1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Aggregate Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "CGObjCRuntime.h" 17 #include "clang/AST/ASTContext.h" 18 #include "clang/AST/DeclCXX.h" 19 #include "clang/AST/StmtVisitor.h" 20 #include "llvm/Constants.h" 21 #include "llvm/Function.h" 22 #include "llvm/GlobalVariable.h" 23 #include "llvm/Intrinsics.h" 24 using namespace clang; 25 using namespace CodeGen; 26 27 //===----------------------------------------------------------------------===// 28 // Aggregate Expression Emitter 29 //===----------------------------------------------------------------------===// 30 31 namespace { 32 class AggExprEmitter : public StmtVisitor<AggExprEmitter> { 33 CodeGenFunction &CGF; 34 CGBuilderTy &Builder; 35 AggValueSlot Dest; 36 bool IgnoreResult; 37 38 ReturnValueSlot getReturnValueSlot() const { 39 // If the destination slot requires garbage collection, we can't 40 // use the real return value slot, because we have to use the GC 41 // API. 42 if (Dest.requiresGCollection()) return ReturnValueSlot(); 43 44 return ReturnValueSlot(Dest.getAddr(), Dest.isVolatile()); 45 } 46 47 AggValueSlot EnsureSlot(QualType T) { 48 if (!Dest.isIgnored()) return Dest; 49 return CGF.CreateAggTemp(T, "agg.tmp.ensured"); 50 } 51 52 public: 53 AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest, 54 bool ignore) 55 : CGF(cgf), Builder(CGF.Builder), Dest(Dest), 56 IgnoreResult(ignore) { 57 } 58 59 //===--------------------------------------------------------------------===// 60 // Utilities 61 //===--------------------------------------------------------------------===// 62 63 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 64 /// represents a value lvalue, this method emits the address of the lvalue, 65 /// then loads the result into DestPtr. 66 void EmitAggLoadOfLValue(const Expr *E); 67 68 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 69 void EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore = false); 70 void EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore = false); 71 72 void EmitGCMove(const Expr *E, RValue Src); 73 74 bool TypeRequiresGCollection(QualType T); 75 76 //===--------------------------------------------------------------------===// 77 // Visitor Methods 78 //===--------------------------------------------------------------------===// 79 80 void VisitStmt(Stmt *S) { 81 CGF.ErrorUnsupported(S, "aggregate expression"); 82 } 83 void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); } 84 void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); } 85 86 // l-values. 87 void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); } 88 void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); } 89 void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); } 90 void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); } 91 void VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 92 EmitAggLoadOfLValue(E); 93 } 94 void VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 95 EmitAggLoadOfLValue(E); 96 } 97 void VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) { 98 EmitAggLoadOfLValue(E); 99 } 100 void VisitPredefinedExpr(const PredefinedExpr *E) { 101 EmitAggLoadOfLValue(E); 102 } 103 104 // Operators. 105 void VisitCastExpr(CastExpr *E); 106 void VisitCallExpr(const CallExpr *E); 107 void VisitStmtExpr(const StmtExpr *E); 108 void VisitBinaryOperator(const BinaryOperator *BO); 109 void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO); 110 void VisitBinAssign(const BinaryOperator *E); 111 void VisitBinComma(const BinaryOperator *E); 112 113 void VisitObjCMessageExpr(ObjCMessageExpr *E); 114 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 115 EmitAggLoadOfLValue(E); 116 } 117 void VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E); 118 119 void VisitConditionalOperator(const ConditionalOperator *CO); 120 void VisitChooseExpr(const ChooseExpr *CE); 121 void VisitInitListExpr(InitListExpr *E); 122 void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E); 123 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 124 Visit(DAE->getExpr()); 125 } 126 void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E); 127 void VisitCXXConstructExpr(const CXXConstructExpr *E); 128 void VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E); 129 void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E); 130 void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); } 131 132 void VisitVAArgExpr(VAArgExpr *E); 133 134 void EmitInitializationToLValue(Expr *E, LValue Address, QualType T); 135 void EmitNullInitializationToLValue(LValue Address, QualType T); 136 // case Expr::ChooseExprClass: 137 void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); } 138 }; 139 } // end anonymous namespace. 