 // Aggregate Expression Emitter 33 //===----------------------------------------------------------------------===// 34 35 namespace { 36 class AggExprEmitter : public StmtVisitor<AggExprEmitter> { 37 CodeGenFunction &CGF; 38 CGBuilderTy &Builder; 39 AggValueSlot Dest; 40 bool IsResultUnused; 41 42 AggValueSlot EnsureSlot(QualType T) { 43 if (!Dest.isIgnored()) return Dest; 44 return CGF.CreateAggTemp(T, "agg.tmp.ensured"); 45 } 46 void EnsureDest(QualType T) { 47 if (!Dest.isIgnored()) return; 48 Dest = CGF.CreateAggTemp(T, "agg.tmp.ensured"); 49 } 50 51 // Calls `Fn` with a valid return value slot, potentially creating a temporary 52 // to do so. If a temporary is created, an appropriate copy into `Dest` will 53 // be emitted, as will lifetime markers. 54 // 55 // The given function should take a ReturnValueSlot, and return an RValue that 56 // points to said slot. 57 void withReturnValueSlot(const Expr *E, 58 llvm::function_ref<RValue(ReturnValueSlot)> Fn); 59 60 public: 61 AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest, bool IsResultUnused) 62 : CGF(cgf), Builder(CGF.Builder), Dest(Dest), 63 IsResultUnused(IsResultUnused) { } 64 65 //===--------------------------------------------------------------------===// 66 // Utilities 67 //===--------------------------------------------------------------------===// 68 69 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 70 /// represents a value lvalue, this method emits the address of the lvalue, 71 /// then loads the result into DestPtr. 72 void EmitAggLoadOfLValue(const Expr *E); 73 74 enum ExprValueKind { 75 EVK_RValue, 76 EVK_NonRValue 77 }; 78 79 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 80 /// SrcIsRValue is true if source comes from an RValue. 81 void EmitFinalDestCopy(QualType type, const LValue &src, 82 ExprValueKind SrcValueKind = EVK_NonRValue); 83 void EmitFinalDestCopy(QualType type, RValue src); 84 void EmitCopy(QualType type, const AggValueSlot &dest, 85 const AggValueSlot &src); 86 87 void EmitMoveFromReturnSlot(const Expr *E, RValue Src); 88 89 void EmitArrayInit(Address DestPtr, llvm::ArrayType *AType, 90 QualType ArrayQTy, InitListExpr *E); 91 92 AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) { 93 if (CGF.getLangOpts().getGC() && TypeRequiresGCollection(T)) 94 return AggValueSlot::NeedsGCBarriers; 95 return AggValueSlot::DoesNotNeedGCBarriers; 96 } 97 98 bool TypeRequiresGCollection(QualType T); 99 100 //===--------------------------------------------------------------------===// 101 // Visitor Methods 102 //===--------------------------------------------------------------------===// 103 104 void Visit(Expr *E) { 105 ApplyDebugLocation DL(CGF, E); 106 StmtVisitor<AggExprEmitter>::Visit(E); 107 } 108 109 void VisitStmt(Stmt *S) { 110 CGF.ErrorUnsupported(S, "aggregate expression"); 111 } 112 void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); } 113 void VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 114 Visit(GE->getResultExpr()); 115 } 116 void VisitCoawaitExpr(CoawaitExpr *E) { 117 CGF.EmitCoawaitExpr(*E, Dest, IsResultUnused); 118 } 119 void VisitCoyieldExpr(CoyieldExpr *E) { 120 CGF.EmitCoyieldExpr(*E, Dest, IsResultUnused); 121 } 122 void VisitUnaryCoawait(UnaryOperator *E) { Visit(E->getSubExpr()); } 123 void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); } 124 void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 125 return Visit(E->getReplacement()); 126 } 127 128 // l-values. 129 void VisitDeclRefExpr(DeclRefExpr *E) { EmitAggLoadOfLValue(E); } 130 void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); } 131 void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); } 132 void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); } 133 void VisitCompoundLiteralExpr(CompoundLiteralExpr *E); 134 void VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 135 EmitAggLoadOfLValue(E); 136 } 137 void VisitPredefinedExpr(const PredefinedExpr *E) { 138 EmitAggLoadOfLValue(E); 139 } 140 141 // Operators. 142 void VisitCastExpr(CastExpr *E); 143 void VisitCallExpr(const CallExpr *E); 144 void VisitStmtExpr(const StmtExpr *E); 145 void VisitBinaryOperator(const BinaryOperator *BO); 146 void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO); 147 void VisitBinAssign(const BinaryOperator *E); 148 void VisitBinComma(const BinaryOperator *E); 149 void VisitBinCmp(const BinaryOperator *E); 150 151 void VisitObjCMessageExpr(ObjCMessageExpr *E); 152 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 153 EmitAggLoadOfLValue(E); 154 } 155 156 void VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E); 157 void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO); 158 void VisitChooseExpr(const ChooseExpr *CE); 159 void VisitInitListExpr(InitListExpr *E); 160 void VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E, 161 llvm::Value *outerBegin = nullptr); 162 void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E); 163 void VisitNoInitExpr(NoInitExpr *E) { } // Do nothing. 164 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 165 Visit(DAE->getExpr()); 166 } 167 void VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 168 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF); 169 Visit(DIE->getExpr()); 170 } 171 void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E); 172 void VisitCXXConstructExpr(const CXXConstructExpr *E); 173 void VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E); 174 void VisitLambdaExpr(LambdaExpr *E); 175 void VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E); 176 void VisitExprWithCleanups(ExprWithCleanups *E); 177 void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E); 178 void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); } 179 void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E); 180 void VisitOpaqueValueExpr(OpaqueValueExpr *E); 181 182 void VisitPseudoObjectExpr(PseudoObjectExpr *E) { 183 if (E->isGLValue()) { 184 LValue LV = CGF.EmitPseudoObjectLValue(E); 185 return EmitFinalDestCopy(E->getType(), LV); 186 } 187 188 CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType())); 189 } 190 191 void VisitVAArgExpr(VAArgExpr *E); 192 193 void EmitInitializationToLValue(Expr *E, LValue Address); 194 void EmitNullInitializationToLValue(LValue Address); 195 // case Expr::ChooseExprClass: 196 void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); } 197 void VisitAtomicExpr(AtomicExpr *E) { 198 RValue Res = CGF.EmitAtomicExpr(E); 199 EmitFinalDestCopy(E->getType(), Res); 200 } 201 }; 202 } // end anonymous namespace. 203 204 //===----------------------------------------------------------------------===// 205 // Utilities 206 //===----------------------------------------------------------------------===// 207 208 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 209 /// represents a value lvalue, this method emits the address of the lvalue, 210 /// then loads the result into DestPtr. 211 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) { 212 LValue LV = CGF.EmitLValue(E); 213 214 // If the type of the l-value is atomic, then do an atomic load. 215 if (LV.getType()->isAtomicType() || CGF.LValueIsSuitableForInlineAtomic(LV)) { 216 CGF.EmitAtomicLoad(LV, E->getExprLoc(), Dest); 217 return; 218 } 219 220 EmitFinalDestCopy(E->getType(), LV); 221 } 222 223 /// True if the given aggregate type requires special GC API calls. 224 bool AggExprEmitter::TypeRequiresGCollection(QualType T) { 225 // Only record types have members that might require garbage collection. 226 const RecordType *RecordTy = T->getAs<RecordType>(); 227 if (!RecordTy) return false; 228 229 // Don't mess with non-trivial C++ types. 230 RecordDecl *Record = RecordTy->getDecl(); 231 if (isa<CXXRecordDecl>(Record) && 232 (cast<CXXRecordDecl>(Record)->hasNonTrivialCopyConstructor() || 233 !cast<CXXRecordDecl>(Record)->hasTrivialDestructor())) 234 return false; 235 236 // Check whether the type has an object member. 237 return Record->hasObjectMember(); 238 } 239 240 void AggExprEmitter::withReturnValueSlot( 241 const Expr *E, llvm::function_ref<RValue(ReturnValueSlot)> EmitCall) { 242 QualType RetTy = E->getType(); 243 bool RequiresDestruction = 244 Dest.isIgnored() && 245 RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct; 246 247 // If it makes no observable difference, save a memcpy + temporary. 248 // 249 // We need to always provide our own temporary if destruction is required. 