1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Aggregate Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/StmtVisitor.h"
18 #include "llvm/Constants.h"
19 #include "llvm/Function.h"
20 #include "llvm/GlobalVariable.h"
21 #include "llvm/Support/Compiler.h"
22 #include "llvm/Intrinsics.h"
23 using namespace clang;
24 using namespace CodeGen;
25 
26 //===----------------------------------------------------------------------===//
27 //                        Aggregate Expression Emitter
28 //===----------------------------------------------------------------------===//
29 
30 namespace  {
31 class VISIBILITY_HIDDEN AggExprEmitter : public StmtVisitor<AggExprEmitter> {
32   CodeGenFunction &CGF;
33   CGBuilderTy &Builder;
34   llvm::Value *DestPtr;
35   bool VolatileDest;
36 public:
37   AggExprEmitter(CodeGenFunction &cgf, llvm::Value *destPtr, bool volatileDest)
38     : CGF(cgf), Builder(CGF.Builder),
39       DestPtr(destPtr), VolatileDest(volatileDest) {
40   }
41 
42   //===--------------------------------------------------------------------===//
43   //                               Utilities
44   //===--------------------------------------------------------------------===//
45 
46   /// EmitAggLoadOfLValue - Given an expression with aggregate type that
47   /// represents a value lvalue, this method emits the address of the lvalue,
48   /// then loads the result into DestPtr.
49   void EmitAggLoadOfLValue(const Expr *E);
50 
51   void EmitNonConstInit(InitListExpr *E);
52 
53   //===--------------------------------------------------------------------===//
54   //                            Visitor Methods
55   //===--------------------------------------------------------------------===//
56 
57   void VisitStmt(Stmt *S) {
58     CGF.ErrorUnsupported(S, "aggregate expression");
59   }
60   void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
61   void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
62 
63   // l-values.
64   void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); }
65   void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
66   void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
67   void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
68   void VisitCompoundLiteralExpr(CompoundLiteralExpr *E)
69       { EmitAggLoadOfLValue(E); }
70 
71   void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
72     EmitAggLoadOfLValue(E);
73   }
74 
75   // Operators.
76   //  case Expr::UnaryOperatorClass:
77   //  case Expr::CastExprClass:
78   void VisitCStyleCastExpr(CStyleCastExpr *E);
79   void VisitImplicitCastExpr(ImplicitCastExpr *E);
80   void VisitCallExpr(const CallExpr *E);
81   void VisitStmtExpr(const StmtExpr *E);
82   void VisitBinaryOperator(const BinaryOperator *BO);
83   void VisitBinAssign(const BinaryOperator *E);
84   void VisitBinComma(const BinaryOperator *E);
85 
86   void VisitObjCMessageExpr(ObjCMessageExpr *E);
87   void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
88     EmitAggLoadOfLValue(E);
89   }
90   void VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E);
91   void VisitObjCKVCRefExpr(ObjCKVCRefExpr *E);
92 
93   void VisitConditionalOperator(const ConditionalOperator *CO);
94   void VisitInitListExpr(InitListExpr *E);
95   void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
96     Visit(DAE->getExpr());
97   }
98   void VisitVAArgExpr(VAArgExpr *E);
99 
100   void EmitInitializationToLValue(Expr *E, LValue Address);
101   void EmitNullInitializationToLValue(LValue Address, QualType T);
102   //  case Expr::ChooseExprClass:
103 
104 };
105 }  // end anonymous namespace.
106 
107 //===----------------------------------------------------------------------===//
108 //                                Utilities
109 //===----------------------------------------------------------------------===//
110 
111 /// EmitAggLoadOfLValue - Given an expression with aggregate type that
112 /// represents a value lvalue, this method emits the address of the lvalue,
113 /// then loads the result into DestPtr.
114 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
115   LValue LV = CGF.EmitLValue(E);
116   assert(LV.isSimple() && "Can't have aggregate bitfield, vector, etc");
117   llvm::Value *SrcPtr = LV.getAddress();
118 
119   // If the result is ignored, don't copy from the value.
120   if (DestPtr == 0)
121     // FIXME: If the source is volatile, we must read from it.