140 141 //===----------------------------------------------------------------------===// 142 // Utilities 143 //===----------------------------------------------------------------------===// 144 145 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 146 /// represents a value lvalue, this method emits the address of the lvalue, 147 /// then loads the result into DestPtr. 148 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) { 149 LValue LV = CGF.EmitLValue(E); 150 EmitFinalDestCopy(E, LV); 151 } 152 153 /// \brief True if the given aggregate type requires special GC API calls. 154 bool AggExprEmitter::TypeRequiresGCollection(QualType T) { 155 // Only record types have members that might require garbage collection. 156 const RecordType *RecordTy = T->getAs<RecordType>(); 157 if (!RecordTy) return false; 158 159 // Don't mess with non-trivial C++ types. 160 RecordDecl *Record = RecordTy->getDecl(); 161 if (isa<CXXRecordDecl>(Record) && 162 (!cast<CXXRecordDecl>(Record)->hasTrivialCopyConstructor() || 163 !cast<CXXRecordDecl>(Record)->hasTrivialDestructor())) 164 return false; 165 166 // Check whether the type has an object member. 167 return Record->hasObjectMember(); 168 } 169 170 /// \brief Perform the final move to DestPtr if RequiresGCollection is set. 171 /// 172 /// The idea is that you do something like this: 173 /// RValue Result = EmitSomething(..., getReturnValueSlot()); 174 /// EmitGCMove(E, Result); 175 /// If GC doesn't interfere, this will cause the result to be emitted 176 /// directly into the return value slot. If GC does interfere, a final 177 /// move will be performed. 178 void AggExprEmitter::EmitGCMove(const Expr *E, RValue Src) { 179 if (Dest.requiresGCollection()) { 180 std::pair<uint64_t, unsigned> TypeInfo = 181 CGF.getContext().getTypeInfo(E->getType()); 182 unsigned long size = TypeInfo.first/8; 183 const llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType()); 184 llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size); 185 CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, Dest.getAddr(), 186 Src.getAggregateAddr(), 187 SizeVal); 188 } 189 } 190 191 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 192 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore) { 193 assert(Src.isAggregate() && "value must be aggregate value!"); 194 195 // If Dest is ignored, then we're evaluating an aggregate expression 196 // in a context (like an expression statement) that doesn't care 197 // about the result. C says that an lvalue-to-rvalue conversion is 198 // performed in these cases; C++ says that it is not. In either 199 // case, we don't actually need to do anything unless the value is 200 // volatile. 201 if (Dest.isIgnored()) { 202 if (!Src.isVolatileQualified() || 203 CGF.CGM.getLangOptions().CPlusPlus || 204 (IgnoreResult && Ignore)) 205 return; 206 207 // If the source is volatile, we must read from it; to do that, we need 208 // some place to put it. 209 Dest = CGF.CreateAggTemp(E->getType(), "agg.tmp"); 210 } 211 212 if (Dest.requiresGCollection()) { 213 std::pair<uint64_t, unsigned> TypeInfo = 214 CGF.getContext().getTypeInfo(E->getType()); 215 unsigned long size = TypeInfo.first/8; 216 const llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType()); 217 llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size); 218 CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, 219 Dest.getAddr(), 220 Src.getAggregateAddr(), 221 SizeVal); 222 return; 223 } 224 // If the result of the assignment is used, copy the LHS there also. 225 // FIXME: Pass VolatileDest as well. I think we also need to merge volatile 226 // from the source as well, as we can't eliminate it if either operand 227 // is volatile, unless copy has volatile for both source and destination.. 