1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Aggregate Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "CGObjCRuntime.h" 17 #include "clang/AST/ASTContext.h" 18 #include "clang/AST/DeclCXX.h" 19 #include "clang/AST/StmtVisitor.h" 20 #include "llvm/Constants.h" 21 #include "llvm/Function.h" 22 #include "llvm/GlobalVariable.h" 23 #include "llvm/Intrinsics.h" 24 using namespace clang; 25 using namespace CodeGen; 26 27 //===----------------------------------------------------------------------===// 28 // Aggregate Expression Emitter 29 //===----------------------------------------------------------------------===// 30 31 namespace { 32 class AggExprEmitter : public StmtVisitor<AggExprEmitter> { 33 CodeGenFunction &CGF; 34 CGBuilderTy &Builder; 35 AggValueSlot Dest; 36 bool IgnoreResult; 37 38 ReturnValueSlot getReturnValueSlot() const { 39 // If the destination slot requires garbage collection, we can't 40 // use the real return value slot, because we have to use the GC 41 // API. 42 if (Dest.requiresGCollection()) return ReturnValueSlot(); 43 44 return ReturnValueSlot(Dest.getAddr(), Dest.isVolatile()); 45 } 46 47 AggValueSlot EnsureSlot(QualType T) { 48 if (!Dest.isIgnored()) return Dest; 49 return CGF.CreateAggTemp(T, "agg.tmp.ensured"); 50 } 51 52 public: 53 AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest, 54 bool ignore) 55 : CGF(cgf), Builder(CGF.Builder), Dest(Dest), 56 IgnoreResult(ignore) { 57 } 58 59 //===--------------------------------------------------------------------===// 60 // Utilities 61 //===--------------------------------------------------------------------===// 62 63 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 64 /// represents a value lvalue, this method emits the address of the lvalue, 65 /// then loads the result into DestPtr. 66 void EmitAggLoadOfLValue(const Expr *E); 67 68 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 69 void EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore = false); 70 void EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore = false); 71 72 void EmitGCMove(const Expr *E, RValue Src); 73 74 bool TypeRequiresGCollection(QualType T); 75 76 //===--------------------------------------------------------------------===// 77 // Visitor Methods 78 //===--------------------------------------------------------------------===// 79 80 void VisitStmt(Stmt *S) { 81 CGF.ErrorUnsupported(S, "aggregate expression"); 82 } 83 void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); } 84 void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); } 85 86 // l-values. 87 void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); } 88 void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); } 89 void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); } 90 void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); } 91 void VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 92 EmitAggLoadOfLValue(E); 93 } 94 void VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 95 EmitAggLoadOfLValue(E); 96 } 97 void VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) { 98 EmitAggLoadOfLValue(E); 99 } 100 void VisitPredefinedExpr(const PredefinedExpr *E) { 101 EmitAggLoadOfLValue(E); 102 } 103 104 // Operators. 105 void VisitCastExpr(CastExpr *E); 106 void VisitCallExpr(const CallExpr *E); 107 void VisitStmtExpr(const StmtExpr *E); 108 void VisitBinaryOperator(const BinaryOperator *BO); 109 void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO); 110 void VisitBinAssign(const BinaryOperator *E); 111 void VisitBinComma(const BinaryOperator *E); 112 113 void VisitObjCMessageExpr(ObjCMessageExpr *E); 114 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 115 EmitAggLoadOfLValue(E); 116 } 117 void VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E); 118 119 void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO); 120 void VisitChooseExpr(const ChooseExpr *CE); 121 void VisitInitListExpr(InitListExpr *E); 122 void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E); 123 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 124 Visit(DAE->getExpr()); 125 } 126 void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E); 127 void VisitCXXConstructExpr(const CXXConstructExpr *E); 128 void VisitExprWithCleanups(ExprWithCleanups *E); 129 void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E); 130 void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); } 131 132 void VisitOpaqueValueExpr(OpaqueValueExpr *E); 133 134 void VisitVAArgExpr(VAArgExpr *E); 135 136 void EmitInitializationToLValue(Expr *E, LValue Address, QualType T); 137 void EmitNullInitializationToLValue(LValue Address, QualType T); 138 // case Expr::ChooseExprClass: 139 void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); } 140 }; 141 } // end anonymous namespace. 