1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Aggregate Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "CGObjCRuntime.h" 17 #include "clang/AST/ASTContext.h" 18 #include "clang/AST/DeclCXX.h" 19 #include "clang/AST/StmtVisitor.h" 20 #include "llvm/Constants.h" 21 #include "llvm/Function.h" 22 #include "llvm/GlobalVariable.h" 23 #include "llvm/Intrinsics.h" 24 using namespace clang; 25 using namespace CodeGen; 26 27 //===----------------------------------------------------------------------===// 28 // Aggregate Expression Emitter 29 //===----------------------------------------------------------------------===// 30 31 namespace { 32 class AggExprEmitter : public StmtVisitor<AggExprEmitter> { 33 CodeGenFunction &CGF; 34 CGBuilderTy &Builder; 35 AggValueSlot Dest; 36 bool IgnoreResult; 37 38 /// We want to use 'dest' as the return slot except under two 39 /// conditions: 40 /// - The destination slot requires garbage collection, so we 41 /// need to use the GC API. 42 /// - The destination slot is potentially aliased. 43 bool shouldUseDestForReturnSlot() const { 44 return !(Dest.requiresGCollection() || Dest.isPotentiallyAliased()); 45 } 46 47 ReturnValueSlot getReturnValueSlot() const { 48 if (!shouldUseDestForReturnSlot()) 49 return ReturnValueSlot(); 50 51 return ReturnValueSlot(Dest.getAddr(), Dest.isVolatile()); 52 } 53 54 AggValueSlot EnsureSlot(QualType T) { 55 if (!Dest.isIgnored()) return Dest; 56 return CGF.CreateAggTemp(T, "agg.tmp.ensured"); 57 } 58 59 public: 60 AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest, 61 bool ignore) 62 : CGF(cgf), Builder(CGF.Builder), Dest(Dest), 63 IgnoreResult(ignore) { 64 } 65 66 //===--------------------------------------------------------------------===// 67 // Utilities 68 //===--------------------------------------------------------------------===// 69 70 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 71 /// represents a value lvalue, this method emits the address of the lvalue, 72 /// then loads the result into DestPtr. 73 void EmitAggLoadOfLValue(const Expr *E); 74 75 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 76 void EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore = false); 77 void EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore = false, 78 unsigned Alignment = 0); 79 80 void EmitMoveFromReturnSlot(const Expr *E, RValue Src); 81 82 AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) { 83 if (CGF.getLangOptions().getGC() && TypeRequiresGCollection(T)) 84 return AggValueSlot::NeedsGCBarriers; 85 return AggValueSlot::DoesNotNeedGCBarriers; 86 } 87 88 bool TypeRequiresGCollection(QualType T); 89 90 //===--------------------------------------------------------------------===// 91 // Visitor Methods 92 //===--------------------------------------------------------------------===// 93 94 void VisitStmt(Stmt *S) { 95 CGF.ErrorUnsupported(S, "aggregate expression"); 96 } 97 void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); } 98 void VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 99 Visit(GE->getResultExpr()); 100 } 101 void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); } 102 void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 103 return Visit(E->getReplacement()); 104 } 105 106 // l-values. 107 void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); } 108 void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); } 109 void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); } 110 void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); } 111 void VisitCompoundLiteralExpr(CompoundLiteralExpr *E); 112 void VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 113 EmitAggLoadOfLValue(E); 114 } 115 void VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) { 116 EmitAggLoadOfLValue(E); 117 } 118 void VisitPredefinedExpr(const PredefinedExpr *E) { 119 EmitAggLoadOfLValue(E); 120 } 121 122 // Operators. 123 void VisitCastExpr(CastExpr *E); 124 void VisitCallExpr(const CallExpr *E); 125 void VisitStmtExpr(const StmtExpr *E); 126 void VisitBinaryOperator(const BinaryOperator *BO); 127 void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO); 128 void VisitBinAssign(const BinaryOperator *E); 129 void VisitBinComma(const BinaryOperator *E); 130 131 void VisitObjCMessageExpr(ObjCMessageExpr *E); 132 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 133 EmitAggLoadOfLValue(E); 134 } 135 136 void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO); 137 void VisitChooseExpr(const ChooseExpr *CE); 138 void VisitInitListExpr(InitListExpr *E); 139 void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E); 140 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 141 Visit(DAE->getExpr()); 142 } 143 void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E); 144 void VisitCXXConstructExpr(const CXXConstructExpr *E); 145 void VisitLambdaExpr(LambdaExpr *E); 146 void VisitExprWithCleanups(ExprWithCleanups *E); 147 void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E); 148 void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); } 149 void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E); 150 void VisitOpaqueValueExpr(OpaqueValueExpr *E); 151 152 void VisitPseudoObjectExpr(PseudoObjectExpr *E) { 153 if (E->isGLValue()) { 154 LValue LV = CGF.EmitPseudoObjectLValue(E); 155 return EmitFinalDestCopy(E, LV); 156 } 157 158 CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType())); 159 } 160 161 void VisitVAArgExpr(VAArgExpr *E); 162 163 void EmitInitializationToLValue(Expr *E, LValue Address); 164 void EmitNullInitializationToLValue(LValue Address); 165 // case Expr::ChooseExprClass: 166 void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); } 167 void VisitAtomicExpr(AtomicExpr *E) { 168 CGF.EmitAtomicExpr(E, EnsureSlot(E->getType()).getAddr()); 169 } 170 }; 171 } // end anonymous namespace. 