1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Aggregate Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "clang/AST/ASTContext.h" 17 #include "clang/AST/DeclCXX.h" 18 #include "clang/AST/StmtVisitor.h" 19 #include "llvm/Constants.h" 20 #include "llvm/Function.h" 21 #include "llvm/GlobalVariable.h" 22 #include "llvm/Support/Compiler.h" 23 #include "llvm/Intrinsics.h" 24 using namespace clang; 25 using namespace CodeGen; 26 27 //===----------------------------------------------------------------------===// 28 // Aggregate Expression Emitter 29 //===----------------------------------------------------------------------===// 30 31 namespace { 32 class VISIBILITY_HIDDEN AggExprEmitter : public StmtVisitor<AggExprEmitter> { 33 CodeGenFunction &CGF; 34 CGBuilderTy &Builder; 35 llvm::Value *DestPtr; 36 bool VolatileDest; 37 bool IgnoreResult; 38 39 public: 40 AggExprEmitter(CodeGenFunction &cgf, llvm::Value *destPtr, bool v, 41 bool ignore) 42 : CGF(cgf), Builder(CGF.Builder), 43 DestPtr(destPtr), VolatileDest(v), IgnoreResult(ignore) { 44 } 45 46 //===--------------------------------------------------------------------===// 47 // Utilities 48 //===--------------------------------------------------------------------===// 49 50 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 51 /// represents a value lvalue, this method emits the address of the lvalue, 52 /// then loads the result into DestPtr. 53 void EmitAggLoadOfLValue(const Expr *E); 54 55 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 56 void EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore = false); 57 void EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore = false); 58 59 //===--------------------------------------------------------------------===// 60 // Visitor Methods 61 //===--------------------------------------------------------------------===// 62 63 void VisitStmt(Stmt *S) { 64 CGF.ErrorUnsupported(S, "aggregate expression"); 65 } 66 void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); } 67 void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); } 68 69 // l-values. 70 void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); } 71 void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); } 72 void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); } 73 void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); } 74 void VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 75 EmitAggLoadOfLValue(E); 76 } 77 void VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 78 EmitAggLoadOfLValue(E); 79 } 80 void VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) { 81 EmitAggLoadOfLValue(E); 82 } 83 void VisitPredefinedExpr(const PredefinedExpr *E) { 84 EmitAggLoadOfLValue(E); 85 } 86 87 // Operators. 88 void VisitCStyleCastExpr(CStyleCastExpr *E); 89 void VisitImplicitCastExpr(ImplicitCastExpr *E); 90 void VisitCallExpr(const CallExpr *E); 91 void VisitStmtExpr(const StmtExpr *E); 92 void VisitBinaryOperator(const BinaryOperator *BO); 93 void VisitBinAssign(const BinaryOperator *E); 94 void VisitBinComma(const BinaryOperator *E); 95 96 void VisitObjCMessageExpr(ObjCMessageExpr *E); 97 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 98 EmitAggLoadOfLValue(E); 99 } 100 void VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E); 101 void VisitObjCKVCRefExpr(ObjCKVCRefExpr *E); 102 103 void VisitConditionalOperator(const ConditionalOperator *CO); 104 void VisitInitListExpr(InitListExpr *E); 105 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 106 Visit(DAE->getExpr()); 107 } 108 void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E); 109 void VisitCXXConstructExpr(const CXXConstructExpr *E); 110 void VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E); 111 112 void VisitVAArgExpr(VAArgExpr *E); 113 114 void EmitInitializationToLValue(Expr *E, LValue Address); 115 void EmitNullInitializationToLValue(LValue Address, QualType T); 116 // case Expr::ChooseExprClass: 117 118 }; 119 } // end anonymous namespace. 