228 CGF.EmitAggregateCopy(Dest.getAddr(), Src.getAggregateAddr(), E->getType(), 229 Dest.isVolatile()|Src.isVolatileQualified()); 230 } 231 232 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 233 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore) { 234 assert(Src.isSimple() && "Can't have aggregate bitfield, vector, etc"); 235 236 EmitFinalDestCopy(E, RValue::getAggregate(Src.getAddress(), 237 Src.isVolatileQualified()), 238 Ignore); 239 } 240 241 //===----------------------------------------------------------------------===// 242 // Visitor Methods 243 //===----------------------------------------------------------------------===// 244 245 void AggExprEmitter::VisitCastExpr(CastExpr *E) { 246 if (Dest.isIgnored() && E->getCastKind() != CK_Dynamic) { 247 Visit(E->getSubExpr()); 248 return; 249 } 250 251 switch (E->getCastKind()) { 252 case CK_Dynamic: { 253 assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?"); 254 LValue LV = CGF.EmitCheckedLValue(E->getSubExpr()); 255 // FIXME: Do we also need to handle property references here? 256 if (LV.isSimple()) 257 CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E)); 258 else 259 CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast"); 260 261 if (!Dest.isIgnored()) 262 CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination"); 263 break; 264 } 265 266 case CK_ToUnion: { 267 // GCC union extension 268 QualType Ty = E->getSubExpr()->getType(); 269 QualType PtrTy = CGF.getContext().getPointerType(Ty); 270 llvm::Value *CastPtr = Builder.CreateBitCast(Dest.getAddr(), 271 CGF.ConvertType(PtrTy)); 272 EmitInitializationToLValue(E->getSubExpr(), CGF.MakeAddrLValue(CastPtr, Ty), 273 Ty); 274 break; 275 } 276 277 case CK_DerivedToBase: 278 case CK_BaseToDerived: 279 case CK_UncheckedDerivedToBase: { 280 assert(0 && "cannot perform hierarchy conversion in EmitAggExpr: " 281 "should have been unpacked before we got here"); 282 break; 283 } 284 285 case CK_NoOp: 286 case CK_LValueToRValue: 287 case CK_UserDefinedConversion: 288 case CK_ConstructorConversion: 289 assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(), 290 E->getType()) && 291 "Implicit cast types must be compatible"); 292 Visit(E->getSubExpr()); 293 break; 294 295 case CK_LValueBitCast: 296 llvm_unreachable("should not be emitting lvalue bitcast as rvalue"); 297 break; 298 299 case CK_Dependent: 300 case CK_BitCast: 301 case CK_ArrayToPointerDecay: 302 case CK_FunctionToPointerDecay: 303 case CK_NullToPointer: 304 case CK_NullToMemberPointer: 305 case CK_BaseToDerivedMemberPointer: 306 case CK_DerivedToBaseMemberPointer: 307 case CK_MemberPointerToBoolean: 308 case CK_IntegralToPointer: 309 case CK_PointerToIntegral: 310 case CK_PointerToBoolean: 311 case CK_ToVoid: 312 case CK_VectorSplat: 313 case CK_IntegralCast: 314 case CK_IntegralToBoolean: 315 case CK_IntegralToFloating: 316 case CK_FloatingToIntegral: 317 case CK_FloatingToBoolean: 318 case CK_FloatingCast: 319 case CK_AnyPointerToObjCPointerCast: 320 case CK_AnyPointerToBlockPointerCast: 321 case CK_ObjCObjectLValueCast: 322 case CK_FloatingRealToComplex: 323 case CK_FloatingComplexToReal: 324 case CK_FloatingComplexToBoolean: 325 case CK_FloatingComplexCast: 326 case CK_FloatingComplexToIntegralComplex: 327 case CK_IntegralRealToComplex: 328 case CK_IntegralComplexToReal: 329 case CK_IntegralComplexToBoolean: 330 case CK_IntegralComplexCast: 331 case CK_IntegralComplexToFloatingComplex: 332 llvm_unreachable("cast kind invalid for aggregate types"); 333 } 334 } 335 336 void AggExprEmitter::VisitCallExpr(const CallExpr *E) { 337 if (E->getCallReturnType()->isReferenceType()) { 338 EmitAggLoadOfLValue(E); 339 return; 340 } 341 342 RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot()); 343 EmitGCMove(E, RV); 344 } 345 346 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) { 347 RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot()); 348 EmitGCMove(E, RV); 349 } 350 351 void AggExprEmitter::VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) { 352 RValue RV = CGF.EmitObjCPropertyGet(E, getReturnValueSlot()); 353 EmitGCMove(E, RV); 354 } 355 356 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) { 357 CGF.EmitAnyExpr(E->getLHS(), AggValueSlot::ignored(), true); 358 Visit(E->getRHS()); 359 } 360 361 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) { 362 CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest); 363 } 364 365 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) { 366 if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI) 