1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Aggregate Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGObjCRuntime.h" 16 #include "CodeGenModule.h" 17 #include "clang/AST/ASTContext.h" 18 #include "clang/AST/DeclCXX.h" 19 #include "clang/AST/DeclTemplate.h" 20 #include "clang/AST/StmtVisitor.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/Function.h" 23 #include "llvm/IR/GlobalVariable.h" 24 #include "llvm/IR/Intrinsics.h" 25 using namespace clang; 26 using namespace CodeGen; 27 28 //===----------------------------------------------------------------------===// 29 // Aggregate Expression Emitter 30 //===----------------------------------------------------------------------===// 31 32 namespace { 33 class AggExprEmitter : public StmtVisitor<AggExprEmitter> { 34 CodeGenFunction &CGF; 35 CGBuilderTy &Builder; 36 AggValueSlot Dest; 37 38 /// We want to use 'dest' as the return slot except under two 39 /// conditions: 40 /// - The destination slot requires garbage collection, so we 41 /// need to use the GC API. 42 /// - The destination slot is potentially aliased. 43 bool shouldUseDestForReturnSlot() const { 44 return !(Dest.requiresGCollection() || Dest.isPotentiallyAliased()); 45 } 46 47 ReturnValueSlot getReturnValueSlot() const { 48 if (!shouldUseDestForReturnSlot()) 49 return ReturnValueSlot(); 50 51 return ReturnValueSlot(Dest.getAddr(), Dest.isVolatile()); 52 } 53 54 AggValueSlot EnsureSlot(QualType T) { 55 if (!Dest.isIgnored()) return Dest; 56 return CGF.CreateAggTemp(T, "agg.tmp.ensured"); 57 } 58 void EnsureDest(QualType T) { 59 if (!Dest.isIgnored()) return; 60 Dest = CGF.CreateAggTemp(T, "agg.tmp.ensured"); 61 } 62 63 public: 64 AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest) 65 : CGF(cgf), Builder(CGF.Builder), Dest(Dest) { 66 } 67 68 //===--------------------------------------------------------------------===// 69 // Utilities 70 //===--------------------------------------------------------------------===// 71 72 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 73 /// represents a value lvalue, this method emits the address of the lvalue, 74 /// then loads the result into DestPtr. 75 void EmitAggLoadOfLValue(const Expr *E); 76 77 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 78 void EmitFinalDestCopy(QualType type, const LValue &src); 79 void EmitFinalDestCopy(QualType type, RValue src, 80 CharUnits srcAlignment = CharUnits::Zero()); 81 void EmitCopy(QualType type, const AggValueSlot &dest, 82 const AggValueSlot &src); 83 84 void EmitMoveFromReturnSlot(const Expr *E, RValue Src); 85 86 void EmitArrayInit(llvm::Value *DestPtr, llvm::ArrayType *AType, 87 QualType elementType, InitListExpr *E); 88 89 AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) { 90 if (CGF.getLangOpts().getGC() && TypeRequiresGCollection(T)) 91 return AggValueSlot::NeedsGCBarriers; 92 return AggValueSlot::DoesNotNeedGCBarriers; 93 } 94 95 bool TypeRequiresGCollection(QualType T); 96 97 //===--------------------------------------------------------------------===// 98 // Visitor Methods 99 //===--------------------------------------------------------------------===// 100 101 void Visit(Expr *E) { 102 ApplyDebugLocation DL(CGF, E); 103 StmtVisitor<AggExprEmitter>::Visit(E); 104 } 105 106 void VisitStmt(Stmt *S) { 107 CGF.ErrorUnsupported(S, "aggregate expression"); 108 } 109 void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); } 110 void VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 111 Visit(GE->getResultExpr()); 112 } 113 void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); } 114 void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 115 return Visit(E->getReplacement()); 116 } 117 118 // l-values. 119 void VisitDeclRefExpr(DeclRefExpr *E) { 120 // For aggregates, we should always be able to emit the variable 121 // as an l-value unless it's a reference. This is due to the fact 122 // that we can't actually ever see a normal l2r conversion on an 123 // aggregate in C++, and in C there's no language standard 124 // actively preventing us from listing variables in the captures 125 // list of a block. 126 if (E->getDecl()->getType()->isReferenceType()) { 127 if (CodeGenFunction::ConstantEmission result 128 = CGF.tryEmitAsConstant(E)) { 129 EmitFinalDestCopy(E->getType(), result.getReferenceLValue(CGF, E)); 130 return; 131 } 132 } 133 134 EmitAggLoadOfLValue(E); 135 } 136 137 void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); } 138 void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); } 139 void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); } 140 void VisitCompoundLiteralExpr(CompoundLiteralExpr *E); 141 void VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 142 EmitAggLoadOfLValue(E); 143 } 144 void VisitPredefinedExpr(const PredefinedExpr *E) { 145 EmitAggLoadOfLValue(E); 146 } 147 148 // Operators. 149 void VisitCastExpr(CastExpr *E); 150 void VisitCallExpr(const CallExpr *E); 151 void VisitStmtExpr(const StmtExpr *E); 152 void VisitBinaryOperator(const BinaryOperator *BO); 153 void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO); 154 void VisitBinAssign(const BinaryOperator *E); 155 void VisitBinComma(const BinaryOperator *E); 156 157 void VisitObjCMessageExpr(ObjCMessageExpr *E); 158 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 159 EmitAggLoadOfLValue(E); 160 } 161 162 void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO); 163 void VisitChooseExpr(const ChooseExpr *CE); 164 void VisitInitListExpr(InitListExpr *E); 165 void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E); 166 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 167 Visit(DAE->getExpr()); 168 } 169 void VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 170 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF); 171 Visit(DIE->getExpr()); 172 } 173 void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E); 174 void VisitCXXConstructExpr(const CXXConstructExpr *E); 175 void VisitLambdaExpr(LambdaExpr *E); 176 void VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E); 177 void VisitExprWithCleanups(ExprWithCleanups *E); 178 void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E); 179 void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); } 180 void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E); 181 void VisitOpaqueValueExpr(OpaqueValueExpr *E); 182 183 void VisitPseudoObjectExpr(PseudoObjectExpr *E) { 184 if (E->isGLValue()) { 185 LValue LV = CGF.EmitPseudoObjectLValue(E); 186 return EmitFinalDestCopy(E->getType(), LV); 187 } 188 189 CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType())); 190 } 191 192 void VisitVAArgExpr(VAArgExpr *E); 193 194 void EmitInitializationToLValue(Expr *E, LValue Address); 195 void EmitNullInitializationToLValue(LValue Address); 196 // case Expr::ChooseExprClass: 197 void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); } 198 void VisitAtomicExpr(AtomicExpr *E) { 199 CGF.EmitAtomicExpr(E, EnsureSlot(E->getType()).getAddr()); 200 } 201 }; 202 } // end anonymous namespace. 