1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Aggregate Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "clang/AST/ASTContext.h" 17 #include "clang/AST/DeclCXX.h" 18 #include "clang/AST/StmtVisitor.h" 19 #include "llvm/Constants.h" 20 #include "llvm/Function.h" 21 #include "llvm/GlobalVariable.h" 22 #include "llvm/Support/Compiler.h" 23 #include "llvm/Intrinsics.h" 24 using namespace clang; 25 using namespace CodeGen; 26 27 //===----------------------------------------------------------------------===// 28 // Aggregate Expression Emitter 29 //===----------------------------------------------------------------------===// 30 31 namespace { 32 class VISIBILITY_HIDDEN AggExprEmitter : public StmtVisitor<AggExprEmitter> { 33 CodeGenFunction &CGF; 34 CGBuilderTy &Builder; 35 llvm::Value *DestPtr; 36 bool VolatileDest; 37 public: 38 AggExprEmitter(CodeGenFunction &cgf, llvm::Value *destPtr, bool volatileDest) 39 : CGF(cgf), Builder(CGF.Builder), 40 DestPtr(destPtr), VolatileDest(volatileDest) { 41 } 42 43 //===--------------------------------------------------------------------===// 44 // Utilities 45 //===--------------------------------------------------------------------===// 46 47 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 48 /// represents a value lvalue, this method emits the address of the lvalue, 49 /// then loads the result into DestPtr. 50 void EmitAggLoadOfLValue(const Expr *E); 51 52 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 53 void EmitFinalDestCopy(const Expr *E, LValue Src); 54 void EmitFinalDestCopy(const Expr *E, RValue Src); 55 56 //===--------------------------------------------------------------------===// 57 // Visitor Methods 58 //===--------------------------------------------------------------------===// 59 60 void VisitStmt(Stmt *S) { 61 CGF.ErrorUnsupported(S, "aggregate expression"); 62 } 63 void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); } 64 void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); } 65 66 // l-values. 67 void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); } 68 void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); } 69 void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); } 70 void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); } 71 void VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 72 EmitAggLoadOfLValue(E); 73 } 74 void VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 75 EmitAggLoadOfLValue(E); 76 } 77 void VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) { 78 EmitAggLoadOfLValue(E); 79 } 80 void VisitPredefinedExpr(const PredefinedExpr *E) { 81 EmitAggLoadOfLValue(E); 82 } 83 84 // Operators. 85 void VisitCStyleCastExpr(CStyleCastExpr *E); 86 void VisitImplicitCastExpr(ImplicitCastExpr *E); 87 void VisitCallExpr(const CallExpr *E); 88 void VisitStmtExpr(const StmtExpr *E); 89 void VisitBinaryOperator(const BinaryOperator *BO); 90 void VisitBinAssign(const BinaryOperator *E); 91 void VisitBinComma(const BinaryOperator *E); 92 93 void VisitObjCMessageExpr(ObjCMessageExpr *E); 94 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 95 EmitAggLoadOfLValue(E); 96 } 97 void VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E); 98 void VisitObjCKVCRefExpr(ObjCKVCRefExpr *E); 99 100 void VisitConditionalOperator(const ConditionalOperator *CO); 101 void VisitInitListExpr(InitListExpr *E); 102 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 103 Visit(DAE->getExpr()); 104 } 105 void VisitCXXConstructExpr(const CXXConstructExpr *E); 106 void VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E); 107 108 void VisitVAArgExpr(VAArgExpr *E); 109 110 void EmitInitializationToLValue(Expr *E, LValue Address); 111 void EmitNullInitializationToLValue(LValue Address, QualType T); 112 // case Expr::ChooseExprClass: 113 114 }; 115 } // end anonymous namespace. 