367 VisitPointerToDataMemberBinaryOperator(E); 368 else 369 CGF.ErrorUnsupported(E, "aggregate binary expression"); 370 } 371 372 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator( 373 const BinaryOperator *E) { 374 LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E); 375 EmitFinalDestCopy(E, LV); 376 } 377 378 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) { 379 // For an assignment to work, the value on the right has 380 // to be compatible with the value on the left. 381 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), 382 E->getRHS()->getType()) 383 && "Invalid assignment"); 384 LValue LHS = CGF.EmitLValue(E->getLHS()); 385 386 // We have to special case property setters, otherwise we must have 387 // a simple lvalue (no aggregates inside vectors, bitfields). 388 if (LHS.isPropertyRef()) { 389 AggValueSlot Slot = EnsureSlot(E->getRHS()->getType()); 390 CGF.EmitAggExpr(E->getRHS(), Slot); 391 CGF.EmitObjCPropertySet(LHS.getPropertyRefExpr(), Slot.asRValue()); 392 } else if (LHS.isKVCRef()) { 393 AggValueSlot Slot = EnsureSlot(E->getRHS()->getType()); 394 CGF.EmitAggExpr(E->getRHS(), Slot); 395 CGF.EmitObjCPropertySet(LHS.getKVCRefExpr(), Slot.asRValue()); 396 } else { 397 bool GCollection = false; 398 if (CGF.getContext().getLangOptions().getGCMode()) 399 GCollection = TypeRequiresGCollection(E->getLHS()->getType()); 400 401 // Codegen the RHS so that it stores directly into the LHS. 402 AggValueSlot LHSSlot = AggValueSlot::forLValue(LHS, true, 403 GCollection); 404 CGF.EmitAggExpr(E->getRHS(), LHSSlot, false); 405 EmitFinalDestCopy(E, LHS, true); 406 } 407 } 408 409 void AggExprEmitter::VisitConditionalOperator(const ConditionalOperator *E) { 410 if (!E->getLHS()) { 411 CGF.ErrorUnsupported(E, "conditional operator with missing LHS"); 412 return; 413 } 414 415 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 416 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 417 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 418 419 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock); 420 421 CGF.BeginConditionalBranch(); 422 CGF.EmitBlock(LHSBlock); 423 424 // Save whether the destination's lifetime is externally managed. 425 bool DestLifetimeManaged = Dest.isLifetimeExternallyManaged(); 426 427 Visit(E->getLHS()); 428 CGF.EndConditionalBranch(); 429 CGF.EmitBranch(ContBlock); 430 431 CGF.BeginConditionalBranch(); 432 CGF.EmitBlock(RHSBlock); 433 434 // If the result of an agg expression is unused, then the emission 435 // of the LHS might need to create a destination slot. That's fine 436 // with us, and we can safely emit the RHS into the same slot, but 437 // we shouldn't claim that its lifetime is externally managed. 438 Dest.setLifetimeExternallyManaged(DestLifetimeManaged); 439 440 Visit(E->getRHS()); 441 CGF.EndConditionalBranch(); 442 CGF.EmitBranch(ContBlock); 443 444 CGF.EmitBlock(ContBlock); 445 } 446 447 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) { 448 Visit(CE->getChosenSubExpr(CGF.getContext())); 449 } 450 451 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 452 llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr()); 453 llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType()); 454 455 if (!ArgPtr) { 456 CGF.ErrorUnsupported(VE, "aggregate va_arg expression"); 457 return; 458 } 459 460 EmitFinalDestCopy(VE, CGF.MakeAddrLValue(ArgPtr, VE->getType())); 461 } 462 463 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 464 // Ensure that we have a slot, but if we already do, remember 465 // whether its lifetime was externally managed. 466 bool WasManaged = Dest.isLifetimeExternallyManaged(); 467 Dest = EnsureSlot(E->getType()); 468 Dest.setLifetimeExternallyManaged(); 469 470 Visit(E->getSubExpr()); 471 472 // Set up the temporary's destructor if its lifetime wasn't already 473 // being managed. 