122     return;
123 
124   CGF.EmitAggregateCopy(DestPtr, SrcPtr, E->getType());
125 }
126 
127 //===----------------------------------------------------------------------===//
128 //                            Visitor Methods
129 //===----------------------------------------------------------------------===//
130 
131 void AggExprEmitter::VisitCStyleCastExpr(CStyleCastExpr *E) {
132   // GCC union extension
133   if (E->getType()->isUnionType()) {
134     RecordDecl *SD = E->getType()->getAsRecordType()->getDecl();
135     LValue FieldLoc = CGF.EmitLValueForField(DestPtr, *SD->field_begin(), true, 0);
136     EmitInitializationToLValue(E->getSubExpr(), FieldLoc);
137     return;
138   }
139 
140   Visit(E->getSubExpr());
141 }
142 
143 void AggExprEmitter::VisitImplicitCastExpr(ImplicitCastExpr *E) {
144   assert(CGF.getContext().typesAreCompatible(
145                           E->getSubExpr()->getType().getUnqualifiedType(),
146                           E->getType().getUnqualifiedType()) &&
147          "Implicit cast types must be compatible");
148   Visit(E->getSubExpr());
149 }
150 
151 void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
152   RValue RV = CGF.EmitCallExpr(E);
153   assert(RV.isAggregate() && "Return value must be aggregate value!");
154 
155   // If the result is ignored, don't copy from the value.
156   if (DestPtr == 0)
157     // FIXME: If the source is volatile, we must read from it.
158     return;
159 
160   CGF.EmitAggregateCopy(DestPtr, RV.getAggregateAddr(), E->getType());
161 }
162 
163 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
164   RValue RV = CGF.EmitObjCMessageExpr(E);
165   assert(RV.isAggregate() && "Return value must be aggregate value!");
166 
167   // If the result is ignored, don't copy from the value.
168   if (DestPtr == 0)
169     // FIXME: If the source is volatile, we must read from it.
170     return;
171 
172   CGF.EmitAggregateCopy(DestPtr, RV.getAggregateAddr(), E->getType());
173 }
174 
175 void AggExprEmitter::VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
176   RValue RV = CGF.EmitObjCPropertyGet(E);
177   assert(RV.isAggregate() && "Return value must be aggregate value!");
178 
179   // If the result is ignored, don't copy from the value.
180   if (DestPtr == 0)
181     // FIXME: If the source is volatile, we must read from it.
182     return;
183 
184   CGF.EmitAggregateCopy(DestPtr, RV.getAggregateAddr(), E->getType());
185 }
186 
187 void AggExprEmitter::VisitObjCKVCRefExpr(ObjCKVCRefExpr *E) {
188   RValue RV = CGF.EmitObjCPropertyGet(E);
189   assert(RV.isAggregate() && "Return value must be aggregate value!");
190 
191   // If the result is ignored, don't copy from the value.
192   if (DestPtr == 0)
193     // FIXME: If the source is volatile, we must read from it.
194     return;
195 
196   CGF.EmitAggregateCopy(DestPtr, RV.getAggregateAddr(), E->getType());
197 }
198 
199 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
200   CGF.EmitAnyExpr(E->getLHS());
201   CGF.EmitAggExpr(E->getRHS(), DestPtr, false);
202 }
203 
204 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
205   CGF.EmitCompoundStmt(*E->getSubStmt(), true, DestPtr, VolatileDest);
206 }
207 
208 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
209   CGF.ErrorUnsupported(E, "aggregate binary expression");
210 }
211 
212 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
213   // For an assignment to work, the value on the right has
214   // to be compatible with the value on the left.
215   assert(CGF.getContext().typesAreCompatible(
216              E->getLHS()->getType().getUnqualifiedType(),
217              E->getRHS()->getType().getUnqualifiedType())
218          && "Invalid assignment");
219   LValue LHS = CGF.EmitLValue(E->getLHS());
220 
221   // We have to special case property setters, otherwise we must have
222   // a simple lvalue (no aggregates inside vectors, bitfields).
223   if (LHS.isPropertyRef()) {
224     // FIXME: Volatility?
225     llvm::Value *AggLoc = DestPtr;
226     if (!AggLoc)
227       AggLoc = CGF.CreateTempAlloca(CGF.ConvertType(E->getRHS()->getType()));
228     CGF.EmitAggExpr(E->getRHS(), AggLoc, false);
229     CGF.EmitObjCPropertySet(LHS.getPropertyRefExpr(),
230                             RValue::getAggregate(AggLoc));
231   }
232   else if (LHS.isKVCRef()) {
233     // FIXME: Volatility?
