1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Aggregate Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "CGObjCRuntime.h" 17 #include "clang/AST/ASTContext.h" 18 #include "clang/AST/DeclCXX.h" 19 #include "clang/AST/StmtVisitor.h" 20 #include "llvm/Constants.h" 21 #include "llvm/Function.h" 22 #include "llvm/GlobalVariable.h" 23 #include "llvm/Intrinsics.h" 24 using namespace clang; 25 using namespace CodeGen; 26 27 //===----------------------------------------------------------------------===// 28 // Aggregate Expression Emitter 29 //===----------------------------------------------------------------------===// 30 31 namespace { 32 class AggExprEmitter : public StmtVisitor<AggExprEmitter> { 33 CodeGenFunction &CGF; 34 CGBuilderTy &Builder; 35 AggValueSlot Dest; 36 bool IgnoreResult; 37 38 /// We want to use 'dest' as the return slot except under two 39 /// conditions: 40 /// - The destination slot requires garbage collection, so we 41 /// need to use the GC API. 42 /// - The destination slot is potentially aliased. 43 bool shouldUseDestForReturnSlot() const { 44 return !(Dest.requiresGCollection() || Dest.isPotentiallyAliased()); 45 } 46 47 ReturnValueSlot getReturnValueSlot() const { 48 if (!shouldUseDestForReturnSlot()) 49 return ReturnValueSlot(); 50 51 return ReturnValueSlot(Dest.getAddr(), Dest.isVolatile()); 52 } 53 54 AggValueSlot EnsureSlot(QualType T) { 55 if (!Dest.isIgnored()) return Dest; 56 return CGF.CreateAggTemp(T, "agg.tmp.ensured"); 57 } 58 59 public: 60 AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest, 61 bool ignore) 62 : CGF(cgf), Builder(CGF.Builder), Dest(Dest), 63 IgnoreResult(ignore) { 64 } 65 66 //===--------------------------------------------------------------------===// 67 // Utilities 68 //===--------------------------------------------------------------------===// 69 70 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 71 /// represents a value lvalue, this method emits the address of the lvalue, 72 /// then loads the result into DestPtr. 73 void EmitAggLoadOfLValue(const Expr *E); 74 75 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 76 void EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore = false); 77 void EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore = false, 78 unsigned Alignment = 0); 79 80 void EmitMoveFromReturnSlot(const Expr *E, RValue Src); 81 82 AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) { 83 if (CGF.getLangOptions().getGC() && TypeRequiresGCollection(T)) 84 return AggValueSlot::NeedsGCBarriers; 85 return AggValueSlot::DoesNotNeedGCBarriers; 86 } 87 88 bool TypeRequiresGCollection(QualType T); 89 90 //===--------------------------------------------------------------------===// 91 // Visitor Methods 92 //===--------------------------------------------------------------------===// 93 94 void VisitStmt(Stmt *S) { 95 CGF.ErrorUnsupported(S, "aggregate expression"); 96 } 97 void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); } 98 void VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 99 Visit(GE->getResultExpr()); 100 } 101 void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); } 102 void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 103 return Visit(E->getReplacement()); 104 } 105 106 // l-values. 107 void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); } 108 void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); } 109 void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); } 110 void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); } 111 void VisitCompoundLiteralExpr(CompoundLiteralExpr *E); 112 void VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 113 EmitAggLoadOfLValue(E); 114 } 115 void VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) { 116 EmitAggLoadOfLValue(E); 117 } 118 void VisitPredefinedExpr(const PredefinedExpr *E) { 119 EmitAggLoadOfLValue(E); 120 } 121 122 // Operators. 123 void VisitCastExpr(CastExpr *E); 124 void VisitCallExpr(const CallExpr *E); 125 void VisitStmtExpr(const StmtExpr *E); 126 void VisitBinaryOperator(const BinaryOperator *BO); 127 void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO); 128 void VisitBinAssign(const BinaryOperator *E); 129 void VisitBinComma(const BinaryOperator *E); 130 131 void VisitObjCMessageExpr(ObjCMessageExpr *E); 132 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 133 EmitAggLoadOfLValue(E); 134 } 135 136 void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO); 137 void VisitChooseExpr(const ChooseExpr *CE); 138 void VisitInitListExpr(InitListExpr *E); 139 void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E); 140 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 141 Visit(DAE->getExpr()); 142 } 143 void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E); 144 void VisitCXXConstructExpr(const CXXConstructExpr *E); 145 void VisitLambdaExpr(LambdaExpr *E); 146 void VisitExprWithCleanups(ExprWithCleanups *E); 147 void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E); 148 void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); } 149 void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E); 150 void VisitOpaqueValueExpr(OpaqueValueExpr *E); 151 152 void VisitPseudoObjectExpr(PseudoObjectExpr *E) { 153 if (E->isGLValue()) { 154 LValue LV = CGF.EmitPseudoObjectLValue(E); 155 return EmitFinalDestCopy(E, LV); 156 } 157 158 CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType())); 159 } 160 161 void VisitVAArgExpr(VAArgExpr *E); 162 163 void EmitInitializationToLValue(Expr *E, LValue Address); 164 void EmitNullInitializationToLValue(LValue Address); 165 // case Expr::ChooseExprClass: 166 void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); } 167 void VisitAtomicExpr(AtomicExpr *E) { 168 CGF.EmitAtomicExpr(E, EnsureSlot(E->getType()).getAddr()); 169 } 170 }; 171 } // end anonymous namespace. 