172 173 //===----------------------------------------------------------------------===// 174 // Utilities 175 //===----------------------------------------------------------------------===// 176 177 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 178 /// represents a value lvalue, this method emits the address of the lvalue, 179 /// then loads the result into DestPtr. 180 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) { 181 LValue LV = CGF.EmitLValue(E); 182 EmitFinalDestCopy(E, LV); 183 } 184 185 /// \brief True if the given aggregate type requires special GC API calls. 186 bool AggExprEmitter::TypeRequiresGCollection(QualType T) { 187 // Only record types have members that might require garbage collection. 188 const RecordType *RecordTy = T->getAs<RecordType>(); 189 if (!RecordTy) return false; 190 191 // Don't mess with non-trivial C++ types. 192 RecordDecl *Record = RecordTy->getDecl(); 193 if (isa<CXXRecordDecl>(Record) && 194 (!cast<CXXRecordDecl>(Record)->hasTrivialCopyConstructor() || 195 !cast<CXXRecordDecl>(Record)->hasTrivialDestructor())) 196 return false; 197 198 // Check whether the type has an object member. 199 return Record->hasObjectMember(); 200 } 201 202 /// \brief Perform the final move to DestPtr if for some reason 203 /// getReturnValueSlot() didn't use it directly. 204 /// 205 /// The idea is that you do something like this: 206 /// RValue Result = EmitSomething(..., getReturnValueSlot()); 207 /// EmitMoveFromReturnSlot(E, Result); 208 /// 209 /// If nothing interferes, this will cause the result to be emitted 210 /// directly into the return value slot. Otherwise, a final move 211 /// will be performed. 212 void AggExprEmitter::EmitMoveFromReturnSlot(const Expr *E, RValue Src) { 213 if (shouldUseDestForReturnSlot()) { 214 // Logically, Dest.getAddr() should equal Src.getAggregateAddr(). 215 // The possibility of undef rvalues complicates that a lot, 216 // though, so we can't really assert. 217 return; 218 } 219 220 // Otherwise, do a final copy, 221 assert(Dest.getAddr() != Src.getAggregateAddr()); 222 EmitFinalDestCopy(E, Src, /*Ignore*/ true); 223 } 224 225 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 226 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore, 227 unsigned Alignment) { 228 assert(Src.isAggregate() && "value must be aggregate value!"); 229 230 // If Dest is ignored, then we're evaluating an aggregate expression 231 // in a context (like an expression statement) that doesn't care 232 // about the result. C says that an lvalue-to-rvalue conversion is 233 // performed in these cases; C++ says that it is not. In either 234 // case, we don't actually need to do anything unless the value is 235 // volatile. 236 if (Dest.isIgnored()) { 237 if (!Src.isVolatileQualified() || 238 CGF.CGM.getLangOptions().CPlusPlus || 239 (IgnoreResult && Ignore)) 240 return; 241 242 // If the source is volatile, we must read from it; to do that, we need 243 // some place to put it. 244 Dest = CGF.CreateAggTemp(E->getType(), "agg.tmp"); 245 } 246 247 if (Dest.requiresGCollection()) { 248 CharUnits size = CGF.getContext().getTypeSizeInChars(E->getType()); 249 llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType()); 250 llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity()); 251 CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, 252 Dest.getAddr(), 253 Src.getAggregateAddr(), 254 SizeVal); 255 return; 256 } 257 // If the result of the assignment is used, copy the LHS there also. 258 // FIXME: Pass VolatileDest as well. I think we also need to merge volatile 259 // from the source as well, as we can't eliminate it if either operand 260 // is volatile, unless copy has volatile for both source and destination.. 261 CGF.EmitAggregateCopy(Dest.getAddr(), Src.getAggregateAddr(), E->getType(), 262 Dest.isVolatile()|Src.isVolatileQualified(), 263 Alignment); 264 } 265 266 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 267 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore) { 268 assert(Src.isSimple() && "Can't have aggregate bitfield, vector, etc"); 269 270 CharUnits Alignment = std::min(Src.getAlignment(), Dest.getAlignment()); 271 EmitFinalDestCopy(E, Src.asAggregateRValue(), Ignore, Alignment.getQuantity()); 272 } 273 274 //===----------------------------------------------------------------------===// 275 // Visitor Methods 276 //===----------------------------------------------------------------------===// 277 278 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){ 279 Visit(E->GetTemporaryExpr()); 280 } 281 282 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) { 283 EmitFinalDestCopy(e, CGF.getOpaqueLValueMapping(e)); 284 } 285 286 void 287 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 288 if (E->getType().isPODType(CGF.getContext())) { 289 // For a POD type, just emit a load of the lvalue + a copy, because our 290 // compound literal might alias the destination. 