250 // Otherwise, EmitCall will emit its own, notice that it's "unused", and end 251 // its lifetime before we have the chance to emit a proper destructor call. 252 bool UseTemp = Dest.isPotentiallyAliased() || Dest.requiresGCollection() || 253 (RequiresDestruction && !Dest.getAddress().isValid()); 254 255 Address RetAddr = Address::invalid(); 256 Address RetAllocaAddr = Address::invalid(); 257 258 EHScopeStack::stable_iterator LifetimeEndBlock; 259 llvm::Value *LifetimeSizePtr = nullptr; 260 llvm::IntrinsicInst *LifetimeStartInst = nullptr; 261 if (!UseTemp) { 262 RetAddr = Dest.getAddress(); 263 } else { 264 RetAddr = CGF.CreateMemTemp(RetTy, "tmp", &RetAllocaAddr); 265 uint64_t Size = 266 CGF.CGM.getDataLayout().getTypeAllocSize(CGF.ConvertTypeForMem(RetTy)); 267 LifetimeSizePtr = CGF.EmitLifetimeStart(Size, RetAllocaAddr.getPointer()); 268 if (LifetimeSizePtr) { 269 LifetimeStartInst = 270 cast<llvm::IntrinsicInst>(std::prev(Builder.GetInsertPoint())); 271 assert(LifetimeStartInst->getIntrinsicID() == 272 llvm::Intrinsic::lifetime_start && 273 "Last insertion wasn't a lifetime.start?"); 274 275 CGF.pushFullExprCleanup<CodeGenFunction::CallLifetimeEnd>( 276 NormalEHLifetimeMarker, RetAllocaAddr, LifetimeSizePtr); 277 LifetimeEndBlock = CGF.EHStack.stable_begin(); 278 } 279 } 280 281 RValue Src = 282 EmitCall(ReturnValueSlot(RetAddr, Dest.isVolatile(), IsResultUnused)); 283 284 if (RequiresDestruction) 285 CGF.pushDestroy(RetTy.isDestructedType(), Src.getAggregateAddress(), RetTy); 286 287 if (!UseTemp) 288 return; 289 290 assert(Dest.getPointer() != Src.getAggregatePointer()); 291 EmitFinalDestCopy(E->getType(), Src); 292 293 if (!RequiresDestruction && LifetimeStartInst) { 294 // If there's no dtor to run, the copy was the last use of our temporary. 295 // Since we're not guaranteed to be in an ExprWithCleanups, clean up 296 // eagerly. 297 CGF.DeactivateCleanupBlock(LifetimeEndBlock, LifetimeStartInst); 298 CGF.EmitLifetimeEnd(LifetimeSizePtr, RetAllocaAddr.getPointer()); 299 } 300 } 301 302 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 303 void AggExprEmitter::EmitFinalDestCopy(QualType type, RValue src) { 304 assert(src.isAggregate() && "value must be aggregate value!"); 305 LValue srcLV = CGF.MakeAddrLValue(src.getAggregateAddress(), type); 306 EmitFinalDestCopy(type, srcLV, EVK_RValue); 307 } 308 309 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 310 void AggExprEmitter::EmitFinalDestCopy(QualType type, const LValue &src, 311 ExprValueKind SrcValueKind) { 312 // If Dest is ignored, then we're evaluating an aggregate expression 313 // in a context that doesn't care about the result. Note that loads 314 // from volatile l-values force the existence of a non-ignored 315 // destination. 316 if (Dest.isIgnored()) 317 return; 318 319 // Copy non-trivial C structs here. 320 LValue DstLV = CGF.MakeAddrLValue( 321 Dest.getAddress(), Dest.isVolatile() ? type.withVolatile() : type); 322 323 if (SrcValueKind == EVK_RValue) { 324 if (type.isNonTrivialToPrimitiveDestructiveMove() == QualType::PCK_Struct) { 325 if (Dest.isPotentiallyAliased()) 326 CGF.callCStructMoveAssignmentOperator(DstLV, src); 327 else 328 CGF.callCStructMoveConstructor(DstLV, src); 329 return; 330 } 331 } else { 332 if (type.isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) { 333 if (Dest.isPotentiallyAliased()) 334 CGF.callCStructCopyAssignmentOperator(DstLV, src); 335 else 336 CGF.callCStructCopyConstructor(DstLV, src); 337 return; 338 } 339 } 340 341 AggValueSlot srcAgg = 342 AggValueSlot::forLValue(src, AggValueSlot::IsDestructed, 343 needsGC(type), AggValueSlot::IsAliased, 344 AggValueSlot::MayOverlap); 345 EmitCopy(type, Dest, srcAgg); 346 } 347 348 /// Perform a copy from the source into the destination. 349 /// 350 /// \param type - the type of the aggregate being copied; qualifiers are 351 /// ignored 352 void AggExprEmitter::EmitCopy(QualType type, const AggValueSlot &dest, 353 const AggValueSlot &src) { 354 if (dest.requiresGCollection()) { 355 CharUnits sz = dest.getPreferredSize(CGF.getContext(), type); 356 llvm::Value *size = llvm::ConstantInt::get(CGF.SizeTy, sz.getQuantity()); 357 CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, 358 dest.getAddress(), 359 src.getAddress(), 360 size); 361 return; 362 } 363 364 // If the result of the assignment is used, copy the LHS there also. 365 // It's volatile if either side is. Use the minimum alignment of 366 // the two sides. 367 LValue DestLV = CGF.MakeAddrLValue(dest.getAddress(), type); 368 LValue SrcLV = CGF.MakeAddrLValue(src.getAddress(), type); 369 CGF.EmitAggregateCopy(DestLV, SrcLV, type, dest.mayOverlap(), 370 dest.isVolatile() || src.isVolatile()); 371 } 372 373 /// Emit the initializer for a std::initializer_list initialized with a 374 /// real initializer list. 375 void 376 AggExprEmitter::VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E) { 377 // Emit an array containing the elements. The array is externally destructed 378 // if the std::initializer_list object is. 379 ASTContext &Ctx = CGF.getContext(); 380 LValue Array = CGF.EmitLValue(E->getSubExpr()); 381 assert(Array.isSimple() && "initializer_list array not a simple lvalue"); 382 Address ArrayPtr = Array.getAddress(); 383 384 const ConstantArrayType *ArrayType = 385 Ctx.getAsConstantArrayType(E->getSubExpr()->getType()); 386 assert(ArrayType && "std::initializer_list constructed from non-array"); 387 388 // FIXME: Perform the checks on the field types in SemaInit. 389 RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl(); 390 RecordDecl::field_iterator Field = Record->field_begin(); 391 if (Field == Record->field_end()) { 392 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 393 return; 394 } 395 396 // Start pointer. 397 if (!Field->getType()->isPointerType() || 398 !Ctx.hasSameType(Field->getType()->getPointeeType(), 399 ArrayType->getElementType())) { 400 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 401 return; 402 } 403 404 AggValueSlot Dest = EnsureSlot(E->getType()); 405 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType()); 406 LValue Start = CGF.EmitLValueForFieldInitialization(DestLV, *Field); 407 llvm::Value *Zero = llvm::ConstantInt::get(CGF.PtrDiffTy, 0); 408 llvm::Value *IdxStart[] = { Zero, Zero }; 409 llvm::Value *ArrayStart = 410 Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxStart, "arraystart"); 411 CGF.EmitStoreThroughLValue(RValue::get(ArrayStart), Start); 412 ++Field; 413 414 if (Field == Record->field_end()) { 415 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 416 return; 417 } 418 419 llvm::Value *Size = Builder.getInt(ArrayType->getSize()); 420 LValue EndOrLength = CGF.EmitLValueForFieldInitialization(DestLV, *Field); 421 if (Field->getType()->isPointerType() && 422 Ctx.hasSameType(Field->getType()->getPointeeType(), 423 ArrayType->getElementType())) { 424 // End pointer. 425 llvm::Value *IdxEnd[] = { Zero, Size }; 426 llvm::Value *ArrayEnd = 427 Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxEnd, "arrayend"); 428 CGF.EmitStoreThroughLValue(RValue::get(ArrayEnd), EndOrLength); 429 } else if (Ctx.hasSameType(Field->getType(), Ctx.getSizeType())) { 430 // Length. 431 CGF.EmitStoreThroughLValue(RValue::get(Size), EndOrLength); 432 } else { 433 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 434 return; 435 } 436 } 437 438 /// Determine if E is a trivial array filler, that is, one that is 439 /// equivalent to zero-initialization. 440 static bool isTrivialFiller(Expr *E) { 441 if (!E) 442 return true; 443 444 if (isa<ImplicitValueInitExpr>(E)) 445 return true; 446 447 if (auto *ILE = dyn_cast<InitListExpr>(E)) { 448 if (ILE->getNumInits()) 449 return false; 450 return isTrivialFiller(ILE->getArrayFiller()); 451 } 452 453 if (auto *Cons = dyn_cast_or_null<CXXConstructExpr>(E)) 454 return Cons->getConstructor()->isDefaultConstructor() && 455 Cons->getConstructor()->isTrivial(); 456 457 // FIXME: Are there other cases where we can avoid emitting an initializer? 458 return false; 459 } 460 461 /// Emit initialization of an array from an initializer list. 462 void AggExprEmitter::EmitArrayInit(Address DestPtr, llvm::ArrayType *AType, 463 QualType ArrayQTy, InitListExpr *E) { 464 uint64_t NumInitElements = E->getNumInits(); 465 466 uint64_t NumArrayElements = AType->getNumElements(); 467 assert(NumInitElements <= NumArrayElements); 468 469 QualType elementType = 470 CGF.getContext().getAsArrayType(ArrayQTy)->getElementType(); 471 472 // DestPtr is an array*. Construct an elementType* by drilling 473 // down a level. 474 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 475 llvm::Value *indices[] = { zero, zero }; 476 llvm::Value *begin = 477 Builder.CreateInBoundsGEP(DestPtr.getPointer(), indices, "arrayinit.begin"); 478 479 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType); 480 CharUnits elementAlign = 481 DestPtr.getAlignment().alignmentOfArrayElement(elementSize); 482 483 // Consider initializing the array by copying from a global. For this to be 484 // more efficient than per-element initialization, the size of the elements 485 // with explicit initializers should be large enough. 