172 173 //===----------------------------------------------------------------------===// 174 // Utilities 175 //===----------------------------------------------------------------------===// 176 177 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 178 /// represents a value lvalue, this method emits the address of the lvalue, 179 /// then loads the result into DestPtr. 180 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) { 181 LValue LV = CGF.EmitLValue(E); 182 EmitFinalDestCopy(E, LV); 183 } 184 185 /// \brief True if the given aggregate type requires special GC API calls. 186 bool AggExprEmitter::TypeRequiresGCollection(QualType T) { 187 // Only record types have members that might require garbage collection. 188 const RecordType *RecordTy = T->getAs<RecordType>(); 189 if (!RecordTy) return false; 190 191 // Don't mess with non-trivial C++ types. 192 RecordDecl *Record = RecordTy->getDecl(); 193 if (isa<CXXRecordDecl>(Record) && 194 (!cast<CXXRecordDecl>(Record)->hasTrivialCopyConstructor() || 195 !cast<CXXRecordDecl>(Record)->hasTrivialDestructor())) 196 return false; 197 198 // Check whether the type has an object member. 199 return Record->hasObjectMember(); 200 } 201 202 /// \brief Perform the final move to DestPtr if for some reason 203 /// getReturnValueSlot() didn't use it directly. 204 /// 205 /// The idea is that you do something like this: 206 /// RValue Result = EmitSomething(..., getReturnValueSlot()); 207 /// EmitMoveFromReturnSlot(E, Result); 208 /// 209 /// If nothing interferes, this will cause the result to be emitted 210 /// directly into the return value slot. Otherwise, a final move 211 /// will be performed. 212 void AggExprEmitter::EmitMoveFromReturnSlot(const Expr *E, RValue Src) { 213 if (shouldUseDestForReturnSlot()) { 214 // Logically, Dest.getAddr() should equal Src.getAggregateAddr(). 215 // The possibility of undef rvalues complicates that a lot, 216 // though, so we can't really assert. 217 return; 218 } 219 220 // Otherwise, do a final copy, 221 assert(Dest.getAddr() != Src.getAggregateAddr()); 222 EmitFinalDestCopy(E, Src, /*Ignore*/ true); 223 } 224 225 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 226 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore, 227 unsigned Alignment) { 228 assert(Src.isAggregate() && "value must be aggregate value!"); 229 230 // If Dest is ignored, then we're evaluating an aggregate expression 231 // in a context (like an expression statement) that doesn't care 232 // about the result. C says that an lvalue-to-rvalue conversion is 233 // performed in these cases; C++ says that it is not. In either 234 // case, we don't actually need to do anything unless the value is 235 // volatile. 236 if (Dest.isIgnored()) { 237 if (!Src.isVolatileQualified() || 238 CGF.CGM.getLangOptions().CPlusPlus || 239 (IgnoreResult && Ignore)) 240 return; 241 242 // If the source is volatile, we must read from it; to do that, we need 243 // some place to put it. 244 Dest = CGF.CreateAggTemp(E->getType(), "agg.tmp"); 245 } 246 247 if (Dest.requiresGCollection()) { 248 CharUnits size = CGF.getContext().getTypeSizeInChars(E->getType()); 249 llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType()); 250 llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity()); 251 CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, 252 Dest.getAddr(), 253 Src.getAggregateAddr(), 254 SizeVal); 255 return; 256 } 257 // If the result of the assignment is used, copy the LHS there also. 258 // FIXME: Pass VolatileDest as well. I think we also need to merge volatile 259 // from the source as well, as we can't eliminate it if either operand 260 // is volatile, unless copy has volatile for both source and destination.. 261 CGF.EmitAggregateCopy(Dest.getAddr(), Src.getAggregateAddr(), E->getType(), 262 Dest.isVolatile()|Src.isVolatileQualified(), 263 Alignment); 264 } 265 266 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 267 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore) { 268 assert(Src.isSimple() && "Can't have aggregate bitfield, vector, etc"); 269 270 CharUnits Alignment = std::min(Src.getAlignment(), Dest.getAlignment()); 271 EmitFinalDestCopy(E, Src.asAggregateRValue(), Ignore, Alignment.getQuantity()); 272 } 273 274 //===----------------------------------------------------------------------===// 275 // Visitor Methods 276 //===----------------------------------------------------------------------===// 277 278 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){ 279 Visit(E->GetTemporaryExpr()); 280 } 281 282 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) { 283 EmitFinalDestCopy(e, CGF.getOpaqueLValueMapping(e)); 284 } 285 286 void 287 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 288 if (E->getType().isPODType(CGF.getContext())) { 289 // For a POD type, just emit a load of the lvalue + a copy, because our 290 // compound literal might alias the destination. 