291 // FIXME: This is a band-aid; the real problem appears to be in our handling 292 // of assignments, where we store directly into the LHS without checking 293 // whether anything in the RHS aliases. 294 EmitAggLoadOfLValue(E); 295 return; 296 } 297 298 AggValueSlot Slot = EnsureSlot(E->getType()); 299 CGF.EmitAggExpr(E->getInitializer(), Slot); 300 } 301 302 303 void AggExprEmitter::VisitCastExpr(CastExpr *E) { 304 switch (E->getCastKind()) { 305 case CK_Dynamic: { 306 assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?"); 307 LValue LV = CGF.EmitCheckedLValue(E->getSubExpr()); 308 // FIXME: Do we also need to handle property references here? 309 if (LV.isSimple()) 310 CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E)); 311 else 312 CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast"); 313 314 if (!Dest.isIgnored()) 315 CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination"); 316 break; 317 } 318 319 case CK_ToUnion: { 320 if (Dest.isIgnored()) break; 321 322 // GCC union extension 323 QualType Ty = E->getSubExpr()->getType(); 324 QualType PtrTy = CGF.getContext().getPointerType(Ty); 325 llvm::Value *CastPtr = Builder.CreateBitCast(Dest.getAddr(), 326 CGF.ConvertType(PtrTy)); 327 EmitInitializationToLValue(E->getSubExpr(), 328 CGF.MakeAddrLValue(CastPtr, Ty)); 329 break; 330 } 331 332 case CK_DerivedToBase: 333 case CK_BaseToDerived: 334 case CK_UncheckedDerivedToBase: { 335 llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: " 336 "should have been unpacked before we got here"); 337 } 338 339 case CK_LValueToRValue: // hope for downstream optimization 340 case CK_NoOp: 341 case CK_AtomicToNonAtomic: 342 case CK_NonAtomicToAtomic: 343 case CK_UserDefinedConversion: 344 case CK_ConstructorConversion: 345 assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(), 346 E->getType()) && 347 "Implicit cast types must be compatible"); 348 Visit(E->getSubExpr()); 349 break; 350 351 case CK_LValueBitCast: 352 llvm_unreachable("should not be emitting lvalue bitcast as rvalue"); 353 354 case CK_Dependent: 355 case CK_BitCast: 356 case CK_ArrayToPointerDecay: 357 case CK_FunctionToPointerDecay: 358 case CK_NullToPointer: 359 case CK_NullToMemberPointer: 360 case CK_BaseToDerivedMemberPointer: 361 case CK_DerivedToBaseMemberPointer: 362 case CK_MemberPointerToBoolean: 363 case CK_ReinterpretMemberPointer: 364 case CK_IntegralToPointer: 365 case CK_PointerToIntegral: 366 case CK_PointerToBoolean: 367 case CK_ToVoid: 368 case CK_VectorSplat: 369 case CK_IntegralCast: 370 case CK_IntegralToBoolean: 371 case CK_IntegralToFloating: 372 case CK_FloatingToIntegral: 373 case CK_FloatingToBoolean: 374 case CK_FloatingCast: 375 case CK_CPointerToObjCPointerCast: 376 case CK_BlockPointerToObjCPointerCast: 377 case CK_AnyPointerToBlockPointerCast: 378 case CK_ObjCObjectLValueCast: 379 case CK_FloatingRealToComplex: 380 case CK_FloatingComplexToReal: 381 case CK_FloatingComplexToBoolean: 382 case CK_FloatingComplexCast: 383 case CK_FloatingComplexToIntegralComplex: 384 case CK_IntegralRealToComplex: 385 case CK_IntegralComplexToReal: 386 case CK_IntegralComplexToBoolean: 387 case CK_IntegralComplexCast: 388 case CK_IntegralComplexToFloatingComplex: 389 case CK_ARCProduceObject: 390 case CK_ARCConsumeObject: 391 case CK_ARCReclaimReturnedObject: 392 case CK_ARCExtendBlockObject: 393 llvm_unreachable("cast kind invalid for aggregate types"); 394 } 395 } 396 397 void AggExprEmitter::VisitCallExpr(const CallExpr *E) { 398 if (E->getCallReturnType()->isReferenceType()) { 399 EmitAggLoadOfLValue(E); 400 return; 401 } 402 403 RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot()); 404 EmitMoveFromReturnSlot(E, RV); 405 } 406 407 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) { 408 RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot()); 409 EmitMoveFromReturnSlot(E, RV); 410 } 411 412 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) { 413 CGF.EmitIgnoredExpr(E->getLHS()); 414 Visit(E->getRHS()); 415 } 416 417 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) { 418 CodeGenFunction::StmtExprEvaluation eval(CGF); 419 CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest); 420 } 421 422 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) { 423 if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI) 424 VisitPointerToDataMemberBinaryOperator(E); 425 else 426 CGF.ErrorUnsupported(E, "aggregate binary expression"); 427 } 428 429 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator( 430 const BinaryOperator *E) { 431 LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E); 432 EmitFinalDestCopy(E, LV); 433 } 434 435 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) { 436 // For an assignment to work, the value on the right has 437 // to be compatible with the value on the left. 438 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), 439 E->getRHS()->getType()) 440 && "Invalid assignment"); 441 442 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->getLHS())) 443 if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) 444 if (VD->hasAttr<BlocksAttr>() && 445 E->getRHS()->HasSideEffects(CGF.getContext())) { 446 // When __block variable on LHS, the RHS must be evaluated first 447 // as it may change the 'forwarding' field via call to Block_copy. 448 LValue RHS = CGF.EmitLValue(E->getRHS()); 449 LValue LHS = CGF.EmitLValue(E->getLHS()); 450 Dest = AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed, 