142 143 //===----------------------------------------------------------------------===// 144 // Utilities 145 //===----------------------------------------------------------------------===// 146 147 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 148 /// represents a value lvalue, this method emits the address of the lvalue, 149 /// then loads the result into DestPtr. 150 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) { 151 LValue LV = CGF.EmitLValue(E); 152 EmitFinalDestCopy(E, LV); 153 } 154 155 /// \brief True if the given aggregate type requires special GC API calls. 156 bool AggExprEmitter::TypeRequiresGCollection(QualType T) { 157 // Only record types have members that might require garbage collection. 158 const RecordType *RecordTy = T->getAs<RecordType>(); 159 if (!RecordTy) return false; 160 161 // Don't mess with non-trivial C++ types. 162 RecordDecl *Record = RecordTy->getDecl(); 163 if (isa<CXXRecordDecl>(Record) && 164 (!cast<CXXRecordDecl>(Record)->hasTrivialCopyConstructor() || 165 !cast<CXXRecordDecl>(Record)->hasTrivialDestructor())) 166 return false; 167 168 // Check whether the type has an object member. 169 return Record->hasObjectMember(); 170 } 171 172 /// \brief Perform the final move to DestPtr if RequiresGCollection is set. 173 /// 174 /// The idea is that you do something like this: 175 /// RValue Result = EmitSomething(..., getReturnValueSlot()); 176 /// EmitGCMove(E, Result); 177 /// If GC doesn't interfere, this will cause the result to be emitted 178 /// directly into the return value slot. If GC does interfere, a final 179 /// move will be performed. 180 void AggExprEmitter::EmitGCMove(const Expr *E, RValue Src) { 181 if (Dest.requiresGCollection()) { 182 std::pair<uint64_t, unsigned> TypeInfo = 183 CGF.getContext().getTypeInfo(E->getType()); 184 unsigned long size = TypeInfo.first/8; 185 const llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType()); 186 llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size); 187 CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, Dest.getAddr(), 188 Src.getAggregateAddr(), 189 SizeVal); 190 } 191 } 192 193 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 194 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore) { 195 assert(Src.isAggregate() && "value must be aggregate value!"); 196 197 // If Dest is ignored, then we're evaluating an aggregate expression 198 // in a context (like an expression statement) that doesn't care 199 // about the result. C says that an lvalue-to-rvalue conversion is 200 // performed in these cases; C++ says that it is not. In either 201 // case, we don't actually need to do anything unless the value is 202 // volatile. 203 if (Dest.isIgnored()) { 204 if (!Src.isVolatileQualified() || 205 CGF.CGM.getLangOptions().CPlusPlus || 206 (IgnoreResult && Ignore)) 207 return; 208 209 // If the source is volatile, we must read from it; to do that, we need 210 // some place to put it. 211 Dest = CGF.CreateAggTemp(E->getType(), "agg.tmp"); 212 } 213 214 if (Dest.requiresGCollection()) { 215 std::pair<uint64_t, unsigned> TypeInfo = 216 CGF.getContext().getTypeInfo(E->getType()); 217 unsigned long size = TypeInfo.first/8; 218 const llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType()); 219 llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size); 220 CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, 221 Dest.getAddr(), 222 Src.getAggregateAddr(), 223 SizeVal); 224 return; 225 } 226 // If the result of the assignment is used, copy the LHS there also. 227 // FIXME: Pass VolatileDest as well. I think we also need to merge volatile 228 // from the source as well, as we can't eliminate it if either operand 229 // is volatile, unless copy has volatile for both source and destination.. 