203 204 //===----------------------------------------------------------------------===// 205 // Utilities 206 //===----------------------------------------------------------------------===// 207 208 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 209 /// represents a value lvalue, this method emits the address of the lvalue, 210 /// then loads the result into DestPtr. 211 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) { 212 LValue LV = CGF.EmitLValue(E); 213 214 // If the type of the l-value is atomic, then do an atomic load. 215 if (LV.getType()->isAtomicType() || CGF.LValueIsSuitableForInlineAtomic(LV)) { 216 CGF.EmitAtomicLoad(LV, E->getExprLoc(), Dest); 217 return; 218 } 219 220 EmitFinalDestCopy(E->getType(), LV); 221 } 222 223 /// \brief True if the given aggregate type requires special GC API calls. 224 bool AggExprEmitter::TypeRequiresGCollection(QualType T) { 225 // Only record types have members that might require garbage collection. 226 const RecordType *RecordTy = T->getAs<RecordType>(); 227 if (!RecordTy) return false; 228 229 // Don't mess with non-trivial C++ types. 230 RecordDecl *Record = RecordTy->getDecl(); 231 if (isa<CXXRecordDecl>(Record) && 232 (cast<CXXRecordDecl>(Record)->hasNonTrivialCopyConstructor() || 233 !cast<CXXRecordDecl>(Record)->hasTrivialDestructor())) 234 return false; 235 236 // Check whether the type has an object member. 237 return Record->hasObjectMember(); 238 } 239 240 /// \brief Perform the final move to DestPtr if for some reason 241 /// getReturnValueSlot() didn't use it directly. 242 /// 243 /// The idea is that you do something like this: 244 /// RValue Result = EmitSomething(..., getReturnValueSlot()); 245 /// EmitMoveFromReturnSlot(E, Result); 246 /// 247 /// If nothing interferes, this will cause the result to be emitted 248 /// directly into the return value slot. Otherwise, a final move 249 /// will be performed. 250 void AggExprEmitter::EmitMoveFromReturnSlot(const Expr *E, RValue src) { 251 if (shouldUseDestForReturnSlot()) { 252 // Logically, Dest.getAddr() should equal Src.getAggregateAddr(). 253 // The possibility of undef rvalues complicates that a lot, 254 // though, so we can't really assert. 255 return; 256 } 257 258 // Otherwise, copy from there to the destination. 259 assert(Dest.getAddr() != src.getAggregateAddr()); 260 std::pair<CharUnits, CharUnits> typeInfo = 261 CGF.getContext().getTypeInfoInChars(E->getType()); 262 EmitFinalDestCopy(E->getType(), src, typeInfo.second); 263 } 264 265 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 266 void AggExprEmitter::EmitFinalDestCopy(QualType type, RValue src, 267 CharUnits srcAlign) { 268 assert(src.isAggregate() && "value must be aggregate value!"); 269 LValue srcLV = CGF.MakeAddrLValue(src.getAggregateAddr(), type, srcAlign); 270 EmitFinalDestCopy(type, srcLV); 271 } 272 273 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 274 void AggExprEmitter::EmitFinalDestCopy(QualType type, const LValue &src) { 275 // If Dest is ignored, then we're evaluating an aggregate expression 276 // in a context that doesn't care about the result. Note that loads 277 // from volatile l-values force the existence of a non-ignored 278 // destination. 279 if (Dest.isIgnored()) 280 return; 281 282 AggValueSlot srcAgg = 283 AggValueSlot::forLValue(src, AggValueSlot::IsDestructed, 284 needsGC(type), AggValueSlot::IsAliased); 285 EmitCopy(type, Dest, srcAgg); 286 } 287 288 /// Perform a copy from the source into the destination. 289 /// 290 /// \param type - the type of the aggregate being copied; qualifiers are 291 /// ignored 292 void AggExprEmitter::EmitCopy(QualType type, const AggValueSlot &dest, 293 const AggValueSlot &src) { 294 if (dest.requiresGCollection()) { 295 CharUnits sz = CGF.getContext().getTypeSizeInChars(type); 296 llvm::Value *size = llvm::ConstantInt::get(CGF.SizeTy, sz.getQuantity()); 297 CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, 298 dest.getAddr(), 299 src.getAddr(), 300 size); 301 return; 302 } 303 304 // If the result of the assignment is used, copy the LHS there also. 305 // It's volatile if either side is. Use the minimum alignment of 306 // the two sides. 307 CGF.EmitAggregateCopy(dest.getAddr(), src.getAddr(), type, 308 dest.isVolatile() || src.isVolatile(), 309 std::min(dest.getAlignment(), src.getAlignment())); 310 } 311 312 /// \brief Emit the initializer for a std::initializer_list initialized with a 313 /// real initializer list. 314 void 315 AggExprEmitter::VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E) { 316 // Emit an array containing the elements. The array is externally destructed 317 // if the std::initializer_list object is. 318 ASTContext &Ctx = CGF.getContext(); 319 LValue Array = CGF.EmitLValue(E->getSubExpr()); 320 assert(Array.isSimple() && "initializer_list array not a simple lvalue"); 321 llvm::Value *ArrayPtr = Array.getAddress(); 322 323 const ConstantArrayType *ArrayType = 324 Ctx.getAsConstantArrayType(E->getSubExpr()->getType()); 325 assert(ArrayType && "std::initializer_list constructed from non-array"); 326 327 // FIXME: Perform the checks on the field types in SemaInit. 328 RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl(); 329 RecordDecl::field_iterator Field = Record->field_begin(); 330 if (Field == Record->field_end()) { 331 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 332 return; 333 } 334 335 // Start pointer. 336 if (!Field->getType()->isPointerType() || 337 !Ctx.hasSameType(Field->getType()->getPointeeType(), 338 ArrayType->getElementType())) { 339 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 340 return; 341 } 342 343 AggValueSlot Dest = EnsureSlot(E->getType()); 344 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddr(), E->getType(), 345 Dest.getAlignment()); 346 LValue Start = CGF.EmitLValueForFieldInitialization(DestLV, *Field); 347 llvm::Value *Zero = llvm::ConstantInt::get(CGF.PtrDiffTy, 0); 348 llvm::Value *IdxStart[] = { Zero, Zero }; 349 llvm::Value *ArrayStart = 350 Builder.CreateInBoundsGEP(ArrayPtr, IdxStart, "arraystart"); 351 CGF.EmitStoreThroughLValue(RValue::get(ArrayStart), Start); 352 ++Field; 353 354 if (Field == Record->field_end()) { 355 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 356 return; 357 } 358 359 llvm::Value *Size = Builder.getInt(ArrayType->getSize()); 360 LValue EndOrLength = CGF.EmitLValueForFieldInitialization(DestLV, *Field); 361 if (Field->getType()->isPointerType() && 362 Ctx.hasSameType(Field->getType()->getPointeeType(), 363 ArrayType->getElementType())) { 364 // End pointer. 365 llvm::Value *IdxEnd[] = { Zero, Size }; 366 llvm::Value *ArrayEnd = 367 Builder.CreateInBoundsGEP(ArrayPtr, IdxEnd, "arrayend"); 368 CGF.EmitStoreThroughLValue(RValue::get(ArrayEnd), EndOrLength); 369 } else if (Ctx.hasSameType(Field->getType(), Ctx.getSizeType())) { 370 // Length. 371 CGF.EmitStoreThroughLValue(RValue::get(Size), EndOrLength); 372 } else { 373 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 374 return; 375 } 376 } 377 378 /// \brief Determine if E is a trivial array filler, that is, one that is 379 /// equivalent to zero-initialization. 