474 if (!WasManaged) 475 CGF.EmitCXXTemporary(E->getTemporary(), Dest.getAddr()); 476 } 477 478 void 479 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) { 480 AggValueSlot Slot = EnsureSlot(E->getType()); 481 CGF.EmitCXXConstructExpr(E, Slot); 482 } 483 484 void AggExprEmitter::VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E) { 485 CGF.EmitCXXExprWithTemporaries(E, Dest); 486 } 487 488 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) { 489 QualType T = E->getType(); 490 AggValueSlot Slot = EnsureSlot(T); 491 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T), T); 492 } 493 494 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) { 495 QualType T = E->getType(); 496 AggValueSlot Slot = EnsureSlot(T); 497 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T), T); 498 } 499 500 /// isSimpleZero - If emitting this value will obviously just cause a store of 501 /// zero to memory, return true. This can return false if uncertain, so it just 502 /// handles simple cases. 503 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) { 504 // (0) 505 if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) 506 return isSimpleZero(PE->getSubExpr(), CGF); 507 // 0 508 if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) 509 return IL->getValue() == 0; 510 // +0.0 511 if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E)) 512 return FL->getValue().isPosZero(); 513 // int() 514 if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) && 515 CGF.getTypes().isZeroInitializable(E->getType())) 516 return true; 517 // (int*)0 - Null pointer expressions. 518 if (const CastExpr *ICE = dyn_cast<CastExpr>(E)) 519 return ICE->getCastKind() == CK_NullToPointer; 520 // '\0' 521 if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) 522 return CL->getValue() == 0; 523 524 // Otherwise, hard case: conservatively return false. 525 return false; 526 } 527 528 529 void 530 AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV, QualType T) { 531 // FIXME: Ignore result? 532 // FIXME: Are initializers affected by volatile? 533 if (Dest.isZeroed() && isSimpleZero(E, CGF)) { 534 // Storing "i32 0" to a zero'd memory location is a noop. 535 } else if (isa<ImplicitValueInitExpr>(E)) { 536 EmitNullInitializationToLValue(LV, T); 537 } else if (T->isReferenceType()) { 538 RValue RV = CGF.EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0); 539 CGF.EmitStoreThroughLValue(RV, LV, T); 540 } else if (T->isAnyComplexType()) { 541 CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false); 542 } else if (CGF.hasAggregateLLVMType(T)) { 543 CGF.EmitAggExpr(E, AggValueSlot::forAddr(LV.getAddress(), false, true, 544 false, Dest.isZeroed())); 545 } else { 546 CGF.EmitStoreThroughLValue(CGF.EmitAnyExpr(E), LV, T); 547 } 548 } 549 550 void AggExprEmitter::EmitNullInitializationToLValue(LValue LV, QualType T) { 551 // If the destination slot is already zeroed out before the aggregate is 552 // copied into it, we don't have to emit any zeros here. 553 if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(T)) 554 return; 555 556 if (!CGF.hasAggregateLLVMType(T)) { 557 // For non-aggregates, we can store zero 558 llvm::Value *Null = llvm::Constant::getNullValue(CGF.ConvertType(T)); 559 CGF.EmitStoreThroughLValue(RValue::get(Null), LV, T); 560 } else { 561 // There's a potential optimization opportunity in combining 562 // memsets; that would be easy for arrays, but relatively 563 // difficult for structures with the current code. 564 CGF.EmitNullInitialization(LV.getAddress(), T); 565 } 566 } 567 568 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) { 569 #if 0 570 // FIXME: Assess perf here? Figure out what cases are worth optimizing here 571 // (Length of globals? Chunks of zeroed-out space?). 572 // 573 // If we can, prefer a copy from a global; this is a lot less code for long 574 // globals, and it's easier for the current optimizers to analyze. 575 if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) { 576 llvm::GlobalVariable* GV = 577 new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true, 578 llvm::GlobalValue::InternalLinkage, C, ""); 579 EmitFinalDestCopy(E, CGF.MakeAddrLValue(GV, E->getType())); 580 return; 581 } 582 #endif 583 if (E->hadArrayRangeDesignator()) 584 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 585 586 llvm::Value *DestPtr = Dest.getAddr(); 587 588 // Handle initialization of an array. 589 if (E->getType()->isArrayType()) { 590 const llvm::PointerType *APType = 591 cast<llvm::PointerType>(DestPtr->getType()); 592 const llvm::ArrayType *AType = 593 cast<llvm::ArrayType>(APType->getElementType()); 594 595 uint64_t NumInitElements = E->getNumInits(); 596 597 if (E->getNumInits() > 0) { 598 QualType T1 = E->getType(); 599 QualType T2 = E->getInit(0)->getType(); 600 if (CGF.getContext().hasSameUnqualifiedType(T1, T2)) { 601 EmitAggLoadOfLValue(E->getInit(0)); 602 return; 603 } 604 } 605 606 uint64_t NumArrayElements = AType->getNumElements(); 607 QualType ElementType = CGF.getContext().getCanonicalType(E->getType()); 608 ElementType = CGF.getContext().getAsArrayType(ElementType)->getElementType(); 609 610 // FIXME: were we intentionally ignoring address spaces and GC attributes? 