451 needsGC(E->getLHS()->getType()), 452 AggValueSlot::IsAliased); 453 EmitFinalDestCopy(E, RHS, true); 454 return; 455 } 456 457 LValue LHS = CGF.EmitLValue(E->getLHS()); 458 459 // Codegen the RHS so that it stores directly into the LHS. 460 AggValueSlot LHSSlot = 461 AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed, 462 needsGC(E->getLHS()->getType()), 463 AggValueSlot::IsAliased); 464 CGF.EmitAggExpr(E->getRHS(), LHSSlot, false); 465 EmitFinalDestCopy(E, LHS, true); 466 } 467 468 void AggExprEmitter:: 469 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 470 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 471 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 472 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 473 474 // Bind the common expression if necessary. 475 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 476 477 CodeGenFunction::ConditionalEvaluation eval(CGF); 478 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock); 479 480 // Save whether the destination's lifetime is externally managed. 481 bool isExternallyDestructed = Dest.isExternallyDestructed(); 482 483 eval.begin(CGF); 484 CGF.EmitBlock(LHSBlock); 485 Visit(E->getTrueExpr()); 486 eval.end(CGF); 487 488 assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!"); 489 CGF.Builder.CreateBr(ContBlock); 490 491 // If the result of an agg expression is unused, then the emission 492 // of the LHS might need to create a destination slot. That's fine 493 // with us, and we can safely emit the RHS into the same slot, but 494 // we shouldn't claim that it's already being destructed. 495 Dest.setExternallyDestructed(isExternallyDestructed); 496 497 eval.begin(CGF); 498 CGF.EmitBlock(RHSBlock); 499 Visit(E->getFalseExpr()); 500 eval.end(CGF); 501 502 CGF.EmitBlock(ContBlock); 503 } 504 505 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) { 506 Visit(CE->getChosenSubExpr(CGF.getContext())); 507 } 508 509 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 510 llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr()); 511 llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType()); 512 513 if (!ArgPtr) { 514 CGF.ErrorUnsupported(VE, "aggregate va_arg expression"); 515 return; 516 } 517 518 EmitFinalDestCopy(VE, CGF.MakeAddrLValue(ArgPtr, VE->getType())); 519 } 520 521 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 522 // Ensure that we have a slot, but if we already do, remember 523 // whether it was externally destructed. 524 bool wasExternallyDestructed = Dest.isExternallyDestructed(); 525 Dest = EnsureSlot(E->getType()); 526 527 // We're going to push a destructor if there isn't already one. 528 Dest.setExternallyDestructed(); 529 530 Visit(E->getSubExpr()); 531 532 // Push that destructor we promised. 533 if (!wasExternallyDestructed) 534 CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddr()); 535 } 536 537 void 538 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) { 539 AggValueSlot Slot = EnsureSlot(E->getType()); 540 CGF.EmitCXXConstructExpr(E, Slot); 541 } 542 543 void 544 AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) { 545 AggValueSlot Slot = EnsureSlot(E->getType()); 546 CGF.EmitLambdaExpr(E, Slot); 547 } 548 549 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) { 550 CGF.enterFullExpression(E); 551 CodeGenFunction::RunCleanupsScope cleanups(CGF); 552 Visit(E->getSubExpr()); 553 } 554 555 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) { 556 QualType T = E->getType(); 557 AggValueSlot Slot = EnsureSlot(T); 558 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T)); 559 } 560 561 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) { 562 QualType T = E->getType(); 563 AggValueSlot Slot = EnsureSlot(T); 564 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T)); 565 } 566 567 /// isSimpleZero - If emitting this value will obviously just cause a store of 568 /// zero to memory, return true. This can return false if uncertain, so it just 569 /// handles simple cases. 570 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) { 571 E = E->IgnoreParens(); 572 573 // 0 574 if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) 575 return IL->getValue() == 0; 576 // +0.0 577 if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E)) 578 return FL->getValue().isPosZero(); 579 // int() 580 if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) && 581 CGF.getTypes().isZeroInitializable(E->getType())) 582 return true; 583 // (int*)0 - Null pointer expressions. 584 if (const CastExpr *ICE = dyn_cast<CastExpr>(E)) 585 return ICE->getCastKind() == CK_NullToPointer; 586 // '\0' 587 if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) 588 return CL->getValue() == 0; 589 590 // Otherwise, hard case: conservatively return false. 591 return false; 592 } 593 594 595 void 596 AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV) { 597 QualType type = LV.getType(); 598 // FIXME: Ignore result? 599 // FIXME: Are initializers affected by volatile? 