1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Aggregate Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCXXABI.h"
16 #include "CGObjCRuntime.h"
17 #include "CodeGenModule.h"
18 #include "ConstantEmitter.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/DeclTemplate.h"
22 #include "clang/AST/StmtVisitor.h"
23 #include "llvm/IR/Constants.h"
24 #include "llvm/IR/Function.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/Intrinsics.h"
27 #include "llvm/IR/IntrinsicInst.h"
28 using namespace clang;
29 using namespace CodeGen;
30 
31 //===----------------------------------------------------------------------===//
32 //                        Aggregate Expression Emitter
33 //===----------------------------------------------------------------------===//
34 
35 namespace  {
36 class AggExprEmitter : public StmtVisitor<AggExprEmitter> {
37   CodeGenFunction &CGF;
38   CGBuilderTy &Builder;
39   AggValueSlot Dest;
40   bool IsResultUnused;
41 
42   AggValueSlot EnsureSlot(QualType T) {
43     if (!Dest.isIgnored()) return Dest;
44     return CGF.CreateAggTemp(T, "agg.tmp.ensured");
45   }
46   void EnsureDest(QualType T) {
47     if (!Dest.isIgnored()) return;
48     Dest = CGF.CreateAggTemp(T, "agg.tmp.ensured");
49   }
50 
51   // Calls `Fn` with a valid return value slot, potentially creating a temporary
52   // to do so. If a temporary is created, an appropriate copy into `Dest` will
53   // be emitted, as will lifetime markers.
54   //
55   // The given function should take a ReturnValueSlot, and return an RValue that
56   // points to said slot.
57   void withReturnValueSlot(const Expr *E,
58                            llvm::function_ref<RValue(ReturnValueSlot)> Fn);
59 
60 public:
61   AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest, bool IsResultUnused)
62     : CGF(cgf), Builder(CGF.Builder), Dest(Dest),
63     IsResultUnused(IsResultUnused) { }
64 
65   //===--------------------------------------------------------------------===//
66   //                               Utilities
67   //===--------------------------------------------------------------------===//
68 
69   /// EmitAggLoadOfLValue - Given an expression with aggregate type that
70   /// represents a value lvalue, this method emits the address of the lvalue,
71   /// then loads the result into DestPtr.
72   void EmitAggLoadOfLValue(const Expr *E);
73 
74   enum ExprValueKind {
75     EVK_RValue,
76     EVK_NonRValue
77   };
78 
79   /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
80   /// SrcIsRValue is true if source comes from an RValue.
81   void EmitFinalDestCopy(QualType type, const LValue &src,
82                          ExprValueKind SrcValueKind = EVK_NonRValue);
83   void EmitFinalDestCopy(QualType type, RValue src);
84   void EmitCopy(QualType type, const AggValueSlot &dest,
85                 const AggValueSlot &src);
86 
87   void EmitMoveFromReturnSlot(const Expr *E, RValue Src);
88 
89   void EmitArrayInit(Address DestPtr, llvm::ArrayType *AType,
90                      QualType ArrayQTy, InitListExpr *E);
91 
92   AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) {
93     if (CGF.getLangOpts().getGC() && TypeRequiresGCollection(T))
94       return AggValueSlot::NeedsGCBarriers;
95     return AggValueSlot::DoesNotNeedGCBarriers;
96   }
97 
98   bool TypeRequiresGCollection(QualType T);
99 
100   //===--------------------------------------------------------------------===//
101   //                            Visitor Methods
102   //===--------------------------------------------------------------------===//
103 
104   void Visit(Expr *E) {
105     ApplyDebugLocation DL(CGF, E);
106     StmtVisitor<AggExprEmitter>::Visit(E);
107   }
108 
109   void VisitStmt(Stmt *S) {
110     CGF.ErrorUnsupported(S, "aggregate expression");
111   }
112   void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
113   void VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
114     Visit(GE->getResultExpr());
115   }
116   void VisitCoawaitExpr(CoawaitExpr *E) {
117     CGF.EmitCoawaitExpr(*E, Dest, IsResultUnused);
118   }
119   void VisitCoyieldExpr(CoyieldExpr *E) {
120     CGF.EmitCoyieldExpr(*E, Dest, IsResultUnused);
121   }
122   void VisitUnaryCoawait(UnaryOperator *E) { Visit(E->getSubExpr()); }
123   void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
124   void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
125     return Visit(E->getReplacement());
126   }
127 
128   // l-values.
129   void VisitDeclRefExpr(DeclRefExpr *E) { EmitAggLoadOfLValue(E); }
130   void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
131   void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
132   void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
133   void VisitCompoundLiteralExpr(CompoundLiteralExpr *E);
134   void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
135     EmitAggLoadOfLValue(E);
136   }
137   void VisitPredefinedExpr(const PredefinedExpr *E) {
138     EmitAggLoadOfLValue(E);
139   }
140 
141   // Operators.
142   void VisitCastExpr(CastExpr *E);
143   void VisitCallExpr(const CallExpr *E);
144   void VisitStmtExpr(const StmtExpr *E);
145   void VisitBinaryOperator(const BinaryOperator *BO);
146   void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO);
147   void VisitBinAssign(const BinaryOperator *E);
148   void VisitBinComma(const BinaryOperator *E);
149   void VisitBinCmp(const BinaryOperator *E);
150 
151   void VisitObjCMessageExpr(ObjCMessageExpr *E);
152   void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
153     EmitAggLoadOfLValue(E);
154   }
155 
156   void VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E);
157   void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
158   void VisitChooseExpr(const ChooseExpr *CE);
159   void VisitInitListExpr(InitListExpr *E);
160   void VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E,
161                               llvm::Value *outerBegin = nullptr);
162   void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E);
163   void VisitNoInitExpr(NoInitExpr *E) { } // Do nothing.
164   void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
165     Visit(DAE->getExpr());
166   }
167   void VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
168     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF);
169     Visit(DIE->getExpr());
170   }
171   void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E);
172   void VisitCXXConstructExpr(const CXXConstructExpr *E);
173   void VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E);
174   void VisitLambdaExpr(LambdaExpr *E);
175   void VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E);
176   void VisitExprWithCleanups(ExprWithCleanups *E);
177   void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E);
178   void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); }
179   void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E);
180   void VisitOpaqueValueExpr(OpaqueValueExpr *E);
181 
182   void VisitPseudoObjectExpr(PseudoObjectExpr *E) {
183     if (E->isGLValue()) {
184       LValue LV = CGF.EmitPseudoObjectLValue(E);
185       return EmitFinalDestCopy(E->getType(), LV);
186     }
187 
188     CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType()));
189   }
190 
191   void VisitVAArgExpr(VAArgExpr *E);
192 
193   void EmitInitializationToLValue(Expr *E, LValue Address);
194   void EmitNullInitializationToLValue(LValue Address);
195   //  case Expr::ChooseExprClass:
196   void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); }
197   void VisitAtomicExpr(AtomicExpr *E) {
198     RValue Res = CGF.EmitAtomicExpr(E);
199     EmitFinalDestCopy(E->getType(), Res);
200   }
201 };
202 }  // end anonymous namespace.
203 
204 //===----------------------------------------------------------------------===//
205 //                                Utilities
206 //===----------------------------------------------------------------------===//
207 
208 /// EmitAggLoadOfLValue - Given an expression with aggregate type that
209 /// represents a value lvalue, this method emits the address of the lvalue,
210 /// then loads the result into DestPtr.
211 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
212   LValue LV = CGF.EmitLValue(E);
213 
214   // If the type of the l-value is atomic, then do an atomic load.
215   if (LV.getType()->isAtomicType() || CGF.LValueIsSuitableForInlineAtomic(LV)) {
216     CGF.EmitAtomicLoad(LV, E->getExprLoc(), Dest);
217     return;
218   }
219 
220   EmitFinalDestCopy(E->getType(), LV);
221 }
222 
223 /// \brief True if the given aggregate type requires special GC API calls.
224 bool AggExprEmitter::TypeRequiresGCollection(QualType T) {
225   // Only record types have members that might require garbage collection.
226   const RecordType *RecordTy = T->getAs<RecordType>();
227   if (!RecordTy) return false;
228 
229   // Don't mess with non-trivial C++ types.
230   RecordDecl *Record = RecordTy->getDecl();
231   if (isa<CXXRecordDecl>(Record) &&
232       (cast<CXXRecordDecl>(Record)->hasNonTrivialCopyConstructor() ||
233        !cast<CXXRecordDecl>(Record)->hasTrivialDestructor()))
234     return false;
235 
236   // Check whether the type has an object member.
237   return Record->hasObjectMember();
238 }
239 
240 void AggExprEmitter::withReturnValueSlot(
241     const Expr *E, llvm::function_ref<RValue(ReturnValueSlot)> EmitCall) {
242   QualType RetTy = E->getType();
243   bool RequiresDestruction =
244       Dest.isIgnored() &&
245       RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct;
246 
247   // If it makes no observable difference, save a memcpy + temporary.
248   //
249   // We need to always provide our own temporary if destruction is required.
250   // Otherwise, EmitCall will emit its own, notice that it's "unused", and end
251   // its lifetime before we have the chance to emit a proper destructor call.