120 121 //===----------------------------------------------------------------------===// 122 // Utilities 123 //===----------------------------------------------------------------------===// 124 125 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 126 /// represents a value lvalue, this method emits the address of the lvalue, 127 /// then loads the result into DestPtr. 128 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) { 129 LValue LV = CGF.EmitLValue(E); 130 EmitFinalDestCopy(E, LV); 131 } 132 133 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 134 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore) { 135 assert(Src.isAggregate() && "value must be aggregate value!"); 136 137 // If the result is ignored, don't copy from the value. 138 if (DestPtr == 0) { 139 if (!Src.isVolatileQualified() || (IgnoreResult && Ignore)) 140 return; 141 // If the source is volatile, we must read from it; to do that, we need 142 // some place to put it. 143 DestPtr = CGF.CreateTempAlloca(CGF.ConvertType(E->getType()), "agg.tmp"); 144 } 145 146 // If the result of the assignment is used, copy the LHS there also. 147 // FIXME: Pass VolatileDest as well. I think we also need to merge volatile 148 // from the source as well, as we can't eliminate it if either operand 149 // is volatile, unless copy has volatile for both source and destination.. 150 CGF.EmitAggregateCopy(DestPtr, Src.getAggregateAddr(), E->getType(), 151 VolatileDest|Src.isVolatileQualified()); 152 } 153 154 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 155 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore) { 156 assert(Src.isSimple() && "Can't have aggregate bitfield, vector, etc"); 157 158 EmitFinalDestCopy(E, RValue::getAggregate(Src.getAddress(), 159 Src.isVolatileQualified()), 160 Ignore); 161 } 162 163 //===----------------------------------------------------------------------===// 164 // Visitor Methods 165 //===----------------------------------------------------------------------===// 166 167 void AggExprEmitter::VisitCStyleCastExpr(CStyleCastExpr *E) { 168 // GCC union extension 169 if (E->getSubExpr()->getType()->isScalarType()) { 170 QualType PtrTy = 171 CGF.getContext().getPointerType(E->getSubExpr()->getType()); 172 llvm::Value *CastPtr = Builder.CreateBitCast(DestPtr, 173 CGF.ConvertType(PtrTy)); 174 EmitInitializationToLValue(E->getSubExpr(), LValue::MakeAddr(CastPtr, 0)); 175 return; 176 } 177 178 Visit(E->getSubExpr()); 179 } 180 181 void AggExprEmitter::VisitImplicitCastExpr(ImplicitCastExpr *E) { 182 assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(), 183 E->getType()) && 184 "Implicit cast types must be compatible"); 185 Visit(E->getSubExpr()); 186 } 187 188 void AggExprEmitter::VisitCallExpr(const CallExpr *E) { 189 if (E->getCallReturnType()->isReferenceType()) { 190 EmitAggLoadOfLValue(E); 191 return; 192 } 193 194 RValue RV = CGF.EmitCallExpr(E); 195 EmitFinalDestCopy(E, RV); 196 } 197 198 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) { 199 RValue RV = CGF.EmitObjCMessageExpr(E); 200 EmitFinalDestCopy(E, RV); 201 } 202 203 void AggExprEmitter::VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) { 204 RValue RV = CGF.EmitObjCPropertyGet(E); 205 EmitFinalDestCopy(E, RV); 206 } 207 208 void AggExprEmitter::VisitObjCKVCRefExpr(ObjCKVCRefExpr *E) { 209 RValue RV = CGF.EmitObjCPropertyGet(E); 210 EmitFinalDestCopy(E, RV); 211 } 212 213 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) { 214 CGF.EmitAnyExpr(E->getLHS(), 0, false, true); 215 CGF.EmitAggExpr(E->getRHS(), DestPtr, VolatileDest); 216 } 217 218 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) { 219 CGF.EmitCompoundStmt(*E->getSubStmt(), true, DestPtr, VolatileDest); 220 } 221 222 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) { 223 CGF.ErrorUnsupported(E, "aggregate binary expression"); 224 } 225 226 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) { 227 // For an assignment to work, the value on the right has 228 // to be compatible with the value on the left. 229 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), 230 E->getRHS()->getType()) 231 && "Invalid assignment"); 232 LValue LHS = CGF.EmitLValue(E->getLHS()); 233 234 // We have to special case property setters, otherwise we must have 235 // a simple lvalue (no aggregates inside vectors, bitfields). 