380 static bool isTrivialFiller(Expr *E) { 381 if (!E) 382 return true; 383 384 if (isa<ImplicitValueInitExpr>(E)) 385 return true; 386 387 if (auto *ILE = dyn_cast<InitListExpr>(E)) { 388 if (ILE->getNumInits()) 389 return false; 390 return isTrivialFiller(ILE->getArrayFiller()); 391 } 392 393 if (auto *Cons = dyn_cast_or_null<CXXConstructExpr>(E)) 394 return Cons->getConstructor()->isDefaultConstructor() && 395 Cons->getConstructor()->isTrivial(); 396 397 // FIXME: Are there other cases where we can avoid emitting an initializer? 398 return false; 399 } 400 401 /// \brief Emit initialization of an array from an initializer list. 402 void AggExprEmitter::EmitArrayInit(llvm::Value *DestPtr, llvm::ArrayType *AType, 403 QualType elementType, InitListExpr *E) { 404 uint64_t NumInitElements = E->getNumInits(); 405 406 uint64_t NumArrayElements = AType->getNumElements(); 407 assert(NumInitElements <= NumArrayElements); 408 409 // DestPtr is an array*. Construct an elementType* by drilling 410 // down a level. 411 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 412 llvm::Value *indices[] = { zero, zero }; 413 llvm::Value *begin = 414 Builder.CreateInBoundsGEP(DestPtr, indices, "arrayinit.begin"); 415 416 // Exception safety requires us to destroy all the 417 // already-constructed members if an initializer throws. 418 // For that, we'll need an EH cleanup. 419 QualType::DestructionKind dtorKind = elementType.isDestructedType(); 420 llvm::AllocaInst *endOfInit = nullptr; 421 EHScopeStack::stable_iterator cleanup; 422 llvm::Instruction *cleanupDominator = nullptr; 423 if (CGF.needsEHCleanup(dtorKind)) { 424 // In principle we could tell the cleanup where we are more 425 // directly, but the control flow can get so varied here that it 426 // would actually be quite complex. Therefore we go through an 427 // alloca. 428 endOfInit = CGF.CreateTempAlloca(begin->getType(), 429 "arrayinit.endOfInit"); 430 cleanupDominator = Builder.CreateStore(begin, endOfInit); 431 CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType, 432 CGF.getDestroyer(dtorKind)); 433 cleanup = CGF.EHStack.stable_begin(); 434 435 // Otherwise, remember that we didn't need a cleanup. 436 } else { 437 dtorKind = QualType::DK_none; 438 } 439 440 llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1); 441 442 // The 'current element to initialize'. The invariants on this 443 // variable are complicated. Essentially, after each iteration of 444 // the loop, it points to the last initialized element, except 445 // that it points to the beginning of the array before any 446 // elements have been initialized. 447 llvm::Value *element = begin; 448 449 // Emit the explicit initializers. 450 for (uint64_t i = 0; i != NumInitElements; ++i) { 451 // Advance to the next element. 452 if (i > 0) { 453 element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element"); 454 455 // Tell the cleanup that it needs to destroy up to this 456 // element. TODO: some of these stores can be trivially 457 // observed to be unnecessary. 458 if (endOfInit) Builder.CreateStore(element, endOfInit); 459 } 460 461 LValue elementLV = CGF.MakeAddrLValue(element, elementType); 462 EmitInitializationToLValue(E->getInit(i), elementLV); 463 } 464 465 // Check whether there's a non-trivial array-fill expression. 466 Expr *filler = E->getArrayFiller(); 467 bool hasTrivialFiller = isTrivialFiller(filler); 468 469 // Any remaining elements need to be zero-initialized, possibly 470 // using the filler expression. We can skip this if the we're 471 // emitting to zeroed memory. 472 if (NumInitElements != NumArrayElements && 473 !(Dest.isZeroed() && hasTrivialFiller && 474 CGF.getTypes().isZeroInitializable(elementType))) { 475 476 // Use an actual loop. This is basically 477 // do { *array++ = filler; } while (array != end); 478 479 // Advance to the start of the rest of the array. 480 if (NumInitElements) { 481 element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start"); 482 if (endOfInit) Builder.CreateStore(element, endOfInit); 483 } 484 485 // Compute the end of the array. 486 llvm::Value *end = Builder.CreateInBoundsGEP(begin, 487 llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements), 488 "arrayinit.end"); 489 490 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 491 llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body"); 492 493 // Jump into the body. 494 CGF.EmitBlock(bodyBB); 495 llvm::PHINode *currentElement = 496 Builder.CreatePHI(element->getType(), 2, "arrayinit.cur"); 497 currentElement->addIncoming(element, entryBB); 498 499 // Emit the actual filler expression. 500 LValue elementLV = CGF.MakeAddrLValue(currentElement, elementType); 501 if (filler) 502 EmitInitializationToLValue(filler, elementLV); 503 else 504 EmitNullInitializationToLValue(elementLV); 505 506 // Move on to the next element. 507 llvm::Value *nextElement = 508 Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next"); 509 510 // Tell the EH cleanup that we finished with the last element. 511 if (endOfInit) Builder.CreateStore(nextElement, endOfInit); 512 513 // Leave the loop if we're done. 514 llvm::Value *done = Builder.CreateICmpEQ(nextElement, end, 515 "arrayinit.done"); 516 llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end"); 517 Builder.CreateCondBr(done, endBB, bodyBB); 518 currentElement->addIncoming(nextElement, Builder.GetInsertBlock()); 519 520 CGF.EmitBlock(endBB); 521 } 522 523 // Leave the partial-array cleanup if we entered one. 524 if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator); 525 } 526 527 //===----------------------------------------------------------------------===// 528 // Visitor Methods 529 //===----------------------------------------------------------------------===// 530 531 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){ 532 Visit(E->GetTemporaryExpr()); 533 } 534 535 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) { 536 EmitFinalDestCopy(e->getType(), CGF.getOpaqueLValueMapping(e)); 537 } 538 539 void 540 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 541 if (Dest.isPotentiallyAliased() && 542 E->getType().isPODType(CGF.getContext())) { 543 // For a POD type, just emit a load of the lvalue + a copy, because our 544 // compound literal might alias the destination. 545 EmitAggLoadOfLValue(E); 546 return; 547 } 548 549 AggValueSlot Slot = EnsureSlot(E->getType()); 550 CGF.EmitAggExpr(E->getInitializer(), Slot); 551 } 552 553 /// Attempt to look through various unimportant expressions to find a 554 /// cast of the given kind. 555 static Expr *findPeephole(Expr *op, CastKind kind) { 556 while (true) { 557 op = op->IgnoreParens(); 558 if (CastExpr *castE = dyn_cast<CastExpr>(op)) { 559 if (castE->getCastKind() == kind) 560 return castE->getSubExpr(); 561 if (castE->getCastKind() == CK_NoOp) 562 continue; 563 } 564 return nullptr; 565 } 566 } 567 568 void AggExprEmitter::VisitCastExpr(CastExpr *E) { 569 switch (E->getCastKind()) { 570 case CK_Dynamic: { 571 // FIXME: Can this actually happen? We have no test coverage for it. 572 assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?"); 573 LValue LV = CGF.EmitCheckedLValue(E->getSubExpr(), 574 CodeGenFunction::TCK_Load); 575 // FIXME: Do we also need to handle property references here? 576 if (LV.isSimple()) 577 CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E)); 578 else 579 CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast"); 580 581 if (!Dest.isIgnored()) 582 CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination"); 583 break; 584 } 585 586 case CK_ToUnion: { 587 // Evaluate even if the destination is ignored. 