252   bool UseTemp = Dest.isPotentiallyAliased() || Dest.requiresGCollection() ||
253                  (RequiresDestruction && !Dest.getAddress().isValid());
254 
255   Address RetAddr = Address::invalid();
256 
257   EHScopeStack::stable_iterator LifetimeEndBlock;
258   llvm::Value *LifetimeSizePtr = nullptr;
259   llvm::IntrinsicInst *LifetimeStartInst = nullptr;
260   if (!UseTemp) {
261     RetAddr = Dest.getAddress();
262   } else {
263     RetAddr = CGF.CreateMemTemp(RetTy);
264     uint64_t Size =
265         CGF.CGM.getDataLayout().getTypeAllocSize(CGF.ConvertTypeForMem(RetTy));
266     LifetimeSizePtr = CGF.EmitLifetimeStart(Size, RetAddr.getPointer());
267     if (LifetimeSizePtr) {
268       LifetimeStartInst =
269           cast<llvm::IntrinsicInst>(std::prev(Builder.GetInsertPoint()));
270       assert(LifetimeStartInst->getIntrinsicID() ==
271                  llvm::Intrinsic::lifetime_start &&
272              "Last insertion wasn't a lifetime.start?");
273 
274       CGF.pushFullExprCleanup<CodeGenFunction::CallLifetimeEnd>(
275           NormalEHLifetimeMarker, RetAddr, LifetimeSizePtr);
276       LifetimeEndBlock = CGF.EHStack.stable_begin();
277     }
278   }
279 
280   RValue Src =
281       EmitCall(ReturnValueSlot(RetAddr, Dest.isVolatile(), IsResultUnused));
282 
283   if (RequiresDestruction)
284     CGF.pushDestroy(RetTy.isDestructedType(), Src.getAggregateAddress(), RetTy);
285 
286   if (!UseTemp)
287     return;
288 
289   assert(Dest.getPointer() != Src.getAggregatePointer());
290   EmitFinalDestCopy(E->getType(), Src);
291 
292   if (!RequiresDestruction && LifetimeStartInst) {
293     // If there's no dtor to run, the copy was the last use of our temporary.
294     // Since we're not guaranteed to be in an ExprWithCleanups, clean up
295     // eagerly.
296     CGF.DeactivateCleanupBlock(LifetimeEndBlock, LifetimeStartInst);
297     CGF.EmitLifetimeEnd(LifetimeSizePtr, RetAddr.getPointer());
298   }
299 }
300 
301 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
302 void AggExprEmitter::EmitFinalDestCopy(QualType type, RValue src) {
303   assert(src.isAggregate() && "value must be aggregate value!");
304   LValue srcLV = CGF.MakeAddrLValue(src.getAggregateAddress(), type);
305   EmitFinalDestCopy(type, srcLV, EVK_RValue);
306 }
307 
308 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
309 void AggExprEmitter::EmitFinalDestCopy(QualType type, const LValue &src,
310                                        ExprValueKind SrcValueKind) {
311   // If Dest is ignored, then we're evaluating an aggregate expression
312   // in a context that doesn't care about the result.  Note that loads
313   // from volatile l-values force the existence of a non-ignored
314   // destination.
315   if (Dest.isIgnored())
316     return;
317 
318   // Copy non-trivial C structs here.
319   LValue DstLV = CGF.MakeAddrLValue(
320       Dest.getAddress(), Dest.isVolatile() ? type.withVolatile() : type);
321 
322   if (SrcValueKind == EVK_RValue) {
323     if (type.isNonTrivialToPrimitiveDestructiveMove() == QualType::PCK_Struct) {
324       if (Dest.isPotentiallyAliased())
325         CGF.callCStructMoveAssignmentOperator(DstLV, src);
326       else
327         CGF.callCStructMoveConstructor(DstLV, src);
328       return;
329     }
330   } else {
331     if (type.isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) {
332       if (Dest.isPotentiallyAliased())
333         CGF.callCStructCopyAssignmentOperator(DstLV, src);
334       else
335         CGF.callCStructCopyConstructor(DstLV, src);
336       return;
337     }
338   }
339 
340   AggValueSlot srcAgg =
341     AggValueSlot::forLValue(src, AggValueSlot::IsDestructed,
342                             needsGC(type), AggValueSlot::IsAliased,
343                             AggValueSlot::MayOverlap);
344   EmitCopy(type, Dest, srcAgg);
345 }
346 
347 /// Perform a copy from the source into the destination.
348 ///
349 /// \param type - the type of the aggregate being copied; qualifiers are
350 ///   ignored
351 void AggExprEmitter::EmitCopy(QualType type, const AggValueSlot &dest,
352                               const AggValueSlot &src) {
353   if (dest.requiresGCollection()) {
354     CharUnits sz = dest.getPreferredSize(CGF.getContext(), type);
355     llvm::Value *size = llvm::ConstantInt::get(CGF.SizeTy, sz.getQuantity());
356     CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF,
357                                                       dest.getAddress(),
358                                                       src.getAddress(),
359                                                       size);
360     return;
361   }
362 
363   // If the result of the assignment is used, copy the LHS there also.
364   // It's volatile if either side is.  Use the minimum alignment of
365   // the two sides.
366   LValue DestLV = CGF.MakeAddrLValue(dest.getAddress(), type);
367   LValue SrcLV = CGF.MakeAddrLValue(src.getAddress(), type);
368   CGF.EmitAggregateCopy(DestLV, SrcLV, type, dest.mayOverlap(),
369                         dest.isVolatile() || src.isVolatile());
370 }
371 
372 /// \brief Emit the initializer for a std::initializer_list initialized with a
373 /// real initializer list.
374 void
375 AggExprEmitter::VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E) {
376   // Emit an array containing the elements.  The array is externally destructed
377   // if the std::initializer_list object is.
378   ASTContext &Ctx = CGF.getContext();
379   LValue Array = CGF.EmitLValue(E->getSubExpr());
380   assert(Array.isSimple() && "initializer_list array not a simple lvalue");
381   Address ArrayPtr = Array.getAddress();
382 
383   const ConstantArrayType *ArrayType =
384       Ctx.getAsConstantArrayType(E->getSubExpr()->getType());
385   assert(ArrayType && "std::initializer_list constructed from non-array");
386 
387   // FIXME: Perform the checks on the field types in SemaInit.
388   RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl();
389   RecordDecl::field_iterator Field = Record->field_begin();
390   if (Field == Record->field_end()) {
391     CGF.ErrorUnsupported(E, "weird std::initializer_list");
392     return;
393   }
394 
395   // Start pointer.
396   if (!Field->getType()->isPointerType() ||
397       !Ctx.hasSameType(Field->getType()->getPointeeType(),
398                        ArrayType->getElementType())) {
399     CGF.ErrorUnsupported(E, "weird std::initializer_list");
400     return;
401   }
402 
403   AggValueSlot Dest = EnsureSlot(E->getType());
404   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
405   LValue Start = CGF.EmitLValueForFieldInitialization(DestLV, *Field);
406   llvm::Value *Zero = llvm::ConstantInt::get(CGF.PtrDiffTy, 0);
407   llvm::Value *IdxStart[] = { Zero, Zero };
408   llvm::Value *ArrayStart =
409       Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxStart, "arraystart");
410   CGF.EmitStoreThroughLValue(RValue::get(ArrayStart), Start);
411   ++Field;
412 
413   if (Field == Record->field_end()) {
414     CGF.ErrorUnsupported(E, "weird std::initializer_list");
415     return;
416   }
417 
418   llvm::Value *Size = Builder.getInt(ArrayType->getSize());
419   LValue EndOrLength = CGF.EmitLValueForFieldInitialization(DestLV, *Field);
420   if (Field->getType()->isPointerType() &&
421       Ctx.hasSameType(Field->getType()->getPointeeType(),
422                       ArrayType->getElementType())) {
423     // End pointer.
424     llvm::Value *IdxEnd[] = { Zero, Size };
425     llvm::Value *ArrayEnd =
426         Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxEnd, "arrayend");
427     CGF.EmitStoreThroughLValue(RValue::get(ArrayEnd), EndOrLength);
428   } else if (Ctx.hasSameType(Field->getType(), Ctx.getSizeType())) {
429     // Length.
430     CGF.EmitStoreThroughLValue(RValue::get(Size), EndOrLength);
431   } else {
432     CGF.ErrorUnsupported(E, "weird std::initializer_list");
433     return;
434   }
435 }
436 
437 /// \brief Determine if E is a trivial array filler, that is, one that is
438 /// equivalent to zero-initialization.
439 static bool isTrivialFiller(Expr *E) {
440   if (!E)
441     return true;
442 
443   if (isa<ImplicitValueInitExpr>(E))
444     return true;
445 
446   if (auto *ILE = dyn_cast<InitListExpr>(E)) {
447     if (ILE->getNumInits())
448       return false;
449     return isTrivialFiller(ILE->getArrayFiller());
450   }
451 
452   if (auto *Cons = dyn_cast_or_null<CXXConstructExpr>(E))
453     return Cons->getConstructor()->isDefaultConstructor() &&
454            Cons->getConstructor()->isTrivial();
455 
456   // FIXME: Are there other cases where we can avoid emitting an initializer?
457   return false;
458 }
459 
460 /// \brief Emit initialization of an array from an initializer list.
461 void AggExprEmitter::EmitArrayInit(Address DestPtr, llvm::ArrayType *AType,
462                                    QualType ArrayQTy, InitListExpr *E) {
463   uint64_t NumInitElements = E->getNumInits();
464 
465   uint64_t NumArrayElements = AType->getNumElements();
466   assert(NumInitElements <= NumArrayElements);
467 
468   QualType elementType =
469       CGF.getContext().getAsArrayType(ArrayQTy)->getElementType();
470 
471   // DestPtr is an array*.  Construct an elementType* by drilling
472   // down a level.
473   llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
474   llvm::Value *indices[] = { zero, zero };
475   llvm::Value *begin =
476     Builder.CreateInBoundsGEP(DestPtr.getPointer(), indices, "arrayinit.begin");
477 
478   CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
479   CharUnits elementAlign =
480     DestPtr.getAlignment().alignmentOfArrayElement(elementSize);
481 
482   // Consider initializing the array by copying from a global. For this to be
483   // more efficient than per-element initialization, the size of the elements
484   // with explicit initializers should be large enough.
