1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Aggregate Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "CGObjCRuntime.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/StmtVisitor.h"
20 #include "llvm/Constants.h"
21 #include "llvm/Function.h"
22 #include "llvm/GlobalVariable.h"
23 #include "llvm/Support/Compiler.h"
24 #include "llvm/Intrinsics.h"
25 using namespace clang;
26 using namespace CodeGen;
27 
28 //===----------------------------------------------------------------------===//
29 //                        Aggregate Expression Emitter
30 //===----------------------------------------------------------------------===//
31 
32 namespace  {
33 class VISIBILITY_HIDDEN AggExprEmitter : public StmtVisitor<AggExprEmitter> {
34   CodeGenFunction &CGF;
35   CGBuilderTy &Builder;
36   llvm::Value *DestPtr;
37   bool VolatileDest;
38   bool IgnoreResult;
39   bool IsInitializer;
40 public:
41   AggExprEmitter(CodeGenFunction &cgf, llvm::Value *destPtr, bool v,
42                  bool ignore, bool isinit)
43     : CGF(cgf), Builder(CGF.Builder),
44       DestPtr(destPtr), VolatileDest(v), IgnoreResult(ignore),
45       IsInitializer(isinit) {
46   }
47 
48   //===--------------------------------------------------------------------===//
49   //                               Utilities
50   //===--------------------------------------------------------------------===//
51 
52   /// EmitAggLoadOfLValue - Given an expression with aggregate type that
53   /// represents a value lvalue, this method emits the address of the lvalue,
54   /// then loads the result into DestPtr.
55   void EmitAggLoadOfLValue(const Expr *E);
56 
57   /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
58   void EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore = false);
59   void EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore = false);
60 
61   //===--------------------------------------------------------------------===//
62   //                            Visitor Methods
63   //===--------------------------------------------------------------------===//
64 
65   void VisitStmt(Stmt *S) {
66     CGF.ErrorUnsupported(S, "aggregate expression");
67   }
68   void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
69   void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
70 
71   // l-values.
72   void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); }
73   void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
74   void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
75   void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
76   void VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
77     EmitAggLoadOfLValue(E);
78   }
79   void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
80     EmitAggLoadOfLValue(E);
81   }
82   void VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
83     EmitAggLoadOfLValue(E);
84   }
85   void VisitPredefinedExpr(const PredefinedExpr *E) {
86     EmitAggLoadOfLValue(E);
87   }
88 
89   // Operators.
90   void VisitCastExpr(CastExpr *E);
91   void VisitCallExpr(const CallExpr *E);
92   void VisitStmtExpr(const StmtExpr *E);
93   void VisitBinaryOperator(const BinaryOperator *BO);
94   void VisitBinAssign(const BinaryOperator *E);
95   void VisitBinComma(const BinaryOperator *E);
96 
97   void VisitObjCMessageExpr(ObjCMessageExpr *E);
98   void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
99     EmitAggLoadOfLValue(E);
100   }
101   void VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E);
102   void VisitObjCImplicitSetterGetterRefExpr(ObjCImplicitSetterGetterRefExpr *E);
103 
104   void VisitConditionalOperator(const ConditionalOperator *CO);
105   void VisitChooseExpr(const ChooseExpr *CE);
106   void VisitInitListExpr(InitListExpr *E);
107   void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
108     Visit(DAE->getExpr());
109   }
110   void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E);
111   void VisitCXXConstructExpr(const CXXConstructExpr *E);
112   void VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E);
113 
114   void VisitVAArgExpr(VAArgExpr *E);
115 
116   void EmitInitializationToLValue(Expr *E, LValue Address);
117   void EmitNullInitializationToLValue(LValue Address, QualType T);
118   //  case Expr::ChooseExprClass:
119 
120 };
121 }  // end anonymous namespace.
122 
123 //===----------------------------------------------------------------------===//
124 //                                Utilities
125 //===----------------------------------------------------------------------===//
126 
127 /// EmitAggLoadOfLValue - Given an expression with aggregate type that
128 /// represents a value lvalue, this method emits the address of the lvalue,
129 /// then loads the result into DestPtr.
130 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
131   LValue LV = CGF.EmitLValue(E);
132   EmitFinalDestCopy(E, LV);
133 }
134 
135 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
136 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore) {
137   assert(Src.isAggregate() && "value must be aggregate value!");
138 
139   // If the result is ignored, don't copy from the value.
140   if (DestPtr == 0) {
141     if (!Src.isVolatileQualified() || (IgnoreResult && Ignore))
142       return;
143     // If the source is volatile, we must read from it; to do that, we need
144     // some place to put it.