230 CGF.EmitAggregateCopy(Dest.getAddr(), Src.getAggregateAddr(), E->getType(), 231 Dest.isVolatile()|Src.isVolatileQualified()); 232 } 233 234 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 235 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore) { 236 assert(Src.isSimple() && "Can't have aggregate bitfield, vector, etc"); 237 238 EmitFinalDestCopy(E, RValue::getAggregate(Src.getAddress(), 239 Src.isVolatileQualified()), 240 Ignore); 241 } 242 243 //===----------------------------------------------------------------------===// 244 // Visitor Methods 245 //===----------------------------------------------------------------------===// 246 247 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) { 248 EmitFinalDestCopy(e, CGF.getOpaqueLValueMapping(e)); 249 } 250 251 void AggExprEmitter::VisitCastExpr(CastExpr *E) { 252 if (Dest.isIgnored() && E->getCastKind() != CK_Dynamic) { 253 Visit(E->getSubExpr()); 254 return; 255 } 256 257 switch (E->getCastKind()) { 258 case CK_Dynamic: 259 case CK_DynamicToNull: { 260 261 // FIXME: Actually handle DynamicToNull here. 262 assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?"); 263 LValue LV = CGF.EmitCheckedLValue(E->getSubExpr()); 264 // FIXME: Do we also need to handle property references here? 265 if (LV.isSimple()) 266 CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E)); 267 else 268 CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast"); 269 270 if (!Dest.isIgnored()) 271 CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination"); 272 break; 273 } 274 275 case CK_ToUnion: { 276 // GCC union extension 277 QualType Ty = E->getSubExpr()->getType(); 278 QualType PtrTy = CGF.getContext().getPointerType(Ty); 279 llvm::Value *CastPtr = Builder.CreateBitCast(Dest.getAddr(), 280 CGF.ConvertType(PtrTy)); 281 EmitInitializationToLValue(E->getSubExpr(), CGF.MakeAddrLValue(CastPtr, Ty), 282 Ty); 283 break; 284 } 285 286 case CK_DerivedToBase: 287 case CK_BaseToDerived: 288 case CK_UncheckedDerivedToBase: { 289 assert(0 && "cannot perform hierarchy conversion in EmitAggExpr: " 290 "should have been unpacked before we got here"); 291 break; 292 } 293 294 case CK_GetObjCProperty: { 295 LValue LV = CGF.EmitLValue(E->getSubExpr()); 296 assert(LV.isPropertyRef()); 297 RValue RV = CGF.EmitLoadOfPropertyRefLValue(LV, getReturnValueSlot()); 298 EmitGCMove(E, RV); 299 break; 300 } 301 302 case CK_LValueToRValue: // hope for downstream optimization 303 case CK_NoOp: 304 case CK_UserDefinedConversion: 305 case CK_ConstructorConversion: 306 assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(), 307 E->getType()) && 308 "Implicit cast types must be compatible"); 309 Visit(E->getSubExpr()); 310 break; 311 312 case CK_LValueBitCast: 313 llvm_unreachable("should not be emitting lvalue bitcast as rvalue"); 314 break; 315 316 case CK_ResolveUnknownAnyType: 317 EmitAggLoadOfLValue(E); 318 break; 319 320 case CK_Dependent: 321 case CK_BitCast: 322 case CK_ArrayToPointerDecay: 323 case CK_FunctionToPointerDecay: 324 case CK_NullToPointer: 325 case CK_NullToMemberPointer: 326 case CK_BaseToDerivedMemberPointer: 327 case CK_DerivedToBaseMemberPointer: 328 case CK_MemberPointerToBoolean: 329 case CK_IntegralToPointer: 330 case CK_PointerToIntegral: 331 case CK_PointerToBoolean: 332 case CK_ToVoid: 333 case CK_VectorSplat: 334 case CK_IntegralCast: 335 case CK_IntegralToBoolean: 336 case CK_IntegralToFloating: 337 case CK_FloatingToIntegral: 338 case CK_FloatingToBoolean: 339 case CK_FloatingCast: 340 case CK_AnyPointerToObjCPointerCast: 341 case CK_AnyPointerToBlockPointerCast: 342 case CK_ObjCObjectLValueCast: 343 case CK_FloatingRealToComplex: 344 case CK_FloatingComplexToReal: 345 case CK_FloatingComplexToBoolean: 346 case CK_FloatingComplexCast: 347 case CK_FloatingComplexToIntegralComplex: 348 case CK_IntegralRealToComplex: 349 case CK_IntegralComplexToReal: 350 case CK_IntegralComplexToBoolean: 351 case CK_IntegralComplexCast: 352 case CK_IntegralComplexToFloatingComplex: 353 llvm_unreachable("cast kind invalid for aggregate types"); 354 } 355 } 356 357 void AggExprEmitter::VisitCallExpr(const CallExpr *E) { 358 if (E->getCallReturnType()->isReferenceType()) { 359 EmitAggLoadOfLValue(E); 360 return; 361 } 362 363 RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot()); 364 EmitGCMove(E, RV); 365 } 366 367 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) { 368 RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot()); 369 EmitGCMove(E, RV); 370 } 371 372 void AggExprEmitter::VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) { 373 llvm_unreachable("direct property access not surrounded by " 374 "lvalue-to-rvalue