485   if (NumInitElements * elementSize.getQuantity() > 16 &&
486       elementType.isTriviallyCopyableType(CGF.getContext())) {
487     CodeGen::CodeGenModule &CGM = CGF.CGM;
488     ConstantEmitter Emitter(CGM);
489     LangAS AS = ArrayQTy.getAddressSpace();
490     if (llvm::Constant *C = Emitter.tryEmitForInitializer(E, AS, ArrayQTy)) {
491       auto GV = new llvm::GlobalVariable(
492           CGM.getModule(), C->getType(),
493           CGM.isTypeConstant(ArrayQTy, /* ExcludeCtorDtor= */ true),
494           llvm::GlobalValue::PrivateLinkage, C, "constinit",
495           /* InsertBefore= */ nullptr, llvm::GlobalVariable::NotThreadLocal,
496           CGM.getContext().getTargetAddressSpace(AS));
497       Emitter.finalize(GV);
498       CharUnits Align = CGM.getContext().getTypeAlignInChars(ArrayQTy);
499       GV->setAlignment(Align.getQuantity());
500       EmitFinalDestCopy(ArrayQTy, CGF.MakeAddrLValue(GV, ArrayQTy, Align));
501       return;
502     }
503   }
504 
505   // Exception safety requires us to destroy all the
506   // already-constructed members if an initializer throws.
507   // For that, we'll need an EH cleanup.
508   QualType::DestructionKind dtorKind = elementType.isDestructedType();
509   Address endOfInit = Address::invalid();
510   EHScopeStack::stable_iterator cleanup;
511   llvm::Instruction *cleanupDominator = nullptr;
512   if (CGF.needsEHCleanup(dtorKind)) {
513     // In principle we could tell the cleanup where we are more
514     // directly, but the control flow can get so varied here that it
515     // would actually be quite complex.  Therefore we go through an
516     // alloca.
517     endOfInit = CGF.CreateTempAlloca(begin->getType(), CGF.getPointerAlign(),
518                                      "arrayinit.endOfInit");
519     cleanupDominator = Builder.CreateStore(begin, endOfInit);
520     CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType,
521                                          elementAlign,
522                                          CGF.getDestroyer(dtorKind));
523     cleanup = CGF.EHStack.stable_begin();
524 
525   // Otherwise, remember that we didn't need a cleanup.
526   } else {
527     dtorKind = QualType::DK_none;
528   }
529 
530   llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1);
531 
532   // The 'current element to initialize'.  The invariants on this
533   // variable are complicated.  Essentially, after each iteration of
534   // the loop, it points to the last initialized element, except
535   // that it points to the beginning of the array before any
536   // elements have been initialized.
537   llvm::Value *element = begin;
538 
539   // Emit the explicit initializers.
540   for (uint64_t i = 0; i != NumInitElements; ++i) {
541     // Advance to the next element.
542     if (i > 0) {
543       element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element");
544 
545       // Tell the cleanup that it needs to destroy up to this
546       // element.  TODO: some of these stores can be trivially
547       // observed to be unnecessary.
548       if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit);
549     }
550 
551     LValue elementLV =
552       CGF.MakeAddrLValue(Address(element, elementAlign), elementType);
553     EmitInitializationToLValue(E->getInit(i), elementLV);
554   }
555 
556   // Check whether there's a non-trivial array-fill expression.
557   Expr *filler = E->getArrayFiller();
558   bool hasTrivialFiller = isTrivialFiller(filler);
559 
560   // Any remaining elements need to be zero-initialized, possibly
561   // using the filler expression.  We can skip this if the we're
562   // emitting to zeroed memory.
563   if (NumInitElements != NumArrayElements &&
564       !(Dest.isZeroed() && hasTrivialFiller &&
565         CGF.getTypes().isZeroInitializable(elementType))) {
566 
567     // Use an actual loop.  This is basically
568     //   do { *array++ = filler; } while (array != end);
569 
570     // Advance to the start of the rest of the array.
571     if (NumInitElements) {
572       element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start");
573       if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit);
574     }
575 
576     // Compute the end of the array.
577     llvm::Value *end = Builder.CreateInBoundsGEP(begin,
578                       llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements),
579                                                  "arrayinit.end");
580 
581     llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
582     llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
583 
584     // Jump into the body.
585     CGF.EmitBlock(bodyBB);
586     llvm::PHINode *currentElement =
587       Builder.CreatePHI(element->getType(), 2, "arrayinit.cur");
588     currentElement->addIncoming(element, entryBB);
589 
590     // Emit the actual filler expression.
591     {
592       // C++1z [class.temporary]p5:
593       //   when a default constructor is called to initialize an element of
594       //   an array with no corresponding initializer [...] the destruction of
595       //   every temporary created in a default argument is sequenced before
596       //   the construction of the next array element, if any
597       CodeGenFunction::RunCleanupsScope CleanupsScope(CGF);
598       LValue elementLV =
599         CGF.MakeAddrLValue(Address(currentElement, elementAlign), elementType);
600       if (filler)
601         EmitInitializationToLValue(filler, elementLV);
602       else
603         EmitNullInitializationToLValue(elementLV);
604     }
605 
606     // Move on to the next element.
607     llvm::Value *nextElement =
608       Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next");
609 
610     // Tell the EH cleanup that we finished with the last element.
611     if (endOfInit.isValid()) Builder.CreateStore(nextElement, endOfInit);
612 
613     // Leave the loop if we're done.
614     llvm::Value *done = Builder.CreateICmpEQ(nextElement, end,
615                                              "arrayinit.done");
616     llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
617     Builder.CreateCondBr(done, endBB, bodyBB);
618     currentElement->addIncoming(nextElement, Builder.GetInsertBlock());
619 
620     CGF.EmitBlock(endBB);
621   }
622 
623   // Leave the partial-array cleanup if we entered one.
624   if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator);
625 }
626 
627 //===----------------------------------------------------------------------===//
628 //                            Visitor Methods
629 //===----------------------------------------------------------------------===//
630 
631 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){
632   Visit(E->GetTemporaryExpr());
633 }
634 
635 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) {
636   // If this is a unique OVE, just visit its source expression.
637   if (e->isUnique())
638     Visit(e->getSourceExpr());
639   else
640     EmitFinalDestCopy(e->getType(), CGF.getOrCreateOpaqueLValueMapping(e));
641 }
642 
643 void
644 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
645   if (Dest.isPotentiallyAliased() &&
646       E->getType().isPODType(CGF.getContext())) {
647     // For a POD type, just emit a load of the lvalue + a copy, because our
648     // compound literal might alias the destination.
649     EmitAggLoadOfLValue(E);
650     return;
651   }
652 
653   AggValueSlot Slot = EnsureSlot(E->getType());
654   CGF.EmitAggExpr(E->getInitializer(), Slot);
655 }
656 
657 /// Attempt to look through various unimportant expressions to find a
658 /// cast of the given kind.
659 static Expr *findPeephole(Expr *op, CastKind kind) {
660   while (true) {
661     op = op->IgnoreParens();
662     if (CastExpr *castE = dyn_cast<CastExpr>(op)) {
663       if (castE->getCastKind() == kind)
664         return castE->getSubExpr();
665       if (castE->getCastKind() == CK_NoOp)
666         continue;
667     }
668     return nullptr;
669   }
670 }
671 
672 void AggExprEmitter::VisitCastExpr(CastExpr *E) {
673   if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E))
674     CGF.CGM.EmitExplicitCastExprType(ECE, &CGF);
675   switch (E->getCastKind()) {
676   case CK_Dynamic: {
677     // FIXME: Can this actually happen? We have no test coverage for it.
678     assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?");
679     LValue LV = CGF.EmitCheckedLValue(E->getSubExpr(),
680                                       CodeGenFunction::TCK_Load);
681     // FIXME: Do we also need to handle property references here?
682     if (LV.isSimple())
683       CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E));
684     else
685       CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast");
686 
687     if (!Dest.isIgnored())
688       CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination");
689     break;
690   }
691 
692   case CK_ToUnion: {
693     // Evaluate even if the destination is ignored.
694     if (Dest.isIgnored()) {
695       CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(),
696                       /*ignoreResult=*/true);
697       break;
698     }
699 
700     // GCC union extension
701     QualType Ty = E->getSubExpr()->getType();
702     Address CastPtr =
703       Builder.CreateElementBitCast(Dest.getAddress(), CGF.ConvertType(Ty));
704     EmitInitializationToLValue(E->getSubExpr(),
705                                CGF.MakeAddrLValue(CastPtr, Ty));
706     break;
707   }
708 
709   case CK_DerivedToBase:
710   case CK_BaseToDerived:
711   case CK_UncheckedDerivedToBase: {
712     llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: "
713                 "should have been unpacked before we got here");
714   }
715 
716   case CK_NonAtomicToAtomic:
717   case CK_AtomicToNonAtomic: {
718     bool isToAtomic = (E->getCastKind() == CK_NonAtomicToAtomic);
719 
720     // Determine the atomic and value types.
721     QualType atomicType = E->getSubExpr()->getType();
722     QualType valueType = E->getType();
723     if (isToAtomic) std::swap(atomicType, valueType);
724 
725     assert(atomicType->isAtomicType());
726     assert(CGF.getContext().hasSameUnqualifiedType(valueType,
727                           atomicType->castAs<AtomicType>()->getValueType()));
728 
729     // Just recurse normally if we're ignoring the result or the
730     // atomic type doesn't change representation.
731     if (Dest.isIgnored() || !CGF.CGM.isPaddedAtomicType(atomicType)) {
732       return Visit(E->getSubExpr());
733     }
734 
735     CastKind peepholeTarget =
736       (isToAtomic ? CK_AtomicToNonAtomic : CK_NonAtomicToAtomic);
737 
738     // These two cases are reverses of each other; try to peephole them.
739     if (Expr *op = findPeephole(E->getSubExpr(), peepholeTarget)) {
740       assert(CGF.getContext().hasSameUnqualifiedType(op->getType(),
741                                                      E->getType()) &&
742            "peephole significantly changed types?");
743       return Visit(op);
744     }
745 
746     // If we're converting an r-value of non-atomic type to an r-value
747     // of atomic type, just emit directly into the relevant sub-object.