145     DestPtr = CGF.CreateTempAlloca(CGF.ConvertType(E->getType()), "agg.tmp");
146   }
147 
148   // If the result of the assignment is used, copy the LHS there also.
149   // FIXME: Pass VolatileDest as well.  I think we also need to merge volatile
150   // from the source as well, as we can't eliminate it if either operand
151   // is volatile, unless copy has volatile for both source and destination..
152   CGF.EmitAggregateCopy(DestPtr, Src.getAggregateAddr(), E->getType(),
153                         VolatileDest|Src.isVolatileQualified());
154 }
155 
156 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
157 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore) {
158   assert(Src.isSimple() && "Can't have aggregate bitfield, vector, etc");
159 
160   EmitFinalDestCopy(E, RValue::getAggregate(Src.getAddress(),
161                                             Src.isVolatileQualified()),
162                     Ignore);
163 }
164 
165 //===----------------------------------------------------------------------===//
166 //                            Visitor Methods
167 //===----------------------------------------------------------------------===//
168 
169 void AggExprEmitter::VisitCastExpr(CastExpr *E) {
170   if (E->getCastKind() == CastExpr::CK_ToUnion) {
171     // GCC union extension
172     QualType PtrTy =
173         CGF.getContext().getPointerType(E->getSubExpr()->getType());
174     llvm::Value *CastPtr = Builder.CreateBitCast(DestPtr,
175                                                  CGF.ConvertType(PtrTy));
176     EmitInitializationToLValue(E->getSubExpr(),
177                                LValue::MakeAddr(CastPtr, 0));
178     return;
179   }
180   if (E->getCastKind() == CastExpr::CK_UserDefinedConversion) {
181     CXXFunctionalCastExpr *CXXFExpr = cast<CXXFunctionalCastExpr>(E);
182     CGF.EmitCXXFunctionalCastExpr(CXXFExpr);
183     return;
184   }
185 
186   // FIXME: Remove the CK_Unknown check here.
187   assert((E->getCastKind() == CastExpr::CK_NoOp ||
188           E->getCastKind() == CastExpr::CK_Unknown) &&
189          "Only no-op casts allowed!");
190   assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(),
191                                                  E->getType()) &&
192          "Implicit cast types must be compatible");
193   Visit(E->getSubExpr());
194 }
195 
196 void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
197   if (E->getCallReturnType()->isReferenceType()) {
198     EmitAggLoadOfLValue(E);
199     return;
200   }
201 
202   RValue RV = CGF.EmitCallExpr(E);
203   EmitFinalDestCopy(E, RV);
204 }
205 
206 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
207   RValue RV = CGF.EmitObjCMessageExpr(E);
208   EmitFinalDestCopy(E, RV);
209 }
210 
211 void AggExprEmitter::VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
212   RValue RV = CGF.EmitObjCPropertyGet(E);
213   EmitFinalDestCopy(E, RV);
214 }
215 
216 void AggExprEmitter::VisitObjCImplicitSetterGetterRefExpr(
217                                    ObjCImplicitSetterGetterRefExpr *E) {
218   RValue RV = CGF.EmitObjCPropertyGet(E);
219   EmitFinalDestCopy(E, RV);
220 }
221 
222 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
223   CGF.EmitAnyExpr(E->getLHS(), 0, false, true);
224   CGF.EmitAggExpr(E->getRHS(), DestPtr, VolatileDest,
225                   /*IgnoreResult=*/false, IsInitializer);
226 }
227 
228 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
229   CGF.EmitCompoundStmt(*E->getSubStmt(), true, DestPtr, VolatileDest);
230 }
231 
232 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
233   CGF.ErrorUnsupported(E, "aggregate binary expression");
234 }
235 
236 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
237   // For an assignment to work, the value on the right has
238   // to be compatible with the value on the left.
239   assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
240                                                  E->getRHS()->getType())
241          && "Invalid assignment");
242   LValue LHS = CGF.EmitLValue(E->getLHS());
243 
244   // We have to special case property setters, otherwise we must have
245   // a simple lvalue (no aggregates inside vectors, bitfields).