234     llvm::Value *AggLoc = DestPtr;
235     if (!AggLoc)
236       AggLoc = CGF.CreateTempAlloca(CGF.ConvertType(E->getRHS()->getType()));
237     CGF.EmitAggExpr(E->getRHS(), AggLoc, false);
238     CGF.EmitObjCPropertySet(LHS.getKVCRefExpr(),
239                             RValue::getAggregate(AggLoc));
240   } else {
241     // Codegen the RHS so that it stores directly into the LHS.
242     CGF.EmitAggExpr(E->getRHS(), LHS.getAddress(), false /*FIXME: VOLATILE LHS*/);
243 
244     if (DestPtr == 0)
245       return;
246 
247     // If the result of the assignment is used, copy the RHS there also.
248     CGF.EmitAggregateCopy(DestPtr, LHS.getAddress(), E->getType());
249   }
250 }
251 
252 void AggExprEmitter::VisitConditionalOperator(const ConditionalOperator *E) {
253   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
254   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
255   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
256 
257   llvm::Value *Cond = CGF.EvaluateExprAsBool(E->getCond());
258   Builder.CreateCondBr(Cond, LHSBlock, RHSBlock);
259 
260   CGF.EmitBlock(LHSBlock);
261 
262   // Handle the GNU extension for missing LHS.
263   assert(E->getLHS() && "Must have LHS for aggregate value");
264 
265   Visit(E->getLHS());
266   CGF.EmitBranch(ContBlock);
267 
268   CGF.EmitBlock(RHSBlock);
269 
270   Visit(E->getRHS());
271   CGF.EmitBranch(ContBlock);
272 
273   CGF.EmitBlock(ContBlock);
274 }
275 
276 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
277   llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
278   llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
279 
280   if (!ArgPtr) {
281     CGF.ErrorUnsupported(VE, "aggregate va_arg expression");
282     return;
283   }
284 
285   if (DestPtr)
286     // FIXME: volatility
287     CGF.EmitAggregateCopy(DestPtr, ArgPtr, VE->getType());
288 }
289 
290 void AggExprEmitter::EmitNonConstInit(InitListExpr *E) {
291   const llvm::PointerType *APType =
292     cast<llvm::PointerType>(DestPtr->getType());
293   const llvm::Type *DestType = APType->getElementType();
294 
295   if (E->hadArrayRangeDesignator()) {
296     CGF.ErrorUnsupported(E, "GNU array range designator extension");
297   }
298 
299   if (const llvm::ArrayType *AType = dyn_cast<llvm::ArrayType>(DestType)) {
300     unsigned NumInitElements = E->getNumInits();
301 
302     unsigned i;
303     for (i = 0; i != NumInitElements; ++i) {
304       llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array");
305       Expr *Init = E->getInit(i);
306       if (isa<InitListExpr>(Init))
307         CGF.EmitAggExpr(Init, NextVal, VolatileDest);
308       else
309         // FIXME: volatility
310         Builder.CreateStore(CGF.EmitScalarExpr(Init), NextVal);
311     }
312 
313     // Emit remaining default initializers
314     unsigned NumArrayElements = AType->getNumElements();
315     QualType QType = E->getInit(0)->getType();
316     const llvm::Type *EType = AType->getElementType();
317     for (/*Do not initialize i*/; i < NumArrayElements; ++i) {
318       llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array");
319       if (EType->isSingleValueType())
320         // FIXME: volatility
321         Builder.CreateStore(llvm::Constant::getNullValue(EType), NextVal);
322       else
323         CGF.EmitAggregateClear(NextVal, QType);
324     }
325   } else
326     assert(false && "Invalid initializer");
327 }
328 
329 void AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV) {
330   // FIXME: Are initializers affected by volatile?
331   if (isa<ImplicitValueInitExpr>(E)) {
332     EmitNullInitializationToLValue(LV, E->getType());
333   } else if (E->getType()->isComplexType()) {
334     CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false);
335   } else if (CGF.hasAggregateLLVMType(E->getType())) {
336     CGF.EmitAnyExpr(E, LV.getAddress(), false);
337   } else {
338     CGF.EmitStoreThroughLValue(CGF.EmitAnyExpr(E), LV, E->getType());
339   }
340 }
341 
342 void AggExprEmitter::EmitNullInitializationToLValue(LValue LV, QualType T) {
343   if (!CGF.hasAggregateLLVMType(T)) {
344     // For non-aggregates, we can store zero
345     llvm::Value *Null = llvm::Constant::getNullValue(CGF.ConvertType(T));
346     CGF.EmitStoreThroughLValue(RValue::get(Null), LV, T);
347   } else {
348     // Otherwise, just memset the whole thing to zero.  This is legal
349     // because in LLVM, all default initializers are guaranteed to have a
350     // bit pattern of all zeros.