748     if (isToAtomic) {
749       AggValueSlot valueDest = Dest;
750       if (!valueDest.isIgnored() && CGF.CGM.isPaddedAtomicType(atomicType)) {
751         // Zero-initialize.  (Strictly speaking, we only need to initialize
752         // the padding at the end, but this is simpler.)
753         if (!Dest.isZeroed())
754           CGF.EmitNullInitialization(Dest.getAddress(), atomicType);
755 
756         // Build a GEP to refer to the subobject.
757         Address valueAddr =
758             CGF.Builder.CreateStructGEP(valueDest.getAddress(), 0,
759                                         CharUnits());
760         valueDest = AggValueSlot::forAddr(valueAddr,
761                                           valueDest.getQualifiers(),
762                                           valueDest.isExternallyDestructed(),
763                                           valueDest.requiresGCollection(),
764                                           valueDest.isPotentiallyAliased(),
765                                           AggValueSlot::DoesNotOverlap,
766                                           AggValueSlot::IsZeroed);
767       }
768 
769       CGF.EmitAggExpr(E->getSubExpr(), valueDest);
770       return;
771     }
772 
773     // Otherwise, we're converting an atomic type to a non-atomic type.
774     // Make an atomic temporary, emit into that, and then copy the value out.
775     AggValueSlot atomicSlot =
776       CGF.CreateAggTemp(atomicType, "atomic-to-nonatomic.temp");
777     CGF.EmitAggExpr(E->getSubExpr(), atomicSlot);
778 
779     Address valueAddr =
780       Builder.CreateStructGEP(atomicSlot.getAddress(), 0, CharUnits());
781     RValue rvalue = RValue::getAggregate(valueAddr, atomicSlot.isVolatile());
782     return EmitFinalDestCopy(valueType, rvalue);
783   }
784 
785   case CK_LValueToRValue:
786     // If we're loading from a volatile type, force the destination
787     // into existence.
788     if (E->getSubExpr()->getType().isVolatileQualified()) {
789       EnsureDest(E->getType());
790       return Visit(E->getSubExpr());
791     }
792 
793     LLVM_FALLTHROUGH;
794 
795   case CK_NoOp:
796   case CK_UserDefinedConversion:
797   case CK_ConstructorConversion:
798     assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(),
799                                                    E->getType()) &&
800            "Implicit cast types must be compatible");
801     Visit(E->getSubExpr());
802     break;
803 
804   case CK_LValueBitCast:
805     llvm_unreachable("should not be emitting lvalue bitcast as rvalue");
806 
807   case CK_Dependent:
808   case CK_BitCast:
809   case CK_ArrayToPointerDecay:
810   case CK_FunctionToPointerDecay:
811   case CK_NullToPointer:
812   case CK_NullToMemberPointer:
813   case CK_BaseToDerivedMemberPointer:
814   case CK_DerivedToBaseMemberPointer:
815   case CK_MemberPointerToBoolean:
816   case CK_ReinterpretMemberPointer:
817   case CK_IntegralToPointer:
818   case CK_PointerToIntegral:
819   case CK_PointerToBoolean:
820   case CK_ToVoid:
821   case CK_VectorSplat:
822   case CK_IntegralCast:
823   case CK_BooleanToSignedIntegral:
824   case CK_IntegralToBoolean:
825   case CK_IntegralToFloating:
826   case CK_FloatingToIntegral:
827   case CK_FloatingToBoolean:
828   case CK_FloatingCast:
829   case CK_CPointerToObjCPointerCast:
830   case CK_BlockPointerToObjCPointerCast:
831   case CK_AnyPointerToBlockPointerCast:
832   case CK_ObjCObjectLValueCast:
833   case CK_FloatingRealToComplex:
834   case CK_FloatingComplexToReal:
835   case CK_FloatingComplexToBoolean:
836   case CK_FloatingComplexCast:
837   case CK_FloatingComplexToIntegralComplex:
838   case CK_IntegralRealToComplex:
839   case CK_IntegralComplexToReal:
840   case CK_IntegralComplexToBoolean:
841   case CK_IntegralComplexCast:
842   case CK_IntegralComplexToFloatingComplex:
843   case CK_ARCProduceObject:
844   case CK_ARCConsumeObject:
845   case CK_ARCReclaimReturnedObject:
846   case CK_ARCExtendBlockObject:
847   case CK_CopyAndAutoreleaseBlockObject:
848   case CK_BuiltinFnToFnPtr:
849   case CK_ZeroToOCLEvent:
850   case CK_ZeroToOCLQueue:
851   case CK_AddressSpaceConversion:
852   case CK_IntToOCLSampler:
853     llvm_unreachable("cast kind invalid for aggregate types");
854   }
855 }
856 
857 void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
858   if (E->getCallReturnType(CGF.getContext())->isReferenceType()) {
859     EmitAggLoadOfLValue(E);
860     return;
861   }
862 
863   withReturnValueSlot(E, [&](ReturnValueSlot Slot) {
864     return CGF.EmitCallExpr(E, Slot);
865   });
866 }
867 
868 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
869   withReturnValueSlot(E, [&](ReturnValueSlot Slot) {
870     return CGF.EmitObjCMessageExpr(E, Slot);
871   });
872 }
873 
874 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
875   CGF.EmitIgnoredExpr(E->getLHS());
876   Visit(E->getRHS());
877 }
878 
879 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
880   CodeGenFunction::StmtExprEvaluation eval(CGF);
881   CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest);
882 }
883 
884 enum CompareKind {
885   CK_Less,
886   CK_Greater,
887   CK_Equal,
888 };
889 
890 static llvm::Value *EmitCompare(CGBuilderTy &Builder, CodeGenFunction &CGF,
891                                 const BinaryOperator *E, llvm::Value *LHS,
892                                 llvm::Value *RHS, CompareKind Kind,
893                                 const char *NameSuffix = "") {
894   QualType ArgTy = E->getLHS()->getType();
895   if (const ComplexType *CT = ArgTy->getAs<ComplexType>())
896     ArgTy = CT->getElementType();
897 
898   if (const auto *MPT = ArgTy->getAs<MemberPointerType>()) {
899     assert(Kind == CK_Equal &&
900            "member pointers may only be compared for equality");
901     return CGF.CGM.getCXXABI().EmitMemberPointerComparison(
902         CGF, LHS, RHS, MPT, /*IsInequality*/ false);
903   }
904 
905   // Compute the comparison instructions for the specified comparison kind.
906   struct CmpInstInfo {
907     const char *Name;
908     llvm::CmpInst::Predicate FCmp;
909     llvm::CmpInst::Predicate SCmp;
910     llvm::CmpInst::Predicate UCmp;
911   };
912   CmpInstInfo InstInfo = [&]() -> CmpInstInfo {
913     using FI = llvm::FCmpInst;
914     using II = llvm::ICmpInst;
915     switch (Kind) {
916     case CK_Less:
917       return {"cmp.lt", FI::FCMP_OLT, II::ICMP_SLT, II::ICMP_ULT};
918     case CK_Greater:
919       return {"cmp.gt", FI::FCMP_OGT, II::ICMP_SGT, II::ICMP_UGT};
920     case CK_Equal:
921       return {"cmp.eq", FI::FCMP_OEQ, II::ICMP_EQ, II::ICMP_EQ};
922     }
923   }();
924 
925   if (ArgTy->hasFloatingRepresentation())
926     return Builder.CreateFCmp(InstInfo.FCmp, LHS, RHS,
927                               llvm::Twine(InstInfo.Name) + NameSuffix);
928   if (ArgTy->isIntegralOrEnumerationType() || ArgTy->isPointerType()) {
929     auto Inst =
930         ArgTy->hasSignedIntegerRepresentation() ? InstInfo.SCmp : InstInfo.UCmp;
931     return Builder.CreateICmp(Inst, LHS, RHS,
932                               llvm::Twine(InstInfo.Name) + NameSuffix);
933   }
934 
935   llvm_unreachable("unsupported aggregate binary expression should have "
936                    "already been handled");
937 }
938 
939 void AggExprEmitter::VisitBinCmp(const BinaryOperator *E) {
940   using llvm::BasicBlock;
941   using llvm::PHINode;
942   using llvm::Value;
943   assert(CGF.getContext().hasSameType(E->getLHS()->getType(),
944                                       E->getRHS()->getType()));
945   const ComparisonCategoryInfo &CmpInfo =
946       CGF.getContext().CompCategories.getInfoForType(E->getType());
947   assert(CmpInfo.Record->isTriviallyCopyable() &&
948          "cannot copy non-trivially copyable aggregate");
949 
950   QualType ArgTy = E->getLHS()->getType();
951 
952   // TODO: Handle comparing these types.
953   if (ArgTy->isVectorType())
954     return CGF.ErrorUnsupported(
955         E, "aggregate three-way comparison with vector arguments");
956   if (!ArgTy->isIntegralOrEnumerationType() && !ArgTy->isRealFloatingType() &&
957       !ArgTy->isNullPtrType() && !ArgTy->isPointerType() &&
958       !ArgTy->isMemberPointerType() && !ArgTy->isAnyComplexType()) {
959     return CGF.ErrorUnsupported(E, "aggregate three-way comparison");
960   }
961   bool IsComplex = ArgTy->isAnyComplexType();
962 
963   // Evaluate the operands to the expression and extract their values.