588 if (Dest.isIgnored()) { 589 CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(), 590 /*ignoreResult=*/true); 591 break; 592 } 593 594 // GCC union extension 595 QualType Ty = E->getSubExpr()->getType(); 596 QualType PtrTy = CGF.getContext().getPointerType(Ty); 597 llvm::Value *CastPtr = Builder.CreateBitCast(Dest.getAddr(), 598 CGF.ConvertType(PtrTy)); 599 EmitInitializationToLValue(E->getSubExpr(), 600 CGF.MakeAddrLValue(CastPtr, Ty)); 601 break; 602 } 603 604 case CK_DerivedToBase: 605 case CK_BaseToDerived: 606 case CK_UncheckedDerivedToBase: { 607 llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: " 608 "should have been unpacked before we got here"); 609 } 610 611 case CK_NonAtomicToAtomic: 612 case CK_AtomicToNonAtomic: { 613 bool isToAtomic = (E->getCastKind() == CK_NonAtomicToAtomic); 614 615 // Determine the atomic and value types. 616 QualType atomicType = E->getSubExpr()->getType(); 617 QualType valueType = E->getType(); 618 if (isToAtomic) std::swap(atomicType, valueType); 619 620 assert(atomicType->isAtomicType()); 621 assert(CGF.getContext().hasSameUnqualifiedType(valueType, 622 atomicType->castAs<AtomicType>()->getValueType())); 623 624 // Just recurse normally if we're ignoring the result or the 625 // atomic type doesn't change representation. 626 if (Dest.isIgnored() || !CGF.CGM.isPaddedAtomicType(atomicType)) { 627 return Visit(E->getSubExpr()); 628 } 629 630 CastKind peepholeTarget = 631 (isToAtomic ? CK_AtomicToNonAtomic : CK_NonAtomicToAtomic); 632 633 // These two cases are reverses of each other; try to peephole them. 634 if (Expr *op = findPeephole(E->getSubExpr(), peepholeTarget)) { 635 assert(CGF.getContext().hasSameUnqualifiedType(op->getType(), 636 E->getType()) && 637 "peephole significantly changed types?"); 638 return Visit(op); 639 } 640 641 // If we're converting an r-value of non-atomic type to an r-value 642 // of atomic type, just emit directly into the relevant sub-object. 643 if (isToAtomic) { 644 AggValueSlot valueDest = Dest; 645 if (!valueDest.isIgnored() && CGF.CGM.isPaddedAtomicType(atomicType)) { 646 // Zero-initialize. (Strictly speaking, we only need to intialize 647 // the padding at the end, but this is simpler.) 648 if (!Dest.isZeroed()) 649 CGF.EmitNullInitialization(Dest.getAddr(), atomicType); 650 651 // Build a GEP to refer to the subobject. 652 llvm::Value *valueAddr = 653 CGF.Builder.CreateStructGEP(nullptr, valueDest.getAddr(), 0); 654 valueDest = AggValueSlot::forAddr(valueAddr, 655 valueDest.getAlignment(), 656 valueDest.getQualifiers(), 657 valueDest.isExternallyDestructed(), 658 valueDest.requiresGCollection(), 659 valueDest.isPotentiallyAliased(), 660 AggValueSlot::IsZeroed); 661 } 662 663 CGF.EmitAggExpr(E->getSubExpr(), valueDest); 664 return; 665 } 666 667 // Otherwise, we're converting an atomic type to a non-atomic type. 668 // Make an atomic temporary, emit into that, and then copy the value out. 669 AggValueSlot atomicSlot = 670 CGF.CreateAggTemp(atomicType, "atomic-to-nonatomic.temp"); 671 CGF.EmitAggExpr(E->getSubExpr(), atomicSlot); 672 673 llvm::Value *valueAddr = 674 Builder.CreateStructGEP(nullptr, atomicSlot.getAddr(), 0); 675 RValue rvalue = RValue::getAggregate(valueAddr, atomicSlot.isVolatile()); 676 return EmitFinalDestCopy(valueType, rvalue); 677 } 678 679 case CK_LValueToRValue: 680 // If we're loading from a volatile type, force the destination 681 // into existence. 682 if (E->getSubExpr()->getType().isVolatileQualified()) { 683 EnsureDest(E->getType()); 684 return Visit(E->getSubExpr()); 685 } 686 687 // fallthrough 688 689 case CK_NoOp: 690 case CK_UserDefinedConversion: 691 case CK_ConstructorConversion: 692 assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(), 693 E->getType()) && 694 "Implicit cast types must be compatible"); 695 Visit(E->getSubExpr()); 696 break; 697 698 case CK_LValueBitCast: 699 llvm_unreachable("should not be emitting lvalue bitcast as rvalue"); 700 701 case CK_Dependent: 702 case CK_BitCast: 703 case CK_ArrayToPointerDecay: 704 case CK_FunctionToPointerDecay: 705 case CK_NullToPointer: 706 case CK_NullToMemberPointer: 707 case CK_BaseToDerivedMemberPointer: 708 case CK_DerivedToBaseMemberPointer: 709 case CK_MemberPointerToBoolean: 710 case CK_ReinterpretMemberPointer: 711 case CK_IntegralToPointer: 712 case CK_PointerToIntegral: 713 case CK_PointerToBoolean: 714 case CK_ToVoid: 715 case CK_VectorSplat: 716 case CK_IntegralCast: 717 case CK_IntegralToBoolean: 718 case CK_IntegralToFloating: 719 case CK_FloatingToIntegral: 720 case CK_FloatingToBoolean: 721 case CK_FloatingCast: 722 case CK_CPointerToObjCPointerCast: 723 case CK_BlockPointerToObjCPointerCast: 724 case CK_AnyPointerToBlockPointerCast: 725 case CK_ObjCObjectLValueCast: 726 case CK_FloatingRealToComplex: 727 case CK_FloatingComplexToReal: 728 case CK_FloatingComplexToBoolean: 729 case CK_FloatingComplexCast: 730 case CK_FloatingComplexToIntegralComplex: 731 case CK_IntegralRealToComplex: 732 case CK_IntegralComplexToReal: 733 case CK_IntegralComplexToBoolean: 734 case CK_IntegralComplexCast: 735 case CK_IntegralComplexToFloatingComplex: 736 case CK_ARCProduceObject: 737 case CK_ARCConsumeObject: 738 case CK_ARCReclaimReturnedObject: 739 case CK_ARCExtendBlockObject: 740 case CK_CopyAndAutoreleaseBlockObject: 741 case CK_BuiltinFnToFnPtr: 742 case CK_ZeroToOCLEvent: 743 case CK_AddressSpaceConversion: 744 llvm_unreachable("cast kind invalid for aggregate types"); 745 } 746 } 747 748 void AggExprEmitter::VisitCallExpr(const CallExpr *E) { 749 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) { 750 EmitAggLoadOfLValue(E); 751 return; 752 } 753 754 RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot()); 755 EmitMoveFromReturnSlot(E, RV); 756 } 757 758 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) { 759 RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot()); 760 EmitMoveFromReturnSlot(E, RV); 761 } 762 763 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) { 764 CGF.EmitIgnoredExpr(E->getLHS()); 765 Visit(E->getRHS()); 766 } 767 768 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) { 769 CodeGenFunction::StmtExprEvaluation eval(CGF); 770 CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest); 771 } 772 773 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) { 774 if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI) 775 VisitPointerToDataMemberBinaryOperator(E); 776 else 777 CGF.ErrorUnsupported(E, "aggregate binary expression"); 778 } 779 780 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator( 781 const BinaryOperator *E) { 782 LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E); 783 EmitFinalDestCopy(E->getType(), LV); 784 } 785 786 /// Is the value of the given expression possibly a reference to or 787 /// into a __block variable? 