cast"); 375 } 376 377 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) { 378 CGF.EmitIgnoredExpr(E->getLHS()); 379 Visit(E->getRHS()); 380 } 381 382 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) { 383 CodeGenFunction::StmtExprEvaluation eval(CGF); 384 CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest); 385 } 386 387 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) { 388 if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI) 389 VisitPointerToDataMemberBinaryOperator(E); 390 else 391 CGF.ErrorUnsupported(E, "aggregate binary expression"); 392 } 393 394 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator( 395 const BinaryOperator *E) { 396 LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E); 397 EmitFinalDestCopy(E, LV); 398 } 399 400 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) { 401 // For an assignment to work, the value on the right has 402 // to be compatible with the value on the left. 403 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), 404 E->getRHS()->getType()) 405 && "Invalid assignment"); 406 407 // FIXME: __block variables need the RHS evaluated first! 408 LValue LHS = CGF.EmitLValue(E->getLHS()); 409 410 // We have to special case property setters, otherwise we must have 411 // a simple lvalue (no aggregates inside vectors, bitfields). 412 if (LHS.isPropertyRef()) { 413 const ObjCPropertyRefExpr *RE = LHS.getPropertyRefExpr(); 414 QualType ArgType = RE->getSetterArgType(); 415 RValue Src; 416 if (ArgType->isReferenceType()) 417 Src = CGF.EmitReferenceBindingToExpr(E->getRHS(), 0); 418 else { 419 AggValueSlot Slot = EnsureSlot(E->getRHS()->getType()); 420 CGF.EmitAggExpr(E->getRHS(), Slot); 421 Src = Slot.asRValue(); 422 } 423 CGF.EmitStoreThroughPropertyRefLValue(Src, LHS); 424 } else { 425 bool GCollection = false; 426 if (CGF.getContext().getLangOptions().getGCMode()) 427 GCollection = TypeRequiresGCollection(E->getLHS()->getType()); 428 429 // Codegen the RHS so that it stores directly into the LHS. 430 AggValueSlot LHSSlot = AggValueSlot::forLValue(LHS, true, 431 GCollection); 432 CGF.EmitAggExpr(E->getRHS(), LHSSlot, false); 433 EmitFinalDestCopy(E, LHS, true); 434 } 435 } 436 437 void AggExprEmitter:: 438 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 439 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 440 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 441 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 442 443 // Bind the common expression if necessary. 444 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 445 446 CodeGenFunction::ConditionalEvaluation eval(CGF); 447 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock); 448 449 // Save whether the destination's lifetime is externally managed. 450 bool DestLifetimeManaged = Dest.isLifetimeExternallyManaged(); 451 452 eval.begin(CGF); 453 CGF.EmitBlock(LHSBlock); 454 Visit(E->getTrueExpr()); 455 eval.end(CGF); 456 457 assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!"); 458 CGF.Builder.CreateBr(ContBlock); 459 460 // If the result of an agg expression is unused, then the emission 461 // of the LHS might need to create a destination slot. That's fine 462 // with us, and we can safely emit the RHS into the same slot, but 463 // we shouldn't claim that its lifetime is externally managed. 464 Dest.setLifetimeExternallyManaged(DestLifetimeManaged); 465 466 eval.begin(CGF); 467 CGF.EmitBlock(RHSBlock); 468 Visit(E->getFalseExpr()); 469 eval.end(CGF); 470 471 CGF.EmitBlock(ContBlock); 472 } 473 474 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) { 475 Visit(CE->getChosenSubExpr(CGF.getContext())); 476 } 477 478 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 479 llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr()); 480 llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType()); 481 482 if (!ArgPtr) { 483 CGF.ErrorUnsupported(VE, "aggregate va_arg expression"); 484 return; 485 } 486 487 EmitFinalDestCopy(VE, CGF.MakeAddrLValue(ArgPtr, VE->getType())); 488 } 489 490 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 491 // Ensure that we have a slot, but if we already do, remember 492 // whether its lifetime was externally managed. 493 bool WasManaged = Dest.isLifetimeExternallyManaged(); 494 Dest = EnsureSlot(E->getType()); 495 Dest.setLifetimeExternallyManaged(); 496 497 Visit(E->getSubExpr()); 498 499 // Set up the temporary's destructor if its lifetime wasn't already 500 // being managed. 