486 if (NumInitElements * elementSize.getQuantity() > 16 && 487 elementType.isTriviallyCopyableType(CGF.getContext())) { 488 CodeGen::CodeGenModule &CGM = CGF.CGM; 489 ConstantEmitter Emitter(CGM); 490 LangAS AS = ArrayQTy.getAddressSpace(); 491 if (llvm::Constant *C = Emitter.tryEmitForInitializer(E, AS, ArrayQTy)) { 492 auto GV = new llvm::GlobalVariable( 493 CGM.getModule(), C->getType(), 494 CGM.isTypeConstant(ArrayQTy, /* ExcludeCtorDtor= */ true), 495 llvm::GlobalValue::PrivateLinkage, C, "constinit", 496 /* InsertBefore= */ nullptr, llvm::GlobalVariable::NotThreadLocal, 497 CGM.getContext().getTargetAddressSpace(AS)); 498 Emitter.finalize(GV); 499 CharUnits Align = CGM.getContext().getTypeAlignInChars(ArrayQTy); 500 GV->setAlignment(Align.getQuantity()); 501 EmitFinalDestCopy(ArrayQTy, CGF.MakeAddrLValue(GV, ArrayQTy, Align)); 502 return; 503 } 504 } 505 506 // Exception safety requires us to destroy all the 507 // already-constructed members if an initializer throws. 508 // For that, we'll need an EH cleanup. 509 QualType::DestructionKind dtorKind = elementType.isDestructedType(); 510 Address endOfInit = Address::invalid(); 511 EHScopeStack::stable_iterator cleanup; 512 llvm::Instruction *cleanupDominator = nullptr; 513 if (CGF.needsEHCleanup(dtorKind)) { 514 // In principle we could tell the cleanup where we are more 515 // directly, but the control flow can get so varied here that it 516 // would actually be quite complex. Therefore we go through an 517 // alloca. 518 endOfInit = CGF.CreateTempAlloca(begin->getType(), CGF.getPointerAlign(), 519 "arrayinit.endOfInit"); 520 cleanupDominator = Builder.CreateStore(begin, endOfInit); 521 CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType, 522 elementAlign, 523 CGF.getDestroyer(dtorKind)); 524 cleanup = CGF.EHStack.stable_begin(); 525 526 // Otherwise, remember that we didn't need a cleanup. 527 } else { 528 dtorKind = QualType::DK_none; 529 } 530 531 llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1); 532 533 // The 'current element to initialize'. The invariants on this 534 // variable are complicated. Essentially, after each iteration of 535 // the loop, it points to the last initialized element, except 536 // that it points to the beginning of the array before any 537 // elements have been initialized. 538 llvm::Value *element = begin; 539 540 // Emit the explicit initializers. 541 for (uint64_t i = 0; i != NumInitElements; ++i) { 542 // Advance to the next element. 543 if (i > 0) { 544 element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element"); 545 546 // Tell the cleanup that it needs to destroy up to this 547 // element. TODO: some of these stores can be trivially 548 // observed to be unnecessary. 549 if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit); 550 } 551 552 LValue elementLV = 553 CGF.MakeAddrLValue(Address(element, elementAlign), elementType); 554 EmitInitializationToLValue(E->getInit(i), elementLV); 555 } 556 557 // Check whether there's a non-trivial array-fill expression. 558 Expr *filler = E->getArrayFiller(); 559 bool hasTrivialFiller = isTrivialFiller(filler); 560 561 // Any remaining elements need to be zero-initialized, possibly 562 // using the filler expression. We can skip this if the we're 563 // emitting to zeroed memory. 564 if (NumInitElements != NumArrayElements && 565 !(Dest.isZeroed() && hasTrivialFiller && 566 CGF.getTypes().isZeroInitializable(elementType))) { 567 568 // Use an actual loop. This is basically 569 // do { *array++ = filler; } while (array != end); 570 571 // Advance to the start of the rest of the array. 572 if (NumInitElements) { 573 element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start"); 574 if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit); 575 } 576 577 // Compute the end of the array. 578 llvm::Value *end = Builder.CreateInBoundsGEP(begin, 579 llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements), 580 "arrayinit.end"); 581 582 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 583 llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body"); 584 585 // Jump into the body. 586 CGF.EmitBlock(bodyBB); 587 llvm::PHINode *currentElement = 588 Builder.CreatePHI(element->getType(), 2, "arrayinit.cur"); 589 currentElement->addIncoming(element, entryBB); 590 591 // Emit the actual filler expression. 592 { 593 // C++1z [class.temporary]p5: 594 // when a default constructor is called to initialize an element of 595 // an array with no corresponding initializer [...] the destruction of 596 // every temporary created in a default argument is sequenced before 597 // the construction of the next array element, if any 598 CodeGenFunction::RunCleanupsScope CleanupsScope(CGF); 599 LValue elementLV = 600 CGF.MakeAddrLValue(Address(currentElement, elementAlign), elementType); 601 if (filler) 602 EmitInitializationToLValue(filler, elementLV); 603 else 604 EmitNullInitializationToLValue(elementLV); 605 } 606 607 // Move on to the next element. 608 llvm::Value *nextElement = 609 Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next"); 610 611 // Tell the EH cleanup that we finished with the last element. 612 if (endOfInit.isValid()) Builder.CreateStore(nextElement, endOfInit); 613 614 // Leave the loop if we're done. 615 llvm::Value *done = Builder.CreateICmpEQ(nextElement, end, 616 "arrayinit.done"); 617 llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end"); 618 Builder.CreateCondBr(done, endBB, bodyBB); 619 currentElement->addIncoming(nextElement, Builder.GetInsertBlock()); 620 621 CGF.EmitBlock(endBB); 622 } 623 624 // Leave the partial-array cleanup if we entered one. 625 if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator); 626 } 627 628 //===----------------------------------------------------------------------===// 629 // Visitor Methods 630 //===----------------------------------------------------------------------===// 631 632 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){ 633 Visit(E->GetTemporaryExpr()); 634 } 635 636 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) { 637 // If this is a unique OVE, just visit its source expression. 638 if (e->isUnique()) 639 Visit(e->getSourceExpr()); 640 else 641 EmitFinalDestCopy(e->getType(), CGF.getOrCreateOpaqueLValueMapping(e)); 642 } 643 644 void 645 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 646 if (Dest.isPotentiallyAliased() && 647 E->getType().isPODType(CGF.getContext())) { 648 // For a POD type, just emit a load of the lvalue + a copy, because our 649 // compound literal might alias the destination. 650 EmitAggLoadOfLValue(E); 651 return; 652 } 653 654 AggValueSlot Slot = EnsureSlot(E->getType()); 655 CGF.EmitAggExpr(E->getInitializer(), Slot); 656 } 657 658 /// Attempt to look through various unimportant expressions to find a 659 /// cast of the given kind. 660 static Expr *findPeephole(Expr *op, CastKind kind) { 661 while (true) { 662 op = op->IgnoreParens(); 663 if (CastExpr *castE = dyn_cast<CastExpr>(op)) { 664 if (castE->getCastKind() == kind) 665 return castE->getSubExpr(); 666 if (castE->getCastKind() == CK_NoOp) 667 continue; 668 } 669 return nullptr; 670 } 671 } 672 673 void AggExprEmitter::VisitCastExpr(CastExpr *E) { 674 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E)) 675 CGF.CGM.EmitExplicitCastExprType(ECE, &CGF); 676 switch (E->getCastKind()) { 677 case CK_Dynamic: { 678 // FIXME: Can this actually happen? We have no test coverage for it. 679 assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?"); 680 LValue LV = CGF.EmitCheckedLValue(E->getSubExpr(), 681 CodeGenFunction::TCK_Load); 682 // FIXME: Do we also need to handle property references here? 683 if (LV.isSimple()) 684 CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E)); 685 else 686 CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast"); 687 688 if (!Dest.isIgnored()) 689 CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination"); 690 break; 691 } 692 693 case CK_ToUnion: { 694 // Evaluate even if the destination is ignored. 695 if (Dest.isIgnored()) { 696 CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(), 697 /*ignoreResult=*/true); 698 break; 699 } 700 701 // GCC union extension 702 QualType Ty = E->getSubExpr()->getType(); 703 Address CastPtr = 704 Builder.CreateElementBitCast(Dest.getAddress(), CGF.ConvertType(Ty)); 705 EmitInitializationToLValue(E->getSubExpr(), 706 CGF.MakeAddrLValue(CastPtr, Ty)); 707 break; 708 } 709 710 case CK_DerivedToBase: 711 case CK_BaseToDerived: 712 case CK_UncheckedDerivedToBase: { 713 llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: " 714 "should have been unpacked before we got here"); 715 } 716 717 case CK_NonAtomicToAtomic: 718 case CK_AtomicToNonAtomic: { 719 bool isToAtomic = (E->getCastKind() == CK_NonAtomicToAtomic); 720 721 // Determine the atomic and value types. 722 QualType atomicType = E->getSubExpr()->getType(); 723 QualType valueType = E->getType(); 724 if (isToAtomic) std::swap(atomicType, valueType); 725 726 assert(atomicType->isAtomicType()); 727 assert(CGF.getContext().hasSameUnqualifiedType(valueType, 728 atomicType->castAs<AtomicType>()->getValueType())); 729 730 // Just recurse normally if we're ignoring the result or the 731 // atomic type doesn't change representation. 