788 static bool isBlockVarRef(const Expr *E) { 789 // Make sure we look through parens. 790 E = E->IgnoreParens(); 791 792 // Check for a direct reference to a __block variable. 793 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { 794 const VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl()); 795 return (var && var->hasAttr<BlocksAttr>()); 796 } 797 798 // More complicated stuff. 799 800 // Binary operators. 801 if (const BinaryOperator *op = dyn_cast<BinaryOperator>(E)) { 802 // For an assignment or pointer-to-member operation, just care 803 // about the LHS. 804 if (op->isAssignmentOp() || op->isPtrMemOp()) 805 return isBlockVarRef(op->getLHS()); 806 807 // For a comma, just care about the RHS. 808 if (op->getOpcode() == BO_Comma) 809 return isBlockVarRef(op->getRHS()); 810 811 // FIXME: pointer arithmetic? 812 return false; 813 814 // Check both sides of a conditional operator. 815 } else if (const AbstractConditionalOperator *op 816 = dyn_cast<AbstractConditionalOperator>(E)) { 817 return isBlockVarRef(op->getTrueExpr()) 818 || isBlockVarRef(op->getFalseExpr()); 819 820 // OVEs are required to support BinaryConditionalOperators. 821 } else if (const OpaqueValueExpr *op 822 = dyn_cast<OpaqueValueExpr>(E)) { 823 if (const Expr *src = op->getSourceExpr()) 824 return isBlockVarRef(src); 825 826 // Casts are necessary to get things like (*(int*)&var) = foo(). 827 // We don't really care about the kind of cast here, except 828 // we don't want to look through l2r casts, because it's okay 829 // to get the *value* in a __block variable. 830 } else if (const CastExpr *cast = dyn_cast<CastExpr>(E)) { 831 if (cast->getCastKind() == CK_LValueToRValue) 832 return false; 833 return isBlockVarRef(cast->getSubExpr()); 834 835 // Handle unary operators. Again, just aggressively look through 836 // it, ignoring the operation. 837 } else if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E)) { 838 return isBlockVarRef(uop->getSubExpr()); 839 840 // Look into the base of a field access. 841 } else if (const MemberExpr *mem = dyn_cast<MemberExpr>(E)) { 842 return isBlockVarRef(mem->getBase()); 843 844 // Look into the base of a subscript. 845 } else if (const ArraySubscriptExpr *sub = dyn_cast<ArraySubscriptExpr>(E)) { 846 return isBlockVarRef(sub->getBase()); 847 } 848 849 return false; 850 } 851 852 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) { 853 // For an assignment to work, the value on the right has 854 // to be compatible with the value on the left. 855 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), 856 E->getRHS()->getType()) 857 && "Invalid assignment"); 858 859 // If the LHS might be a __block variable, and the RHS can 860 // potentially cause a block copy, we need to evaluate the RHS first 861 // so that the assignment goes the right place. 862 // This is pretty semantically fragile. 863 if (isBlockVarRef(E->getLHS()) && 864 E->getRHS()->HasSideEffects(CGF.getContext())) { 865 // Ensure that we have a destination, and evaluate the RHS into that. 866 EnsureDest(E->getRHS()->getType()); 867 Visit(E->getRHS()); 868 869 // Now emit the LHS and copy into it. 870 LValue LHS = CGF.EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 871 872 // That copy is an atomic copy if the LHS is atomic. 873 if (LHS.getType()->isAtomicType() || 874 CGF.LValueIsSuitableForInlineAtomic(LHS)) { 875 CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false); 876 return; 877 } 878 879 EmitCopy(E->getLHS()->getType(), 880 AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed, 881 needsGC(E->getLHS()->getType()), 882 AggValueSlot::IsAliased), 883 Dest); 884 return; 885 } 886 887 LValue LHS = CGF.EmitLValue(E->getLHS()); 888 889 // If we have an atomic type, evaluate into the destination and then 890 // do an atomic copy. 891 if (LHS.getType()->isAtomicType() || 892 CGF.LValueIsSuitableForInlineAtomic(LHS)) { 893 EnsureDest(E->getRHS()->getType()); 894 Visit(E->getRHS()); 895 CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false); 896 return; 897 } 898 899 // Codegen the RHS so that it stores directly into the LHS. 900 AggValueSlot LHSSlot = 901 AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed, 902 needsGC(E->getLHS()->getType()), 903 AggValueSlot::IsAliased); 904 // A non-volatile aggregate destination might have volatile member. 905 if (!LHSSlot.isVolatile() && 906 CGF.hasVolatileMember(E->getLHS()->getType())) 907 LHSSlot.setVolatile(true); 908 909 CGF.EmitAggExpr(E->getRHS(), LHSSlot); 910 911 // Copy into the destination if the assignment isn't ignored. 912 EmitFinalDestCopy(E->getType(), LHS); 913 } 914 915 void AggExprEmitter:: 916 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 917 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 918 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 919 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 920 921 // Bind the common expression if necessary. 922 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 923 924 CodeGenFunction::ConditionalEvaluation eval(CGF); 925 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock, 926 CGF.getProfileCount(E)); 927 928 // Save whether the destination's lifetime is externally managed. 929 bool isExternallyDestructed = Dest.isExternallyDestructed(); 930 931 eval.begin(CGF); 932 CGF.EmitBlock(LHSBlock); 933 CGF.incrementProfileCounter(E); 934 Visit(E->getTrueExpr()); 935 eval.end(CGF); 936 937 assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!"); 938 CGF.Builder.CreateBr(ContBlock); 939 940 // If the result of an agg expression is unused, then the emission 941 // of the LHS might need to create a destination slot. That's fine 942 // with us, and we can safely emit the RHS into the same slot, but 943 // we shouldn't claim that it's already being destructed. 944 Dest.setExternallyDestructed(isExternallyDestructed); 945 946 eval.begin(CGF); 947 CGF.EmitBlock(RHSBlock); 948 Visit(E->getFalseExpr()); 949 eval.end(CGF); 950 951 CGF.EmitBlock(ContBlock); 952 } 953 954 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) { 955 Visit(CE->getChosenSubExpr()); 956 } 957 958 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 959 llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr()); 960 llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType()); 961 962 if (!ArgPtr) { 963 // If EmitVAArg fails, we fall back to the LLVM instruction. 964 llvm::Value *Val = 965 Builder.CreateVAArg(ArgValue, CGF.ConvertType(VE->getType())); 966 if (!Dest.isIgnored()) 967 Builder.CreateStore(Val, Dest.getAddr()); 968 return; 969 } 970 971 EmitFinalDestCopy(VE->getType(), CGF.MakeAddrLValue(ArgPtr, VE->getType())); 972 } 973 974 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 975 // Ensure that we have a slot, but if we already do, remember 976 // whether it was externally destructed. 