116 117 //===----------------------------------------------------------------------===// 118 // Utilities 119 //===----------------------------------------------------------------------===// 120 121 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 122 /// represents a value lvalue, this method emits the address of the lvalue, 123 /// then loads the result into DestPtr. 124 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) { 125 LValue LV = CGF.EmitLValue(E); 126 EmitFinalDestCopy(E, LV); 127 } 128 129 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 130 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, RValue Src) { 131 assert(Src.isAggregate() && "value must be aggregate value!"); 132 133 // If the result is ignored, don't copy from the value. 134 if (DestPtr == 0) 135 // FIXME: If the source is volatile, we must read from it. 136 return; 137 138 // If the result of the assignment is used, copy the LHS there also. 139 // FIXME: Pass VolatileDest as well. I think we also need to merge volatile 140 // from the source as well, as we can't eliminate it if either operand 141 // is volatile, unless copy has volatile for both source and destination.. 142 CGF.EmitAggregateCopy(DestPtr, Src.getAggregateAddr(), E->getType()); 143 } 144 145 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 146 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, LValue Src) { 147 assert(Src.isSimple() && "Can't have aggregate bitfield, vector, etc"); 148 149 EmitFinalDestCopy(E, RValue::getAggregate(Src.getAddress(), 150 Src.isVolatileQualified())); 151 } 152 153 //===----------------------------------------------------------------------===// 154 // Visitor Methods 155 //===----------------------------------------------------------------------===// 156 157 void AggExprEmitter::VisitCStyleCastExpr(CStyleCastExpr *E) { 158 // GCC union extension 159 if (E->getType()->isUnionType()) { 160 RecordDecl *SD = E->getType()->getAsRecordType()->getDecl(); 161 LValue FieldLoc = CGF.EmitLValueForField(DestPtr, 162 *SD->field_begin(CGF.getContext()), 163 true, 0); 164 EmitInitializationToLValue(E->getSubExpr(), FieldLoc); 165 return; 166 } 167 168 Visit(E->getSubExpr()); 169 } 170 171 void AggExprEmitter::VisitImplicitCastExpr(ImplicitCastExpr *E) { 172 assert(CGF.getContext().typesAreCompatible( 173 E->getSubExpr()->getType().getUnqualifiedType(), 174 E->getType().getUnqualifiedType()) && 175 "Implicit cast types must be compatible"); 176 Visit(E->getSubExpr()); 177 } 178 179 void AggExprEmitter::VisitCallExpr(const CallExpr *E) { 180 RValue RV = CGF.EmitCallExpr(E); 181 EmitFinalDestCopy(E, RV); 182 } 183 184 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) { 185 RValue RV = CGF.EmitObjCMessageExpr(E); 186 EmitFinalDestCopy(E, RV); 187 } 188 189 void AggExprEmitter::VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) { 190 RValue RV = CGF.EmitObjCPropertyGet(E); 191 EmitFinalDestCopy(E, RV); 192 } 193 194 void AggExprEmitter::VisitObjCKVCRefExpr(ObjCKVCRefExpr *E) { 195 RValue RV = CGF.EmitObjCPropertyGet(E); 196 EmitFinalDestCopy(E, RV); 197 } 198 199 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) { 200 CGF.EmitAnyExpr(E->getLHS()); 201 CGF.EmitAggExpr(E->getRHS(), DestPtr, false); 202 } 203 204 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) { 205 CGF.EmitCompoundStmt(*E->getSubStmt(), true, DestPtr, VolatileDest); 206 } 207 208 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) { 209 CGF.ErrorUnsupported(E, "aggregate binary expression"); 210 } 211 212 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) { 213 // For an assignment to work, the value on the right has 214 // to be compatible with the value on the left. 215 assert(CGF.getContext().typesAreCompatible( 216 E->getLHS()->getType().getUnqualifiedType(), 217 E->getRHS()->getType().getUnqualifiedType()) 218 && "Invalid assignment"); 219 LValue LHS = CGF.EmitLValue(E->getLHS()); 220 221 // We have to special case property setters, otherwise we must have 222 // a simple lvalue (no aggregates inside vectors, bitfields). 