501 if (!WasManaged) 502 CGF.EmitCXXTemporary(E->getTemporary(), Dest.getAddr()); 503 } 504 505 void 506 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) { 507 AggValueSlot Slot = EnsureSlot(E->getType()); 508 CGF.EmitCXXConstructExpr(E, Slot); 509 } 510 511 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) { 512 CGF.EmitExprWithCleanups(E, Dest); 513 } 514 515 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) { 516 QualType T = E->getType(); 517 AggValueSlot Slot = EnsureSlot(T); 518 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T), T); 519 } 520 521 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) { 522 QualType T = E->getType(); 523 AggValueSlot Slot = EnsureSlot(T); 524 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T), T); 525 } 526 527 /// isSimpleZero - If emitting this value will obviously just cause a store of 528 /// zero to memory, return true. This can return false if uncertain, so it just 529 /// handles simple cases. 530 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) { 531 // (0) 532 if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) 533 return isSimpleZero(PE->getSubExpr(), CGF); 534 // 0 535 if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) 536 return IL->getValue() == 0; 537 // +0.0 538 if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E)) 539 return FL->getValue().isPosZero(); 540 // int() 541 if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) && 542 CGF.getTypes().isZeroInitializable(E->getType())) 543 return true; 544 // (int*)0 - Null pointer expressions. 545 if (const CastExpr *ICE = dyn_cast<CastExpr>(E)) 546 return ICE->getCastKind() == CK_NullToPointer; 547 // '\0' 548 if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) 549 return CL->getValue() == 0; 550 551 // Otherwise, hard case: conservatively return false. 552 return false; 553 } 554 555 556 void 557 AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV, QualType T) { 558 // FIXME: Ignore result? 559 // FIXME: Are initializers affected by volatile? 560 if (Dest.isZeroed() && isSimpleZero(E, CGF)) { 561 // Storing "i32 0" to a zero'd memory location is a noop. 562 } else if (isa<ImplicitValueInitExpr>(E)) { 563 EmitNullInitializationToLValue(LV, T); 564 } else if (T->isReferenceType()) { 565 RValue RV = CGF.EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0); 566 CGF.EmitStoreThroughLValue(RV, LV, T); 567 } else if (T->isAnyComplexType()) { 568 CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false); 569 } else if (CGF.hasAggregateLLVMType(T)) { 570 CGF.EmitAggExpr(E, AggValueSlot::forAddr(LV.getAddress(), false, true, 571 false, Dest.isZeroed())); 572 } else { 573 CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV, T); 574 } 575 } 576 577 void AggExprEmitter::EmitNullInitializationToLValue(LValue LV, QualType T) { 578 // If the destination slot is already zeroed out before the aggregate is 579 // copied into it, we don't have to emit any zeros here. 580 if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(T)) 581 return; 582 583 if (!CGF.hasAggregateLLVMType(T)) { 584 // For non-aggregates, we can store zero 585 llvm::Value *Null = llvm::Constant::getNullValue(CGF.ConvertType(T)); 586 CGF.EmitStoreThroughLValue(RValue::get(Null), LV, T); 587 } else { 588 // There's a potential optimization opportunity in combining 589 // memsets; that would be easy for arrays, but relatively 590 // difficult for structures with the current code. 591 CGF.EmitNullInitialization(LV.getAddress(), T); 592 } 593 } 594 595 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) { 596 #if 0 597 // FIXME: Assess perf here? Figure out what cases are worth optimizing here 598 // (Length of globals? Chunks of zeroed-out space?). 599 // 600 // If we can, prefer a copy from a global; this is a lot less code for long 601 // globals, and it's easier for the current optimizers to analyze. 602 if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) { 603 llvm::GlobalVariable* GV = 604 new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true, 605 llvm::GlobalValue::InternalLinkage, C, ""); 606 EmitFinalDestCopy(E, CGF.MakeAddrLValue(GV, E->getType())); 607 return; 608 } 609 #endif 610 if (E->hadArrayRangeDesignator()) 611 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 612 613 llvm::Value *DestPtr = Dest.getAddr(); 614 615 // Handle initialization of an array. 