977 bool wasExternallyDestructed = Dest.isExternallyDestructed(); 978 EnsureDest(E->getType()); 979 980 // We're going to push a destructor if there isn't already one. 981 Dest.setExternallyDestructed(); 982 983 Visit(E->getSubExpr()); 984 985 // Push that destructor we promised. 986 if (!wasExternallyDestructed) 987 CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddr()); 988 } 989 990 void 991 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) { 992 AggValueSlot Slot = EnsureSlot(E->getType()); 993 CGF.EmitCXXConstructExpr(E, Slot); 994 } 995 996 void 997 AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) { 998 AggValueSlot Slot = EnsureSlot(E->getType()); 999 CGF.EmitLambdaExpr(E, Slot); 1000 } 1001 1002 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) { 1003 CGF.enterFullExpression(E); 1004 CodeGenFunction::RunCleanupsScope cleanups(CGF); 1005 Visit(E->getSubExpr()); 1006 } 1007 1008 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) { 1009 QualType T = E->getType(); 1010 AggValueSlot Slot = EnsureSlot(T); 1011 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T)); 1012 } 1013 1014 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) { 1015 QualType T = E->getType(); 1016 AggValueSlot Slot = EnsureSlot(T); 1017 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T)); 1018 } 1019 1020 /// isSimpleZero - If emitting this value will obviously just cause a store of 1021 /// zero to memory, return true. This can return false if uncertain, so it just 1022 /// handles simple cases. 1023 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) { 1024 E = E->IgnoreParens(); 1025 1026 // 0 1027 if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) 1028 return IL->getValue() == 0; 1029 // +0.0 1030 if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E)) 1031 return FL->getValue().isPosZero(); 1032 // int() 1033 if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) && 1034 CGF.getTypes().isZeroInitializable(E->getType())) 1035 return true; 1036 // (int*)0 - Null pointer expressions. 1037 if (const CastExpr *ICE = dyn_cast<CastExpr>(E)) 1038 return ICE->getCastKind() == CK_NullToPointer; 1039 // '\0' 1040 if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) 1041 return CL->getValue() == 0; 1042 1043 // Otherwise, hard case: conservatively return false. 1044 return false; 1045 } 1046 1047 1048 void 1049 AggExprEmitter::EmitInitializationToLValue(Expr *E, LValue LV) { 1050 QualType type = LV.getType(); 1051 // FIXME: Ignore result? 1052 // FIXME: Are initializers affected by volatile? 1053 if (Dest.isZeroed() && isSimpleZero(E, CGF)) { 1054 // Storing "i32 0" to a zero'd memory location is a noop. 1055 return; 1056 } else if (isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) { 1057 return EmitNullInitializationToLValue(LV); 1058 } else if (type->isReferenceType()) { 1059 RValue RV = CGF.EmitReferenceBindingToExpr(E); 1060 return CGF.EmitStoreThroughLValue(RV, LV); 1061 } 1062 1063 switch (CGF.getEvaluationKind(type)) { 1064 case TEK_Complex: 1065 CGF.EmitComplexExprIntoLValue(E, LV, /*isInit*/ true); 1066 return; 1067 case TEK_Aggregate: 1068 CGF.EmitAggExpr(E, AggValueSlot::forLValue(LV, 1069 AggValueSlot::IsDestructed, 1070 AggValueSlot::DoesNotNeedGCBarriers, 1071 AggValueSlot::IsNotAliased, 1072 Dest.isZeroed())); 1073 return; 1074 case TEK_Scalar: 1075 if (LV.isSimple()) { 1076 CGF.EmitScalarInit(E, /*D=*/nullptr, LV, /*Captured=*/false); 1077 } else { 1078 CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV); 1079 } 1080 return; 1081 } 1082 llvm_unreachable("bad evaluation kind"); 1083 } 1084 1085 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) { 1086 QualType type = lv.getType(); 1087 1088 // If the destination slot is already zeroed out before the aggregate is 1089 // copied into it, we don't have to emit any zeros here. 1090 if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type)) 1091 return; 1092 1093 if (CGF.hasScalarEvaluationKind(type)) { 1094 // For non-aggregates, we can store the appropriate null constant. 1095 llvm::Value *null = CGF.CGM.EmitNullConstant(type); 1096 // Note that the following is not equivalent to 1097 // EmitStoreThroughBitfieldLValue for ARC types. 1098 if (lv.isBitField()) { 1099 CGF.EmitStoreThroughBitfieldLValue(RValue::get(null), lv); 1100 } else { 1101 assert(lv.isSimple()); 1102 CGF.EmitStoreOfScalar(null, lv, /* isInitialization */ true); 1103 } 1104 } else { 1105 // There's a potential optimization opportunity in combining 1106 // memsets; that would be easy for arrays, but relatively 1107 // difficult for structures with the current code. 1108 CGF.EmitNullInitialization(lv.getAddress(), lv.getType()); 1109 } 1110 } 1111 1112 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) { 1113 #if 0 1114 // FIXME: Assess perf here? Figure out what cases are worth optimizing here 1115 // (Length of globals? Chunks of zeroed-out space?). 1116 // 1117 // If we can, prefer a copy from a global; this is a lot less code for long 1118 // globals, and it's easier for the current optimizers to analyze. 1119 if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) { 1120 llvm::GlobalVariable* GV = 1121 new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true, 1122 llvm::GlobalValue::InternalLinkage, C, ""); 1123 EmitFinalDestCopy(E->getType(), CGF.MakeAddrLValue(GV, E->getType())); 1124 return; 1125 } 1126 #endif 1127 if (E->hadArrayRangeDesignator()) 1128 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 1129 1130 AggValueSlot Dest = EnsureSlot(E->getType()); 1131 1132 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddr(), E->getType(), 1133 Dest.getAlignment()); 1134 1135 // Handle initialization of an array. 1136 if (E->getType()->isArrayType()) { 1137 if (E->isStringLiteralInit()) 1138 return Visit(E->getInit(0)); 1139 1140 QualType elementType = 1141 CGF.getContext().getAsArrayType(E->getType())->getElementType(); 1142 1143 llvm::PointerType *APType = 1144 cast<llvm::PointerType>(Dest.getAddr()->getType()); 1145 llvm::ArrayType *AType = 1146 cast<llvm::ArrayType>(APType->getElementType()); 1147 1148 EmitArrayInit(Dest.getAddr(), AType, elementType, E); 1149 return; 1150 } 1151 1152 if (E->getType()->isAtomicType()) { 1153 // An _Atomic(T) object can be list-initialized from an expression 1154 // of the same type. 1155 assert(E->getNumInits() == 1 && 1156 CGF.getContext().hasSameUnqualifiedType(E->getInit(0)->getType(), 1157 E->getType()) && 1158 "unexpected list initialization for atomic object"); 1159 return Visit(E->getInit(0)); 1160 } 1161 1162 assert(E->getType()->isRecordType() && "Only support structs/unions here!"); 1163 1164 // Do struct initialization; this code just sets each individual member 1165 // to the approprate value. This makes bitfield support automatic; 1166 // the disadvantage is that the generated code is more difficult for 1167 // the optimizer, especially with bitfields. 1168 unsigned NumInitElements = E->getNumInits(); 1169 RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl(); 1170 1171 // Prepare a 'this' for CXXDefaultInitExprs. 