600 if (Dest.isZeroed() && isSimpleZero(E, CGF)) { 601 // Storing "i32 0" to a zero'd memory location is a noop. 602 } else if (isa<ImplicitValueInitExpr>(E)) { 603 EmitNullInitializationToLValue(LV); 604 } else if (type->isReferenceType()) { 605 RValue RV = CGF.EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0); 606 CGF.EmitStoreThroughLValue(RV, LV); 607 } else if (type->isAnyComplexType()) { 608 CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false); 609 } else if (CGF.hasAggregateLLVMType(type)) { 610 CGF.EmitAggExpr(E, AggValueSlot::forLValue(LV, 611 AggValueSlot::IsDestructed, 612 AggValueSlot::DoesNotNeedGCBarriers, 613 AggValueSlot::IsNotAliased, 614 Dest.isZeroed())); 615 } else if (LV.isSimple()) { 616 CGF.EmitScalarInit(E, /*D=*/0, LV, /*Captured=*/false); 617 } else { 618 CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV); 619 } 620 } 621 622 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) { 623 QualType type = lv.getType(); 624 625 // If the destination slot is already zeroed out before the aggregate is 626 // copied into it, we don't have to emit any zeros here. 627 if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type)) 628 return; 629 630 if (!CGF.hasAggregateLLVMType(type)) { 631 // For non-aggregates, we can store zero 632 llvm::Value *null = llvm::Constant::getNullValue(CGF.ConvertType(type)); 633 CGF.EmitStoreThroughLValue(RValue::get(null), lv); 634 } else { 635 // There's a potential optimization opportunity in combining 636 // memsets; that would be easy for arrays, but relatively 637 // difficult for structures with the current code. 638 CGF.EmitNullInitialization(lv.getAddress(), lv.getType()); 639 } 640 } 641 642 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) { 643 #if 0 644 // FIXME: Assess perf here? Figure out what cases are worth optimizing here 645 // (Length of globals? Chunks of zeroed-out space?). 646 // 647 // If we can, prefer a copy from a global; this is a lot less code for long 648 // globals, and it's easier for the current optimizers to analyze. 649 if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) { 650 llvm::GlobalVariable* GV = 651 new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true, 652 llvm::GlobalValue::InternalLinkage, C, ""); 653 EmitFinalDestCopy(E, CGF.MakeAddrLValue(GV, E->getType())); 654 return; 655 } 656 #endif 657 if (E->hadArrayRangeDesignator()) 658 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 659 660 llvm::Value *DestPtr = Dest.getAddr(); 661 662 // Handle initialization of an array. 663 if (E->getType()->isArrayType()) { 664 llvm::PointerType *APType = 665 cast<llvm::PointerType>(DestPtr->getType()); 666 llvm::ArrayType *AType = 667 cast<llvm::ArrayType>(APType->getElementType()); 668 669 uint64_t NumInitElements = E->getNumInits(); 670 671 if (E->getNumInits() > 0) { 672 QualType T1 = E->getType(); 673 QualType T2 = E->getInit(0)->getType(); 674 if (CGF.getContext().hasSameUnqualifiedType(T1, T2)) { 675 EmitAggLoadOfLValue(E->getInit(0)); 676 return; 677 } 678 } 679 680 uint64_t NumArrayElements = AType->getNumElements(); 681 assert(NumInitElements <= NumArrayElements); 682 683 QualType elementType = E->getType().getCanonicalType(); 684 elementType = CGF.getContext().getQualifiedType( 685 cast<ArrayType>(elementType)->getElementType(), 686 elementType.getQualifiers() + Dest.getQualifiers()); 687 688 // DestPtr is an array*. Construct an elementType* by drilling 689 // down a level. 690 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 691 llvm::Value *indices[] = { zero, zero }; 692 llvm::Value *begin = 693 Builder.CreateInBoundsGEP(DestPtr, indices, "arrayinit.begin"); 694 695 // Exception safety requires us to destroy all the 696 // already-constructed members if an initializer throws. 697 // For that, we'll need an EH cleanup. 698 QualType::DestructionKind dtorKind = elementType.isDestructedType(); 699 llvm::AllocaInst *endOfInit = 0; 700 EHScopeStack::stable_iterator cleanup; 701 llvm::Instruction *cleanupDominator = 0; 702 if (CGF.needsEHCleanup(dtorKind)) { 703 // In principle we could tell the cleanup where we are more 704 // directly, but the control flow can get so varied here that it 705 // would actually be quite complex. Therefore we go through an 706 // alloca. 707 endOfInit = CGF.CreateTempAlloca(begin->getType(), 708 "arrayinit.endOfInit"); 709 cleanupDominator = Builder.CreateStore(begin, endOfInit); 710 CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType, 711 CGF.getDestroyer(dtorKind)); 712 cleanup = CGF.EHStack.stable_begin(); 713 714 // Otherwise, remember that we didn't need a cleanup. 715 } else { 716 dtorKind = QualType::DK_none; 717 } 718 719 llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1); 720 721 // The 'current element to initialize'. The invariants on this 722 // variable are complicated. Essentially, after each iteration of 723 // the loop, it points to the last initialized element, except 724 // that it points to the beginning of the array before any 725 // elements have been initialized. 726 llvm::Value *element = begin; 727 728 // Emit the explicit initializers. 729 for (uint64_t i = 0; i != NumInitElements; ++i) { 730 // Advance to the next element. 731 if (i > 0) { 732 element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element"); 733 734 // Tell the cleanup that it needs to destroy up to this 735 // element. TODO: some of these stores can be trivially 736 // observed to be unnecessary. 737 if (endOfInit) Builder.CreateStore(element, endOfInit); 738 } 739 740 LValue elementLV = CGF.MakeAddrLValue(element, elementType); 741 EmitInitializationToLValue(E->getInit(i), elementLV); 742 } 743 744 // Check whether there's a non-trivial array-fill expression. 