964   auto EmitOperand = [&](Expr *E) -> std::pair<Value *, Value *> {
965     RValue RV = CGF.EmitAnyExpr(E);
966     if (RV.isScalar())
967       return {RV.getScalarVal(), nullptr};
968     if (RV.isAggregate())
969       return {RV.getAggregatePointer(), nullptr};
970     assert(RV.isComplex());
971     return RV.getComplexVal();
972   };
973   auto LHSValues = EmitOperand(E->getLHS()),
974        RHSValues = EmitOperand(E->getRHS());
975 
976   auto EmitCmp = [&](CompareKind K) {
977     Value *Cmp = EmitCompare(Builder, CGF, E, LHSValues.first, RHSValues.first,
978                              K, IsComplex ? ".r" : "");
979     if (!IsComplex)
980       return Cmp;
981     assert(K == CompareKind::CK_Equal);
982     Value *CmpImag = EmitCompare(Builder, CGF, E, LHSValues.second,
983                                  RHSValues.second, K, ".i");
984     return Builder.CreateAnd(Cmp, CmpImag, "and.eq");
985   };
986   auto EmitCmpRes = [&](const ComparisonCategoryInfo::ValueInfo *VInfo) {
987     return Builder.getInt(VInfo->getIntValue());
988   };
989 
990   Value *Select;
991   if (ArgTy->isNullPtrType()) {
992     Select = EmitCmpRes(CmpInfo.getEqualOrEquiv());
993   } else if (CmpInfo.isEquality()) {
994     Select = Builder.CreateSelect(
995         EmitCmp(CK_Equal), EmitCmpRes(CmpInfo.getEqualOrEquiv()),
996         EmitCmpRes(CmpInfo.getNonequalOrNonequiv()), "sel.eq");
997   } else if (!CmpInfo.isPartial()) {
998     Value *SelectOne =
999         Builder.CreateSelect(EmitCmp(CK_Less), EmitCmpRes(CmpInfo.getLess()),
1000                              EmitCmpRes(CmpInfo.getGreater()), "sel.lt");
1001     Select = Builder.CreateSelect(EmitCmp(CK_Equal),
1002                                   EmitCmpRes(CmpInfo.getEqualOrEquiv()),
1003                                   SelectOne, "sel.eq");
1004   } else {
1005     Value *SelectEq = Builder.CreateSelect(
1006         EmitCmp(CK_Equal), EmitCmpRes(CmpInfo.getEqualOrEquiv()),
1007         EmitCmpRes(CmpInfo.getUnordered()), "sel.eq");
1008     Value *SelectGT = Builder.CreateSelect(EmitCmp(CK_Greater),
1009                                            EmitCmpRes(CmpInfo.getGreater()),
1010                                            SelectEq, "sel.gt");
1011     Select = Builder.CreateSelect(
1012         EmitCmp(CK_Less), EmitCmpRes(CmpInfo.getLess()), SelectGT, "sel.lt");
1013   }
1014   // Create the return value in the destination slot.
1015   EnsureDest(E->getType());
1016   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
1017 
1018   // Emit the address of the first (and only) field in the comparison category
1019   // type, and initialize it from the constant integer value selected above.
1020   LValue FieldLV = CGF.EmitLValueForFieldInitialization(
1021       DestLV, *CmpInfo.Record->field_begin());
1022   CGF.EmitStoreThroughLValue(RValue::get(Select), FieldLV, /*IsInit*/ true);
1023 
1024   // All done! The result is in the Dest slot.
1025 }
1026 
1027 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
1028   if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI)
1029     VisitPointerToDataMemberBinaryOperator(E);
1030   else
1031     CGF.ErrorUnsupported(E, "aggregate binary expression");
1032 }
1033 
1034 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator(
1035                                                     const BinaryOperator *E) {
1036   LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E);
1037   EmitFinalDestCopy(E->getType(), LV);
1038 }
1039 
1040 /// Is the value of the given expression possibly a reference to or
1041 /// into a __block variable?
1042 static bool isBlockVarRef(const Expr *E) {
1043   // Make sure we look through parens.
1044   E = E->IgnoreParens();
1045 
1046   // Check for a direct reference to a __block variable.
1047   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
1048     const VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
1049     return (var && var->hasAttr<BlocksAttr>());
1050   }
1051 
1052   // More complicated stuff.
1053 
1054   // Binary operators.
1055   if (const BinaryOperator *op = dyn_cast<BinaryOperator>(E)) {
1056     // For an assignment or pointer-to-member operation, just care
1057     // about the LHS.
1058     if (op->isAssignmentOp() || op->isPtrMemOp())
1059       return isBlockVarRef(op->getLHS());
1060 
1061     // For a comma, just care about the RHS.
1062     if (op->getOpcode() == BO_Comma)
1063       return isBlockVarRef(op->getRHS());
1064 
1065     // FIXME: pointer arithmetic?
1066     return false;
1067 
1068   // Check both sides of a conditional operator.
1069   } else if (const AbstractConditionalOperator *op
1070                = dyn_cast<AbstractConditionalOperator>(E)) {
1071     return isBlockVarRef(op->getTrueExpr())
1072         || isBlockVarRef(op->getFalseExpr());
1073 
1074   // OVEs are required to support BinaryConditionalOperators.
1075   } else if (const OpaqueValueExpr *op
1076                = dyn_cast<OpaqueValueExpr>(E)) {
1077     if (const Expr *src = op->getSourceExpr())
1078       return isBlockVarRef(src);
1079 
1080   // Casts are necessary to get things like (*(int*)&var) = foo().
1081   // We don't really care about the kind of cast here, except
1082   // we don't want to look through l2r casts, because it's okay
1083   // to get the *value* in a __block variable.
1084   } else if (const CastExpr *cast = dyn_cast<CastExpr>(E)) {
1085     if (cast->getCastKind() == CK_LValueToRValue)
1086       return false;
1087     return isBlockVarRef(cast->getSubExpr());
1088 
1089   // Handle unary operators.  Again, just aggressively look through
1090   // it, ignoring the operation.
1091   } else if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E)) {
1092     return isBlockVarRef(uop->getSubExpr());
1093 
1094   // Look into the base of a field access.
1095   } else if (const MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
1096     return isBlockVarRef(mem->getBase());
1097 
1098   // Look into the base of a subscript.
1099   } else if (const ArraySubscriptExpr *sub = dyn_cast<ArraySubscriptExpr>(E)) {
1100     return isBlockVarRef(sub->getBase());
1101   }
1102 
1103   return false;
1104 }
1105 
1106 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
1107   // For an assignment to work, the value on the right has
1108   // to be compatible with the value on the left.
1109   assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
1110                                                  E->getRHS()->getType())
1111          && "Invalid assignment");
1112 
1113   // If the LHS might be a __block variable, and the RHS can
1114   // potentially cause a block copy, we need to evaluate the RHS first
1115   // so that the assignment goes the right place.
1116   // This is pretty semantically fragile.
1117   if (isBlockVarRef(E->getLHS()) &&
1118       E->getRHS()->HasSideEffects(CGF.getContext())) {
1119     // Ensure that we have a destination, and evaluate the RHS into that.
1120     EnsureDest(E->getRHS()->getType());
1121     Visit(E->getRHS());
1122 
1123     // Now emit the LHS and copy into it.
1124     LValue LHS = CGF.EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
1125 
1126     // That copy is an atomic copy if the LHS is atomic.
1127     if (LHS.getType()->isAtomicType() ||
1128         CGF.LValueIsSuitableForInlineAtomic(LHS)) {
1129       CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false);
1130       return;
1131     }
1132 
1133     EmitCopy(E->getLHS()->getType(),
1134              AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed,
1135                                      needsGC(E->getLHS()->getType()),
1136                                      AggValueSlot::IsAliased,
1137                                      AggValueSlot::MayOverlap),
1138              Dest);
1139     return;
1140   }
1141 
1142   LValue LHS = CGF.EmitLValue(E->getLHS());
1143 
1144   // If we have an atomic type, evaluate into the destination and then
1145   // do an atomic copy.
1146   if (LHS.getType()->isAtomicType() ||
1147       CGF.LValueIsSuitableForInlineAtomic(LHS)) {
1148     EnsureDest(E->getRHS()->getType());
1149     Visit(E->getRHS());
1150     CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false);
1151     return;
1152   }
1153 
1154   // Codegen the RHS so that it stores directly into the LHS.
1155   AggValueSlot LHSSlot =
1156     AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed,
1157                             needsGC(E->getLHS()->getType()),
1158                             AggValueSlot::IsAliased,
1159                             AggValueSlot::MayOverlap);
1160   // A non-volatile aggregate destination might have volatile member.
1161   if (!LHSSlot.isVolatile() &&
1162       CGF.hasVolatileMember(E->getLHS()->getType()))
1163     LHSSlot.setVolatile(true);
1164 
1165   CGF.EmitAggExpr(E->getRHS(), LHSSlot);
1166 
1167   // Copy into the destination if the assignment isn't ignored.
1168   EmitFinalDestCopy(E->getType(), LHS);
1169 }
1170 
1171 void AggExprEmitter::
1172 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
1173   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
1174   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
1175   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
1176 
1177   // Bind the common expression if necessary.
1178   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
1179 
1180   CodeGenFunction::ConditionalEvaluation eval(CGF);
1181   CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock,
1182                            CGF.getProfileCount(E));
1183 
1184   // Save whether the destination's lifetime is externally managed.
1185   bool isExternallyDestructed = Dest.isExternallyDestructed();
1186 
1187   eval.begin(CGF);
1188   CGF.EmitBlock(LHSBlock);
1189   CGF.incrementProfileCounter(E);
1190   Visit(E->getTrueExpr());
1191   eval.end(CGF);
1192 
1193   assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!");
1194   CGF.Builder.CreateBr(ContBlock);
1195 
1196   // If the result of an agg expression is unused, then the emission
1197   // of the LHS might need to create a destination slot.  That's fine
1198   // with us, and we can safely emit the RHS into the same slot, but
1199   // we shouldn't claim that it's already being destructed.
1200   Dest.setExternallyDestructed(isExternallyDestructed);
1201 
1202   eval.begin(CGF);
1203   CGF.EmitBlock(RHSBlock);
1204   Visit(E->getFalseExpr());
1205   eval.end(CGF);
1206 
1207   CGF.EmitBlock(ContBlock);
1208 }
1209 
1210 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) {
1211   Visit(CE->getChosenSubExpr());
1212 }
1213 
1214 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
1215   Address ArgValue = Address::invalid();
1216   Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
1217 
1218   // If EmitVAArg fails, emit an error.