1172 CodeGenFunction::FieldConstructionScope FCS(CGF, Dest.getAddr()); 1173 1174 if (record->isUnion()) { 1175 // Only initialize one field of a union. The field itself is 1176 // specified by the initializer list. 1177 if (!E->getInitializedFieldInUnion()) { 1178 // Empty union; we have nothing to do. 1179 1180 #ifndef NDEBUG 1181 // Make sure that it's really an empty and not a failure of 1182 // semantic analysis. 1183 for (const auto *Field : record->fields()) 1184 assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed"); 1185 #endif 1186 return; 1187 } 1188 1189 // FIXME: volatility 1190 FieldDecl *Field = E->getInitializedFieldInUnion(); 1191 1192 LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestLV, Field); 1193 if (NumInitElements) { 1194 // Store the initializer into the field 1195 EmitInitializationToLValue(E->getInit(0), FieldLoc); 1196 } else { 1197 // Default-initialize to null. 1198 EmitNullInitializationToLValue(FieldLoc); 1199 } 1200 1201 return; 1202 } 1203 1204 // We'll need to enter cleanup scopes in case any of the member 1205 // initializers throw an exception. 1206 SmallVector<EHScopeStack::stable_iterator, 16> cleanups; 1207 llvm::Instruction *cleanupDominator = nullptr; 1208 1209 // Here we iterate over the fields; this makes it simpler to both 1210 // default-initialize fields and skip over unnamed fields. 1211 unsigned curInitIndex = 0; 1212 for (const auto *field : record->fields()) { 1213 // We're done once we hit the flexible array member. 1214 if (field->getType()->isIncompleteArrayType()) 1215 break; 1216 1217 // Always skip anonymous bitfields. 1218 if (field->isUnnamedBitfield()) 1219 continue; 1220 1221 // We're done if we reach the end of the explicit initializers, we 1222 // have a zeroed object, and the rest of the fields are 1223 // zero-initializable. 1224 if (curInitIndex == NumInitElements && Dest.isZeroed() && 1225 CGF.getTypes().isZeroInitializable(E->getType())) 1226 break; 1227 1228 1229 LValue LV = CGF.EmitLValueForFieldInitialization(DestLV, field); 1230 // We never generate write-barries for initialized fields. 1231 LV.setNonGC(true); 1232 1233 if (curInitIndex < NumInitElements) { 1234 // Store the initializer into the field. 1235 EmitInitializationToLValue(E->getInit(curInitIndex++), LV); 1236 } else { 1237 // We're out of initalizers; default-initialize to null 1238 EmitNullInitializationToLValue(LV); 1239 } 1240 1241 // Push a destructor if necessary. 1242 // FIXME: if we have an array of structures, all explicitly 1243 // initialized, we can end up pushing a linear number of cleanups. 1244 bool pushedCleanup = false; 1245 if (QualType::DestructionKind dtorKind 1246 = field->getType().isDestructedType()) { 1247 assert(LV.isSimple()); 1248 if (CGF.needsEHCleanup(dtorKind)) { 1249 if (!cleanupDominator) 1250 cleanupDominator = CGF.Builder.CreateUnreachable(); // placeholder 1251 1252 CGF.pushDestroy(EHCleanup, LV.getAddress(), field->getType(), 1253 CGF.getDestroyer(dtorKind), false); 1254 cleanups.push_back(CGF.EHStack.stable_begin()); 1255 pushedCleanup = true; 1256 } 1257 } 1258 1259 // If the GEP didn't get used because of a dead zero init or something 1260 // else, clean it up for -O0 builds and general tidiness. 1261 if (!pushedCleanup && LV.isSimple()) 1262 if (llvm::GetElementPtrInst *GEP = 1263 dyn_cast<llvm::GetElementPtrInst>(LV.getAddress())) 1264 if (GEP->use_empty()) 1265 GEP->eraseFromParent(); 1266 } 1267 1268 // Deactivate all the partial cleanups in reverse order, which 1269 // generally means popping them. 1270 for (unsigned i = cleanups.size(); i != 0; --i) 1271 CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator); 1272 1273 // Destroy the placeholder if we made one. 1274 if (cleanupDominator) 1275 cleanupDominator->eraseFromParent(); 1276 } 1277 1278 //===----------------------------------------------------------------------===// 1279 // Entry Points into this File 1280 //===----------------------------------------------------------------------===// 1281 1282 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of 1283 /// non-zero bytes that will be stored when outputting the initializer for the 1284 /// specified initializer expression. 1285 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) { 1286 E = E->IgnoreParens(); 1287 1288 // 0 and 0.0 won't require any non-zero stores! 1289 if (isSimpleZero(E, CGF)) return CharUnits::Zero(); 1290 1291 // If this is an initlist expr, sum up the size of sizes of the (present) 1292 // elements. If this is something weird, assume the whole thing is non-zero. 1293 const InitListExpr *ILE = dyn_cast<InitListExpr>(E); 1294 if (!ILE || !CGF.getTypes().isZeroInitializable(ILE->getType())) 1295 return CGF.getContext().getTypeSizeInChars(E->getType()); 1296 1297 // InitListExprs for structs have to be handled carefully. If there are 1298 // reference members, we need to consider the size of the reference, not the 1299 // referencee. InitListExprs for unions and arrays can't have references. 1300 if (const RecordType *RT = E->getType()->getAs<RecordType>()) { 1301 if (!RT->isUnionType()) { 1302 RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl(); 1303 CharUnits NumNonZeroBytes = CharUnits::Zero(); 1304 1305 unsigned ILEElement = 0; 1306 for (const auto *Field : SD->fields()) { 1307 // We're done once we hit the flexible array member or run out of 1308 // InitListExpr elements. 1309 if (Field->getType()->isIncompleteArrayType() || 1310 ILEElement == ILE->getNumInits()) 1311 break; 1312 if (Field->isUnnamedBitfield()) 1313 continue; 1314 1315 const Expr *E = ILE->getInit(ILEElement++); 1316 1317 // Reference values are always non-null and have the width of a pointer. 1318 if (Field->getType()->isReferenceType()) 1319 NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits( 1320 CGF.getTarget().getPointerWidth(0)); 1321 else 1322 NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF); 1323 } 1324 1325 return NumNonZeroBytes; 1326 } 1327 } 1328 1329 1330 CharUnits NumNonZeroBytes = CharUnits::Zero(); 1331 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) 1332 NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF); 1333 return NumNonZeroBytes; 1334 } 1335 1336 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of 1337 /// zeros in it, emit a memset and avoid storing the individual zeros. 1338 /// 1339 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E, 1340 CodeGenFunction &CGF) { 1341 // If the slot is already known to be zeroed, nothing to do. Don't mess with 1342 // volatile stores. 1343 if (Slot.isZeroed() || Slot.isVolatile() || Slot.getAddr() == nullptr) 1344 return; 1345 1346 // C++ objects with a user-declared constructor don't need zero'ing. 1347 if (CGF.getLangOpts().CPlusPlus) 1348 if (const RecordType *RT = CGF.getContext() 1349 .getBaseElementType(E->getType())->getAs<RecordType>()) { 1350 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1351 if (RD->hasUserDeclaredConstructor()) 1352 return; 1353 } 1354 1355 // If the type is 16-bytes or smaller, prefer individual stores over memset. 