745 // Note that this will be a CXXConstructExpr even if the element 746 // type is an array (or array of array, etc.) of class type. 747 Expr *filler = E->getArrayFiller(); 748 bool hasTrivialFiller = true; 749 if (CXXConstructExpr *cons = dyn_cast_or_null<CXXConstructExpr>(filler)) { 750 assert(cons->getConstructor()->isDefaultConstructor()); 751 hasTrivialFiller = cons->getConstructor()->isTrivial(); 752 } 753 754 // Any remaining elements need to be zero-initialized, possibly 755 // using the filler expression. We can skip this if the we're 756 // emitting to zeroed memory. 757 if (NumInitElements != NumArrayElements && 758 !(Dest.isZeroed() && hasTrivialFiller && 759 CGF.getTypes().isZeroInitializable(elementType))) { 760 761 // Use an actual loop. This is basically 762 // do { *array++ = filler; } while (array != end); 763 764 // Advance to the start of the rest of the array. 765 if (NumInitElements) { 766 element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start"); 767 if (endOfInit) Builder.CreateStore(element, endOfInit); 768 } 769 770 // Compute the end of the array. 771 llvm::Value *end = Builder.CreateInBoundsGEP(begin, 772 llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements), 773 "arrayinit.end"); 774 775 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 776 llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body"); 777 778 // Jump into the body. 779 CGF.EmitBlock(bodyBB); 780 llvm::PHINode *currentElement = 781 Builder.CreatePHI(element->getType(), 2, "arrayinit.cur"); 782 currentElement->addIncoming(element, entryBB); 783 784 // Emit the actual filler expression. 785 LValue elementLV = CGF.MakeAddrLValue(currentElement, elementType); 786 if (filler) 787 EmitInitializationToLValue(filler, elementLV); 788 else 789 EmitNullInitializationToLValue(elementLV); 790 791 // Move on to the next element. 792 llvm::Value *nextElement = 793 Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next"); 794 795 // Tell the EH cleanup that we finished with the last element. 796 if (endOfInit) Builder.CreateStore(nextElement, endOfInit); 797 798 // Leave the loop if we're done. 799 llvm::Value *done = Builder.CreateICmpEQ(nextElement, end, 800 "arrayinit.done"); 801 llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end"); 802 Builder.CreateCondBr(done, endBB, bodyBB); 803 currentElement->addIncoming(nextElement, Builder.GetInsertBlock()); 804 805 CGF.EmitBlock(endBB); 806 } 807 808 // Leave the partial-array cleanup if we entered one. 809 if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator); 810 811 return; 812 } 813 814 assert(E->getType()->isRecordType() && "Only support structs/unions here!"); 815 816 // Do struct initialization; this code just sets each individual member 817 // to the approprate value. This makes bitfield support automatic; 818 // the disadvantage is that the generated code is more difficult for 819 // the optimizer, especially with bitfields. 820 unsigned NumInitElements = E->getNumInits(); 821 RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl(); 822 823 if (record->isUnion()) { 824 // Only initialize one field of a union. The field itself is 825 // specified by the initializer list. 826 if (!E->getInitializedFieldInUnion()) { 827 // Empty union; we have nothing to do. 828 829 #ifndef NDEBUG 830 // Make sure that it's really an empty and not a failure of 831 // semantic analysis. 832 for (RecordDecl::field_iterator Field = record->field_begin(), 833 FieldEnd = record->field_end(); 834 Field != FieldEnd; ++Field) 835 assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed"); 836 #endif 837 return; 838 } 839 840 // FIXME: volatility 841 FieldDecl *Field = E->getInitializedFieldInUnion(); 842 843 LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestPtr, Field, 0); 844 if (NumInitElements) { 845 // Store the initializer into the field 846 EmitInitializationToLValue(E->getInit(0), FieldLoc); 847 } else { 848 // Default-initialize to null. 849 EmitNullInitializationToLValue(FieldLoc); 850 } 851 852 return; 853 } 854 855 // We'll need to enter cleanup scopes in case any of the member 856 // initializers throw an exception. 857 SmallVector<EHScopeStack::stable_iterator, 16> cleanups; 858 llvm::Instruction *cleanupDominator = 0; 859 860 // Here we iterate over the fields; this makes it simpler to both 861 // default-initialize fields and skip over unnamed fields. 862 unsigned curInitIndex = 0; 863 for (RecordDecl::field_iterator field = record->field_begin(), 864 fieldEnd = record->field_end(); 865 field != fieldEnd; ++field) { 866 // We're done once we hit the flexible array member. 867 if (field->getType()->isIncompleteArrayType()) 868 break; 869 870 // Always skip anonymous bitfields. 871 if (field->isUnnamedBitfield()) 872 continue; 873 874 // We're done if we reach the end of the explicit initializers, we 875 // have a zeroed object, and the rest of the fields are 876 // zero-initializable. 877 if (curInitIndex == NumInitElements && Dest.isZeroed() && 878 CGF.getTypes().isZeroInitializable(E->getType())) 879 break; 880 881 // FIXME: volatility 882 LValue LV = CGF.EmitLValueForFieldInitialization(DestPtr, *field, 0); 883 // We never generate write-barries for initialized fields. 884 LV.setNonGC(true); 885 886 if (curInitIndex < NumInitElements) { 887 // Store the initializer into the field. 888 EmitInitializationToLValue(E->getInit(curInitIndex++), LV); 889 } else { 890 // We're out of initalizers; default-initialize to null 891 EmitNullInitializationToLValue(LV); 892 } 893 894 // Push a destructor if necessary. 