291 // FIXME: This is a band-aid; the real problem appears to be in our handling 292 // of assignments, where we store directly into the LHS without checking 293 // whether anything in the RHS aliases. 294 EmitAggLoadOfLValue(E); 295 return; 296 } 297 298 AggValueSlot Slot = EnsureSlot(E->getType()); 299 CGF.EmitAggExpr(E->getInitializer(), Slot); 300 } 301 302 303 void AggExprEmitter::VisitCastExpr(CastExpr *E) { 304 switch (E->getCastKind()) { 305 case CK_Dynamic: { 306 assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?"); 307 LValue LV = CGF.EmitCheckedLValue(E->getSubExpr()); 308 // FIXME: Do we also need to handle property references here? 309 if (LV.isSimple()) 310 CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E)); 311 else 312 CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast"); 313 314 if (!Dest.isIgnored()) 315 CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination"); 316 break; 317 } 318 319 case CK_ToUnion: { 320 if (Dest.isIgnored()) break; 321 322 // GCC union extension 323 QualType Ty = E->getSubExpr()->getType(); 324 QualType PtrTy = CGF.getContext().getPointerType(Ty); 325 llvm::Value *CastPtr = Builder.CreateBitCast(Dest.getAddr(), 326 CGF.ConvertType(PtrTy)); 327 EmitInitializationToLValue(E->getSubExpr(), 328 CGF.MakeAddrLValue(CastPtr, Ty)); 329 break; 330 } 331 332 case CK_DerivedToBase: 333 case CK_BaseToDerived: 334 case CK_UncheckedDerivedToBase: { 335 llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: " 336 "should have been unpacked before we got here"); 337 } 338 339 case CK_LValueToRValue: // hope for downstream optimization 340 case CK_NoOp: 341 case CK_AtomicToNonAtomic: 342 case CK_NonAtomicToAtomic: 343 case CK_UserDefinedConversion: 344 case CK_ConstructorConversion: 345 assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(), 346 E->getType()) && 347 "Implicit cast types must be compatible"); 348 Visit(E->getSubExpr()); 349 break; 350 351 case CK_LValueBitCast: 352 llvm_unreachable("should not be emitting lvalue bitcast as rvalue"); 353 354 case CK_Dependent: 355 case CK_BitCast: 356 case CK_ArrayToPointerDecay: 357 case CK_FunctionToPointerDecay: 358 case CK_NullToPointer: 359 case CK_NullToMemberPointer: 360 case CK_BaseToDerivedMemberPointer: 361 case CK_DerivedToBaseMemberPointer: 362 case CK_MemberPointerToBoolean: 363 case CK_IntegralToPointer: 364 case CK_PointerToIntegral: 365 case CK_PointerToBoolean: 366 case CK_ToVoid: 367 case CK_VectorSplat: 368 case CK_IntegralCast: 369 case CK_IntegralToBoolean: 370 case CK_IntegralToFloating: 371 case CK_FloatingToIntegral: 372 case CK_FloatingToBoolean: 373 case CK_FloatingCast: 374 case CK_CPointerToObjCPointerCast: 375 case CK_BlockPointerToObjCPointerCast: 376 case CK_AnyPointerToBlockPointerCast: 377 case CK_ObjCObjectLValueCast: 378 case CK_FloatingRealToComplex: 379 case CK_FloatingComplexToReal: 380 case CK_FloatingComplexToBoolean: 381 case CK_FloatingComplexCast: 382 case CK_FloatingComplexToIntegralComplex: 383 case CK_IntegralRealToComplex: 384 case CK_IntegralComplexToReal: 385 case CK_IntegralComplexToBoolean: 386 case CK_IntegralComplexCast: 387 case CK_IntegralComplexToFloatingComplex: 388 case CK_ARCProduceObject: 389 case CK_ARCConsumeObject: 390 case CK_ARCReclaimReturnedObject: 391 case CK_ARCExtendBlockObject: 392 llvm_unreachable("cast kind invalid for aggregate types"); 393 } 394 } 395 396 void AggExprEmitter::VisitCallExpr(const CallExpr *E) { 397 if (E->getCallReturnType()->isReferenceType()) { 398 EmitAggLoadOfLValue(E); 399 return; 400 } 401 402 RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot()); 403 EmitMoveFromReturnSlot(E, RV); 404 } 405 406 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) { 407 RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot()); 408 EmitMoveFromReturnSlot(E, RV); 409 } 410 411 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) { 412 CGF.EmitIgnoredExpr(E->getLHS()); 413 Visit(E->getRHS()); 414 } 415 416 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) { 417 CodeGenFunction::StmtExprEvaluation eval(CGF); 418 CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest); 419 } 420 421 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) { 422 if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI) 423 VisitPointerToDataMemberBinaryOperator(E); 424 else 425 CGF.ErrorUnsupported(E, "aggregate binary expression"); 426 } 427 428 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator( 429 const BinaryOperator *E) { 430 LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E); 431 EmitFinalDestCopy(E, LV); 432 } 433 434 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) { 435 // For an assignment to work, the value on the right has 436 // to be compatible with the value on the left. 437 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), 438 E->getRHS()->getType()) 439 && "Invalid assignment"); 440 441 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->getLHS())) 442 if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) 443 if (VD->hasAttr<BlocksAttr>() && 444 E->getRHS()->HasSideEffects(CGF.getContext())) { 445 // When __block variable on LHS, the RHS must be evaluated first 446 // as it may change the 'forwarding' field via call to Block_copy. 447 LValue RHS = CGF.EmitLValue(E->getRHS()); 448 LValue LHS = CGF.EmitLValue(E->getLHS()); 449 Dest = AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed, 450 needsGC(E->getLHS()->getType()), 451 AggValueSlot::IsAliased); 452 EmitFinalDestCopy(E, RHS, true); 453 return; 454 } 455 456 LValue LHS = CGF.EmitLValue(E->getLHS()); 457 458 // Codegen the RHS so that it stores directly into the LHS. 459 AggValueSlot LHSSlot = 460 AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed, 461 needsGC(E->getLHS()->getType()), 462 AggValueSlot::IsAliased); 463 CGF.EmitAggExpr(E->getRHS(), LHSSlot, false); 464 EmitFinalDestCopy(E, LHS, true); 465 } 466 467 void AggExprEmitter:: 468 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 469 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 470 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 471 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 472 473 // Bind the common expression if necessary. 