611 612 for (uint64_t i = 0; i != NumArrayElements; ++i) { 613 // If we're done emitting initializers and the destination is known-zeroed 614 // then we're done. 615 if (i == NumInitElements && 616 Dest.isZeroed() && 617 CGF.getTypes().isZeroInitializable(ElementType)) 618 break; 619 620 llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array"); 621 LValue LV = CGF.MakeAddrLValue(NextVal, ElementType); 622 623 if (i < NumInitElements) 624 EmitInitializationToLValue(E->getInit(i), LV, ElementType); 625 else 626 EmitNullInitializationToLValue(LV, ElementType); 627 628 // If the GEP didn't get used because of a dead zero init or something 629 // else, clean it up for -O0 builds and general tidiness. 630 if (llvm::GetElementPtrInst *GEP = 631 dyn_cast<llvm::GetElementPtrInst>(NextVal)) 632 if (GEP->use_empty()) 633 GEP->eraseFromParent(); 634 } 635 return; 636 } 637 638 assert(E->getType()->isRecordType() && "Only support structs/unions here!"); 639 640 // Do struct initialization; this code just sets each individual member 641 // to the approprate value. This makes bitfield support automatic; 642 // the disadvantage is that the generated code is more difficult for 643 // the optimizer, especially with bitfields. 644 unsigned NumInitElements = E->getNumInits(); 645 RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl(); 646 647 if (E->getType()->isUnionType()) { 648 // Only initialize one field of a union. The field itself is 649 // specified by the initializer list. 650 if (!E->getInitializedFieldInUnion()) { 651 // Empty union; we have nothing to do. 652 653 #ifndef NDEBUG 654 // Make sure that it's really an empty and not a failure of 655 // semantic analysis. 656 for (RecordDecl::field_iterator Field = SD->field_begin(), 657 FieldEnd = SD->field_end(); 658 Field != FieldEnd; ++Field) 659 assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed"); 660 #endif 661 return; 662 } 663 664 // FIXME: volatility 665 FieldDecl *Field = E->getInitializedFieldInUnion(); 666 667 LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestPtr, Field, 0); 668 if (NumInitElements) { 669 // Store the initializer into the field 670 EmitInitializationToLValue(E->getInit(0), FieldLoc, Field->getType()); 671 } else { 672 // Default-initialize to null. 673 EmitNullInitializationToLValue(FieldLoc, Field->getType()); 674 } 675 676 return; 677 } 678 679 // Here we iterate over the fields; this makes it simpler to both 680 // default-initialize fields and skip over unnamed fields. 681 unsigned CurInitVal = 0; 682 for (RecordDecl::field_iterator Field = SD->field_begin(), 683 FieldEnd = SD->field_end(); 684 Field != FieldEnd; ++Field) { 685 // We're done once we hit the flexible array member 686 if (Field->getType()->isIncompleteArrayType()) 687 break; 688 689 if (Field->isUnnamedBitfield()) 690 continue; 691 692 // Don't emit GEP before a noop store of zero. 693 if (CurInitVal == NumInitElements && Dest.isZeroed() && 694 CGF.getTypes().isZeroInitializable(E->getType())) 695 break; 696 697 // FIXME: volatility 698 LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestPtr, *Field, 0); 699 // We never generate write-barries for initialized fields. 700 FieldLoc.setNonGC(true); 701 702 if (CurInitVal < NumInitElements) { 703 // Store the initializer into the field. 704 EmitInitializationToLValue(E->getInit(CurInitVal++), FieldLoc, 705 Field->getType()); 706 } else { 707 // We're out of initalizers; default-initialize to null 708 EmitNullInitializationToLValue(FieldLoc, Field->getType()); 709 } 710 711 // If the GEP didn't get used because of a dead zero init or something 712 // else, clean it up for -O0 builds and general tidiness. 713 if (FieldLoc.isSimple()) 714 if (llvm::GetElementPtrInst *GEP = 715 dyn_cast<llvm::GetElementPtrInst>(FieldLoc.getAddress())) 716 if (GEP->use_empty()) 717 GEP->eraseFromParent(); 718 } 719 } 720 721 //===----------------------------------------------------------------------===// 722 // Entry Points into this File 723 //===----------------------------------------------------------------------===// 724 725 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of 726 /// non-zero bytes that will be stored when outputting the initializer for the 727 /// specified initializer expression. 