895 // FIXME: if we have an array of structures, all explicitly 896 // initialized, we can end up pushing a linear number of cleanups. 897 bool pushedCleanup = false; 898 if (QualType::DestructionKind dtorKind 899 = field->getType().isDestructedType()) { 900 assert(LV.isSimple()); 901 if (CGF.needsEHCleanup(dtorKind)) { 902 if (!cleanupDominator) 903 cleanupDominator = CGF.Builder.CreateUnreachable(); // placeholder 904 905 CGF.pushDestroy(EHCleanup, LV.getAddress(), field->getType(), 906 CGF.getDestroyer(dtorKind), false); 907 cleanups.push_back(CGF.EHStack.stable_begin()); 908 pushedCleanup = true; 909 } 910 } 911 912 // If the GEP didn't get used because of a dead zero init or something 913 // else, clean it up for -O0 builds and general tidiness. 914 if (!pushedCleanup && LV.isSimple()) 915 if (llvm::GetElementPtrInst *GEP = 916 dyn_cast<llvm::GetElementPtrInst>(LV.getAddress())) 917 if (GEP->use_empty()) 918 GEP->eraseFromParent(); 919 } 920 921 // Deactivate all the partial cleanups in reverse order, which 922 // generally means popping them. 923 for (unsigned i = cleanups.size(); i != 0; --i) 924 CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator); 925 926 // Destroy the placeholder if we made one. 927 if (cleanupDominator) 928 cleanupDominator->eraseFromParent(); 929 } 930 931 //===----------------------------------------------------------------------===// 932 // Entry Points into this File 933 //===----------------------------------------------------------------------===// 934 935 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of 936 /// non-zero bytes that will be stored when outputting the initializer for the 937 /// specified initializer expression. 938 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) { 939 E = E->IgnoreParens(); 940 941 // 0 and 0.0 won't require any non-zero stores! 942 if (isSimpleZero(E, CGF)) return CharUnits::Zero(); 943 944 // If this is an initlist expr, sum up the size of sizes of the (present) 945 // elements. If this is something weird, assume the whole thing is non-zero. 946 const InitListExpr *ILE = dyn_cast<InitListExpr>(E); 947 if (ILE == 0 || !CGF.getTypes().isZeroInitializable(ILE->getType())) 948 return CGF.getContext().getTypeSizeInChars(E->getType()); 949 950 // InitListExprs for structs have to be handled carefully. If there are 951 // reference members, we need to consider the size of the reference, not the 952 // referencee. InitListExprs for unions and arrays can't have references. 953 if (const RecordType *RT = E->getType()->getAs<RecordType>()) { 954 if (!RT->isUnionType()) { 955 RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl(); 956 CharUnits NumNonZeroBytes = CharUnits::Zero(); 957 958 unsigned ILEElement = 0; 959 for (RecordDecl::field_iterator Field = SD->field_begin(), 960 FieldEnd = SD->field_end(); Field != FieldEnd; ++Field) { 961 // We're done once we hit the flexible array member or run out of 962 // InitListExpr elements. 963 if (Field->getType()->isIncompleteArrayType() || 964 ILEElement == ILE->getNumInits()) 965 break; 966 if (Field->isUnnamedBitfield()) 967 continue; 968 969 const Expr *E = ILE->getInit(ILEElement++); 970 971 // Reference values are always non-null and have the width of a pointer. 972 if (Field->getType()->isReferenceType()) 973 NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits( 974 CGF.getContext().getTargetInfo().getPointerWidth(0)); 975 else 976 NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF); 977 } 978 979 return NumNonZeroBytes; 980 } 981 } 982 983 984 CharUnits NumNonZeroBytes = CharUnits::Zero(); 985 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) 986 NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF); 987 return NumNonZeroBytes; 988 } 989 990 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of 991 /// zeros in it, emit a memset and avoid storing the individual zeros. 992 /// 993 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E, 994 CodeGenFunction &CGF) { 995 // If the slot is already known to be zeroed, nothing to do. Don't mess with 996 // volatile stores. 997 if (Slot.isZeroed() || Slot.isVolatile() || Slot.getAddr() == 0) return; 998 999 // C++ objects with a user-declared constructor don't need zero'ing. 1000 if (CGF.getContext().getLangOptions().CPlusPlus) 1001 if (const RecordType *RT = CGF.getContext() 1002 .getBaseElementType(E->getType())->getAs<RecordType>()) { 1003 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1004 if (RD->hasUserDeclaredConstructor()) 1005 return; 1006 } 1007 1008 // If the type is 16-bytes or smaller, prefer individual stores over memset. 1009 std::pair<CharUnits, CharUnits> TypeInfo = 1010 CGF.getContext().getTypeInfoInChars(E->getType()); 1011 if (TypeInfo.first <= CharUnits::fromQuantity(16)) 1012 return; 1013 1014 // Check to see if over 3/4 of the initializer are known to be zero. If so, 1015 // we prefer to emit memset + individual stores for the rest. 1016 CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF); 1017 if (NumNonZeroBytes*4 > TypeInfo.first) 1018 return; 1019 1020 // Okay, it seems like a good idea to use an initial memset, emit the call. 1021 llvm::Constant *SizeVal = CGF.Builder.getInt64(TypeInfo.first.getQuantity()); 1022 CharUnits Align = TypeInfo.second; 1023 1024 llvm::Value *Loc = Slot.getAddr(); 1025 1026 Loc = CGF.Builder.CreateBitCast(Loc, CGF.Int8PtrTy); 1027 CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, 1028 Align.getQuantity(), false); 1029 1030 // Tell the AggExprEmitter that the slot is known zero. 1031 Slot.setZeroed(); 1032 } 1033 1034 1035 1036 1037 /// EmitAggExpr - Emit the computation of the specified expression of aggregate 1038 /// type. The result is computed into DestPtr. Note that if DestPtr is null, 1039 /// the value of the aggregate expression is not needed. If VolatileDest is 1040 /// true, DestPtr cannot be 0. 