236 if (LHS.isPropertyRef()) { 237 llvm::Value *AggLoc = DestPtr; 238 if (!AggLoc) 239 AggLoc = CGF.CreateTempAlloca(CGF.ConvertType(E->getRHS()->getType())); 240 CGF.EmitAggExpr(E->getRHS(), AggLoc, VolatileDest); 241 CGF.EmitObjCPropertySet(LHS.getPropertyRefExpr(), 242 RValue::getAggregate(AggLoc, VolatileDest)); 243 } 244 else if (LHS.isKVCRef()) { 245 llvm::Value *AggLoc = DestPtr; 246 if (!AggLoc) 247 AggLoc = CGF.CreateTempAlloca(CGF.ConvertType(E->getRHS()->getType())); 248 CGF.EmitAggExpr(E->getRHS(), AggLoc, VolatileDest); 249 CGF.EmitObjCPropertySet(LHS.getKVCRefExpr(), 250 RValue::getAggregate(AggLoc, VolatileDest)); 251 } else { 252 // Codegen the RHS so that it stores directly into the LHS. 253 CGF.EmitAggExpr(E->getRHS(), LHS.getAddress(), LHS.isVolatileQualified()); 254 EmitFinalDestCopy(E, LHS, true); 255 } 256 } 257 258 void AggExprEmitter::VisitConditionalOperator(const ConditionalOperator *E) { 259 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 260 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 261 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 262 263 llvm::Value *Cond = CGF.EvaluateExprAsBool(E->getCond()); 264 Builder.CreateCondBr(Cond, LHSBlock, RHSBlock); 265 266 CGF.PushConditionalTempDestruction(); 267 CGF.EmitBlock(LHSBlock); 268 269 // Handle the GNU extension for missing LHS. 270 assert(E->getLHS() && "Must have LHS for aggregate value"); 271 272 Visit(E->getLHS()); 273 CGF.PopConditionalTempDestruction(); 274 CGF.EmitBranch(ContBlock); 275 276 CGF.PushConditionalTempDestruction(); 277 CGF.EmitBlock(RHSBlock); 278 279 Visit(E->getRHS()); 280 CGF.PopConditionalTempDestruction(); 281 CGF.EmitBranch(ContBlock); 282 283 CGF.EmitBlock(ContBlock); 284 } 285 286 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 287 llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr()); 288 llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType()); 289 290 if (!ArgPtr) { 291 CGF.ErrorUnsupported(VE, "aggregate va_arg expression"); 292 return; 293 } 294 295 EmitFinalDestCopy(VE, LValue::MakeAddr(ArgPtr, 0)); 296 } 297 298 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 299 llvm::Value *Val = DestPtr; 300 301 if (!Val) { 302 // Create a temporary variable. 303 Val = CGF.CreateTempAlloca(CGF.ConvertTypeForMem(E->getType()), "tmp"); 304 305 // FIXME: volatile 306 CGF.EmitAggExpr(E->getSubExpr(), Val, false); 307 } else 308 Visit(E->getSubExpr()); 309 310 CGF.PushCXXTemporary(E->getTemporary(), Val); 311 } 312 313 void 314 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) { 315 llvm::Value *Val = DestPtr; 316 317 if (!Val) { 318 // Create a temporary variable. 319 Val = CGF.CreateTempAlloca(CGF.ConvertTypeForMem(E->getType()), "tmp"); 320 } 321 322 CGF.EmitCXXConstructExpr(Val, E); 323 } 324 325 void AggExprEmitter::VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E) { 326 CGF.EmitCXXExprWithTemporaries(E, DestPtr, VolatileDest); 327 } 328 329 void AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV) { 330 // FIXME: Ignore result? 331 // FIXME: Are initializers affected by volatile? 332 if (isa<ImplicitValueInitExpr>(E)) { 333 EmitNullInitializationToLValue(LV, E->getType()); 334 } else if (E->getType()->isComplexType()) { 335 CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false); 336 } else if (CGF.hasAggregateLLVMType(E->getType())) { 337 CGF.EmitAnyExpr(E, LV.getAddress(), false); 338 } else { 339 CGF.EmitStoreThroughLValue(CGF.EmitAnyExpr(E), LV, E->getType()); 340 } 341 } 342 343 void AggExprEmitter::EmitNullInitializationToLValue(LValue LV, QualType T) { 344 if (!CGF.hasAggregateLLVMType(T)) { 345 // For non-aggregates, we can store zero 346 llvm::Value *Null = llvm::Constant::getNullValue(CGF.ConvertType(T)); 347 CGF.EmitStoreThroughLValue(RValue::get(Null), LV, T); 348 } else { 349 // Otherwise, just memset the whole thing to zero. This is legal 350 // because in LLVM, all default initializers are guaranteed to have a 351 // bit pattern of all zeros. 