728 static uint64_t GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) { 729 if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) 730 return GetNumNonZeroBytesInInit(PE->getSubExpr(), CGF); 731 732 // 0 and 0.0 won't require any non-zero stores! 733 if (isSimpleZero(E, CGF)) return 0; 734 735 // If this is an initlist expr, sum up the size of sizes of the (present) 736 // elements. If this is something weird, assume the whole thing is non-zero. 737 const InitListExpr *ILE = dyn_cast<InitListExpr>(E); 738 if (ILE == 0 || !CGF.getTypes().isZeroInitializable(ILE->getType())) 739 return CGF.getContext().getTypeSize(E->getType())/8; 740 741 // InitListExprs for structs have to be handled carefully. If there are 742 // reference members, we need to consider the size of the reference, not the 743 // referencee. InitListExprs for unions and arrays can't have references. 744 if (!E->getType()->isUnionType() && !E->getType()->isArrayType()) { 745 RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl(); 746 uint64_t NumNonZeroBytes = 0; 747 748 unsigned ILEElement = 0; 749 for (RecordDecl::field_iterator Field = SD->field_begin(), 750 FieldEnd = SD->field_end(); Field != FieldEnd; ++Field) { 751 // We're done once we hit the flexible array member or run out of 752 // InitListExpr elements. 753 if (Field->getType()->isIncompleteArrayType() || 754 ILEElement == ILE->getNumInits()) 755 break; 756 if (Field->isUnnamedBitfield()) 757 continue; 758 759 const Expr *E = ILE->getInit(ILEElement++); 760 761 // Reference values are always non-null and have the width of a pointer. 762 if (Field->getType()->isReferenceType()) { 763 NumNonZeroBytes += CGF.getContext().Target.getPointerWidth(0); 764 continue; 765 } 766 767 NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF); 768 } 769 770 return NumNonZeroBytes; 771 } 772 773 774 uint64_t NumNonZeroBytes = 0; 775 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) 776 NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF); 777 return NumNonZeroBytes; 778 } 779 780 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of 781 /// zeros in it, emit a memset and avoid storing the individual zeros. 782 /// 783 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E, 784 CodeGenFunction &CGF) { 785 // If the slot is already known to be zeroed, nothing to do. Don't mess with 786 // volatile stores. 787 if (Slot.isZeroed() || Slot.isVolatile() || Slot.getAddr() == 0) return; 788 789 // If the type is 16-bytes or smaller, prefer individual stores over memset. 790 std::pair<uint64_t, unsigned> TypeInfo = 791 CGF.getContext().getTypeInfo(E->getType()); 792 if (TypeInfo.first/8 <= 16) 793 return; 794 795 // Check to see if over 3/4 of the initializer are known to be zero. If so, 796 // we prefer to emit memset + individual stores for the rest. 797 uint64_t NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF); 798 if (NumNonZeroBytes*4 > TypeInfo.first/8) 799 return; 800 801 // Okay, it seems like a good idea to use an initial memset, emit the call. 802 llvm::Constant *SizeVal = CGF.Builder.getInt64(TypeInfo.first/8); 803 llvm::ConstantInt *AlignVal = CGF.Builder.getInt32(TypeInfo.second/8); 804 805 llvm::Value *Loc = Slot.getAddr(); 806 const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext()); 807 808 Loc = CGF.Builder.CreateBitCast(Loc, BP); 809 CGF.Builder.CreateCall5(CGF.CGM.getMemSetFn(Loc->getType(), 810 SizeVal->getType()), 811 Loc, CGF.Builder.getInt8(0), SizeVal, AlignVal, 812 CGF.Builder.getFalse()); 813 814 // Tell the AggExprEmitter that the slot is known zero. 815 Slot.setZeroed(); 816 } 817 818 819 820 821 /// EmitAggExpr - Emit the computation of the specified expression of aggregate 822 /// type. The result is computed into DestPtr. Note that if DestPtr is null, 823 /// the value of the aggregate expression is not needed. If VolatileDest is 824 /// true, DestPtr cannot be 0. 825 /// 826 /// \param IsInitializer - true if this evaluation is initializing an 827 /// object whose lifetime is already being managed. 828 // 829 // FIXME: Take Qualifiers object. 