223 if (LHS.isPropertyRef()) { 224 // FIXME: Volatility? 225 llvm::Value *AggLoc = DestPtr; 226 if (!AggLoc) 227 AggLoc = CGF.CreateTempAlloca(CGF.ConvertType(E->getRHS()->getType())); 228 CGF.EmitAggExpr(E->getRHS(), AggLoc, false); 229 CGF.EmitObjCPropertySet(LHS.getPropertyRefExpr(), 230 RValue::getAggregate(AggLoc)); 231 } 232 else if (LHS.isKVCRef()) { 233 // FIXME: Volatility? 234 llvm::Value *AggLoc = DestPtr; 235 if (!AggLoc) 236 AggLoc = CGF.CreateTempAlloca(CGF.ConvertType(E->getRHS()->getType())); 237 CGF.EmitAggExpr(E->getRHS(), AggLoc, false); 238 CGF.EmitObjCPropertySet(LHS.getKVCRefExpr(), 239 RValue::getAggregate(AggLoc)); 240 } else { 241 // Codegen the RHS so that it stores directly into the LHS. 242 CGF.EmitAggExpr(E->getRHS(), LHS.getAddress(), LHS.isVolatileQualified()); 243 EmitFinalDestCopy(E, LHS); 244 } 245 } 246 247 void AggExprEmitter::VisitConditionalOperator(const ConditionalOperator *E) { 248 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 249 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 250 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 251 252 llvm::Value *Cond = CGF.EvaluateExprAsBool(E->getCond()); 253 Builder.CreateCondBr(Cond, LHSBlock, RHSBlock); 254 255 CGF.EmitBlock(LHSBlock); 256 257 // Handle the GNU extension for missing LHS. 258 assert(E->getLHS() && "Must have LHS for aggregate value"); 259 260 Visit(E->getLHS()); 261 CGF.EmitBranch(ContBlock); 262 263 CGF.EmitBlock(RHSBlock); 264 265 Visit(E->getRHS()); 266 CGF.EmitBranch(ContBlock); 267 268 CGF.EmitBlock(ContBlock); 269 } 270 271 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 272 llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr()); 273 llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType()); 274 275 if (!ArgPtr) { 276 CGF.ErrorUnsupported(VE, "aggregate va_arg expression"); 277 return; 278 } 279 280 EmitFinalDestCopy(VE, LValue::MakeAddr(ArgPtr, 0)); 281 } 282 283 void 284 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) { 285 llvm::Value *V = DestPtr; 286 287 if (!V) { 288 assert(isa<CXXTempVarDecl>(E->getVarDecl()) && 289 "Must have a temp var decl when there's no destination!"); 290 291 V = CGF.CreateTempAlloca(CGF.ConvertType(E->getVarDecl()->getType()), 292 "tmpvar"); 293 } 294 295 CGF.EmitCXXConstructExpr(V, E); 296 } 297 298 void AggExprEmitter::VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E) { 299 // FIXME: Do something with the temporaries! 300 Visit(E->getSubExpr()); 301 } 302 303 void AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV) { 304 // FIXME: Are initializers affected by volatile? 305 if (isa<ImplicitValueInitExpr>(E)) { 306 EmitNullInitializationToLValue(LV, E->getType()); 307 } else if (E->getType()->isComplexType()) { 308 CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false); 309 } else if (CGF.hasAggregateLLVMType(E->getType())) { 310 CGF.EmitAnyExpr(E, LV.getAddress(), false); 311 } else { 312 CGF.EmitStoreThroughLValue(CGF.EmitAnyExpr(E), LV, E->getType()); 313 } 314 } 315 316 void AggExprEmitter::EmitNullInitializationToLValue(LValue LV, QualType T) { 317 if (!CGF.hasAggregateLLVMType(T)) { 318 // For non-aggregates, we can store zero 319 llvm::Value *Null = llvm::Constant::getNullValue(CGF.ConvertType(T)); 320 CGF.EmitStoreThroughLValue(RValue::get(Null), LV, T); 321 } else { 322 // Otherwise, just memset the whole thing to zero. This is legal 323 // because in LLVM, all default initializers are guaranteed to have a 324 // bit pattern of all zeros. 325 // FIXME: That isn't true for member pointers! 