1219   if (!ArgPtr.isValid()) {
1220     CGF.ErrorUnsupported(VE, "aggregate va_arg expression");
1221     return;
1222   }
1223 
1224   EmitFinalDestCopy(VE->getType(), CGF.MakeAddrLValue(ArgPtr, VE->getType()));
1225 }
1226 
1227 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
1228   // Ensure that we have a slot, but if we already do, remember
1229   // whether it was externally destructed.
1230   bool wasExternallyDestructed = Dest.isExternallyDestructed();
1231   EnsureDest(E->getType());
1232 
1233   // We're going to push a destructor if there isn't already one.
1234   Dest.setExternallyDestructed();
1235 
1236   Visit(E->getSubExpr());
1237 
1238   // Push that destructor we promised.
1239   if (!wasExternallyDestructed)
1240     CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddress());
1241 }
1242 
1243 void
1244 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) {
1245   AggValueSlot Slot = EnsureSlot(E->getType());
1246   CGF.EmitCXXConstructExpr(E, Slot);
1247 }
1248 
1249 void AggExprEmitter::VisitCXXInheritedCtorInitExpr(
1250     const CXXInheritedCtorInitExpr *E) {
1251   AggValueSlot Slot = EnsureSlot(E->getType());
1252   CGF.EmitInheritedCXXConstructorCall(
1253       E->getConstructor(), E->constructsVBase(), Slot.getAddress(),
1254       E->inheritedFromVBase(), E);
1255 }
1256 
1257 void
1258 AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) {
1259   AggValueSlot Slot = EnsureSlot(E->getType());
1260   CGF.EmitLambdaExpr(E, Slot);
1261 }
1262 
1263 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
1264   CGF.enterFullExpression(E);
1265   CodeGenFunction::RunCleanupsScope cleanups(CGF);
1266   Visit(E->getSubExpr());
1267 }
1268 
1269 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
1270   QualType T = E->getType();
1271   AggValueSlot Slot = EnsureSlot(T);
1272   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T));
1273 }
1274 
1275 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
1276   QualType T = E->getType();
1277   AggValueSlot Slot = EnsureSlot(T);
1278   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T));
1279 }
1280 
1281 /// isSimpleZero - If emitting this value will obviously just cause a store of
1282 /// zero to memory, return true.  This can return false if uncertain, so it just
1283 /// handles simple cases.
1284 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) {
1285   E = E->IgnoreParens();
1286 
1287   // 0
1288   if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E))
1289     return IL->getValue() == 0;
1290   // +0.0
1291   if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E))
1292     return FL->getValue().isPosZero();
1293   // int()
1294   if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) &&
1295       CGF.getTypes().isZeroInitializable(E->getType()))
1296     return true;
1297   // (int*)0 - Null pointer expressions.
1298   if (const CastExpr *ICE = dyn_cast<CastExpr>(E))
1299     return ICE->getCastKind() == CK_NullToPointer &&
1300         CGF.getTypes().isPointerZeroInitializable(E->getType());
1301   // '\0'
1302   if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E))
1303     return CL->getValue() == 0;
1304 
1305   // Otherwise, hard case: conservatively return false.
1306   return false;
1307 }
1308 
1309 
1310 void
1311 AggExprEmitter::EmitInitializationToLValue(Expr *E, LValue LV) {
1312   QualType type = LV.getType();
1313   // FIXME: Ignore result?
1314   // FIXME: Are initializers affected by volatile?
1315   if (Dest.isZeroed() && isSimpleZero(E, CGF)) {
1316     // Storing "i32 0" to a zero'd memory location is a noop.
1317     return;
1318   } else if (isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) {
1319     return EmitNullInitializationToLValue(LV);
1320   } else if (isa<NoInitExpr>(E)) {
1321     // Do nothing.
1322     return;
1323   } else if (type->isReferenceType()) {
1324     RValue RV = CGF.EmitReferenceBindingToExpr(E);
1325     return CGF.EmitStoreThroughLValue(RV, LV);
1326   }
1327 
1328   switch (CGF.getEvaluationKind(type)) {
1329   case TEK_Complex:
1330     CGF.EmitComplexExprIntoLValue(E, LV, /*isInit*/ true);
1331     return;
1332   case TEK_Aggregate:
1333     CGF.EmitAggExpr(E, AggValueSlot::forLValue(LV,
1334                                                AggValueSlot::IsDestructed,
1335                                       AggValueSlot::DoesNotNeedGCBarriers,
1336                                                AggValueSlot::IsNotAliased,
1337                                                AggValueSlot::MayOverlap,
1338                                                Dest.isZeroed()));
1339     return;
1340   case TEK_Scalar:
1341     if (LV.isSimple()) {
1342       CGF.EmitScalarInit(E, /*D=*/nullptr, LV, /*Captured=*/false);
1343     } else {
1344       CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV);
1345     }
1346     return;
1347   }
1348   llvm_unreachable("bad evaluation kind");
1349 }
1350 
1351 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) {
1352   QualType type = lv.getType();
1353 
1354   // If the destination slot is already zeroed out before the aggregate is
1355   // copied into it, we don't have to emit any zeros here.
1356   if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type))
1357     return;
1358 
1359   if (CGF.hasScalarEvaluationKind(type)) {
1360     // For non-aggregates, we can store the appropriate null constant.
1361     llvm::Value *null = CGF.CGM.EmitNullConstant(type);
1362     // Note that the following is not equivalent to
1363     // EmitStoreThroughBitfieldLValue for ARC types.
1364     if (lv.isBitField()) {
1365       CGF.EmitStoreThroughBitfieldLValue(RValue::get(null), lv);
1366     } else {
1367       assert(lv.isSimple());
1368       CGF.EmitStoreOfScalar(null, lv, /* isInitialization */ true);
1369     }
1370   } else {
1371     // There's a potential optimization opportunity in combining
1372     // memsets; that would be easy for arrays, but relatively
1373     // difficult for structures with the current code.
1374     CGF.EmitNullInitialization(lv.getAddress(), lv.getType());
1375   }
1376 }
1377 
1378 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
1379 #if 0
1380   // FIXME: Assess perf here?  Figure out what cases are worth optimizing here
1381   // (Length of globals? Chunks of zeroed-out space?).
1382   //
1383   // If we can, prefer a copy from a global; this is a lot less code for long
1384   // globals, and it's easier for the current optimizers to analyze.
1385   if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) {
1386     llvm::GlobalVariable* GV =
1387     new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true,
1388                              llvm::GlobalValue::InternalLinkage, C, "");
1389     EmitFinalDestCopy(E->getType(), CGF.MakeAddrLValue(GV, E->getType()));
1390     return;
1391   }
1392 #endif
1393   if (E->hadArrayRangeDesignator())
1394     CGF.ErrorUnsupported(E, "GNU array range designator extension");
1395 
1396   if (E->isTransparent())
1397     return Visit(E->getInit(0));
1398 
1399   AggValueSlot Dest = EnsureSlot(E->getType());
1400 
1401   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
1402 
1403   // Handle initialization of an array.
1404   if (E->getType()->isArrayType()) {
1405     auto AType = cast<llvm::ArrayType>(Dest.getAddress().getElementType());
1406     EmitArrayInit(Dest.getAddress(), AType, E->getType(), E);
1407     return;
1408   }
1409 
1410   assert(E->getType()->isRecordType() && "Only support structs/unions here!");
1411 
1412   // Do struct initialization; this code just sets each individual member
1413   // to the approprate value.  This makes bitfield support automatic;
1414   // the disadvantage is that the generated code is more difficult for
1415   // the optimizer, especially with bitfields.
1416   unsigned NumInitElements = E->getNumInits();
1417   RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl();
1418 
1419   // We'll need to enter cleanup scopes in case any of the element
1420   // initializers throws an exception.
1421   SmallVector<EHScopeStack::stable_iterator, 16> cleanups;
1422   llvm::Instruction *cleanupDominator = nullptr;
1423 
1424   unsigned curInitIndex = 0;
1425 
1426   // Emit initialization of base classes.
1427   if (auto *CXXRD = dyn_cast<CXXRecordDecl>(record)) {
1428     assert(E->getNumInits() >= CXXRD->getNumBases() &&
1429            "missing initializer for base class");
1430     for (auto &Base : CXXRD->bases()) {
1431       assert(!Base.isVirtual() && "should not see vbases here");
1432       auto *BaseRD = Base.getType()->getAsCXXRecordDecl();
1433       Address V = CGF.GetAddressOfDirectBaseInCompleteClass(
1434           Dest.getAddress(), CXXRD, BaseRD,
1435           /*isBaseVirtual*/ false);
1436       AggValueSlot AggSlot = AggValueSlot::forAddr(
1437           V, Qualifiers(),
1438           AggValueSlot::IsDestructed,
1439           AggValueSlot::DoesNotNeedGCBarriers,
1440           AggValueSlot::IsNotAliased,
1441           CGF.overlapForBaseInit(CXXRD, BaseRD, Base.isVirtual()));
1442       CGF.EmitAggExpr(E->getInit(curInitIndex++), AggSlot);
1443 
1444       if (QualType::DestructionKind dtorKind =
1445               Base.getType().isDestructedType()) {
1446         CGF.pushDestroy(dtorKind, V, Base.getType());
1447         cleanups.push_back(CGF.EHStack.stable_begin());
1448       }
1449     }
1450   }
1451 
1452   // Prepare a 'this' for CXXDefaultInitExprs.
1453   CodeGenFunction::FieldConstructionScope FCS(CGF, Dest.getAddress());
1454 
1455   if (record->isUnion()) {
1456     // Only initialize one field of a union. The field itself is
1457     // specified by the initializer list.
1458     if (!E->getInitializedFieldInUnion()) {
1459       // Empty union; we have nothing to do.
1460 
1461 #ifndef NDEBUG
1462       // Make sure that it's really an empty and not a failure of
1463       // semantic analysis.