474 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 475 476 CodeGenFunction::ConditionalEvaluation eval(CGF); 477 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock); 478 479 // Save whether the destination's lifetime is externally managed. 480 bool isExternallyDestructed = Dest.isExternallyDestructed(); 481 482 eval.begin(CGF); 483 CGF.EmitBlock(LHSBlock); 484 Visit(E->getTrueExpr()); 485 eval.end(CGF); 486 487 assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!"); 488 CGF.Builder.CreateBr(ContBlock); 489 490 // If the result of an agg expression is unused, then the emission 491 // of the LHS might need to create a destination slot. That's fine 492 // with us, and we can safely emit the RHS into the same slot, but 493 // we shouldn't claim that it's already being destructed. 494 Dest.setExternallyDestructed(isExternallyDestructed); 495 496 eval.begin(CGF); 497 CGF.EmitBlock(RHSBlock); 498 Visit(E->getFalseExpr()); 499 eval.end(CGF); 500 501 CGF.EmitBlock(ContBlock); 502 } 503 504 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) { 505 Visit(CE->getChosenSubExpr(CGF.getContext())); 506 } 507 508 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 509 llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr()); 510 llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType()); 511 512 if (!ArgPtr) { 513 CGF.ErrorUnsupported(VE, "aggregate va_arg expression"); 514 return; 515 } 516 517 EmitFinalDestCopy(VE, CGF.MakeAddrLValue(ArgPtr, VE->getType())); 518 } 519 520 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 521 // Ensure that we have a slot, but if we already do, remember 522 // whether it was externally destructed. 523 bool wasExternallyDestructed = Dest.isExternallyDestructed(); 524 Dest = EnsureSlot(E->getType()); 525 526 // We're going to push a destructor if there isn't already one. 527 Dest.setExternallyDestructed(); 528 529 Visit(E->getSubExpr()); 530 531 // Push that destructor we promised. 532 if (!wasExternallyDestructed) 533 CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddr()); 534 } 535 536 void 537 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) { 538 AggValueSlot Slot = EnsureSlot(E->getType()); 539 CGF.EmitCXXConstructExpr(E, Slot); 540 } 541 542 void 543 AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) { 544 AggValueSlot Slot = EnsureSlot(E->getType()); 545 CGF.EmitLambdaExpr(E, Slot); 546 } 547 548 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) { 549 CGF.enterFullExpression(E); 550 CodeGenFunction::RunCleanupsScope cleanups(CGF); 551 Visit(E->getSubExpr()); 552 } 553 554 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) { 555 QualType T = E->getType(); 556 AggValueSlot Slot = EnsureSlot(T); 557 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T)); 558 } 559 560 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) { 561 QualType T = E->getType(); 562 AggValueSlot Slot = EnsureSlot(T); 563 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T)); 564 } 565 566 /// isSimpleZero - If emitting this value will obviously just cause a store of 567 /// zero to memory, return true. This can return false if uncertain, so it just 568 /// handles simple cases. 569 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) { 570 E = E->IgnoreParens(); 571 572 // 0 573 if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) 574 return IL->getValue() == 0; 575 // +0.0 576 if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E)) 577 return FL->getValue().isPosZero(); 578 // int() 579 if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) && 580 CGF.getTypes().isZeroInitializable(E->getType())) 581 return true; 582 // (int*)0 - Null pointer expressions. 583 if (const CastExpr *ICE = dyn_cast<CastExpr>(E)) 584 return ICE->getCastKind() == CK_NullToPointer; 585 // '\0' 586 if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) 587 return CL->getValue() == 0; 588 589 // Otherwise, hard case: conservatively return false. 590 return false; 591 } 592 593 594 void 595 AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV) { 596 QualType type = LV.getType(); 597 // FIXME: Ignore result? 598 // FIXME: Are initializers affected by volatile? 