326 // There's a potential optimization opportunity in combining 327 // memsets; that would be easy for arrays, but relatively 328 // difficult for structures with the current code. 329 CGF.EmitMemSetToZero(LV.getAddress(), T); 330 } 331 } 332 333 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) { 334 #if 0 335 // FIXME: Disabled while we figure out what to do about 336 // test/CodeGen/bitfield.c 337 // 338 // If we can, prefer a copy from a global; this is a lot less code for long 339 // globals, and it's easier for the current optimizers to analyze. 340 // FIXME: Should we really be doing this? Should we try to avoid cases where 341 // we emit a global with a lot of zeros? Should we try to avoid short 342 // globals? 343 if (E->isConstantInitializer(CGF.getContext(), 0)) { 344 llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, &CGF); 345 llvm::GlobalVariable* GV = 346 new llvm::GlobalVariable(C->getType(), true, 347 llvm::GlobalValue::InternalLinkage, 348 C, "", &CGF.CGM.getModule(), 0); 349 EmitFinalDestCopy(E, LValue::MakeAddr(GV, 0)); 350 return; 351 } 352 #endif 353 if (E->hadArrayRangeDesignator()) { 354 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 355 } 356 357 // Handle initialization of an array. 358 if (E->getType()->isArrayType()) { 359 const llvm::PointerType *APType = 360 cast<llvm::PointerType>(DestPtr->getType()); 361 const llvm::ArrayType *AType = 362 cast<llvm::ArrayType>(APType->getElementType()); 363 364 uint64_t NumInitElements = E->getNumInits(); 365 366 if (E->getNumInits() > 0) { 367 QualType T1 = E->getType(); 368 QualType T2 = E->getInit(0)->getType(); 369 if (CGF.getContext().getCanonicalType(T1).getUnqualifiedType() == 370 CGF.getContext().getCanonicalType(T2).getUnqualifiedType()) { 371 EmitAggLoadOfLValue(E->getInit(0)); 372 return; 373 } 374 } 375 376 uint64_t NumArrayElements = AType->getNumElements(); 377 QualType ElementType = CGF.getContext().getCanonicalType(E->getType()); 378 ElementType = CGF.getContext().getAsArrayType(ElementType)->getElementType(); 379 380 unsigned CVRqualifier = ElementType.getCVRQualifiers(); 381 382 for (uint64_t i = 0; i != NumArrayElements; ++i) { 383 llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array"); 384 if (i < NumInitElements) 385 EmitInitializationToLValue(E->getInit(i), 386 LValue::MakeAddr(NextVal, CVRqualifier)); 387 else 388 EmitNullInitializationToLValue(LValue::MakeAddr(NextVal, CVRqualifier), 389 ElementType); 390 } 391 return; 392 } 393 394 assert(E->getType()->isRecordType() && "Only support structs/unions here!"); 395 396 // Do struct initialization; this code just sets each individual member 397 // to the approprate value. This makes bitfield support automatic; 398 // the disadvantage is that the generated code is more difficult for 399 // the optimizer, especially with bitfields. 400 unsigned NumInitElements = E->getNumInits(); 401 RecordDecl *SD = E->getType()->getAsRecordType()->getDecl(); 402 unsigned CurInitVal = 0; 403 404 if (E->getType()->isUnionType()) { 405 // Only initialize one field of a union. The field itself is 406 // specified by the initializer list. 407 if (!E->getInitializedFieldInUnion()) { 408 // Empty union; we have nothing to do. 409 410 #ifndef NDEBUG 411 // Make sure that it's really an empty and not a failure of 412 // semantic analysis. 413 for (RecordDecl::field_iterator Field = SD->field_begin(CGF.getContext()), 414 FieldEnd = SD->field_end(CGF.getContext()); 415 Field != FieldEnd; ++Field) 416 assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed"); 417 #endif 418 return; 419 } 420 421 // FIXME: volatility 422 FieldDecl *Field = E->getInitializedFieldInUnion(); 423 LValue FieldLoc = CGF.EmitLValueForField(DestPtr, Field, true, 0); 424 425 if (NumInitElements) { 426 // Store the initializer into the field 427 EmitInitializationToLValue(E->getInit(0), FieldLoc); 428 } else { 429 // Default-initialize to null 430 EmitNullInitializationToLValue(FieldLoc, Field->getType()); 431 } 432 433 return; 434 } 435 436 // Here we iterate over the fields; this makes it simpler to both 437 // default-initialize fields and skip over unnamed fields. 