1464       for (const auto *Field : record->fields())
1465         assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed");
1466 #endif
1467       return;
1468     }
1469 
1470     // FIXME: volatility
1471     FieldDecl *Field = E->getInitializedFieldInUnion();
1472 
1473     LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestLV, Field);
1474     if (NumInitElements) {
1475       // Store the initializer into the field
1476       EmitInitializationToLValue(E->getInit(0), FieldLoc);
1477     } else {
1478       // Default-initialize to null.
1479       EmitNullInitializationToLValue(FieldLoc);
1480     }
1481 
1482     return;
1483   }
1484 
1485   // Here we iterate over the fields; this makes it simpler to both
1486   // default-initialize fields and skip over unnamed fields.
1487   for (const auto *field : record->fields()) {
1488     // We're done once we hit the flexible array member.
1489     if (field->getType()->isIncompleteArrayType())
1490       break;
1491 
1492     // Always skip anonymous bitfields.
1493     if (field->isUnnamedBitfield())
1494       continue;
1495 
1496     // We're done if we reach the end of the explicit initializers, we
1497     // have a zeroed object, and the rest of the fields are
1498     // zero-initializable.
1499     if (curInitIndex == NumInitElements && Dest.isZeroed() &&
1500         CGF.getTypes().isZeroInitializable(E->getType()))
1501       break;
1502 
1503 
1504     LValue LV = CGF.EmitLValueForFieldInitialization(DestLV, field);
1505     // We never generate write-barries for initialized fields.
1506     LV.setNonGC(true);
1507 
1508     if (curInitIndex < NumInitElements) {
1509       // Store the initializer into the field.
1510       EmitInitializationToLValue(E->getInit(curInitIndex++), LV);
1511     } else {
1512       // We're out of initializers; default-initialize to null
1513       EmitNullInitializationToLValue(LV);
1514     }
1515 
1516     // Push a destructor if necessary.
1517     // FIXME: if we have an array of structures, all explicitly
1518     // initialized, we can end up pushing a linear number of cleanups.
1519     bool pushedCleanup = false;
1520     if (QualType::DestructionKind dtorKind
1521           = field->getType().isDestructedType()) {
1522       assert(LV.isSimple());
1523       if (CGF.needsEHCleanup(dtorKind)) {
1524         if (!cleanupDominator)
1525           cleanupDominator = CGF.Builder.CreateAlignedLoad(
1526               CGF.Int8Ty,
1527               llvm::Constant::getNullValue(CGF.Int8PtrTy),
1528               CharUnits::One()); // placeholder
1529 
1530         CGF.pushDestroy(EHCleanup, LV.getAddress(), field->getType(),
1531                         CGF.getDestroyer(dtorKind), false);
1532         cleanups.push_back(CGF.EHStack.stable_begin());
1533         pushedCleanup = true;
1534       }
1535     }
1536 
1537     // If the GEP didn't get used because of a dead zero init or something
1538     // else, clean it up for -O0 builds and general tidiness.
1539     if (!pushedCleanup && LV.isSimple())
1540       if (llvm::GetElementPtrInst *GEP =
1541             dyn_cast<llvm::GetElementPtrInst>(LV.getPointer()))
1542         if (GEP->use_empty())
1543           GEP->eraseFromParent();
1544   }
1545 
1546   // Deactivate all the partial cleanups in reverse order, which
1547   // generally means popping them.
1548   for (unsigned i = cleanups.size(); i != 0; --i)
1549     CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator);
1550 
1551   // Destroy the placeholder if we made one.
1552   if (cleanupDominator)
1553     cleanupDominator->eraseFromParent();
1554 }
1555 
1556 void AggExprEmitter::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E,
1557                                             llvm::Value *outerBegin) {
1558   // Emit the common subexpression.
1559   CodeGenFunction::OpaqueValueMapping binding(CGF, E->getCommonExpr());
1560 
1561   Address destPtr = EnsureSlot(E->getType()).getAddress();
1562   uint64_t numElements = E->getArraySize().getZExtValue();
1563 
1564   if (!numElements)
1565     return;
1566 
1567   // destPtr is an array*. Construct an elementType* by drilling down a level.
1568   llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
1569   llvm::Value *indices[] = {zero, zero};
1570   llvm::Value *begin = Builder.CreateInBoundsGEP(destPtr.getPointer(), indices,
1571                                                  "arrayinit.begin");
1572 
1573   // Prepare to special-case multidimensional array initialization: we avoid
1574   // emitting multiple destructor loops in that case.
1575   if (!outerBegin)
1576     outerBegin = begin;
1577   ArrayInitLoopExpr *InnerLoop = dyn_cast<ArrayInitLoopExpr>(E->getSubExpr());
1578 
1579   QualType elementType =
1580       CGF.getContext().getAsArrayType(E->getType())->getElementType();
1581   CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
1582   CharUnits elementAlign =
1583       destPtr.getAlignment().alignmentOfArrayElement(elementSize);
1584 
1585   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1586   llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
1587 
1588   // Jump into the body.
1589   CGF.EmitBlock(bodyBB);
1590   llvm::PHINode *index =
1591       Builder.CreatePHI(zero->getType(), 2, "arrayinit.index");
1592   index->addIncoming(zero, entryBB);
1593   llvm::Value *element = Builder.CreateInBoundsGEP(begin, index);
1594 
1595   // Prepare for a cleanup.
1596   QualType::DestructionKind dtorKind = elementType.isDestructedType();
1597   EHScopeStack::stable_iterator cleanup;
1598   if (CGF.needsEHCleanup(dtorKind) && !InnerLoop) {
1599     if (outerBegin->getType() != element->getType())
1600       outerBegin = Builder.CreateBitCast(outerBegin, element->getType());
1601     CGF.pushRegularPartialArrayCleanup(outerBegin, element, elementType,
1602                                        elementAlign,
1603                                        CGF.getDestroyer(dtorKind));
1604     cleanup = CGF.EHStack.stable_begin();
1605   } else {
1606     dtorKind = QualType::DK_none;
1607   }
1608 
1609   // Emit the actual filler expression.
1610   {
1611     // Temporaries created in an array initialization loop are destroyed
1612     // at the end of each iteration.
1613     CodeGenFunction::RunCleanupsScope CleanupsScope(CGF);
1614     CodeGenFunction::ArrayInitLoopExprScope Scope(CGF, index);
1615     LValue elementLV =
1616         CGF.MakeAddrLValue(Address(element, elementAlign), elementType);
1617 
1618     if (InnerLoop) {
1619       // If the subexpression is an ArrayInitLoopExpr, share its cleanup.
1620       auto elementSlot = AggValueSlot::forLValue(
1621           elementLV, AggValueSlot::IsDestructed,
1622           AggValueSlot::DoesNotNeedGCBarriers,
1623           AggValueSlot::IsNotAliased,
1624           AggValueSlot::DoesNotOverlap);
1625       AggExprEmitter(CGF, elementSlot, false)
1626           .VisitArrayInitLoopExpr(InnerLoop, outerBegin);
1627     } else
1628       EmitInitializationToLValue(E->getSubExpr(), elementLV);
1629   }
1630 
1631   // Move on to the next element.
1632   llvm::Value *nextIndex = Builder.CreateNUWAdd(
1633       index, llvm::ConstantInt::get(CGF.SizeTy, 1), "arrayinit.next");
1634   index->addIncoming(nextIndex, Builder.GetInsertBlock());
1635 
1636   // Leave the loop if we're done.
1637   llvm::Value *done = Builder.CreateICmpEQ(
1638       nextIndex, llvm::ConstantInt::get(CGF.SizeTy, numElements),
1639       "arrayinit.done");
1640   llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
1641   Builder.CreateCondBr(done, endBB, bodyBB);
1642 
1643   CGF.EmitBlock(endBB);
1644 
1645   // Leave the partial-array cleanup if we entered one.
1646   if (dtorKind)
1647     CGF.DeactivateCleanupBlock(cleanup, index);
1648 }
1649 
1650 void AggExprEmitter::VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E) {
1651   AggValueSlot Dest = EnsureSlot(E->getType());
1652 
1653   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
1654   EmitInitializationToLValue(E->getBase(), DestLV);
1655   VisitInitListExpr(E->getUpdater());
1656 }
1657 
1658 //===----------------------------------------------------------------------===//
1659 //                        Entry Points into this File
1660 //===----------------------------------------------------------------------===//
1661 
1662 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of
1663 /// non-zero bytes that will be stored when outputting the initializer for the
1664 /// specified initializer expression.
1665 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) {
1666   E = E->IgnoreParens();
1667 
1668   // 0 and 0.0 won't require any non-zero stores!
1669   if (isSimpleZero(E, CGF)) return CharUnits::Zero();
1670 
1671   // If this is an initlist expr, sum up the size of sizes of the (present)
1672   // elements.  If this is something weird, assume the whole thing is non-zero.
1673   const InitListExpr *ILE = dyn_cast<InitListExpr>(E);
1674   if (!ILE || !CGF.getTypes().isZeroInitializable(ILE->getType()))
1675     return CGF.getContext().getTypeSizeInChars(E->getType());
1676 
1677   // InitListExprs for structs have to be handled carefully.  If there are
1678   // reference members, we need to consider the size of the reference, not the
1679   // referencee.  InitListExprs for unions and arrays can't have references.
1680   if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
1681     if (!RT->isUnionType()) {
1682       RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl();
1683       CharUnits NumNonZeroBytes = CharUnits::Zero();
1684 
1685       unsigned ILEElement = 0;
1686       if (auto *CXXRD = dyn_cast<CXXRecordDecl>(SD))
1687         while (ILEElement != CXXRD->getNumBases())
1688           NumNonZeroBytes +=
1689               GetNumNonZeroBytesInInit(ILE->getInit(ILEElement++), CGF);
1690       for (const auto *Field : SD->fields()) {
1691         // We're done once we hit the flexible array member or run out of
1692         // InitListExpr elements.