599 if (Dest.isZeroed() && isSimpleZero(E, CGF)) { 600 // Storing "i32 0" to a zero'd memory location is a noop. 601 } else if (isa<ImplicitValueInitExpr>(E)) { 602 EmitNullInitializationToLValue(LV); 603 } else if (type->isReferenceType()) { 604 RValue RV = CGF.EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0); 605 CGF.EmitStoreThroughLValue(RV, LV); 606 } else if (type->isAnyComplexType()) { 607 CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false); 608 } else if (CGF.hasAggregateLLVMType(type)) { 609 CGF.EmitAggExpr(E, AggValueSlot::forLValue(LV, 610 AggValueSlot::IsDestructed, 611 AggValueSlot::DoesNotNeedGCBarriers, 612 AggValueSlot::IsNotAliased, 613 Dest.isZeroed())); 614 } else if (LV.isSimple()) { 615 CGF.EmitScalarInit(E, /*D=*/0, LV, /*Captured=*/false); 616 } else { 617 CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV); 618 } 619 } 620 621 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) { 622 QualType type = lv.getType(); 623 624 // If the destination slot is already zeroed out before the aggregate is 625 // copied into it, we don't have to emit any zeros here. 626 if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type)) 627 return; 628 629 if (!CGF.hasAggregateLLVMType(type)) { 630 // For non-aggregates, we can store zero 631 llvm::Value *null = llvm::Constant::getNullValue(CGF.ConvertType(type)); 632 CGF.EmitStoreThroughLValue(RValue::get(null), lv); 633 } else { 634 // There's a potential optimization opportunity in combining 635 // memsets; that would be easy for arrays, but relatively 636 // difficult for structures with the current code. 637 CGF.EmitNullInitialization(lv.getAddress(), lv.getType()); 638 } 639 } 640 641 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) { 642 #if 0 643 // FIXME: Assess perf here? Figure out what cases are worth optimizing here 644 // (Length of globals? Chunks of zeroed-out space?). 645 // 646 // If we can, prefer a copy from a global; this is a lot less code for long 647 // globals, and it's easier for the current optimizers to analyze. 648 if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) { 649 llvm::GlobalVariable* GV = 650 new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true, 651 llvm::GlobalValue::InternalLinkage, C, ""); 652 EmitFinalDestCopy(E, CGF.MakeAddrLValue(GV, E->getType())); 653 return; 654 } 655 #endif 656 if (E->hadArrayRangeDesignator()) 657 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 658 659 llvm::Value *DestPtr = Dest.getAddr(); 660 661 // Handle initialization of an array. 662 if (E->getType()->isArrayType()) { 663 llvm::PointerType *APType = 664 cast<llvm::PointerType>(DestPtr->getType()); 665 llvm::ArrayType *AType = 666 cast<llvm::ArrayType>(APType->getElementType()); 667 668 uint64_t NumInitElements = E->getNumInits(); 669 670 if (E->getNumInits() > 0) { 671 QualType T1 = E->getType(); 672 QualType T2 = E->getInit(0)->getType(); 673 if (CGF.getContext().hasSameUnqualifiedType(T1, T2)) { 674 EmitAggLoadOfLValue(E->getInit(0)); 675 return; 676 } 677 } 678 679 uint64_t NumArrayElements = AType->getNumElements(); 680 assert(NumInitElements <= NumArrayElements); 681 682 QualType elementType = E->getType().getCanonicalType(); 683 elementType = CGF.getContext().getQualifiedType( 684 cast<ArrayType>(elementType)->getElementType(), 685 elementType.getQualifiers() + Dest.getQualifiers()); 686 687 // DestPtr is an array*. Construct an elementType* by drilling 688 // down a level. 689 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 690 llvm::Value *indices[] = { zero, zero }; 691 llvm::Value *begin = 692 Builder.CreateInBoundsGEP(DestPtr, indices, "arrayinit.begin"); 693 694 // Exception safety requires us to destroy all the 695 // already-constructed members if an initializer throws. 696 // For that, we'll need an EH cleanup. 697 QualType::DestructionKind dtorKind = elementType.isDestructedType(); 698 llvm::AllocaInst *endOfInit = 0; 699 EHScopeStack::stable_iterator cleanup; 700 llvm::Instruction *cleanupDominator = 0; 701 if (CGF.needsEHCleanup(dtorKind)) { 702 // In principle we could tell the cleanup where we are more 703 // directly, but the control flow can get so varied here that it 704 // would actually be quite complex. Therefore we go through an 705 // alloca. 706 endOfInit = CGF.CreateTempAlloca(begin->getType(), 707 "arrayinit.endOfInit"); 708 cleanupDominator = Builder.CreateStore(begin, endOfInit); 709 CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType, 710 CGF.getDestroyer(dtorKind)); 711 cleanup = CGF.EHStack.stable_begin(); 712 713 // Otherwise, remember that we didn't need a cleanup. 714 } else { 715 dtorKind = QualType::DK_none; 716 } 717 718 llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1); 719 720 // The 'current element to initialize'. The invariants on this 721 // variable are complicated. Essentially, after each iteration of 722 // the loop, it points to the last initialized element, except 723 // that it points to the beginning of the array before any 724 // elements have been initialized. 725 llvm::Value *element = begin; 726 727 // Emit the explicit initializers. 728 for (uint64_t i = 0; i != NumInitElements; ++i) { 729 // Advance to the next element. 730 if (i > 0) { 731 element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element"); 732 733 // Tell the cleanup that it needs to destroy up to this 734 // element. TODO: some of these stores can be trivially 735 // observed to be unnecessary. 736 if (endOfInit) Builder.CreateStore(element, endOfInit); 737 } 738 739 LValue elementLV = CGF.MakeAddrLValue(element, elementType); 740 EmitInitializationToLValue(E->getInit(i), elementLV); 741 } 742 743 // Check whether there's a non-trivial array-fill expression. 