438 for (RecordDecl::field_iterator Field = SD->field_begin(CGF.getContext()), 439 FieldEnd = SD->field_end(CGF.getContext()); 440 Field != FieldEnd; ++Field) { 441 // We're done once we hit the flexible array member 442 if (Field->getType()->isIncompleteArrayType()) 443 break; 444 445 if (Field->isUnnamedBitfield()) 446 continue; 447 448 // FIXME: volatility 449 LValue FieldLoc = CGF.EmitLValueForField(DestPtr, *Field, false, 0); 450 if (CurInitVal < NumInitElements) { 451 // Store the initializer into the field 452 EmitInitializationToLValue(E->getInit(CurInitVal++), FieldLoc); 453 } else { 454 // We're out of initalizers; default-initialize to null 455 EmitNullInitializationToLValue(FieldLoc, Field->getType()); 456 } 457 } 458 } 459 460 //===----------------------------------------------------------------------===// 461 // Entry Points into this File 462 //===----------------------------------------------------------------------===// 463 464 /// EmitAggExpr - Emit the computation of the specified expression of 465 /// aggregate type. The result is computed into DestPtr. Note that if 466 /// DestPtr is null, the value of the aggregate expression is not needed. 467 void CodeGenFunction::EmitAggExpr(const Expr *E, llvm::Value *DestPtr, 468 bool VolatileDest) { 469 assert(E && hasAggregateLLVMType(E->getType()) && 470 "Invalid aggregate expression to emit"); 471 472 AggExprEmitter(*this, DestPtr, VolatileDest).Visit(const_cast<Expr*>(E)); 473 } 474 475 void CodeGenFunction::EmitAggregateClear(llvm::Value *DestPtr, QualType Ty) { 476 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 477 478 EmitMemSetToZero(DestPtr, Ty); 479 } 480 481 void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr, 482 llvm::Value *SrcPtr, QualType Ty) { 483 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 484 485 // Aggregate assignment turns into llvm.memcpy. This is almost valid per 486 // C99 6.5.16.1p3, which states "If the value being stored in an object is 487 // read from another object that overlaps in anyway the storage of the first 488 // object, then the overlap shall be exact and the two objects shall have 489 // qualified or unqualified versions of a compatible type." 490 // 491 // memcpy is not defined if the source and destination pointers are exactly 492 // equal, but other compilers do this optimization, and almost every memcpy 493 // implementation handles this case safely. If there is a libc that does not 494 // safely handle this, we can add a target hook. 495 const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 496 if (DestPtr->getType() != BP) 497 DestPtr = Builder.CreateBitCast(DestPtr, BP, "tmp"); 498 if (SrcPtr->getType() != BP) 499 SrcPtr = Builder.CreateBitCast(SrcPtr, BP, "tmp"); 500 501 // Get size and alignment info for this aggregate. 502 std::pair<uint64_t, unsigned> TypeInfo = getContext().getTypeInfo(Ty); 503 504 // FIXME: Handle variable sized types. 505 const llvm::Type *IntPtr = llvm::IntegerType::get(LLVMPointerWidth); 506 507 // FIXME: If we have a volatile struct, the optimizer can remove what might 508 // appear to be `extra' memory ops: 509 // 510 // volatile struct { int i; } a, b; 511 // 512 // int main() { 513 // a = b; 514 // a = b; 515 // } 516 // 517 // either, we need to use a differnt call here, or the backend needs to be 518 // taught to not do this. 519 Builder.CreateCall4(CGM.getMemCpyFn(), 520 DestPtr, SrcPtr, 521 // TypeInfo.first describes size in bits. 522 llvm::ConstantInt::get(IntPtr, TypeInfo.first/8), 523 llvm::ConstantInt::get(llvm::Type::Int32Ty, 524 TypeInfo.second/8)); 525 } 526