1693         if (Field->getType()->isIncompleteArrayType() ||
1694             ILEElement == ILE->getNumInits())
1695           break;
1696         if (Field->isUnnamedBitfield())
1697           continue;
1698 
1699         const Expr *E = ILE->getInit(ILEElement++);
1700 
1701         // Reference values are always non-null and have the width of a pointer.
1702         if (Field->getType()->isReferenceType())
1703           NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits(
1704               CGF.getTarget().getPointerWidth(0));
1705         else
1706           NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF);
1707       }
1708 
1709       return NumNonZeroBytes;
1710     }
1711   }
1712 
1713 
1714   CharUnits NumNonZeroBytes = CharUnits::Zero();
1715   for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1716     NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF);
1717   return NumNonZeroBytes;
1718 }
1719 
1720 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of
1721 /// zeros in it, emit a memset and avoid storing the individual zeros.
1722 ///
1723 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E,
1724                                      CodeGenFunction &CGF) {
1725   // If the slot is already known to be zeroed, nothing to do.  Don't mess with
1726   // volatile stores.
1727   if (Slot.isZeroed() || Slot.isVolatile() || !Slot.getAddress().isValid())
1728     return;
1729 
1730   // C++ objects with a user-declared constructor don't need zero'ing.
1731   if (CGF.getLangOpts().CPlusPlus)
1732     if (const RecordType *RT = CGF.getContext()
1733                        .getBaseElementType(E->getType())->getAs<RecordType>()) {
1734       const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1735       if (RD->hasUserDeclaredConstructor())
1736         return;
1737     }
1738 
1739   // If the type is 16-bytes or smaller, prefer individual stores over memset.
1740   CharUnits Size = Slot.getPreferredSize(CGF.getContext(), E->getType());
1741   if (Size <= CharUnits::fromQuantity(16))
1742     return;
1743 
1744   // Check to see if over 3/4 of the initializer are known to be zero.  If so,
1745   // we prefer to emit memset + individual stores for the rest.
1746   CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF);
1747   if (NumNonZeroBytes*4 > Size)
1748     return;
1749 
1750   // Okay, it seems like a good idea to use an initial memset, emit the call.
1751   llvm::Constant *SizeVal = CGF.Builder.getInt64(Size.getQuantity());
1752 
1753   Address Loc = Slot.getAddress();
1754   Loc = CGF.Builder.CreateElementBitCast(Loc, CGF.Int8Ty);
1755   CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, false);
1756 
1757   // Tell the AggExprEmitter that the slot is known zero.
1758   Slot.setZeroed();
1759 }
1760 
1761 
1762 
1763 
1764 /// EmitAggExpr - Emit the computation of the specified expression of aggregate
1765 /// type.  The result is computed into DestPtr.  Note that if DestPtr is null,
1766 /// the value of the aggregate expression is not needed.  If VolatileDest is
1767 /// true, DestPtr cannot be 0.
1768 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot) {
1769   assert(E && hasAggregateEvaluationKind(E->getType()) &&
1770          "Invalid aggregate expression to emit");
1771   assert((Slot.getAddress().isValid() || Slot.isIgnored()) &&
1772          "slot has bits but no address");
1773 
1774   // Optimize the slot if possible.
1775   CheckAggExprForMemSetUse(Slot, E, *this);
1776 
1777   AggExprEmitter(*this, Slot, Slot.isIgnored()).Visit(const_cast<Expr*>(E));
1778 }
1779 
1780 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) {
1781   assert(hasAggregateEvaluationKind(E->getType()) && "Invalid argument!");
1782   Address Temp = CreateMemTemp(E->getType());
1783   LValue LV = MakeAddrLValue(Temp, E->getType());
1784   EmitAggExpr(E, AggValueSlot::forLValue(LV, AggValueSlot::IsNotDestructed,
1785                                          AggValueSlot::DoesNotNeedGCBarriers,
1786                                          AggValueSlot::IsNotAliased,
1787                                          AggValueSlot::DoesNotOverlap));
1788   return LV;
1789 }
1790 
1791 AggValueSlot::Overlap_t CodeGenFunction::overlapForBaseInit(
1792     const CXXRecordDecl *RD, const CXXRecordDecl *BaseRD, bool IsVirtual) {
1793   // Virtual bases are initialized first, in address order, so there's never
1794   // any overlap during their initialization.
1795   //
1796   // FIXME: Under P0840, this is no longer true: the tail padding of a vbase
1797   // of a field could be reused by a vbase of a containing class.
1798   if (IsVirtual)
1799     return AggValueSlot::DoesNotOverlap;
1800 
1801   // If the base class is laid out entirely within the nvsize of the derived
1802   // class, its tail padding cannot yet be initialized, so we can issue
1803   // stores at the full width of the base class.
1804   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
1805   if (Layout.getBaseClassOffset(BaseRD) +
1806           getContext().getASTRecordLayout(BaseRD).getSize() <=
1807       Layout.getNonVirtualSize())
1808     return AggValueSlot::DoesNotOverlap;
1809 
1810   // The tail padding may contain values we need to preserve.
1811   return AggValueSlot::MayOverlap;
1812 }
1813 
1814 void CodeGenFunction::EmitAggregateCopy(LValue Dest, LValue Src, QualType Ty,
1815                                         AggValueSlot::Overlap_t MayOverlap,
1816                                         bool isVolatile) {
1817   assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
1818 
1819   Address DestPtr = Dest.getAddress();
1820   Address SrcPtr = Src.getAddress();
1821 
1822   if (getLangOpts().CPlusPlus) {
1823     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1824       CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
1825       assert((Record->hasTrivialCopyConstructor() ||
1826               Record->hasTrivialCopyAssignment() ||
1827               Record->hasTrivialMoveConstructor() ||
1828               Record->hasTrivialMoveAssignment() ||
1829               Record->isUnion()) &&
1830              "Trying to aggregate-copy a type without a trivial copy/move "
1831              "constructor or assignment operator");
1832       // Ignore empty classes in C++.
1833       if (Record->isEmpty())
1834         return;
1835     }
1836   }
1837 
1838   // Aggregate assignment turns into llvm.memcpy.  This is almost valid per
1839   // C99 6.5.16.1p3, which states "If the value being stored in an object is
1840   // read from another object that overlaps in anyway the storage of the first
1841   // object, then the overlap shall be exact and the two objects shall have
1842   // qualified or unqualified versions of a compatible type."
1843   //
1844   // memcpy is not defined if the source and destination pointers are exactly
1845   // equal, but other compilers do this optimization, and almost every memcpy
1846   // implementation handles this case safely.  If there is a libc that does not
1847   // safely handle this, we can add a target hook.
1848 
1849   // Get data size info for this aggregate. Don't copy the tail padding if this
1850   // might be a potentially-overlapping subobject, since the tail padding might
1851   // be occupied by a different object. Otherwise, copying it is fine.
1852   std::pair<CharUnits, CharUnits> TypeInfo;
1853   if (MayOverlap)
1854     TypeInfo = getContext().getTypeInfoDataSizeInChars(Ty);
1855   else
1856     TypeInfo = getContext().getTypeInfoInChars(Ty);
1857 
1858   llvm::Value *SizeVal = nullptr;
1859   if (TypeInfo.first.isZero()) {
1860     // But note that getTypeInfo returns 0 for a VLA.
1861     if (auto *VAT = dyn_cast_or_null<VariableArrayType>(
1862             getContext().getAsArrayType(Ty))) {
1863       QualType BaseEltTy;
1864       SizeVal = emitArrayLength(VAT, BaseEltTy, DestPtr);
1865       TypeInfo = getContext().getTypeInfoInChars(BaseEltTy);
1866       assert(!TypeInfo.first.isZero());
1867       SizeVal = Builder.CreateNUWMul(
1868           SizeVal,
1869           llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity()));
1870     }
1871   }
1872   if (!SizeVal) {
1873     SizeVal = llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity());
1874   }
1875 
1876   // FIXME: If we have a volatile struct, the optimizer can remove what might
1877   // appear to be `extra' memory ops:
1878   //
1879   // volatile struct { int i; } a, b;
1880   //
1881   // int main() {
1882   //   a = b;
1883   //   a = b;
1884   // }
1885   //
1886   // we need to use a different call here.  We use isVolatile to indicate when
1887   // either the source or the destination is volatile.
1888 
1889   DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1890   SrcPtr = Builder.CreateElementBitCast(SrcPtr, Int8Ty);
1891 
1892   // Don't do any of the memmove_collectable tests if GC isn't set.
1893   if (CGM.getLangOpts().getGC() == LangOptions::NonGC) {
1894     // fall through
1895   } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
1896     RecordDecl *Record = RecordTy->getDecl();
1897     if (Record->hasObjectMember()) {
1898       CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
1899                                                     SizeVal);
1900       return;
1901     }
1902   } else if (Ty->isArrayType()) {
1903     QualType BaseType = getContext().getBaseElementType(Ty);
1904     if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
1905       if (RecordTy->getDecl()->hasObjectMember()) {
1906         CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
1907                                                       SizeVal);
1908         return;
1909       }
1910     }
1911   }
1912 
1913   auto Inst = Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, isVolatile);
1914 
1915   // Determine the metadata to describe the position of any padding in this
1916   // memcpy, as well as the TBAA tags for the members of the struct, in case
1917   // the optimizer wishes to expand it in to scalar memory operations.
1918   if (llvm::MDNode *TBAAStructTag = CGM.getTBAAStructInfo(Ty))
1919     Inst->setMetadata(llvm::LLVMContext::MD_tbaa_struct, TBAAStructTag);
1920 
1921   if (CGM.getCodeGenOpts().NewStructPathTBAA) {
1922     TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForMemoryTransfer(
1923         Dest.getTBAAInfo(), Src.getTBAAInfo());
1924     CGM.DecorateInstructionWithTBAA(Inst, TBAAInfo);
1925   }
1926 }
1927