1356 std::pair<CharUnits, CharUnits> TypeInfo = 1357 CGF.getContext().getTypeInfoInChars(E->getType()); 1358 if (TypeInfo.first <= CharUnits::fromQuantity(16)) 1359 return; 1360 1361 // Check to see if over 3/4 of the initializer are known to be zero. If so, 1362 // we prefer to emit memset + individual stores for the rest. 1363 CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF); 1364 if (NumNonZeroBytes*4 > TypeInfo.first) 1365 return; 1366 1367 // Okay, it seems like a good idea to use an initial memset, emit the call. 1368 llvm::Constant *SizeVal = CGF.Builder.getInt64(TypeInfo.first.getQuantity()); 1369 CharUnits Align = TypeInfo.second; 1370 1371 llvm::Value *Loc = Slot.getAddr(); 1372 1373 Loc = CGF.Builder.CreateBitCast(Loc, CGF.Int8PtrTy); 1374 CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, 1375 Align.getQuantity(), false); 1376 1377 // Tell the AggExprEmitter that the slot is known zero. 1378 Slot.setZeroed(); 1379 } 1380 1381 1382 1383 1384 /// EmitAggExpr - Emit the computation of the specified expression of aggregate 1385 /// type. The result is computed into DestPtr. Note that if DestPtr is null, 1386 /// the value of the aggregate expression is not needed. If VolatileDest is 1387 /// true, DestPtr cannot be 0. 1388 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot) { 1389 assert(E && hasAggregateEvaluationKind(E->getType()) && 1390 "Invalid aggregate expression to emit"); 1391 assert((Slot.getAddr() != nullptr || Slot.isIgnored()) && 1392 "slot has bits but no address"); 1393 1394 // Optimize the slot if possible. 1395 CheckAggExprForMemSetUse(Slot, E, *this); 1396 1397 AggExprEmitter(*this, Slot).Visit(const_cast<Expr*>(E)); 1398 } 1399 1400 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) { 1401 assert(hasAggregateEvaluationKind(E->getType()) && "Invalid argument!"); 1402 llvm::Value *Temp = CreateMemTemp(E->getType()); 1403 LValue LV = MakeAddrLValue(Temp, E->getType()); 1404 EmitAggExpr(E, AggValueSlot::forLValue(LV, AggValueSlot::IsNotDestructed, 1405 AggValueSlot::DoesNotNeedGCBarriers, 1406 AggValueSlot::IsNotAliased)); 1407 return LV; 1408 } 1409 1410 void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr, 1411 llvm::Value *SrcPtr, QualType Ty, 1412 bool isVolatile, 1413 CharUnits alignment, 1414 bool isAssignment) { 1415 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 1416 1417 if (getLangOpts().CPlusPlus) { 1418 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1419 CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl()); 1420 assert((Record->hasTrivialCopyConstructor() || 1421 Record->hasTrivialCopyAssignment() || 1422 Record->hasTrivialMoveConstructor() || 1423 Record->hasTrivialMoveAssignment() || 1424 Record->isUnion()) && 1425 "Trying to aggregate-copy a type without a trivial copy/move " 1426 "constructor or assignment operator"); 1427 // Ignore empty classes in C++. 1428 if (Record->isEmpty()) 1429 return; 1430 } 1431 } 1432 1433 // Aggregate assignment turns into llvm.memcpy. This is almost valid per 1434 // C99 6.5.16.1p3, which states "If the value being stored in an object is 1435 // read from another object that overlaps in anyway the storage of the first 1436 // object, then the overlap shall be exact and the two objects shall have 1437 // qualified or unqualified versions of a compatible type." 1438 // 1439 // memcpy is not defined if the source and destination pointers are exactly 1440 // equal, but other compilers do this optimization, and almost every memcpy 1441 // implementation handles this case safely. If there is a libc that does not 1442 // safely handle this, we can add a target hook. 1443 1444 // Get data size and alignment info for this aggregate. If this is an 1445 // assignment don't copy the tail padding. Otherwise copying it is fine. 1446 std::pair<CharUnits, CharUnits> TypeInfo; 1447 if (isAssignment) 1448 TypeInfo = getContext().getTypeInfoDataSizeInChars(Ty); 1449 else 1450 TypeInfo = getContext().getTypeInfoInChars(Ty); 1451 1452 if (alignment.isZero()) 1453 alignment = TypeInfo.second; 1454 1455 llvm::Value *SizeVal = nullptr; 1456 if (TypeInfo.first.isZero()) { 1457 // But note that getTypeInfo returns 0 for a VLA. 1458 if (auto *VAT = dyn_cast_or_null<VariableArrayType>( 1459 getContext().getAsArrayType(Ty))) { 1460 QualType BaseEltTy; 1461 SizeVal = emitArrayLength(VAT, BaseEltTy, DestPtr); 1462 TypeInfo = getContext().getTypeInfoDataSizeInChars(BaseEltTy); 1463 std::pair<CharUnits, CharUnits> LastElementTypeInfo; 1464 if (!isAssignment) 1465 LastElementTypeInfo = getContext().getTypeInfoInChars(BaseEltTy); 1466 assert(!TypeInfo.first.isZero()); 1467 SizeVal = Builder.CreateNUWMul( 1468 SizeVal, 1469 llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity())); 1470 if (!isAssignment) { 1471 SizeVal = Builder.CreateNUWSub( 1472 SizeVal, 1473 llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity())); 1474 SizeVal = Builder.CreateNUWAdd( 1475 SizeVal, llvm::ConstantInt::get( 1476 SizeTy, LastElementTypeInfo.first.getQuantity())); 1477 } 1478 } 1479 } 1480 if (!SizeVal) { 1481 SizeVal = llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity()); 1482 } 1483 1484 // FIXME: If we have a volatile struct, the optimizer can remove what might 1485 // appear to be `extra' memory ops: 1486 // 1487 // volatile struct { int i; } a, b; 1488 // 1489 // int main() { 1490 // a = b; 1491 // a = b; 1492 // } 1493 // 1494 // we need to use a different call here. We use isVolatile to indicate when 1495 // either the source or the destination is volatile. 1496 1497 llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType()); 1498 llvm::Type *DBP = 1499 llvm::Type::getInt8PtrTy(getLLVMContext(), DPT->getAddressSpace()); 1500 DestPtr = Builder.CreateBitCast(DestPtr, DBP); 1501 1502 llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType()); 1503 llvm::Type *SBP = 1504 llvm::Type::getInt8PtrTy(getLLVMContext(), SPT->getAddressSpace()); 1505 SrcPtr = Builder.CreateBitCast(SrcPtr, SBP); 1506 1507 // Don't do any of the memmove_collectable tests if GC isn't set. 1508 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) { 1509 // fall through 1510 } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 1511 RecordDecl *Record = RecordTy->getDecl(); 1512 if (Record->hasObjectMember()) { 1513 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 1514 SizeVal); 1515 return; 1516 } 1517 } else if (Ty->isArrayType()) { 1518 QualType BaseType = getContext().getBaseElementType(Ty); 1519 if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) { 1520 if (RecordTy->getDecl()->hasObjectMember()) { 1521 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 1522 SizeVal); 1523 return; 1524 } 1525 } 1526 } 1527 1528 // Determine the metadata to describe the position of any padding in this 1529 // memcpy, as well as the TBAA tags for the members of the struct, in case 1530 // the optimizer wishes to expand it in to scalar memory operations. 1531 llvm::MDNode *TBAAStructTag = CGM.getTBAAStructInfo(Ty); 1532 1533 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, alignment.getQuantity(), 1534 isVolatile, /*TBAATag=*/nullptr, TBAAStructTag); 1535 } 1536