732 if (Dest.isIgnored() || !CGF.CGM.isPaddedAtomicType(atomicType)) { 733 return Visit(E->getSubExpr()); 734 } 735 736 CastKind peepholeTarget = 737 (isToAtomic ? CK_AtomicToNonAtomic : CK_NonAtomicToAtomic); 738 739 // These two cases are reverses of each other; try to peephole them. 740 if (Expr *op = findPeephole(E->getSubExpr(), peepholeTarget)) { 741 assert(CGF.getContext().hasSameUnqualifiedType(op->getType(), 742 E->getType()) && 743 "peephole significantly changed types?"); 744 return Visit(op); 745 } 746 747 // If we're converting an r-value of non-atomic type to an r-value 748 // of atomic type, just emit directly into the relevant sub-object. 749 if (isToAtomic) { 750 AggValueSlot valueDest = Dest; 751 if (!valueDest.isIgnored() && CGF.CGM.isPaddedAtomicType(atomicType)) { 752 // Zero-initialize. (Strictly speaking, we only need to initialize 753 // the padding at the end, but this is simpler.) 754 if (!Dest.isZeroed()) 755 CGF.EmitNullInitialization(Dest.getAddress(), atomicType); 756 757 // Build a GEP to refer to the subobject. 758 Address valueAddr = 759 CGF.Builder.CreateStructGEP(valueDest.getAddress(), 0, 760 CharUnits()); 761 valueDest = AggValueSlot::forAddr(valueAddr, 762 valueDest.getQualifiers(), 763 valueDest.isExternallyDestructed(), 764 valueDest.requiresGCollection(), 765 valueDest.isPotentiallyAliased(), 766 AggValueSlot::DoesNotOverlap, 767 AggValueSlot::IsZeroed); 768 } 769 770 CGF.EmitAggExpr(E->getSubExpr(), valueDest); 771 return; 772 } 773 774 // Otherwise, we're converting an atomic type to a non-atomic type. 775 // Make an atomic temporary, emit into that, and then copy the value out. 776 AggValueSlot atomicSlot = 777 CGF.CreateAggTemp(atomicType, "atomic-to-nonatomic.temp"); 778 CGF.EmitAggExpr(E->getSubExpr(), atomicSlot); 779 780 Address valueAddr = 781 Builder.CreateStructGEP(atomicSlot.getAddress(), 0, CharUnits()); 782 RValue rvalue = RValue::getAggregate(valueAddr, atomicSlot.isVolatile()); 783 return EmitFinalDestCopy(valueType, rvalue); 784 } 785 786 case CK_LValueToRValue: 787 // If we're loading from a volatile type, force the destination 788 // into existence. 789 if (E->getSubExpr()->getType().isVolatileQualified()) { 790 EnsureDest(E->getType()); 791 return Visit(E->getSubExpr()); 792 } 793 794 LLVM_FALLTHROUGH; 795 796 case CK_NoOp: 797 case CK_UserDefinedConversion: 798 case CK_ConstructorConversion: 799 assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(), 800 E->getType()) && 801 "Implicit cast types must be compatible"); 802 Visit(E->getSubExpr()); 803 break; 804 805 case CK_LValueBitCast: 806 llvm_unreachable("should not be emitting lvalue bitcast as rvalue"); 807 808 case CK_Dependent: 809 case CK_BitCast: 810 case CK_ArrayToPointerDecay: 811 case CK_FunctionToPointerDecay: 812 case CK_NullToPointer: 813 case CK_NullToMemberPointer: 814 case CK_BaseToDerivedMemberPointer: 815 case CK_DerivedToBaseMemberPointer: 816 case CK_MemberPointerToBoolean: 817 case CK_ReinterpretMemberPointer: 818 case CK_IntegralToPointer: 819 case CK_PointerToIntegral: 820 case CK_PointerToBoolean: 821 case CK_ToVoid: 822 case CK_VectorSplat: 823 case CK_IntegralCast: 824 case CK_BooleanToSignedIntegral: 825 case CK_IntegralToBoolean: 826 case CK_IntegralToFloating: 827 case CK_FloatingToIntegral: 828 case CK_FloatingToBoolean: 829 case CK_FloatingCast: 830 case CK_CPointerToObjCPointerCast: 831 case CK_BlockPointerToObjCPointerCast: 832 case CK_AnyPointerToBlockPointerCast: 833 case CK_ObjCObjectLValueCast: 834 case CK_FloatingRealToComplex: 835 case CK_FloatingComplexToReal: 836 case CK_FloatingComplexToBoolean: 837 case CK_FloatingComplexCast: 838 case CK_FloatingComplexToIntegralComplex: 839 case CK_IntegralRealToComplex: 840 case CK_IntegralComplexToReal: 841 case CK_IntegralComplexToBoolean: 842 case CK_IntegralComplexCast: 843 case CK_IntegralComplexToFloatingComplex: 844 case CK_ARCProduceObject: 845 case CK_ARCConsumeObject: 846 case CK_ARCReclaimReturnedObject: 847 case CK_ARCExtendBlockObject: 848 case CK_CopyAndAutoreleaseBlockObject: 849 case CK_BuiltinFnToFnPtr: 850 case CK_ZeroToOCLOpaqueType: 851 case CK_AddressSpaceConversion: 852 case CK_IntToOCLSampler: 853 case CK_FixedPointCast: 854 case CK_FixedPointToBoolean: 855 llvm_unreachable("cast kind invalid for aggregate types"); 856 } 857 } 858 859 void AggExprEmitter::VisitCallExpr(const CallExpr *E) { 860 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) { 861 EmitAggLoadOfLValue(E); 862 return; 863 } 864 865 withReturnValueSlot(E, [&](ReturnValueSlot Slot) { 866 return CGF.EmitCallExpr(E, Slot); 867 }); 868 } 869 870 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) { 871 withReturnValueSlot(E, [&](ReturnValueSlot Slot) { 872 return CGF.EmitObjCMessageExpr(E, Slot); 873 }); 874 } 875 876 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) { 877 CGF.EmitIgnoredExpr(E->getLHS()); 878 Visit(E->getRHS()); 879 } 880 881 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) { 882 CodeGenFunction::StmtExprEvaluation eval(CGF); 883 CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest); 884 } 885 886 enum CompareKind { 887 CK_Less, 888 CK_Greater, 889 CK_Equal, 890 }; 891 892 static llvm::Value *EmitCompare(CGBuilderTy &Builder, CodeGenFunction &CGF, 893 const BinaryOperator *E, llvm::Value *LHS, 894 llvm::Value *RHS, CompareKind Kind, 895 const char *NameSuffix = "") { 896 QualType ArgTy = E->getLHS()->getType(); 897 if (const ComplexType *CT = ArgTy->getAs<ComplexType>()) 898 ArgTy = CT->getElementType(); 899 900 if (const auto *MPT = ArgTy->getAs<MemberPointerType>()) { 901 assert(Kind == CK_Equal && 902 "member pointers may only be compared for equality"); 903 return CGF.CGM.getCXXABI().EmitMemberPointerComparison( 904 CGF, LHS, RHS, MPT, /*IsInequality*/ false); 905 } 906 907 // Compute the comparison instructions for the specified comparison kind. 908 struct CmpInstInfo { 909 const char *Name; 910 llvm::CmpInst::Predicate FCmp; 911 llvm::CmpInst::Predicate SCmp; 912 llvm::CmpInst::Predicate UCmp; 913 }; 914 CmpInstInfo InstInfo = [&]() -> CmpInstInfo { 915 using FI = llvm::FCmpInst; 916 using II = llvm::ICmpInst; 917 switch (Kind) { 918 case CK_Less: 919 return {"cmp.lt", FI::FCMP_OLT, II::ICMP_SLT, II::ICMP_ULT}; 920 case CK_Greater: 921 return {"cmp.gt", FI::FCMP_OGT, II::ICMP_SGT, II::ICMP_UGT}; 922 case CK_Equal: 923 return {"cmp.eq", FI::FCMP_OEQ, II::ICMP_EQ, II::ICMP_EQ}; 924 } 925 llvm_unreachable("Unrecognised CompareKind enum"); 926 }(); 927 928 if (ArgTy->hasFloatingRepresentation()) 929 return Builder.CreateFCmp(InstInfo.FCmp, LHS, RHS, 930 llvm::Twine(InstInfo.Name) + NameSuffix); 931 if (ArgTy->isIntegralOrEnumerationType() || ArgTy->isPointerType()) { 932 auto Inst = 933 ArgTy->hasSignedIntegerRepresentation() ? InstInfo.SCmp : InstInfo.UCmp; 934 return Builder.CreateICmp(Inst, LHS, RHS, 935 llvm::Twine(InstInfo.Name) + NameSuffix); 936 } 937 938 llvm_unreachable("unsupported aggregate binary expression should have " 939 "already been handled"); 940 } 941 942 void AggExprEmitter::VisitBinCmp(const BinaryOperator *E) { 943 using llvm::BasicBlock; 944 using llvm::PHINode; 945 using llvm::Value; 946 assert(CGF.getContext().hasSameType(E->getLHS()->getType(), 947 E->getRHS()->getType())); 948 const ComparisonCategoryInfo &CmpInfo = 949 CGF.getContext().CompCategories.getInfoForType(E->getType()); 950 assert(CmpInfo.Record->isTriviallyCopyable() && 951 "cannot copy non-trivially copyable aggregate"); 952 953 QualType ArgTy = E->getLHS()->getType(); 954 955 // TODO: Handle comparing these types. 956 if (ArgTy->isVectorType()) 957 return CGF.ErrorUnsupported( 958 E, "aggregate three-way comparison with vector arguments"); 959 if (!ArgTy->isIntegralOrEnumerationType() && !ArgTy->isRealFloatingType() && 960 !ArgTy->isNullPtrType() && !ArgTy->isPointerType() && 961 !ArgTy->isMemberPointerType() && !ArgTy->isAnyComplexType()) { 962 return CGF.ErrorUnsupported(E, "aggregate three-way comparison"); 963 } 964 bool IsComplex = ArgTy->isAnyComplexType(); 965 966 // Evaluate the operands to the expression and extract their values. 967 auto EmitOperand = [&](Expr *E) -> std::pair<Value *, Value *> { 968 RValue RV = CGF.EmitAnyExpr(E); 969 if (RV.isScalar()) 970 return {RV.getScalarVal(), nullptr}; 971 if (RV.isAggregate()) 972 return {RV.getAggregatePointer(), nullptr}; 973 assert(RV.isComplex()); 974 return RV.getComplexVal(); 975 }; 976 auto LHSValues = EmitOperand(E->getLHS()), 977 RHSValues = EmitOperand(E->getRHS()); 978 979 auto EmitCmp = [&](CompareKind K) { 980 Value *Cmp = EmitCompare(Builder, CGF, E, LHSValues.first, RHSValues.first, 981 K, IsComplex ? ".r" : ""); 982 if (!IsComplex) 983 return Cmp; 984 assert(K == CompareKind::CK_Equal); 985 Value *CmpImag = EmitCompare(Builder, CGF, E, LHSValues.second, 986 RHSValues.second, K, ".i"); 987 return Builder.CreateAnd(Cmp, CmpImag, "and.eq"); 988 }; 989 auto EmitCmpRes = [&](const ComparisonCategoryInfo::ValueInfo *VInfo) { 990 return Builder.getInt(VInfo->getIntValue()); 991 }; 992 993 Value *Select; 994 if (ArgTy->isNullPtrType()) { 995 Select = EmitCmpRes(CmpInfo.getEqualOrEquiv()); 996 } else if (CmpInfo.isEquality()) { 997 Select = Builder.CreateSelect( 998 EmitCmp(CK_Equal), EmitCmpRes(CmpInfo.getEqualOrEquiv()), 999 EmitCmpRes(CmpInfo.getNonequalOrNonequiv()), "sel.eq"); 1000 } else if (!CmpInfo.isPartial()) { 1001 Value *SelectOne = 1002 Builder.CreateSelect(EmitCmp(CK_Less), EmitCmpRes(CmpInfo.getLess()), 1003 EmitCmpRes(CmpInfo.getGreater()), "sel.lt"); 1004 Select = Builder.CreateSelect(EmitCmp(CK_Equal), 1005 EmitCmpRes(CmpInfo.getEqualOrEquiv()), 1006 SelectOne, "sel.eq"); 1007 } else { 1008 Value *SelectEq = Builder.CreateSelect( 1009 EmitCmp(CK_Equal), EmitCmpRes(CmpInfo.getEqualOrEquiv()), 1010 EmitCmpRes(CmpInfo.getUnordered()), "sel.eq"); 1011 Value *SelectGT = Builder.CreateSelect(EmitCmp(CK_Greater), 1012 EmitCmpRes(CmpInfo.getGreater()), 1013 SelectEq, "sel.gt"); 1014 Select = Builder.CreateSelect( 1015 EmitCmp(CK_Less), EmitCmpRes(CmpInfo.getLess()), SelectGT, "sel.lt"); 1016 } 1017 // Create the return value in the destination slot. 1018 EnsureDest(E->getType()); 1019 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType()); 1020 1021 // Emit the address of the first (and only) field in the comparison category 1022 // type, and initialize it from the constant integer value selected above. 