246   if (LHS.isPropertyRef()) {
247     llvm::Value *AggLoc = DestPtr;
248     if (!AggLoc)
249       AggLoc = CGF.CreateTempAlloca(CGF.ConvertType(E->getRHS()->getType()));
250     CGF.EmitAggExpr(E->getRHS(), AggLoc, VolatileDest);
251     CGF.EmitObjCPropertySet(LHS.getPropertyRefExpr(),
252                             RValue::getAggregate(AggLoc, VolatileDest));
253   } else if (LHS.isKVCRef()) {
254     llvm::Value *AggLoc = DestPtr;
255     if (!AggLoc)
256       AggLoc = CGF.CreateTempAlloca(CGF.ConvertType(E->getRHS()->getType()));
257     CGF.EmitAggExpr(E->getRHS(), AggLoc, VolatileDest);
258     CGF.EmitObjCPropertySet(LHS.getKVCRefExpr(),
259                             RValue::getAggregate(AggLoc, VolatileDest));
260   } else {
261     if (CGF.getContext().getLangOptions().NeXTRuntime) {
262       QualType LHSTy = E->getLHS()->getType();
263       if (const RecordType *FDTTy = LHSTy.getTypePtr()->getAs<RecordType>())
264         if (FDTTy->getDecl()->hasObjectMember()) {
265           LValue RHS = CGF.EmitLValue(E->getRHS());
266           CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, LHS.getAddress(),
267                                       RHS.getAddress(),
268                                       CGF.getContext().getTypeSize(LHSTy) / 8);
269           return;
270         }
271     }
272     // Codegen the RHS so that it stores directly into the LHS.
273     CGF.EmitAggExpr(E->getRHS(), LHS.getAddress(), LHS.isVolatileQualified());
274     EmitFinalDestCopy(E, LHS, true);
275   }
276 }
277 
278 void AggExprEmitter::VisitConditionalOperator(const ConditionalOperator *E) {
279   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
280   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
281   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
282 
283   llvm::Value *Cond = CGF.EvaluateExprAsBool(E->getCond());
284   Builder.CreateCondBr(Cond, LHSBlock, RHSBlock);
285 
286   CGF.PushConditionalTempDestruction();
287   CGF.EmitBlock(LHSBlock);
288 
289   // Handle the GNU extension for missing LHS.
290   assert(E->getLHS() && "Must have LHS for aggregate value");
291 
292   Visit(E->getLHS());
293   CGF.PopConditionalTempDestruction();
294   CGF.EmitBranch(ContBlock);
295 
296   CGF.PushConditionalTempDestruction();
297   CGF.EmitBlock(RHSBlock);
298 
299   Visit(E->getRHS());
300   CGF.PopConditionalTempDestruction();
301   CGF.EmitBranch(ContBlock);
302 
303   CGF.EmitBlock(ContBlock);
304 }
305 
306 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) {
307   Visit(CE->getChosenSubExpr(CGF.getContext()));
308 }
309 
310 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
311   llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
312   llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
313 
314   if (!ArgPtr) {
315     CGF.ErrorUnsupported(VE, "aggregate va_arg expression");
316     return;
317   }
318 
319   EmitFinalDestCopy(VE, LValue::MakeAddr(ArgPtr, 0));
320 }
321 
322 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
323   llvm::Value *Val = DestPtr;
324 
325   if (!Val) {
326     // Create a temporary variable.
327     Val = CGF.CreateTempAlloca(CGF.ConvertTypeForMem(E->getType()), "tmp");
328 
329     // FIXME: volatile
330     CGF.EmitAggExpr(E->getSubExpr(), Val, false);
331   } else
332     Visit(E->getSubExpr());
333 
334   // Don't make this a live temporary if we're emitting an initializer expr.
335   if (!IsInitializer)
336     CGF.PushCXXTemporary(E->getTemporary(), Val);
337 }
338 
339 void
340 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) {
341   llvm::Value *Val = DestPtr;
342 
343   if (!Val) {
344     // Create a temporary variable.
345     Val = CGF.CreateTempAlloca(CGF.ConvertTypeForMem(E->getType()), "tmp");
346   }
347 
348   CGF.EmitCXXConstructExpr(Val, E);
349 }
350 
351 void AggExprEmitter::VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E) {
352   CGF.EmitCXXExprWithTemporaries(E, DestPtr, VolatileDest, IsInitializer);
353 }
354 
355 void AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV) {
356   // FIXME: Ignore result?
357   // FIXME: Are initializers affected by volatile?
358   if (isa<ImplicitValueInitExpr>(E)) {
359     EmitNullInitializationToLValue(LV, E->getType());
360   } else if (E->getType()->isComplexType()) {
361     CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false);
362   } else if (CGF.hasAggregateLLVMType(E->getType())) {
363     CGF.EmitAnyExpr(E, LV.getAddress(), false);
364   } else {
365     CGF.EmitStoreThroughLValue(CGF.EmitAnyExpr(E), LV, E->getType());
366   }
367 }
368 
369 void AggExprEmitter::EmitNullInitializationToLValue(LValue LV, QualType T) {
370   if (!CGF.hasAggregateLLVMType(T)) {
371     // For non-aggregates, we can store zero
372     llvm::Value *Null = llvm::Constant::getNullValue(CGF.ConvertType(T));
373     CGF.EmitStoreThroughLValue(RValue::get(Null), LV, T);
374   } else {
375     // Otherwise, just memset the whole thing to zero.  This is legal
376     // because in LLVM, all default initializers are guaranteed to have a
377     // bit pattern of all zeros.