1041 /// 1042 /// \param IsInitializer - true if this evaluation is initializing an 1043 /// object whose lifetime is already being managed. 1044 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot, 1045 bool IgnoreResult) { 1046 assert(E && hasAggregateLLVMType(E->getType()) && 1047 "Invalid aggregate expression to emit"); 1048 assert((Slot.getAddr() != 0 || Slot.isIgnored()) && 1049 "slot has bits but no address"); 1050 1051 // Optimize the slot if possible. 1052 CheckAggExprForMemSetUse(Slot, E, *this); 1053 1054 AggExprEmitter(*this, Slot, IgnoreResult).Visit(const_cast<Expr*>(E)); 1055 } 1056 1057 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) { 1058 assert(hasAggregateLLVMType(E->getType()) && "Invalid argument!"); 1059 llvm::Value *Temp = CreateMemTemp(E->getType()); 1060 LValue LV = MakeAddrLValue(Temp, E->getType()); 1061 EmitAggExpr(E, AggValueSlot::forLValue(LV, AggValueSlot::IsNotDestructed, 1062 AggValueSlot::DoesNotNeedGCBarriers, 1063 AggValueSlot::IsNotAliased)); 1064 return LV; 1065 } 1066 1067 void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr, 1068 llvm::Value *SrcPtr, QualType Ty, 1069 bool isVolatile, unsigned Alignment) { 1070 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 1071 1072 if (getContext().getLangOptions().CPlusPlus) { 1073 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1074 CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl()); 1075 assert((Record->hasTrivialCopyConstructor() || 1076 Record->hasTrivialCopyAssignment() || 1077 Record->hasTrivialMoveConstructor() || 1078 Record->hasTrivialMoveAssignment()) && 1079 "Trying to aggregate-copy a type without a trivial copy " 1080 "constructor or assignment operator"); 1081 // Ignore empty classes in C++. 1082 if (Record->isEmpty()) 1083 return; 1084 } 1085 } 1086 1087 // Aggregate assignment turns into llvm.memcpy. This is almost valid per 1088 // C99 6.5.16.1p3, which states "If the value being stored in an object is 1089 // read from another object that overlaps in anyway the storage of the first 1090 // object, then the overlap shall be exact and the two objects shall have 1091 // qualified or unqualified versions of a compatible type." 1092 // 1093 // memcpy is not defined if the source and destination pointers are exactly 1094 // equal, but other compilers do this optimization, and almost every memcpy 1095 // implementation handles this case safely. If there is a libc that does not 1096 // safely handle this, we can add a target hook. 1097 1098 // Get size and alignment info for this aggregate. 1099 std::pair<CharUnits, CharUnits> TypeInfo = 1100 getContext().getTypeInfoInChars(Ty); 1101 1102 if (!Alignment) 1103 Alignment = TypeInfo.second.getQuantity(); 1104 1105 // FIXME: Handle variable sized types. 1106 1107 // FIXME: If we have a volatile struct, the optimizer can remove what might 1108 // appear to be `extra' memory ops: 1109 // 1110 // volatile struct { int i; } a, b; 1111 // 1112 // int main() { 1113 // a = b; 1114 // a = b; 1115 // } 1116 // 1117 // we need to use a different call here. We use isVolatile to indicate when 1118 // either the source or the destination is volatile. 1119 1120 llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType()); 1121 llvm::Type *DBP = 1122 llvm::Type::getInt8PtrTy(getLLVMContext(), DPT->getAddressSpace()); 1123 DestPtr = Builder.CreateBitCast(DestPtr, DBP); 1124 1125 llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType()); 1126 llvm::Type *SBP = 1127 llvm::Type::getInt8PtrTy(getLLVMContext(), SPT->getAddressSpace()); 1128 SrcPtr = Builder.CreateBitCast(SrcPtr, SBP); 1129 1130 // Don't do any of the memmove_collectable tests if GC isn't set. 1131 if (CGM.getLangOptions().getGC() == LangOptions::NonGC) { 1132 // fall through 1133 } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 1134 RecordDecl *Record = RecordTy->getDecl(); 1135 if (Record->hasObjectMember()) { 1136 CharUnits size = TypeInfo.first; 1137 llvm::Type *SizeTy = ConvertType(getContext().getSizeType()); 1138 llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity()); 1139 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 1140 SizeVal); 1141 return; 1142 } 1143 } else if (Ty->isArrayType()) { 1144 QualType BaseType = getContext().getBaseElementType(Ty); 1145 if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) { 1146 if (RecordTy->getDecl()->hasObjectMember()) { 1147 CharUnits size = TypeInfo.first; 1148 llvm::Type *SizeTy = ConvertType(getContext().getSizeType()); 1149 llvm::Value *SizeVal = 1150 llvm::ConstantInt::get(SizeTy, size.getQuantity()); 1151 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 1152 SizeVal); 1153 return; 1154 } 1155 } 1156 } 1157 1158 Builder.CreateMemCpy(DestPtr, SrcPtr, 1159 llvm::ConstantInt::get(IntPtrTy, 1160 TypeInfo.first.getQuantity()), 1161 Alignment, isVolatile); 1162 } 1163