1023 LValue FieldLV = CGF.EmitLValueForFieldInitialization( 1024 DestLV, *CmpInfo.Record->field_begin()); 1025 CGF.EmitStoreThroughLValue(RValue::get(Select), FieldLV, /*IsInit*/ true); 1026 1027 // All done! The result is in the Dest slot. 1028 } 1029 1030 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) { 1031 if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI) 1032 VisitPointerToDataMemberBinaryOperator(E); 1033 else 1034 CGF.ErrorUnsupported(E, "aggregate binary expression"); 1035 } 1036 1037 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator( 1038 const BinaryOperator *E) { 1039 LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E); 1040 EmitFinalDestCopy(E->getType(), LV); 1041 } 1042 1043 /// Is the value of the given expression possibly a reference to or 1044 /// into a __block variable? 1045 static bool isBlockVarRef(const Expr *E) { 1046 // Make sure we look through parens. 1047 E = E->IgnoreParens(); 1048 1049 // Check for a direct reference to a __block variable. 1050 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { 1051 const VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl()); 1052 return (var && var->hasAttr<BlocksAttr>()); 1053 } 1054 1055 // More complicated stuff. 1056 1057 // Binary operators. 1058 if (const BinaryOperator *op = dyn_cast<BinaryOperator>(E)) { 1059 // For an assignment or pointer-to-member operation, just care 1060 // about the LHS. 1061 if (op->isAssignmentOp() || op->isPtrMemOp()) 1062 return isBlockVarRef(op->getLHS()); 1063 1064 // For a comma, just care about the RHS. 1065 if (op->getOpcode() == BO_Comma) 1066 return isBlockVarRef(op->getRHS()); 1067 1068 // FIXME: pointer arithmetic? 1069 return false; 1070 1071 // Check both sides of a conditional operator. 1072 } else if (const AbstractConditionalOperator *op 1073 = dyn_cast<AbstractConditionalOperator>(E)) { 1074 return isBlockVarRef(op->getTrueExpr()) 1075 || isBlockVarRef(op->getFalseExpr()); 1076 1077 // OVEs are required to support BinaryConditionalOperators. 1078 } else if (const OpaqueValueExpr *op 1079 = dyn_cast<OpaqueValueExpr>(E)) { 1080 if (const Expr *src = op->getSourceExpr()) 1081 return isBlockVarRef(src); 1082 1083 // Casts are necessary to get things like (*(int*)&var) = foo(). 1084 // We don't really care about the kind of cast here, except 1085 // we don't want to look through l2r casts, because it's okay 1086 // to get the *value* in a __block variable. 1087 } else if (const CastExpr *cast = dyn_cast<CastExpr>(E)) { 1088 if (cast->getCastKind() == CK_LValueToRValue) 1089 return false; 1090 return isBlockVarRef(cast->getSubExpr()); 1091 1092 // Handle unary operators. Again, just aggressively look through 1093 // it, ignoring the operation. 1094 } else if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E)) { 1095 return isBlockVarRef(uop->getSubExpr()); 1096 1097 // Look into the base of a field access. 1098 } else if (const MemberExpr *mem = dyn_cast<MemberExpr>(E)) { 1099 return isBlockVarRef(mem->getBase()); 1100 1101 // Look into the base of a subscript. 1102 } else if (const ArraySubscriptExpr *sub = dyn_cast<ArraySubscriptExpr>(E)) { 1103 return isBlockVarRef(sub->getBase()); 1104 } 1105 1106 return false; 1107 } 1108 1109 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) { 1110 // For an assignment to work, the value on the right has 1111 // to be compatible with the value on the left. 1112 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), 1113 E->getRHS()->getType()) 1114 && "Invalid assignment"); 1115 1116 // If the LHS might be a __block variable, and the RHS can 1117 // potentially cause a block copy, we need to evaluate the RHS first 1118 // so that the assignment goes the right place. 1119 // This is pretty semantically fragile. 1120 if (isBlockVarRef(E->getLHS()) && 1121 E->getRHS()->HasSideEffects(CGF.getContext())) { 1122 // Ensure that we have a destination, and evaluate the RHS into that. 1123 EnsureDest(E->getRHS()->getType()); 1124 Visit(E->getRHS()); 1125 1126 // Now emit the LHS and copy into it. 1127 LValue LHS = CGF.EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 1128 1129 // That copy is an atomic copy if the LHS is atomic. 1130 if (LHS.getType()->isAtomicType() || 1131 CGF.LValueIsSuitableForInlineAtomic(LHS)) { 1132 CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false); 1133 return; 1134 } 1135 1136 EmitCopy(E->getLHS()->getType(), 1137 AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed, 1138 needsGC(E->getLHS()->getType()), 1139 AggValueSlot::IsAliased, 1140 AggValueSlot::MayOverlap), 1141 Dest); 1142 return; 1143 } 1144 1145 LValue LHS = CGF.EmitLValue(E->getLHS()); 1146 1147 // If we have an atomic type, evaluate into the destination and then 1148 // do an atomic copy. 1149 if (LHS.getType()->isAtomicType() || 1150 CGF.LValueIsSuitableForInlineAtomic(LHS)) { 1151 EnsureDest(E->getRHS()->getType()); 1152 Visit(E->getRHS()); 1153 CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false); 1154 return; 1155 } 1156 1157 // Codegen the RHS so that it stores directly into the LHS. 1158 AggValueSlot LHSSlot = 1159 AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed, 1160 needsGC(E->getLHS()->getType()), 1161 AggValueSlot::IsAliased, 1162 AggValueSlot::MayOverlap); 1163 // A non-volatile aggregate destination might have volatile member. 1164 if (!LHSSlot.isVolatile() && 1165 CGF.hasVolatileMember(E->getLHS()->getType())) 1166 LHSSlot.setVolatile(true); 1167 1168 CGF.EmitAggExpr(E->getRHS(), LHSSlot); 1169 1170 // Copy into the destination if the assignment isn't ignored. 1171 EmitFinalDestCopy(E->getType(), LHS); 1172 } 1173 1174 void AggExprEmitter:: 1175 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 1176 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 1177 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 1178 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 1179 1180 // Bind the common expression if necessary. 1181 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 1182 1183 CodeGenFunction::ConditionalEvaluation eval(CGF); 1184 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock, 1185 CGF.getProfileCount(E)); 1186 1187 // Save whether the destination's lifetime is externally managed. 1188 bool isExternallyDestructed = Dest.isExternallyDestructed(); 1189 1190 eval.begin(CGF); 1191 CGF.EmitBlock(LHSBlock); 1192 CGF.incrementProfileCounter(E); 1193 Visit(E->getTrueExpr()); 1194 eval.end(CGF); 1195 1196 assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!"); 1197 CGF.Builder.CreateBr(ContBlock); 1198 1199 // If the result of an agg expression is unused, then the emission 1200 // of the LHS might need to create a destination slot. That's fine 1201 // with us, and we can safely emit the RHS into the same slot, but 1202 // we shouldn't claim that it's already being destructed. 1203 Dest.setExternallyDestructed(isExternallyDestructed); 1204 1205 eval.begin(CGF); 1206 CGF.EmitBlock(RHSBlock); 1207 Visit(E->getFalseExpr()); 1208 eval.end(CGF); 1209 1210 CGF.EmitBlock(ContBlock); 1211 } 1212 1213 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) { 1214 Visit(CE->getChosenSubExpr()); 1215 } 1216 1217 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 1218 Address ArgValue = Address::invalid(); 1219 Address ArgPtr = CGF.EmitVAArg(VE, ArgValue); 1220 1221 // If EmitVAArg fails, emit an error. 1222 if (!ArgPtr.isValid()) { 1223 CGF.ErrorUnsupported(VE, "aggregate va_arg expression"); 1224 return; 1225 } 1226 1227 EmitFinalDestCopy(VE->getType(), CGF.MakeAddrLValue(ArgPtr, VE->getType())); 1228 } 1229 1230 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 1231 // Ensure that we have a slot, but if we already do, remember 1232 // whether it was externally destructed. 1233 bool wasExternallyDestructed = Dest.isExternallyDestructed(); 1234 EnsureDest(E->getType()); 1235 1236 // We're going to push a destructor if there isn't already one. 1237 Dest.setExternallyDestructed(); 1238 1239 Visit(E->getSubExpr()); 1240 1241 // Push that destructor we promised. 