378     // FIXME: That isn't true for member pointers!
379     // There's a potential optimization opportunity in combining
380     // memsets; that would be easy for arrays, but relatively
381     // difficult for structures with the current code.
382     CGF.EmitMemSetToZero(LV.getAddress(), T);
383   }
384 }
385 
386 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
387 #if 0
388   // FIXME: Disabled while we figure out what to do about
389   // test/CodeGen/bitfield.c
390   //
391   // If we can, prefer a copy from a global; this is a lot less code for long
392   // globals, and it's easier for the current optimizers to analyze.
393   // FIXME: Should we really be doing this? Should we try to avoid cases where
394   // we emit a global with a lot of zeros?  Should we try to avoid short
395   // globals?
396   if (E->isConstantInitializer(CGF.getContext(), 0)) {
397     llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, &CGF);
398     llvm::GlobalVariable* GV =
399     new llvm::GlobalVariable(C->getType(), true,
400                              llvm::GlobalValue::InternalLinkage,
401                              C, "", &CGF.CGM.getModule(), 0);
402     EmitFinalDestCopy(E, LValue::MakeAddr(GV, 0));
403     return;
404   }
405 #endif
406   if (E->hadArrayRangeDesignator()) {
407     CGF.ErrorUnsupported(E, "GNU array range designator extension");
408   }
409 
410   // Handle initialization of an array.
411   if (E->getType()->isArrayType()) {
412     const llvm::PointerType *APType =
413       cast<llvm::PointerType>(DestPtr->getType());
414     const llvm::ArrayType *AType =
415       cast<llvm::ArrayType>(APType->getElementType());
416 
417     uint64_t NumInitElements = E->getNumInits();
418 
419     if (E->getNumInits() > 0) {
420       QualType T1 = E->getType();
421       QualType T2 = E->getInit(0)->getType();
422       if (CGF.getContext().hasSameUnqualifiedType(T1, T2)) {
423         EmitAggLoadOfLValue(E->getInit(0));
424         return;
425       }
426     }
427 
428     uint64_t NumArrayElements = AType->getNumElements();
429     QualType ElementType = CGF.getContext().getCanonicalType(E->getType());
430     ElementType = CGF.getContext().getAsArrayType(ElementType)->getElementType();
431 
432     unsigned CVRqualifier = ElementType.getCVRQualifiers();
433 
434     for (uint64_t i = 0; i != NumArrayElements; ++i) {
435       llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array");
436       if (i < NumInitElements)
437         EmitInitializationToLValue(E->getInit(i),
438                                    LValue::MakeAddr(NextVal, CVRqualifier));
439       else
440         EmitNullInitializationToLValue(LValue::MakeAddr(NextVal, CVRqualifier),
441                                        ElementType);
442     }
443     return;
444   }
445 
446   assert(E->getType()->isRecordType() && "Only support structs/unions here!");
447 
448   // Do struct initialization; this code just sets each individual member
449   // to the approprate value.  This makes bitfield support automatic;
450   // the disadvantage is that the generated code is more difficult for
451   // the optimizer, especially with bitfields.
452   unsigned NumInitElements = E->getNumInits();
453   RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl();
454   unsigned CurInitVal = 0;
455 
456   if (E->getType()->isUnionType()) {
457     // Only initialize one field of a union. The field itself is
458     // specified by the initializer list.
459     if (!E->getInitializedFieldInUnion()) {
460       // Empty union; we have nothing to do.
461 
462 #ifndef NDEBUG
463       // Make sure that it's really an empty and not a failure of
464       // semantic analysis.
465       for (RecordDecl::field_iterator Field = SD->field_begin(),
466                                    FieldEnd = SD->field_end();
467            Field != FieldEnd; ++Field)
468         assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed");
469 #endif
470       return;
471     }
472 
473     // FIXME: volatility
474     FieldDecl *Field = E->getInitializedFieldInUnion();
475     LValue FieldLoc = CGF.EmitLValueForField(DestPtr, Field, true, 0);
476 
477     if (NumInitElements) {
478       // Store the initializer into the field
479       EmitInitializationToLValue(E->getInit(0), FieldLoc);
480     } else {
481       // Default-initialize to null
482       EmitNullInitializationToLValue(FieldLoc, Field->getType());
483     }
484 
485     return;
486   }
487 
488   // Here we iterate over the fields; this makes it simpler to both
489   // default-initialize fields and skip over unnamed fields.