744 // Note that this will be a CXXConstructExpr even if the element 745 // type is an array (or array of array, etc.) of class type. 746 Expr *filler = E->getArrayFiller(); 747 bool hasTrivialFiller = true; 748 if (CXXConstructExpr *cons = dyn_cast_or_null<CXXConstructExpr>(filler)) { 749 assert(cons->getConstructor()->isDefaultConstructor()); 750 hasTrivialFiller = cons->getConstructor()->isTrivial(); 751 } 752 753 // Any remaining elements need to be zero-initialized, possibly 754 // using the filler expression. We can skip this if the we're 755 // emitting to zeroed memory. 756 if (NumInitElements != NumArrayElements && 757 !(Dest.isZeroed() && hasTrivialFiller && 758 CGF.getTypes().isZeroInitializable(elementType))) { 759 760 // Use an actual loop. This is basically 761 // do { *array++ = filler; } while (array != end); 762 763 // Advance to the start of the rest of the array. 764 if (NumInitElements) { 765 element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start"); 766 if (endOfInit) Builder.CreateStore(element, endOfInit); 767 } 768 769 // Compute the end of the array. 770 llvm::Value *end = Builder.CreateInBoundsGEP(begin, 771 llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements), 772 "arrayinit.end"); 773 774 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 775 llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body"); 776 777 // Jump into the body. 778 CGF.EmitBlock(bodyBB); 779 llvm::PHINode *currentElement = 780 Builder.CreatePHI(element->getType(), 2, "arrayinit.cur"); 781 currentElement->addIncoming(element, entryBB); 782 783 // Emit the actual filler expression. 784 LValue elementLV = CGF.MakeAddrLValue(currentElement, elementType); 785 if (filler) 786 EmitInitializationToLValue(filler, elementLV); 787 else 788 EmitNullInitializationToLValue(elementLV); 789 790 // Move on to the next element. 791 llvm::Value *nextElement = 792 Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next"); 793 794 // Tell the EH cleanup that we finished with the last element. 795 if (endOfInit) Builder.CreateStore(nextElement, endOfInit); 796 797 // Leave the loop if we're done. 798 llvm::Value *done = Builder.CreateICmpEQ(nextElement, end, 799 "arrayinit.done"); 800 llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end"); 801 Builder.CreateCondBr(done, endBB, bodyBB); 802 currentElement->addIncoming(nextElement, Builder.GetInsertBlock()); 803 804 CGF.EmitBlock(endBB); 805 } 806 807 // Leave the partial-array cleanup if we entered one. 808 if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator); 809 810 return; 811 } 812 813 assert(E->getType()->isRecordType() && "Only support structs/unions here!"); 814 815 // Do struct initialization; this code just sets each individual member 816 // to the approprate value. This makes bitfield support automatic; 817 // the disadvantage is that the generated code is more difficult for 818 // the optimizer, especially with bitfields. 819 unsigned NumInitElements = E->getNumInits(); 820 RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl(); 821 822 if (record->isUnion()) { 823 // Only initialize one field of a union. The field itself is 824 // specified by the initializer list. 825 if (!E->getInitializedFieldInUnion()) { 826 // Empty union; we have nothing to do. 827 828 #ifndef NDEBUG 829 // Make sure that it's really an empty and not a failure of 830 // semantic analysis. 831 for (RecordDecl::field_iterator Field = record->field_begin(), 832 FieldEnd = record->field_end(); 833 Field != FieldEnd; ++Field) 834 assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed"); 835 #endif 836 return; 837 } 838 839 // FIXME: volatility 840 FieldDecl *Field = E->getInitializedFieldInUnion(); 841 842 LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestPtr, Field, 0); 843 if (NumInitElements) { 844 // Store the initializer into the field 845 EmitInitializationToLValue(E->getInit(0), FieldLoc); 846 } else { 847 // Default-initialize to null. 848 EmitNullInitializationToLValue(FieldLoc); 849 } 850 851 return; 852 } 853 854 // We'll need to enter cleanup scopes in case any of the member 855 // initializers throw an exception. 856 SmallVector<EHScopeStack::stable_iterator, 16> cleanups; 857 llvm::Instruction *cleanupDominator = 0; 858 859 // Here we iterate over the fields; this makes it simpler to both 860 // default-initialize fields and skip over unnamed fields. 861 unsigned curInitIndex = 0; 862 for (RecordDecl::field_iterator field = record->field_begin(), 863 fieldEnd = record->field_end(); 864 field != fieldEnd; ++field) { 865 // We're done once we hit the flexible array member. 866 if (field->getType()->isIncompleteArrayType()) 867 break; 868 869 // Always skip anonymous bitfields. 870 if (field->isUnnamedBitfield()) 871 continue; 872 873 // We're done if we reach the end of the explicit initializers, we 874 // have a zeroed object, and the rest of the fields are 875 // zero-initializable. 876 if (curInitIndex == NumInitElements && Dest.isZeroed() && 877 CGF.getTypes().isZeroInitializable(E->getType())) 878 break; 879 880 // FIXME: volatility 881 LValue LV = CGF.EmitLValueForFieldInitialization(DestPtr, *field, 0); 882 // We never generate write-barries for initialized fields. 883 LV.setNonGC(true); 884 885 if (curInitIndex < NumInitElements) { 886 // Store the initializer into the field. 887 EmitInitializationToLValue(E->getInit(curInitIndex++), LV); 888 } else { 889 // We're out of initalizers; default-initialize to null 890 EmitNullInitializationToLValue(LV); 891 } 892 893 // Push a destructor if necessary. 