351     // There's a potential optimization opportunity in combining
352     // memsets; that would be easy for arrays, but relatively
353     // difficult for structures with the current code.
354     const llvm::Type *SizeTy = llvm::Type::Int64Ty;
355     llvm::Value *MemSet = CGF.CGM.getIntrinsic(llvm::Intrinsic::memset,
356                                                &SizeTy, 1);
357     uint64_t Size = CGF.getContext().getTypeSize(T);
358 
359     const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
360     llvm::Value* DestPtr = Builder.CreateBitCast(LV.getAddress(), BP, "tmp");
361     Builder.CreateCall4(MemSet, DestPtr,
362                         llvm::ConstantInt::get(llvm::Type::Int8Ty, 0),
363                         llvm::ConstantInt::get(SizeTy, Size/8),
364                         llvm::ConstantInt::get(llvm::Type::Int32Ty, 0));
365   }
366 }
367 
368 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
369 #if 0
370   // FIXME: Disabled while we figure out what to do about
371   // test/CodeGen/bitfield.c
372   //
373   // If we can, prefer a copy from a global; this is a lot less
374   // code for long globals, and it's easier for the current optimizers
375   // to analyze.
376   // FIXME: Should we really be doing this? Should we try to avoid
377   // cases where we emit a global with a lot of zeros?  Should
378   // we try to avoid short globals?
379   if (E->isConstantInitializer(CGF.getContext(), 0)) {
380     llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, &CGF);
381     llvm::GlobalVariable* GV =
382     new llvm::GlobalVariable(C->getType(), true,
383                              llvm::GlobalValue::InternalLinkage,
384                              C, "", &CGF.CGM.getModule(), 0);
385     CGF.EmitAggregateCopy(DestPtr, GV, E->getType());
386     return;
387   }
388 #endif
389   if (E->hadArrayRangeDesignator()) {
390     CGF.ErrorUnsupported(E, "GNU array range designator extension");
391   }
392 
393   // Handle initialization of an array.
394   if (E->getType()->isArrayType()) {
395     const llvm::PointerType *APType =
396       cast<llvm::PointerType>(DestPtr->getType());
397     const llvm::ArrayType *AType =
398       cast<llvm::ArrayType>(APType->getElementType());
399 
400     uint64_t NumInitElements = E->getNumInits();
401 
402     if (E->getNumInits() > 0) {
403       QualType T1 = E->getType();
404       QualType T2 = E->getInit(0)->getType();
405       if (CGF.getContext().getCanonicalType(T1).getUnqualifiedType() ==
406           CGF.getContext().getCanonicalType(T2).getUnqualifiedType()) {
407         EmitAggLoadOfLValue(E->getInit(0));
408         return;
409       }
410     }
411 
412     uint64_t NumArrayElements = AType->getNumElements();
413     QualType ElementType = CGF.getContext().getCanonicalType(E->getType());
414     ElementType = CGF.getContext().getAsArrayType(ElementType)->getElementType();
415 
416     unsigned CVRqualifier = ElementType.getCVRQualifiers();
417 
418     for (uint64_t i = 0; i != NumArrayElements; ++i) {
419       llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array");
420       if (i < NumInitElements)
421         EmitInitializationToLValue(E->getInit(i),
422                                    LValue::MakeAddr(NextVal, CVRqualifier));
423       else
424         EmitNullInitializationToLValue(LValue::MakeAddr(NextVal, CVRqualifier),
425                                        ElementType);
426     }
427     return;
428   }
429 
430   assert(E->getType()->isRecordType() && "Only support structs/unions here!");
431 
432   // Do struct initialization; this code just sets each individual member
433   // to the approprate value.  This makes bitfield support automatic;
434   // the disadvantage is that the generated code is more difficult for
435   // the optimizer, especially with bitfields.
436   unsigned NumInitElements = E->getNumInits();
437   RecordDecl *SD = E->getType()->getAsRecordType()->getDecl();
438   unsigned CurInitVal = 0;
439 
440   if (E->getType()->isUnionType()) {
441     // Only initialize one field of a union. The field itself is
442     // specified by the initializer list.
443     if (!E->getInitializedFieldInUnion()) {
444       // Empty union; we have nothing to do.