352 // FIXME: That isn't true for member pointers! 353 // There's a potential optimization opportunity in combining 354 // memsets; that would be easy for arrays, but relatively 355 // difficult for structures with the current code. 356 CGF.EmitMemSetToZero(LV.getAddress(), T); 357 } 358 } 359 360 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) { 361 #if 0 362 // FIXME: Disabled while we figure out what to do about 363 // test/CodeGen/bitfield.c 364 // 365 // If we can, prefer a copy from a global; this is a lot less code for long 366 // globals, and it's easier for the current optimizers to analyze. 367 // FIXME: Should we really be doing this? Should we try to avoid cases where 368 // we emit a global with a lot of zeros? Should we try to avoid short 369 // globals? 370 if (E->isConstantInitializer(CGF.getContext(), 0)) { 371 llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, &CGF); 372 llvm::GlobalVariable* GV = 373 new llvm::GlobalVariable(C->getType(), true, 374 llvm::GlobalValue::InternalLinkage, 375 C, "", &CGF.CGM.getModule(), 0); 376 EmitFinalDestCopy(E, LValue::MakeAddr(GV, 0)); 377 return; 378 } 379 #endif 380 if (E->hadArrayRangeDesignator()) { 381 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 382 } 383 384 // Handle initialization of an array. 385 if (E->getType()->isArrayType()) { 386 const llvm::PointerType *APType = 387 cast<llvm::PointerType>(DestPtr->getType()); 388 const llvm::ArrayType *AType = 389 cast<llvm::ArrayType>(APType->getElementType()); 390 391 uint64_t NumInitElements = E->getNumInits(); 392 393 if (E->getNumInits() > 0) { 394 QualType T1 = E->getType(); 395 QualType T2 = E->getInit(0)->getType(); 396 if (CGF.getContext().hasSameUnqualifiedType(T1, T2)) { 397 EmitAggLoadOfLValue(E->getInit(0)); 398 return; 399 } 400 } 401 402 uint64_t NumArrayElements = AType->getNumElements(); 403 QualType ElementType = CGF.getContext().getCanonicalType(E->getType()); 404 ElementType = CGF.getContext().getAsArrayType(ElementType)->getElementType(); 405 406 unsigned CVRqualifier = ElementType.getCVRQualifiers(); 407 408 for (uint64_t i = 0; i != NumArrayElements; ++i) { 409 llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array"); 410 if (i < NumInitElements) 411 EmitInitializationToLValue(E->getInit(i), 412 LValue::MakeAddr(NextVal, CVRqualifier)); 413 else 414 EmitNullInitializationToLValue(LValue::MakeAddr(NextVal, CVRqualifier), 415 ElementType); 416 } 417 return; 418 } 419 420 assert(E->getType()->isRecordType() && "Only support structs/unions here!"); 421 422 // Do struct initialization; this code just sets each individual member 423 // to the approprate value. This makes bitfield support automatic; 424 // the disadvantage is that the generated code is more difficult for 425 // the optimizer, especially with bitfields. 426 unsigned NumInitElements = E->getNumInits(); 427 RecordDecl *SD = E->getType()->getAsRecordType()->getDecl(); 428 unsigned CurInitVal = 0; 429 430 if (E->getType()->isUnionType()) { 431 // Only initialize one field of a union. The field itself is 432 // specified by the initializer list. 433 if (!E->getInitializedFieldInUnion()) { 434 // Empty union; we have nothing to do. 435 436 #ifndef NDEBUG 437 // Make sure that it's really an empty and not a failure of 438 // semantic analysis. 439 for (RecordDecl::field_iterator Field = SD->field_begin(), 440 FieldEnd = SD->field_end(); 441 Field != FieldEnd; ++Field) 442 assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed"); 443 #endif 444 return; 445 } 446 447 // FIXME: volatility 448 FieldDecl *Field = E->getInitializedFieldInUnion(); 449 LValue FieldLoc = CGF.EmitLValueForField(DestPtr, Field, true, 0); 450 451 if (NumInitElements) { 452 // Store the initializer into the field 453 EmitInitializationToLValue(E->getInit(0), FieldLoc); 454 } else { 455 // Default-initialize to null 456 EmitNullInitializationToLValue(FieldLoc, Field->getType()); 457 } 458 459 return; 460 } 461 462 // Here we iterate over the fields; this makes it simpler to both 463 // default-initialize fields and skip over unnamed fields. 