894 // FIXME: if we have an array of structures, all explicitly 895 // initialized, we can end up pushing a linear number of cleanups. 896 bool pushedCleanup = false; 897 if (QualType::DestructionKind dtorKind 898 = field->getType().isDestructedType()) { 899 assert(LV.isSimple()); 900 if (CGF.needsEHCleanup(dtorKind)) { 901 if (!cleanupDominator) 902 cleanupDominator = CGF.Builder.CreateUnreachable(); // placeholder 903 904 CGF.pushDestroy(EHCleanup, LV.getAddress(), field->getType(), 905 CGF.getDestroyer(dtorKind), false); 906 cleanups.push_back(CGF.EHStack.stable_begin()); 907 pushedCleanup = true; 908 } 909 } 910 911 // If the GEP didn't get used because of a dead zero init or something 912 // else, clean it up for -O0 builds and general tidiness. 913 if (!pushedCleanup && LV.isSimple()) 914 if (llvm::GetElementPtrInst *GEP = 915 dyn_cast<llvm::GetElementPtrInst>(LV.getAddress())) 916 if (GEP->use_empty()) 917 GEP->eraseFromParent(); 918 } 919 920 // Deactivate all the partial cleanups in reverse order, which 921 // generally means popping them. 922 for (unsigned i = cleanups.size(); i != 0; --i) 923 CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator); 924 925 // Destroy the placeholder if we made one. 926 if (cleanupDominator) 927 cleanupDominator->eraseFromParent(); 928 } 929 930 //===----------------------------------------------------------------------===// 931 // Entry Points into this File 932 //===----------------------------------------------------------------------===// 933 934 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of 935 /// non-zero bytes that will be stored when outputting the initializer for the 936 /// specified initializer expression. 937 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) { 938 E = E->IgnoreParens(); 939 940 // 0 and 0.0 won't require any non-zero stores! 941 if (isSimpleZero(E, CGF)) return CharUnits::Zero(); 942 943 // If this is an initlist expr, sum up the size of sizes of the (present) 944 // elements. If this is something weird, assume the whole thing is non-zero. 945 const InitListExpr *ILE = dyn_cast<InitListExpr>(E); 946 if (ILE == 0 || !CGF.getTypes().isZeroInitializable(ILE->getType())) 947 return CGF.getContext().getTypeSizeInChars(E->getType()); 948 949 // InitListExprs for structs have to be handled carefully. If there are 950 // reference members, we need to consider the size of the reference, not the 951 // referencee. InitListExprs for unions and arrays can't have references. 952 if (const RecordType *RT = E->getType()->getAs<RecordType>()) { 953 if (!RT->isUnionType()) { 954 RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl(); 955 CharUnits NumNonZeroBytes = CharUnits::Zero(); 956 957 unsigned ILEElement = 0; 958 for (RecordDecl::field_iterator Field = SD->field_begin(), 959 FieldEnd = SD->field_end(); Field != FieldEnd; ++Field) { 960 // We're done once we hit the flexible array member or run out of 961 // InitListExpr elements. 962 if (Field->getType()->isIncompleteArrayType() || 963 ILEElement == ILE->getNumInits()) 964 break; 965 if (Field->isUnnamedBitfield()) 966 continue; 967 968 const Expr *E = ILE->getInit(ILEElement++); 969 970 // Reference values are always non-null and have the width of a pointer. 971 if (Field->getType()->isReferenceType()) 972 NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits( 973 CGF.getContext().getTargetInfo().getPointerWidth(0)); 974 else 975 NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF); 976 } 977 978 return NumNonZeroBytes; 979 } 980 } 981 982 983 CharUnits NumNonZeroBytes = CharUnits::Zero(); 984 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) 985 NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF); 986 return NumNonZeroBytes; 987 } 988 989 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of 990 /// zeros in it, emit a memset and avoid storing the individual zeros. 991 /// 992 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E, 993 CodeGenFunction &CGF) { 994 // If the slot is already known to be zeroed, nothing to do. Don't mess with 995 // volatile stores. 996 if (Slot.isZeroed() || Slot.isVolatile() || Slot.getAddr() == 0) return; 997 998 // C++ objects with a user-declared constructor don't need zero'ing. 999 if (CGF.getContext().getLangOptions().CPlusPlus) 1000 if (const RecordType *RT = CGF.getContext() 1001 .getBaseElementType(E->getType())->getAs<RecordType>()) { 1002 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1003 if (RD->hasUserDeclaredConstructor()) 1004 return; 1005 } 1006 1007 // If the type is 16-bytes or smaller, prefer individual stores over memset. 1008 std::pair<CharUnits, CharUnits> TypeInfo = 1009 CGF.getContext().getTypeInfoInChars(E->getType()); 1010 if (TypeInfo.first <= CharUnits::fromQuantity(16)) 1011 return; 1012 1013 // Check to see if over 3/4 of the initializer are known to be zero. If so, 1014 // we prefer to emit memset + individual stores for the rest. 1015 CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF); 1016 if (NumNonZeroBytes*4 > TypeInfo.first) 1017 return; 1018 1019 // Okay, it seems like a good idea to use an initial memset, emit the call. 1020 llvm::Constant *SizeVal = CGF.Builder.getInt64(TypeInfo.first.getQuantity()); 1021 CharUnits Align = TypeInfo.second; 1022 1023 llvm::Value *Loc = Slot.getAddr(); 1024 1025 Loc = CGF.Builder.CreateBitCast(Loc, CGF.Int8PtrTy); 1026 CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, 1027 Align.getQuantity(), false); 1028 1029 // Tell the AggExprEmitter that the slot is known zero. 1030 Slot.setZeroed(); 1031 } 1032 1033 1034 1035 1036 /// EmitAggExpr - Emit the computation of the specified expression of aggregate 1037 /// type. The result is computed into DestPtr. Note that if DestPtr is null, 1038 /// the value of the aggregate expression is not needed. If VolatileDest is 1039 /// true, DestPtr cannot be 0. 