445 
446 #ifndef NDEBUG
447       // Make sure that it's really an empty and not a failure of
448       // semantic analysis.
449       for (RecordDecl::field_iterator Field = SD->field_begin(),
450                                    FieldEnd = SD->field_end();
451            Field != FieldEnd; ++Field)
452         assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed");
453 #endif
454       return;
455     }
456 
457     // FIXME: volatility
458     FieldDecl *Field = E->getInitializedFieldInUnion();
459     LValue FieldLoc = CGF.EmitLValueForField(DestPtr, Field, true, 0);
460 
461     if (NumInitElements) {
462       // Store the initializer into the field
463       EmitInitializationToLValue(E->getInit(0), FieldLoc);
464     } else {
465       // Default-initialize to null
466       EmitNullInitializationToLValue(FieldLoc, Field->getType());
467     }
468 
469     return;
470   }
471 
472   // Here we iterate over the fields; this makes it simpler to both
473   // default-initialize fields and skip over unnamed fields.
474   for (RecordDecl::field_iterator Field = SD->field_begin(),
475                                FieldEnd = SD->field_end();
476        Field != FieldEnd; ++Field) {
477     // We're done once we hit the flexible array member
478     if (Field->getType()->isIncompleteArrayType())
479       break;
480 
481     if (Field->isUnnamedBitfield())
482       continue;
483 
484     // FIXME: volatility
485     LValue FieldLoc = CGF.EmitLValueForField(DestPtr, *Field, false, 0);
486     if (CurInitVal < NumInitElements) {
487       // Store the initializer into the field
488       EmitInitializationToLValue(E->getInit(CurInitVal++), FieldLoc);
489     } else {
490       // We're out of initalizers; default-initialize to null
491       EmitNullInitializationToLValue(FieldLoc, Field->getType());
492     }
493   }
494 }
495 
496 //===----------------------------------------------------------------------===//
497 //                        Entry Points into this File
498 //===----------------------------------------------------------------------===//
499 
500 /// EmitAggExpr - Emit the computation of the specified expression of
501 /// aggregate type.  The result is computed into DestPtr.  Note that if
502 /// DestPtr is null, the value of the aggregate expression is not needed.
503 void CodeGenFunction::EmitAggExpr(const Expr *E, llvm::Value *DestPtr,
504                                   bool VolatileDest) {
505   assert(E && hasAggregateLLVMType(E->getType()) &&
506          "Invalid aggregate expression to emit");
507 
508   AggExprEmitter(*this, DestPtr, VolatileDest).Visit(const_cast<Expr*>(E));
509 }
510 
511 void CodeGenFunction::EmitAggregateClear(llvm::Value *DestPtr, QualType Ty) {
512   assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
513 
514   EmitMemSetToZero(DestPtr, Ty);
515 }
516 
517 void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr,
518                                         llvm::Value *SrcPtr, QualType Ty) {
519   assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
520 
521   // Aggregate assignment turns into llvm.memcpy.  This is almost valid per
522   // C99 6.5.16.1p3, which states "If the value being stored in an object is
523   // read from another object that overlaps in anyway the storage of the first
524   // object, then the overlap shall be exact and the two objects shall have
525   // qualified or unqualified versions of a compatible type."
526   //
527   // memcpy is not defined if the source and destination pointers are exactly
528   // equal, but other compilers do this optimization, and almost every memcpy
529   // implementation handles this case safely.  If there is a libc that does not
530   // safely handle this, we can add a target hook.
531   const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
532   if (DestPtr->getType() != BP)
533     DestPtr = Builder.CreateBitCast(DestPtr, BP, "tmp");
534   if (SrcPtr->getType() != BP)
535     SrcPtr = Builder.CreateBitCast(SrcPtr, BP, "tmp");
536 
537   // Get size and alignment info for this aggregate.
538   std::pair<uint64_t, unsigned> TypeInfo = getContext().getTypeInfo(Ty);
539 
540   // FIXME: Handle variable sized types.
541   const llvm::Type *IntPtr = llvm::IntegerType::get(LLVMPointerWidth);
542 
543   Builder.CreateCall4(CGM.getMemCpyFn(),
544                       DestPtr, SrcPtr,
545                       // TypeInfo.first describes size in bits.
546                       llvm::ConstantInt::get(IntPtr, TypeInfo.first/8),
547                       llvm::ConstantInt::get(llvm::Type::Int32Ty,
548                                              TypeInfo.second/8));
549 }
550