616 if (E->getType()->isArrayType()) { 617 const llvm::PointerType *APType = 618 cast<llvm::PointerType>(DestPtr->getType()); 619 const llvm::ArrayType *AType = 620 cast<llvm::ArrayType>(APType->getElementType()); 621 622 uint64_t NumInitElements = E->getNumInits(); 623 624 if (E->getNumInits() > 0) { 625 QualType T1 = E->getType(); 626 QualType T2 = E->getInit(0)->getType(); 627 if (CGF.getContext().hasSameUnqualifiedType(T1, T2)) { 628 EmitAggLoadOfLValue(E->getInit(0)); 629 return; 630 } 631 } 632 633 uint64_t NumArrayElements = AType->getNumElements(); 634 QualType ElementType = CGF.getContext().getCanonicalType(E->getType()); 635 ElementType = CGF.getContext().getAsArrayType(ElementType)->getElementType(); 636 637 // FIXME: were we intentionally ignoring address spaces and GC attributes? 638 639 for (uint64_t i = 0; i != NumArrayElements; ++i) { 640 // If we're done emitting initializers and the destination is known-zeroed 641 // then we're done. 642 if (i == NumInitElements && 643 Dest.isZeroed() && 644 CGF.getTypes().isZeroInitializable(ElementType)) 645 break; 646 647 llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array"); 648 LValue LV = CGF.MakeAddrLValue(NextVal, ElementType); 649 650 if (i < NumInitElements) 651 EmitInitializationToLValue(E->getInit(i), LV, ElementType); 652 else 653 EmitNullInitializationToLValue(LV, ElementType); 654 655 // If the GEP didn't get used because of a dead zero init or something 656 // else, clean it up for -O0 builds and general tidiness. 657 if (llvm::GetElementPtrInst *GEP = 658 dyn_cast<llvm::GetElementPtrInst>(NextVal)) 659 if (GEP->use_empty()) 660 GEP->eraseFromParent(); 661 } 662 return; 663 } 664 665 assert(E->getType()->isRecordType() && "Only support structs/unions here!"); 666 667 // Do struct initialization; this code just sets each individual member 668 // to the approprate value. This makes bitfield support automatic; 669 // the disadvantage is that the generated code is more difficult for 670 // the optimizer, especially with bitfields. 671 unsigned NumInitElements = E->getNumInits(); 672 RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl(); 673 674 if (E->getType()->isUnionType()) { 675 // Only initialize one field of a union. The field itself is 676 // specified by the initializer list. 677 if (!E->getInitializedFieldInUnion()) { 678 // Empty union; we have nothing to do. 679 680 #ifndef NDEBUG 681 // Make sure that it's really an empty and not a failure of 682 // semantic analysis. 683 for (RecordDecl::field_iterator Field = SD->field_begin(), 684 FieldEnd = SD->field_end(); 685 Field != FieldEnd; ++Field) 686 assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed"); 687 #endif 688 return; 689 } 690 691 // FIXME: volatility 692 FieldDecl *Field = E->getInitializedFieldInUnion(); 693 694 LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestPtr, Field, 0); 695 if (NumInitElements) { 696 // Store the initializer into the field 697 EmitInitializationToLValue(E->getInit(0), FieldLoc, Field->getType()); 698 } else { 699 // Default-initialize to null. 700 EmitNullInitializationToLValue(FieldLoc, Field->getType()); 701 } 702 703 return; 704 } 705 706 // Here we iterate over the fields; this makes it simpler to both 707 // default-initialize fields and skip over unnamed fields. 708 unsigned CurInitVal = 0; 709 for (RecordDecl::field_iterator Field = SD->field_begin(), 710 FieldEnd = SD->field_end(); 711 Field != FieldEnd; ++Field) { 712 // We're done once we hit the flexible array member 713 if (Field->getType()->isIncompleteArrayType()) 714 break; 715 716 if (Field->isUnnamedBitfield()) 717 continue; 718 719 // Don't emit GEP before a noop store of zero. 720 if (CurInitVal == NumInitElements && Dest.isZeroed() && 721 CGF.getTypes().isZeroInitializable(E->getType())) 722 break; 723 724 // FIXME: volatility 725 LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestPtr, *Field, 0); 726 // We never generate write-barries for initialized fields. 727 FieldLoc.setNonGC(true); 728 729 if (CurInitVal < NumInitElements) { 730 // Store the initializer into the field. 731 EmitInitializationToLValue(E->getInit(CurInitVal++), FieldLoc, 732 Field->getType()); 733 } else { 734 // We're out of initalizers; default-initialize to null 735 EmitNullInitializationToLValue(FieldLoc, Field->getType()); 736 } 737 738 // If the GEP didn't get used because of a dead zero init or something 739 // else, clean it up for -O0 builds and general tidiness. 