1242 if (!wasExternallyDestructed) 1243 CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddress()); 1244 } 1245 1246 void 1247 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) { 1248 AggValueSlot Slot = EnsureSlot(E->getType()); 1249 CGF.EmitCXXConstructExpr(E, Slot); 1250 } 1251 1252 void AggExprEmitter::VisitCXXInheritedCtorInitExpr( 1253 const CXXInheritedCtorInitExpr *E) { 1254 AggValueSlot Slot = EnsureSlot(E->getType()); 1255 CGF.EmitInheritedCXXConstructorCall( 1256 E->getConstructor(), E->constructsVBase(), Slot.getAddress(), 1257 E->inheritedFromVBase(), E); 1258 } 1259 1260 void 1261 AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) { 1262 AggValueSlot Slot = EnsureSlot(E->getType()); 1263 CGF.EmitLambdaExpr(E, Slot); 1264 } 1265 1266 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) { 1267 CGF.enterFullExpression(E); 1268 CodeGenFunction::RunCleanupsScope cleanups(CGF); 1269 Visit(E->getSubExpr()); 1270 } 1271 1272 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) { 1273 QualType T = E->getType(); 1274 AggValueSlot Slot = EnsureSlot(T); 1275 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T)); 1276 } 1277 1278 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) { 1279 QualType T = E->getType(); 1280 AggValueSlot Slot = EnsureSlot(T); 1281 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T)); 1282 } 1283 1284 /// isSimpleZero - If emitting this value will obviously just cause a store of 1285 /// zero to memory, return true. This can return false if uncertain, so it just 1286 /// handles simple cases. 1287 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) { 1288 E = E->IgnoreParens(); 1289 1290 // 0 1291 if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) 1292 return IL->getValue() == 0; 1293 // +0.0 1294 if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E)) 1295 return FL->getValue().isPosZero(); 1296 // int() 1297 if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) && 1298 CGF.getTypes().isZeroInitializable(E->getType())) 1299 return true; 1300 // (int*)0 - Null pointer expressions. 1301 if (const CastExpr *ICE = dyn_cast<CastExpr>(E)) 1302 return ICE->getCastKind() == CK_NullToPointer && 1303 CGF.getTypes().isPointerZeroInitializable(E->getType()) && 1304 !E->HasSideEffects(CGF.getContext()); 1305 // '\0' 1306 if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) 1307 return CL->getValue() == 0; 1308 1309 // Otherwise, hard case: conservatively return false. 1310 return false; 1311 } 1312 1313 1314 void 1315 AggExprEmitter::EmitInitializationToLValue(Expr *E, LValue LV) { 1316 QualType type = LV.getType(); 1317 // FIXME: Ignore result? 1318 // FIXME: Are initializers affected by volatile? 1319 if (Dest.isZeroed() && isSimpleZero(E, CGF)) { 1320 // Storing "i32 0" to a zero'd memory location is a noop. 1321 return; 1322 } else if (isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) { 1323 return EmitNullInitializationToLValue(LV); 1324 } else if (isa<NoInitExpr>(E)) { 1325 // Do nothing. 1326 return; 1327 } else if (type->isReferenceType()) { 1328 RValue RV = CGF.EmitReferenceBindingToExpr(E); 1329 return CGF.EmitStoreThroughLValue(RV, LV); 1330 } 1331 1332 switch (CGF.getEvaluationKind(type)) { 1333 case TEK_Complex: 1334 CGF.EmitComplexExprIntoLValue(E, LV, /*isInit*/ true); 1335 return; 1336 case TEK_Aggregate: 1337 CGF.EmitAggExpr(E, AggValueSlot::forLValue(LV, 1338 AggValueSlot::IsDestructed, 1339 AggValueSlot::DoesNotNeedGCBarriers, 1340 AggValueSlot::IsNotAliased, 1341 AggValueSlot::MayOverlap, 1342 Dest.isZeroed())); 1343 return; 1344 case TEK_Scalar: 1345 if (LV.isSimple()) { 1346 CGF.EmitScalarInit(E, /*D=*/nullptr, LV, /*Captured=*/false); 1347 } else { 1348 CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV); 1349 } 1350 return; 1351 } 1352 llvm_unreachable("bad evaluation kind"); 1353 } 1354 1355 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) { 1356 QualType type = lv.getType(); 1357 1358 // If the destination slot is already zeroed out before the aggregate is 1359 // copied into it, we don't have to emit any zeros here. 1360 if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type)) 1361 return; 1362 1363 if (CGF.hasScalarEvaluationKind(type)) { 1364 // For non-aggregates, we can store the appropriate null constant. 1365 llvm::Value *null = CGF.CGM.EmitNullConstant(type); 1366 // Note that the following is not equivalent to 1367 // EmitStoreThroughBitfieldLValue for ARC types. 1368 if (lv.isBitField()) { 1369 CGF.EmitStoreThroughBitfieldLValue(RValue::get(null), lv); 1370 } else { 1371 assert(lv.isSimple()); 1372 CGF.EmitStoreOfScalar(null, lv, /* isInitialization */ true); 1373 } 1374 } else { 1375 // There's a potential optimization opportunity in combining 1376 // memsets; that would be easy for arrays, but relatively 1377 // difficult for structures with the current code. 1378 CGF.EmitNullInitialization(lv.getAddress(), lv.getType()); 1379 } 1380 } 1381 1382 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) { 1383 #if 0 1384 // FIXME: Assess perf here? Figure out what cases are worth optimizing here 1385 // (Length of globals? Chunks of zeroed-out space?). 1386 // 1387 // If we can, prefer a copy from a global; this is a lot less code for long 1388 // globals, and it's easier for the current optimizers to analyze. 1389 if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) { 1390 llvm::GlobalVariable* GV = 1391 new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true, 1392 llvm::GlobalValue::InternalLinkage, C, ""); 1393 EmitFinalDestCopy(E->getType(), CGF.MakeAddrLValue(GV, E->getType())); 1394 return; 1395 } 1396 #endif 1397 if (E->hadArrayRangeDesignator()) 1398 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 1399 1400 if (E->isTransparent()) 1401 return Visit(E->getInit(0)); 1402 1403 AggValueSlot Dest = EnsureSlot(E->getType()); 1404 1405 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType()); 1406 1407 // Handle initialization of an array. 1408 if (E->getType()->isArrayType()) { 1409 auto AType = cast<llvm::ArrayType>(Dest.getAddress().getElementType()); 1410 EmitArrayInit(Dest.getAddress(), AType, E->getType(), E); 1411 return; 1412 } 1413 1414 assert(E->getType()->isRecordType() && "Only support structs/unions here!"); 1415 1416 // Do struct initialization; this code just sets each individual member 1417 // to the approprate value. This makes bitfield support automatic; 1418 // the disadvantage is that the generated code is more difficult for 1419 // the optimizer, especially with bitfields. 1420 unsigned NumInitElements = E->getNumInits(); 1421 RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl(); 1422 1423 // We'll need to enter cleanup scopes in case any of the element 1424 // initializers throws an exception. 1425 SmallVector<EHScopeStack::stable_iterator, 16> cleanups; 1426 llvm::Instruction *cleanupDominator = nullptr; 1427 1428 unsigned curInitIndex = 0; 1429 1430 // Emit initialization of base classes. 1431 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(record)) { 1432 assert(E->getNumInits() >= CXXRD->getNumBases() && 1433 "missing initializer for base class"); 1434 for (auto &Base : CXXRD->bases()) { 1435 assert(!Base.isVirtual() && "should not see vbases here"); 1436 auto *BaseRD = Base.getType()->getAsCXXRecordDecl(); 1437 Address V = CGF.GetAddressOfDirectBaseInCompleteClass( 1438 Dest.getAddress(), CXXRD, BaseRD, 1439 /*isBaseVirtual*/ false); 1440 AggValueSlot AggSlot = AggValueSlot::forAddr( 1441 V, Qualifiers(), 1442 AggValueSlot::IsDestructed, 1443 AggValueSlot::DoesNotNeedGCBarriers, 1444 AggValueSlot::IsNotAliased, 1445 CGF.overlapForBaseInit(CXXRD, BaseRD, Base.isVirtual())); 1446 CGF.EmitAggExpr(E->getInit(curInitIndex++), AggSlot); 1447 1448 if (QualType::DestructionKind dtorKind = 1449 Base.getType().isDestructedType()) { 1450 CGF.pushDestroy(dtorKind, V, Base.getType()); 1451 cleanups.push_back(CGF.EHStack.stable_begin()); 1452 } 1453 } 1454 } 1455 1456 // Prepare a 'this' for CXXDefaultInitExprs. 1457 CodeGenFunction::FieldConstructionScope FCS(CGF, Dest.getAddress()); 1458 1459 if (record->isUnion()) { 1460 // Only initialize one field of a union. The field itself is 1461 // specified by the initializer list. 1462 if (!E->getInitializedFieldInUnion()) { 1463 // Empty union; we have nothing to do. 1464 1465 #ifndef NDEBUG 1466 // Make sure that it's really an empty and not a failure of 1467 // semantic analysis. 1468 for (const auto *Field : record->fields()) 1469 assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed"); 1470 #endif 1471 return; 1472 } 1473 1474 // FIXME: volatility 1475 FieldDecl *Field = E->getInitializedFieldInUnion(); 1476 1477 LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestLV, Field); 1478 if (NumInitElements) { 1479 // Store the initializer into the field 1480 EmitInitializationToLValue(E->getInit(0), FieldLoc); 1481 } else { 1482 // Default-initialize to null. 1483 EmitNullInitializationToLValue(FieldLoc); 1484 } 1485 1486 return; 1487 } 1488 1489 // Here we iterate over the fields; this makes it simpler to both 1490 // default-initialize fields and skip over unnamed fields. 