490   for (RecordDecl::field_iterator Field = SD->field_begin(),
491                                FieldEnd = SD->field_end();
492        Field != FieldEnd; ++Field) {
493     // We're done once we hit the flexible array member
494     if (Field->getType()->isIncompleteArrayType())
495       break;
496 
497     if (Field->isUnnamedBitfield())
498       continue;
499 
500     // FIXME: volatility
501     LValue FieldLoc = CGF.EmitLValueForField(DestPtr, *Field, false, 0);
502     // We never generate write-barries for initialized fields.
503     LValue::SetObjCNonGC(FieldLoc, true);
504     if (CurInitVal < NumInitElements) {
505       // Store the initializer into the field
506       EmitInitializationToLValue(E->getInit(CurInitVal++), FieldLoc);
507     } else {
508       // We're out of initalizers; default-initialize to null
509       EmitNullInitializationToLValue(FieldLoc, Field->getType());
510     }
511   }
512 }
513 
514 //===----------------------------------------------------------------------===//
515 //                        Entry Points into this File
516 //===----------------------------------------------------------------------===//
517 
518 /// EmitAggExpr - Emit the computation of the specified expression of aggregate
519 /// type.  The result is computed into DestPtr.  Note that if DestPtr is null,
520 /// the value of the aggregate expression is not needed.  If VolatileDest is
521 /// true, DestPtr cannot be 0.
522 void CodeGenFunction::EmitAggExpr(const Expr *E, llvm::Value *DestPtr,
523                                   bool VolatileDest, bool IgnoreResult,
524                                   bool IsInitializer) {
525   assert(E && hasAggregateLLVMType(E->getType()) &&
526          "Invalid aggregate expression to emit");
527   assert ((DestPtr != 0 || VolatileDest == false)
528           && "volatile aggregate can't be 0");
529 
530   AggExprEmitter(*this, DestPtr, VolatileDest, IgnoreResult, IsInitializer)
531     .Visit(const_cast<Expr*>(E));
532 }
533 
534 void CodeGenFunction::EmitAggregateClear(llvm::Value *DestPtr, QualType Ty) {
535   assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
536 
537   EmitMemSetToZero(DestPtr, Ty);
538 }
539 
540 void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr,
541                                         llvm::Value *SrcPtr, QualType Ty,
542                                         bool isVolatile) {
543   assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
544 
545   // Aggregate assignment turns into llvm.memcpy.  This is almost valid per
546   // C99 6.5.16.1p3, which states "If the value being stored in an object is
547   // read from another object that overlaps in anyway the storage of the first
548   // object, then the overlap shall be exact and the two objects shall have
549   // qualified or unqualified versions of a compatible type."
550   //
551   // memcpy is not defined if the source and destination pointers are exactly
552   // equal, but other compilers do this optimization, and almost every memcpy
553   // implementation handles this case safely.  If there is a libc that does not
554   // safely handle this, we can add a target hook.
555   const llvm::Type *BP =
556                 llvm::PointerType::getUnqual(llvm::Type::getInt8Ty(VMContext));
557   if (DestPtr->getType() != BP)
558     DestPtr = Builder.CreateBitCast(DestPtr, BP, "tmp");
559   if (SrcPtr->getType() != BP)
560     SrcPtr = Builder.CreateBitCast(SrcPtr, BP, "tmp");
561 
562   // Get size and alignment info for this aggregate.
563   std::pair<uint64_t, unsigned> TypeInfo = getContext().getTypeInfo(Ty);
564 
565   // FIXME: Handle variable sized types.
566   const llvm::Type *IntPtr =
567           llvm::IntegerType::get(VMContext, LLVMPointerWidth);
568 
569   // FIXME: If we have a volatile struct, the optimizer can remove what might
570   // appear to be `extra' memory ops:
571   //
572   // volatile struct { int i; } a, b;
573   //
574   // int main() {
575   //   a = b;
576   //   a = b;
577   // }
578   //
579   // we need to use a differnt call here.  We use isVolatile to indicate when
580   // either the source or the destination is volatile.
581   Builder.CreateCall4(CGM.getMemCpyFn(),
582                       DestPtr, SrcPtr,
583                       // TypeInfo.first describes size in bits.
584                       llvm::ConstantInt::get(IntPtr, TypeInfo.first/8),
585                       llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
586                                              TypeInfo.second/8));
587 }
588