464 for (RecordDecl::field_iterator Field = SD->field_begin(), 465 FieldEnd = SD->field_end(); 466 Field != FieldEnd; ++Field) { 467 // We're done once we hit the flexible array member 468 if (Field->getType()->isIncompleteArrayType()) 469 break; 470 471 if (Field->isUnnamedBitfield()) 472 continue; 473 474 // FIXME: volatility 475 LValue FieldLoc = CGF.EmitLValueForField(DestPtr, *Field, false, 0); 476 // We never generate write-barries for initialized fields. 477 LValue::SetObjCNonGC(FieldLoc, true); 478 if (CurInitVal < NumInitElements) { 479 // Store the initializer into the field 480 EmitInitializationToLValue(E->getInit(CurInitVal++), FieldLoc); 481 } else { 482 // We're out of initalizers; default-initialize to null 483 EmitNullInitializationToLValue(FieldLoc, Field->getType()); 484 } 485 } 486 } 487 488 //===----------------------------------------------------------------------===// 489 // Entry Points into this File 490 //===----------------------------------------------------------------------===// 491 492 /// EmitAggExpr - Emit the computation of the specified expression of aggregate 493 /// type. The result is computed into DestPtr. Note that if DestPtr is null, 494 /// the value of the aggregate expression is not needed. If VolatileDest is 495 /// true, DestPtr cannot be 0. 496 void CodeGenFunction::EmitAggExpr(const Expr *E, llvm::Value *DestPtr, 497 bool VolatileDest, bool IgnoreResult) { 498 assert(E && hasAggregateLLVMType(E->getType()) && 499 "Invalid aggregate expression to emit"); 500 assert ((DestPtr != 0 || VolatileDest == false) 501 && "volatile aggregate can't be 0"); 502 503 AggExprEmitter(*this, DestPtr, VolatileDest, IgnoreResult) 504 .Visit(const_cast<Expr*>(E)); 505 } 506 507 void CodeGenFunction::EmitAggregateClear(llvm::Value *DestPtr, QualType Ty) { 508 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 509 510 EmitMemSetToZero(DestPtr, Ty); 511 } 512 513 void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr, 514 llvm::Value *SrcPtr, QualType Ty, 515 bool isVolatile) { 516 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 517 518 // Aggregate assignment turns into llvm.memcpy. This is almost valid per 519 // C99 6.5.16.1p3, which states "If the value being stored in an object is 520 // read from another object that overlaps in anyway the storage of the first 521 // object, then the overlap shall be exact and the two objects shall have 522 // qualified or unqualified versions of a compatible type." 523 // 524 // memcpy is not defined if the source and destination pointers are exactly 525 // equal, but other compilers do this optimization, and almost every memcpy 526 // implementation handles this case safely. If there is a libc that does not 527 // safely handle this, we can add a target hook. 528 const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 529 if (DestPtr->getType() != BP) 530 DestPtr = Builder.CreateBitCast(DestPtr, BP, "tmp"); 531 if (SrcPtr->getType() != BP) 532 SrcPtr = Builder.CreateBitCast(SrcPtr, BP, "tmp"); 533 534 // Get size and alignment info for this aggregate. 535 std::pair<uint64_t, unsigned> TypeInfo = getContext().getTypeInfo(Ty); 536 537 // FIXME: Handle variable sized types. 538 const llvm::Type *IntPtr = llvm::IntegerType::get(LLVMPointerWidth); 539 540 // FIXME: If we have a volatile struct, the optimizer can remove what might 541 // appear to be `extra' memory ops: 542 // 543 // volatile struct { int i; } a, b; 544 // 545 // int main() { 546 // a = b; 547 // a = b; 548 // } 549 // 550 // we need to use a differnt call here. We use isVolatile to indicate when 551 // either the source or the destination is volatile. 552 Builder.CreateCall4(CGM.getMemCpyFn(), 553 DestPtr, SrcPtr, 554 // TypeInfo.first describes size in bits. 555 llvm::ConstantInt::get(IntPtr, TypeInfo.first/8), 556 llvm::ConstantInt::get(llvm::Type::Int32Ty, 557 TypeInfo.second/8)); 558 } 559