1491 for (const auto *field : record->fields()) { 1492 // We're done once we hit the flexible array member. 1493 if (field->getType()->isIncompleteArrayType()) 1494 break; 1495 1496 // Always skip anonymous bitfields. 1497 if (field->isUnnamedBitfield()) 1498 continue; 1499 1500 // We're done if we reach the end of the explicit initializers, we 1501 // have a zeroed object, and the rest of the fields are 1502 // zero-initializable. 1503 if (curInitIndex == NumInitElements && Dest.isZeroed() && 1504 CGF.getTypes().isZeroInitializable(E->getType())) 1505 break; 1506 1507 1508 LValue LV = CGF.EmitLValueForFieldInitialization(DestLV, field); 1509 // We never generate write-barries for initialized fields. 1510 LV.setNonGC(true); 1511 1512 if (curInitIndex < NumInitElements) { 1513 // Store the initializer into the field. 1514 EmitInitializationToLValue(E->getInit(curInitIndex++), LV); 1515 } else { 1516 // We're out of initializers; default-initialize to null 1517 EmitNullInitializationToLValue(LV); 1518 } 1519 1520 // Push a destructor if necessary. 1521 // FIXME: if we have an array of structures, all explicitly 1522 // initialized, we can end up pushing a linear number of cleanups. 1523 bool pushedCleanup = false; 1524 if (QualType::DestructionKind dtorKind 1525 = field->getType().isDestructedType()) { 1526 assert(LV.isSimple()); 1527 if (CGF.needsEHCleanup(dtorKind)) { 1528 if (!cleanupDominator) 1529 cleanupDominator = CGF.Builder.CreateAlignedLoad( 1530 CGF.Int8Ty, 1531 llvm::Constant::getNullValue(CGF.Int8PtrTy), 1532 CharUnits::One()); // placeholder 1533 1534 CGF.pushDestroy(EHCleanup, LV.getAddress(), field->getType(), 1535 CGF.getDestroyer(dtorKind), false); 1536 cleanups.push_back(CGF.EHStack.stable_begin()); 1537 pushedCleanup = true; 1538 } 1539 } 1540 1541 // If the GEP didn't get used because of a dead zero init or something 1542 // else, clean it up for -O0 builds and general tidiness. 1543 if (!pushedCleanup && LV.isSimple()) 1544 if (llvm::GetElementPtrInst *GEP = 1545 dyn_cast<llvm::GetElementPtrInst>(LV.getPointer())) 1546 if (GEP->use_empty()) 1547 GEP->eraseFromParent(); 1548 } 1549 1550 // Deactivate all the partial cleanups in reverse order, which 1551 // generally means popping them. 1552 for (unsigned i = cleanups.size(); i != 0; --i) 1553 CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator); 1554 1555 // Destroy the placeholder if we made one. 1556 if (cleanupDominator) 1557 cleanupDominator->eraseFromParent(); 1558 } 1559 1560 void AggExprEmitter::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E, 1561 llvm::Value *outerBegin) { 1562 // Emit the common subexpression. 1563 CodeGenFunction::OpaqueValueMapping binding(CGF, E->getCommonExpr()); 1564 1565 Address destPtr = EnsureSlot(E->getType()).getAddress(); 1566 uint64_t numElements = E->getArraySize().getZExtValue(); 1567 1568 if (!numElements) 1569 return; 1570 1571 // destPtr is an array*. Construct an elementType* by drilling down a level. 1572 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 1573 llvm::Value *indices[] = {zero, zero}; 1574 llvm::Value *begin = Builder.CreateInBoundsGEP(destPtr.getPointer(), indices, 1575 "arrayinit.begin"); 1576 1577 // Prepare to special-case multidimensional array initialization: we avoid 1578 // emitting multiple destructor loops in that case. 1579 if (!outerBegin) 1580 outerBegin = begin; 1581 ArrayInitLoopExpr *InnerLoop = dyn_cast<ArrayInitLoopExpr>(E->getSubExpr()); 1582 1583 QualType elementType = 1584 CGF.getContext().getAsArrayType(E->getType())->getElementType(); 1585 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType); 1586 CharUnits elementAlign = 1587 destPtr.getAlignment().alignmentOfArrayElement(elementSize); 1588 1589 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 1590 llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body"); 1591 1592 // Jump into the body. 1593 CGF.EmitBlock(bodyBB); 1594 llvm::PHINode *index = 1595 Builder.CreatePHI(zero->getType(), 2, "arrayinit.index"); 1596 index->addIncoming(zero, entryBB); 1597 llvm::Value *element = Builder.CreateInBoundsGEP(begin, index); 1598 1599 // Prepare for a cleanup. 1600 QualType::DestructionKind dtorKind = elementType.isDestructedType(); 1601 EHScopeStack::stable_iterator cleanup; 1602 if (CGF.needsEHCleanup(dtorKind) && !InnerLoop) { 1603 if (outerBegin->getType() != element->getType()) 1604 outerBegin = Builder.CreateBitCast(outerBegin, element->getType()); 1605 CGF.pushRegularPartialArrayCleanup(outerBegin, element, elementType, 1606 elementAlign, 1607 CGF.getDestroyer(dtorKind)); 1608 cleanup = CGF.EHStack.stable_begin(); 1609 } else { 1610 dtorKind = QualType::DK_none; 1611 } 1612 1613 // Emit the actual filler expression. 1614 { 1615 // Temporaries created in an array initialization loop are destroyed 1616 // at the end of each iteration. 1617 CodeGenFunction::RunCleanupsScope CleanupsScope(CGF); 1618 CodeGenFunction::ArrayInitLoopExprScope Scope(CGF, index); 1619 LValue elementLV = 1620 CGF.MakeAddrLValue(Address(element, elementAlign), elementType); 1621 1622 if (InnerLoop) { 1623 // If the subexpression is an ArrayInitLoopExpr, share its cleanup. 1624 auto elementSlot = AggValueSlot::forLValue( 1625 elementLV, AggValueSlot::IsDestructed, 1626 AggValueSlot::DoesNotNeedGCBarriers, 1627 AggValueSlot::IsNotAliased, 1628 AggValueSlot::DoesNotOverlap); 1629 AggExprEmitter(CGF, elementSlot, false) 1630 .VisitArrayInitLoopExpr(InnerLoop, outerBegin); 1631 } else 1632 EmitInitializationToLValue(E->getSubExpr(), elementLV); 1633 } 1634 1635 // Move on to the next element. 1636 llvm::Value *nextIndex = Builder.CreateNUWAdd( 1637 index, llvm::ConstantInt::get(CGF.SizeTy, 1), "arrayinit.next"); 1638 index->addIncoming(nextIndex, Builder.GetInsertBlock()); 1639 1640 // Leave the loop if we're done. 1641 llvm::Value *done = Builder.CreateICmpEQ( 1642 nextIndex, llvm::ConstantInt::get(CGF.SizeTy, numElements), 1643 "arrayinit.done"); 1644 llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end"); 1645 Builder.CreateCondBr(done, endBB, bodyBB); 1646 1647 CGF.EmitBlock(endBB); 1648 1649 // Leave the partial-array cleanup if we entered one. 1650 if (dtorKind) 1651 CGF.DeactivateCleanupBlock(cleanup, index); 1652 } 1653 1654 void AggExprEmitter::VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E) { 1655 AggValueSlot Dest = EnsureSlot(E->getType()); 1656 1657 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType()); 1658 EmitInitializationToLValue(E->getBase(), DestLV); 1659 VisitInitListExpr(E->getUpdater()); 1660 } 1661 1662 //===----------------------------------------------------------------------===// 1663 // Entry Points into this File 1664 //===----------------------------------------------------------------------===// 1665 1666 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of 1667 /// non-zero bytes that will be stored when outputting the initializer for the 1668 /// specified initializer expression. 1669 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) { 1670 E = E->IgnoreParens(); 1671 1672 // 0 and 0.0 won't require any non-zero stores! 1673 if (isSimpleZero(E, CGF)) return CharUnits::Zero(); 1674 1675 // If this is an initlist expr, sum up the size of sizes of the (present) 1676 // elements. If this is something weird, assume the whole thing is non-zero. 1677 const InitListExpr *ILE = dyn_cast<InitListExpr>(E); 1678 while (ILE && ILE->isTransparent()) 1679 ILE = dyn_cast<InitListExpr>(ILE->getInit(0)); 1680 if (!ILE || !CGF.getTypes().isZeroInitializable(ILE->getType())) 1681 return CGF.getContext().getTypeSizeInChars(E->getType()); 1682 1683 // InitListExprs for structs have to be handled carefully. If there are 1684 // reference members, we need to consider the size of the reference, not the 1685 // referencee. InitListExprs for unions and arrays can't have references. 1686 if (const RecordType *RT = E->getType()->getAs<RecordType>()) { 1687 if (!RT->isUnionType()) { 1688 RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl(); 1689 CharUnits NumNonZeroBytes = CharUnits::Zero(); 1690 1691 unsigned ILEElement = 0; 1692 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(SD)) 1693 while (ILEElement != CXXRD->getNumBases()) 1694 NumNonZeroBytes += 1695 GetNumNonZeroBytesInInit(ILE->getInit(ILEElement++), CGF); 1696 for (const auto *Field : SD->fields()) { 1697 // We're done once we hit the flexible array member or run out of 1698 // InitListExpr elements. 1699 if (Field->getType()->isIncompleteArrayType() || 1700 ILEElement == ILE->getNumInits()) 1701 break; 1702 if (Field->isUnnamedBitfield()) 1703 continue; 1704 1705 const Expr *E = ILE->getInit(ILEElement++); 1706 1707 // Reference values are always non-null and have the width of a pointer. 