1040 /// 1041 /// \param IsInitializer - true if this evaluation is initializing an 1042 /// object whose lifetime is already being managed. 1043 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot, 1044 bool IgnoreResult) { 1045 assert(E && hasAggregateLLVMType(E->getType()) && 1046 "Invalid aggregate expression to emit"); 1047 assert((Slot.getAddr() != 0 || Slot.isIgnored()) && 1048 "slot has bits but no address"); 1049 1050 // Optimize the slot if possible. 1051 CheckAggExprForMemSetUse(Slot, E, *this); 1052 1053 AggExprEmitter(*this, Slot, IgnoreResult).Visit(const_cast<Expr*>(E)); 1054 } 1055 1056 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) { 1057 assert(hasAggregateLLVMType(E->getType()) && "Invalid argument!"); 1058 llvm::Value *Temp = CreateMemTemp(E->getType()); 1059 LValue LV = MakeAddrLValue(Temp, E->getType()); 1060 EmitAggExpr(E, AggValueSlot::forLValue(LV, AggValueSlot::IsNotDestructed, 1061 AggValueSlot::DoesNotNeedGCBarriers, 1062 AggValueSlot::IsNotAliased)); 1063 return LV; 1064 } 1065 1066 void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr, 1067 llvm::Value *SrcPtr, QualType Ty, 1068 bool isVolatile, unsigned Alignment) { 1069 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 1070 1071 if (getContext().getLangOptions().CPlusPlus) { 1072 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1073 CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl()); 1074 assert((Record->hasTrivialCopyConstructor() || 1075 Record->hasTrivialCopyAssignment() || 1076 Record->hasTrivialMoveConstructor() || 1077 Record->hasTrivialMoveAssignment()) && 1078 "Trying to aggregate-copy a type without a trivial copy " 1079 "constructor or assignment operator"); 1080 // Ignore empty classes in C++. 1081 if (Record->isEmpty()) 1082 return; 1083 } 1084 } 1085 1086 // Aggregate assignment turns into llvm.memcpy. This is almost valid per 1087 // C99 6.5.16.1p3, which states "If the value being stored in an object is 1088 // read from another object that overlaps in anyway the storage of the first 1089 // object, then the overlap shall be exact and the two objects shall have 1090 // qualified or unqualified versions of a compatible type." 1091 // 1092 // memcpy is not defined if the source and destination pointers are exactly 1093 // equal, but other compilers do this optimization, and almost every memcpy 1094 // implementation handles this case safely. If there is a libc that does not 1095 // safely handle this, we can add a target hook. 1096 1097 // Get size and alignment info for this aggregate. 1098 std::pair<CharUnits, CharUnits> TypeInfo = 1099 getContext().getTypeInfoInChars(Ty); 1100 1101 if (!Alignment) 1102 Alignment = TypeInfo.second.getQuantity(); 1103 1104 // FIXME: Handle variable sized types. 1105 1106 // FIXME: If we have a volatile struct, the optimizer can remove what might 1107 // appear to be `extra' memory ops: 1108 // 1109 // volatile struct { int i; } a, b; 1110 // 1111 // int main() { 1112 // a = b; 1113 // a = b; 1114 // } 1115 // 1116 // we need to use a different call here. We use isVolatile to indicate when 1117 // either the source or the destination is volatile. 1118 1119 llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType()); 1120 llvm::Type *DBP = 1121 llvm::Type::getInt8PtrTy(getLLVMContext(), DPT->getAddressSpace()); 1122 DestPtr = Builder.CreateBitCast(DestPtr, DBP); 1123 1124 llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType()); 1125 llvm::Type *SBP = 1126 llvm::Type::getInt8PtrTy(getLLVMContext(), SPT->getAddressSpace()); 1127 SrcPtr = Builder.CreateBitCast(SrcPtr, SBP); 1128 1129 // Don't do any of the memmove_collectable tests if GC isn't set. 1130 if (CGM.getLangOptions().getGC() == LangOptions::NonGC) { 1131 // fall through 1132 } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 1133 RecordDecl *Record = RecordTy->getDecl(); 1134 if (Record->hasObjectMember()) { 1135 CharUnits size = TypeInfo.first; 1136 llvm::Type *SizeTy = ConvertType(getContext().getSizeType()); 1137 llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity()); 1138 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 1139 SizeVal); 1140 return; 1141 } 1142 } else if (Ty->isArrayType()) { 1143 QualType BaseType = getContext().getBaseElementType(Ty); 1144 if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) { 1145 if (RecordTy->getDecl()->hasObjectMember()) { 1146 CharUnits size = TypeInfo.first; 1147 llvm::Type *SizeTy = ConvertType(getContext().getSizeType()); 1148 llvm::Value *SizeVal = 1149 llvm::ConstantInt::get(SizeTy, size.getQuantity()); 1150 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 1151 SizeVal); 1152 return; 1153 } 1154 } 1155 } 1156 1157 Builder.CreateMemCpy(DestPtr, SrcPtr, 1158 llvm::ConstantInt::get(IntPtrTy, 1159 TypeInfo.first.getQuantity()), 1160 Alignment, isVolatile); 1161 } 1162