740 if (FieldLoc.isSimple()) 741 if (llvm::GetElementPtrInst *GEP = 742 dyn_cast<llvm::GetElementPtrInst>(FieldLoc.getAddress())) 743 if (GEP->use_empty()) 744 GEP->eraseFromParent(); 745 } 746 } 747 748 //===----------------------------------------------------------------------===// 749 // Entry Points into this File 750 //===----------------------------------------------------------------------===// 751 752 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of 753 /// non-zero bytes that will be stored when outputting the initializer for the 754 /// specified initializer expression. 755 static uint64_t GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) { 756 if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) 757 return GetNumNonZeroBytesInInit(PE->getSubExpr(), CGF); 758 759 // 0 and 0.0 won't require any non-zero stores! 760 if (isSimpleZero(E, CGF)) return 0; 761 762 // If this is an initlist expr, sum up the size of sizes of the (present) 763 // elements. If this is something weird, assume the whole thing is non-zero. 764 const InitListExpr *ILE = dyn_cast<InitListExpr>(E); 765 if (ILE == 0 || !CGF.getTypes().isZeroInitializable(ILE->getType())) 766 return CGF.getContext().getTypeSize(E->getType())/8; 767 768 // InitListExprs for structs have to be handled carefully. If there are 769 // reference members, we need to consider the size of the reference, not the 770 // referencee. InitListExprs for unions and arrays can't have references. 771 if (const RecordType *RT = E->getType()->getAs<RecordType>()) { 772 if (!RT->isUnionType()) { 773 RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl(); 774 uint64_t NumNonZeroBytes = 0; 775 776 unsigned ILEElement = 0; 777 for (RecordDecl::field_iterator Field = SD->field_begin(), 778 FieldEnd = SD->field_end(); Field != FieldEnd; ++Field) { 779 // We're done once we hit the flexible array member or run out of 780 // InitListExpr elements. 781 if (Field->getType()->isIncompleteArrayType() || 782 ILEElement == ILE->getNumInits()) 783 break; 784 if (Field->isUnnamedBitfield()) 785 continue; 786 787 const Expr *E = ILE->getInit(ILEElement++); 788 789 // Reference values are always non-null and have the width of a pointer. 790 if (Field->getType()->isReferenceType()) 791 NumNonZeroBytes += CGF.getContext().Target.getPointerWidth(0); 792 else 793 NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF); 794 } 795 796 return NumNonZeroBytes; 797 } 798 } 799 800 801 uint64_t NumNonZeroBytes = 0; 802 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) 803 NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF); 804 return NumNonZeroBytes; 805 } 806 807 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of 808 /// zeros in it, emit a memset and avoid storing the individual zeros. 809 /// 810 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E, 811 CodeGenFunction &CGF) { 812 // If the slot is already known to be zeroed, nothing to do. Don't mess with 813 // volatile stores. 814 if (Slot.isZeroed() || Slot.isVolatile() || Slot.getAddr() == 0) return; 815 816 // If the type is 16-bytes or smaller, prefer individual stores over memset. 817 std::pair<uint64_t, unsigned> TypeInfo = 818 CGF.getContext().getTypeInfo(E->getType()); 819 if (TypeInfo.first/8 <= 16) 820 return; 821 822 // Check to see if over 3/4 of the initializer are known to be zero. If so, 823 // we prefer to emit memset + individual stores for the rest. 824 uint64_t NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF); 825 if (NumNonZeroBytes*4 > TypeInfo.first/8) 826 return; 827 828 // Okay, it seems like a good idea to use an initial memset, emit the call. 829 llvm::Constant *SizeVal = CGF.Builder.getInt64(TypeInfo.first/8); 830 unsigned Align = TypeInfo.second/8; 831 832 llvm::Value *Loc = Slot.getAddr(); 833 const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext()); 834 835 Loc = CGF.Builder.CreateBitCast(Loc, BP); 836 CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, Align, false); 837 838 // Tell the AggExprEmitter that the slot is known zero. 839 Slot.setZeroed(); 840 } 841 842 843 844 845 /// EmitAggExpr - Emit the computation of the specified expression of aggregate 846 /// type. The result is computed into DestPtr. Note that if DestPtr is null, 847 /// the value of the aggregate expression is not needed. If VolatileDest is 848 /// true, DestPtr cannot be 0. 