830 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot, 831 bool IgnoreResult) { 832 assert(E && hasAggregateLLVMType(E->getType()) && 833 "Invalid aggregate expression to emit"); 834 assert((Slot.getAddr() != 0 || Slot.isIgnored()) && 835 "slot has bits but no address"); 836 837 // Optimize the slot if possible. 838 CheckAggExprForMemSetUse(Slot, E, *this); 839 840 AggExprEmitter(*this, Slot, IgnoreResult).Visit(const_cast<Expr*>(E)); 841 } 842 843 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) { 844 assert(hasAggregateLLVMType(E->getType()) && "Invalid argument!"); 845 llvm::Value *Temp = CreateMemTemp(E->getType()); 846 LValue LV = MakeAddrLValue(Temp, E->getType()); 847 EmitAggExpr(E, AggValueSlot::forAddr(Temp, LV.isVolatileQualified(), false)); 848 return LV; 849 } 850 851 void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr, 852 llvm::Value *SrcPtr, QualType Ty, 853 bool isVolatile) { 854 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 855 856 if (getContext().getLangOptions().CPlusPlus) { 857 if (const RecordType *RT = Ty->getAs<RecordType>()) { 858 CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl()); 859 assert((Record->hasTrivialCopyConstructor() || 860 Record->hasTrivialCopyAssignment()) && 861 "Trying to aggregate-copy a type without a trivial copy " 862 "constructor or assignment operator"); 863 // Ignore empty classes in C++. 864 if (Record->isEmpty()) 865 return; 866 } 867 } 868 869 // Aggregate assignment turns into llvm.memcpy. This is almost valid per 870 // C99 6.5.16.1p3, which states "If the value being stored in an object is 871 // read from another object that overlaps in anyway the storage of the first 872 // object, then the overlap shall be exact and the two objects shall have 873 // qualified or unqualified versions of a compatible type." 874 // 875 // memcpy is not defined if the source and destination pointers are exactly 876 // equal, but other compilers do this optimization, and almost every memcpy 877 // implementation handles this case safely. If there is a libc that does not 878 // safely handle this, we can add a target hook. 879 880 // Get size and alignment info for this aggregate. 881 std::pair<uint64_t, unsigned> TypeInfo = getContext().getTypeInfo(Ty); 882 883 // FIXME: Handle variable sized types. 884 885 // FIXME: If we have a volatile struct, the optimizer can remove what might 886 // appear to be `extra' memory ops: 887 // 888 // volatile struct { int i; } a, b; 889 // 890 // int main() { 891 // a = b; 892 // a = b; 893 // } 894 // 895 // we need to use a different call here. We use isVolatile to indicate when 896 // either the source or the destination is volatile. 897 898 const llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType()); 899 const llvm::Type *DBP = 900 llvm::Type::getInt8PtrTy(VMContext, DPT->getAddressSpace()); 901 DestPtr = Builder.CreateBitCast(DestPtr, DBP, "tmp"); 902 903 const llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType()); 904 const llvm::Type *SBP = 905 llvm::Type::getInt8PtrTy(VMContext, SPT->getAddressSpace()); 906 SrcPtr = Builder.CreateBitCast(SrcPtr, SBP, "tmp"); 907 908 if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 909 RecordDecl *Record = RecordTy->getDecl(); 910 if (Record->hasObjectMember()) { 911 unsigned long size = TypeInfo.first/8; 912 const llvm::Type *SizeTy = ConvertType(getContext().getSizeType()); 913 llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size); 914 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 915 SizeVal); 916 return; 917 } 918 } else if (getContext().getAsArrayType(Ty)) { 919 QualType BaseType = getContext().getBaseElementType(Ty); 920 if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) { 921 if (RecordTy->getDecl()->hasObjectMember()) { 922 unsigned long size = TypeInfo.first/8; 923 const llvm::Type *SizeTy = ConvertType(getContext().getSizeType()); 924 llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size); 925 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 926 SizeVal); 927 return; 928 } 929 } 930 } 931 932 Builder.CreateCall5(CGM.getMemCpyFn(DestPtr->getType(), SrcPtr->getType(), 933 IntPtrTy), 934 DestPtr, SrcPtr, 935 // TypeInfo.first describes size in bits. 936 llvm::ConstantInt::get(IntPtrTy, TypeInfo.first/8), 937 Builder.getInt32(TypeInfo.second/8), 938 Builder.getInt1(isVolatile)); 939 } 940