1708 if (Field->getType()->isReferenceType()) 1709 NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits( 1710 CGF.getTarget().getPointerWidth(0)); 1711 else 1712 NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF); 1713 } 1714 1715 return NumNonZeroBytes; 1716 } 1717 } 1718 1719 1720 CharUnits NumNonZeroBytes = CharUnits::Zero(); 1721 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) 1722 NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF); 1723 return NumNonZeroBytes; 1724 } 1725 1726 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of 1727 /// zeros in it, emit a memset and avoid storing the individual zeros. 1728 /// 1729 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E, 1730 CodeGenFunction &CGF) { 1731 // If the slot is already known to be zeroed, nothing to do. Don't mess with 1732 // volatile stores. 1733 if (Slot.isZeroed() || Slot.isVolatile() || !Slot.getAddress().isValid()) 1734 return; 1735 1736 // C++ objects with a user-declared constructor don't need zero'ing. 1737 if (CGF.getLangOpts().CPlusPlus) 1738 if (const RecordType *RT = CGF.getContext() 1739 .getBaseElementType(E->getType())->getAs<RecordType>()) { 1740 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1741 if (RD->hasUserDeclaredConstructor()) 1742 return; 1743 } 1744 1745 // If the type is 16-bytes or smaller, prefer individual stores over memset. 1746 CharUnits Size = Slot.getPreferredSize(CGF.getContext(), E->getType()); 1747 if (Size <= CharUnits::fromQuantity(16)) 1748 return; 1749 1750 // Check to see if over 3/4 of the initializer are known to be zero. If so, 1751 // we prefer to emit memset + individual stores for the rest. 1752 CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF); 1753 if (NumNonZeroBytes*4 > Size) 1754 return; 1755 1756 // Okay, it seems like a good idea to use an initial memset, emit the call. 1757 llvm::Constant *SizeVal = CGF.Builder.getInt64(Size.getQuantity()); 1758 1759 Address Loc = Slot.getAddress(); 1760 Loc = CGF.Builder.CreateElementBitCast(Loc, CGF.Int8Ty); 1761 CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, false); 1762 1763 // Tell the AggExprEmitter that the slot is known zero. 1764 Slot.setZeroed(); 1765 } 1766 1767 1768 1769 1770 /// EmitAggExpr - Emit the computation of the specified expression of aggregate 1771 /// type. The result is computed into DestPtr. Note that if DestPtr is null, 1772 /// the value of the aggregate expression is not needed. If VolatileDest is 1773 /// true, DestPtr cannot be 0. 1774 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot) { 1775 assert(E && hasAggregateEvaluationKind(E->getType()) && 1776 "Invalid aggregate expression to emit"); 1777 assert((Slot.getAddress().isValid() || Slot.isIgnored()) && 1778 "slot has bits but no address"); 1779 1780 // Optimize the slot if possible. 1781 CheckAggExprForMemSetUse(Slot, E, *this); 1782 1783 AggExprEmitter(*this, Slot, Slot.isIgnored()).Visit(const_cast<Expr*>(E)); 1784 } 1785 1786 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) { 1787 assert(hasAggregateEvaluationKind(E->getType()) && "Invalid argument!"); 1788 Address Temp = CreateMemTemp(E->getType()); 1789 LValue LV = MakeAddrLValue(Temp, E->getType()); 1790 EmitAggExpr(E, AggValueSlot::forLValue(LV, AggValueSlot::IsNotDestructed, 1791 AggValueSlot::DoesNotNeedGCBarriers, 1792 AggValueSlot::IsNotAliased, 1793 AggValueSlot::DoesNotOverlap)); 1794 return LV; 1795 } 1796 1797 AggValueSlot::Overlap_t CodeGenFunction::overlapForBaseInit( 1798 const CXXRecordDecl *RD, const CXXRecordDecl *BaseRD, bool IsVirtual) { 1799 // Virtual bases are initialized first, in address order, so there's never 1800 // any overlap during their initialization. 1801 // 1802 // FIXME: Under P0840, this is no longer true: the tail padding of a vbase 1803 // of a field could be reused by a vbase of a containing class. 1804 if (IsVirtual) 1805 return AggValueSlot::DoesNotOverlap; 1806 1807 // If the base class is laid out entirely within the nvsize of the derived 1808 // class, its tail padding cannot yet be initialized, so we can issue 1809 // stores at the full width of the base class. 1810 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 1811 if (Layout.getBaseClassOffset(BaseRD) + 1812 getContext().getASTRecordLayout(BaseRD).getSize() <= 1813 Layout.getNonVirtualSize()) 1814 return AggValueSlot::DoesNotOverlap; 1815 1816 // The tail padding may contain values we need to preserve. 1817 return AggValueSlot::MayOverlap; 1818 } 1819 1820 void CodeGenFunction::EmitAggregateCopy(LValue Dest, LValue Src, QualType Ty, 1821 AggValueSlot::Overlap_t MayOverlap, 1822 bool isVolatile) { 1823 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 1824 1825 Address DestPtr = Dest.getAddress(); 1826 Address SrcPtr = Src.getAddress(); 1827 1828 if (getLangOpts().CPlusPlus) { 1829 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1830 CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl()); 1831 assert((Record->hasTrivialCopyConstructor() || 1832 Record->hasTrivialCopyAssignment() || 1833 Record->hasTrivialMoveConstructor() || 1834 Record->hasTrivialMoveAssignment() || 1835 Record->isUnion()) && 1836 "Trying to aggregate-copy a type without a trivial copy/move " 1837 "constructor or assignment operator"); 1838 // Ignore empty classes in C++. 1839 if (Record->isEmpty()) 1840 return; 1841 } 1842 } 1843 1844 // Aggregate assignment turns into llvm.memcpy. This is almost valid per 1845 // C99 6.5.16.1p3, which states "If the value being stored in an object is 1846 // read from another object that overlaps in anyway the storage of the first 1847 // object, then the overlap shall be exact and the two objects shall have 1848 // qualified or unqualified versions of a compatible type." 1849 // 1850 // memcpy is not defined if the source and destination pointers are exactly 1851 // equal, but other compilers do this optimization, and almost every memcpy 1852 // implementation handles this case safely. If there is a libc that does not 1853 // safely handle this, we can add a target hook. 1854 1855 // Get data size info for this aggregate. Don't copy the tail padding if this 1856 // might be a potentially-overlapping subobject, since the tail padding might 1857 // be occupied by a different object. Otherwise, copying it is fine. 1858 std::pair<CharUnits, CharUnits> TypeInfo; 1859 if (MayOverlap) 1860 TypeInfo = getContext().getTypeInfoDataSizeInChars(Ty); 1861 else 1862 TypeInfo = getContext().getTypeInfoInChars(Ty); 1863 1864 llvm::Value *SizeVal = nullptr; 1865 if (TypeInfo.first.isZero()) { 1866 // But note that getTypeInfo returns 0 for a VLA. 1867 if (auto *VAT = dyn_cast_or_null<VariableArrayType>( 1868 getContext().getAsArrayType(Ty))) { 1869 QualType BaseEltTy; 1870 SizeVal = emitArrayLength(VAT, BaseEltTy, DestPtr); 1871 TypeInfo = getContext().getTypeInfoInChars(BaseEltTy); 1872 assert(!TypeInfo.first.isZero()); 1873 SizeVal = Builder.CreateNUWMul( 1874 SizeVal, 1875 llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity())); 1876 } 1877 } 1878 if (!SizeVal) { 1879 SizeVal = llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity()); 1880 } 1881 1882 // FIXME: If we have a volatile struct, the optimizer can remove what might 1883 // appear to be `extra' memory ops: 1884 // 1885 // volatile struct { int i; } a, b; 1886 // 1887 // int main() { 1888 // a = b; 1889 // a = b; 1890 // } 1891 // 1892 // we need to use a different call here. We use isVolatile to indicate when 1893 // either the source or the destination is volatile. 1894 1895 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1896 SrcPtr = Builder.CreateElementBitCast(SrcPtr, Int8Ty); 1897 1898 // Don't do any of the memmove_collectable tests if GC isn't set. 1899 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) { 1900 // fall through 1901 } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 1902 RecordDecl *Record = RecordTy->getDecl(); 1903 if (Record->hasObjectMember()) { 1904 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 1905 SizeVal); 1906 return; 1907 } 1908 } else if (Ty->isArrayType()) { 1909 QualType BaseType = getContext().getBaseElementType(Ty); 1910 if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) { 1911 if (RecordTy->getDecl()->hasObjectMember()) { 1912 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 1913 SizeVal); 1914 return; 1915 } 1916 } 1917 } 1918 1919 auto Inst = Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, isVolatile); 1920 1921 // Determine the metadata to describe the position of any padding in this 1922 // memcpy, as well as the TBAA tags for the members of the struct, in case 1923 // the optimizer wishes to expand it in to scalar memory operations. 1924 if (llvm::MDNode *TBAAStructTag = CGM.getTBAAStructInfo(Ty)) 1925 Inst->setMetadata(llvm::LLVMContext::MD_tbaa_struct, TBAAStructTag); 1926 1927 if (CGM.getCodeGenOpts().NewStructPathTBAA) { 1928 TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForMemoryTransfer( 1929 Dest.getTBAAInfo(), Src.getTBAAInfo()); 1930 CGM.DecorateInstructionWithTBAA(Inst, TBAAInfo); 1931 } 1932 } 1933