849 /// 850 /// \param IsInitializer - true if this evaluation is initializing an 851 /// object whose lifetime is already being managed. 852 // 853 // FIXME: Take Qualifiers object. 854 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot, 855 bool IgnoreResult) { 856 assert(E && hasAggregateLLVMType(E->getType()) && 857 "Invalid aggregate expression to emit"); 858 assert((Slot.getAddr() != 0 || Slot.isIgnored()) && 859 "slot has bits but no address"); 860 861 // Optimize the slot if possible. 862 CheckAggExprForMemSetUse(Slot, E, *this); 863 864 AggExprEmitter(*this, Slot, IgnoreResult).Visit(const_cast<Expr*>(E)); 865 } 866 867 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) { 868 assert(hasAggregateLLVMType(E->getType()) && "Invalid argument!"); 869 llvm::Value *Temp = CreateMemTemp(E->getType()); 870 LValue LV = MakeAddrLValue(Temp, E->getType()); 871 EmitAggExpr(E, AggValueSlot::forAddr(Temp, LV.isVolatileQualified(), false)); 872 return LV; 873 } 874 875 void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr, 876 llvm::Value *SrcPtr, QualType Ty, 877 bool isVolatile) { 878 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 879 880 if (getContext().getLangOptions().CPlusPlus) { 881 if (const RecordType *RT = Ty->getAs<RecordType>()) { 882 CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl()); 883 assert((Record->hasTrivialCopyConstructor() || 884 Record->hasTrivialCopyAssignment()) && 885 "Trying to aggregate-copy a type without a trivial copy " 886 "constructor or assignment operator"); 887 // Ignore empty classes in C++. 888 if (Record->isEmpty()) 889 return; 890 } 891 } 892 893 // Aggregate assignment turns into llvm.memcpy. This is almost valid per 894 // C99 6.5.16.1p3, which states "If the value being stored in an object is 895 // read from another object that overlaps in anyway the storage of the first 896 // object, then the overlap shall be exact and the two objects shall have 897 // qualified or unqualified versions of a compatible type." 898 // 899 // memcpy is not defined if the source and destination pointers are exactly 900 // equal, but other compilers do this optimization, and almost every memcpy 901 // implementation handles this case safely. If there is a libc that does not 902 // safely handle this, we can add a target hook. 903 904 // Get size and alignment info for this aggregate. 905 std::pair<uint64_t, unsigned> TypeInfo = getContext().getTypeInfo(Ty); 906 907 // FIXME: Handle variable sized types. 908 909 // FIXME: If we have a volatile struct, the optimizer can remove what might 910 // appear to be `extra' memory ops: 911 // 912 // volatile struct { int i; } a, b; 913 // 914 // int main() { 915 // a = b; 916 // a = b; 917 // } 918 // 919 // we need to use a different call here. We use isVolatile to indicate when 920 // either the source or the destination is volatile. 921 922 const llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType()); 923 const llvm::Type *DBP = 924 llvm::Type::getInt8PtrTy(getLLVMContext(), DPT->getAddressSpace()); 925 DestPtr = Builder.CreateBitCast(DestPtr, DBP, "tmp"); 926 927 const llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType()); 928 const llvm::Type *SBP = 929 llvm::Type::getInt8PtrTy(getLLVMContext(), SPT->getAddressSpace()); 930 SrcPtr = Builder.CreateBitCast(SrcPtr, SBP, "tmp"); 931 932 if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 933 RecordDecl *Record = RecordTy->getDecl(); 934 if (Record->hasObjectMember()) { 935 unsigned long size = TypeInfo.first/8; 936 const llvm::Type *SizeTy = ConvertType(getContext().getSizeType()); 937 llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size); 938 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 939 SizeVal); 940 return; 941 } 942 } else if (getContext().getAsArrayType(Ty)) { 943 QualType BaseType = getContext().getBaseElementType(Ty); 944 if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) { 945 if (RecordTy->getDecl()->hasObjectMember()) { 946 unsigned long size = TypeInfo.first/8; 947 const llvm::Type *SizeTy = ConvertType(getContext().getSizeType()); 948 llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size); 949 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 950 SizeVal); 951 return; 952 } 953 } 954 } 955 956 Builder.CreateMemCpy(DestPtr, SrcPtr, 957 llvm::ConstantInt::get(IntPtrTy, TypeInfo.first/8), 958 TypeInfo.second/8, isVolatile); 959 } 960