1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Aggregate Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "CGObjCRuntime.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/StmtVisitor.h"
20 #include "llvm/Constants.h"
21 #include "llvm/Function.h"
22 #include "llvm/GlobalVariable.h"
23 #include "llvm/Intrinsics.h"
24 using namespace clang;
25 using namespace CodeGen;
26 
27 //===----------------------------------------------------------------------===//
28 //                        Aggregate Expression Emitter
29 //===----------------------------------------------------------------------===//
30 
31 namespace  {
32 class AggExprEmitter : public StmtVisitor<AggExprEmitter> {
33   CodeGenFunction &CGF;
34   CGBuilderTy &Builder;
35   AggValueSlot Dest;
36   bool IgnoreResult;
37 
38   /// We want to use 'dest' as the return slot except under two
39   /// conditions:
40   ///   - The destination slot requires garbage collection, so we
41   ///     need to use the GC API.
42   ///   - The destination slot is potentially aliased.
43   bool shouldUseDestForReturnSlot() const {
44     return !(Dest.requiresGCollection() || Dest.isPotentiallyAliased());
45   }
46 
47   ReturnValueSlot getReturnValueSlot() const {
48     if (!shouldUseDestForReturnSlot())
49       return ReturnValueSlot();
50 
51     return ReturnValueSlot(Dest.getAddr(), Dest.isVolatile());
52   }
53 
54   AggValueSlot EnsureSlot(QualType T) {
55     if (!Dest.isIgnored()) return Dest;
56     return CGF.CreateAggTemp(T, "agg.tmp.ensured");
57   }
58 
59 public:
60   AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest,
61                  bool ignore)
62     : CGF(cgf), Builder(CGF.Builder), Dest(Dest),
63       IgnoreResult(ignore) {
64   }
65 
66   //===--------------------------------------------------------------------===//
67   //                               Utilities
68   //===--------------------------------------------------------------------===//
69 
70   /// EmitAggLoadOfLValue - Given an expression with aggregate type that
71   /// represents a value lvalue, this method emits the address of the lvalue,
72   /// then loads the result into DestPtr.
73   void EmitAggLoadOfLValue(const Expr *E);
74 
75   /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
76   void EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore = false);
77   void EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore = false,
78                          unsigned Alignment = 0);
79 
80   void EmitMoveFromReturnSlot(const Expr *E, RValue Src);
81 
82   AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) {
83     if (CGF.getLangOptions().getGC() && TypeRequiresGCollection(T))
84       return AggValueSlot::NeedsGCBarriers;
85     return AggValueSlot::DoesNotNeedGCBarriers;
86   }
87 
88   bool TypeRequiresGCollection(QualType T);
89 
90   //===--------------------------------------------------------------------===//
91   //                            Visitor Methods
92   //===--------------------------------------------------------------------===//
93 
94   void VisitStmt(Stmt *S) {
95     CGF.ErrorUnsupported(S, "aggregate expression");
96   }
97   void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
98   void VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
99     Visit(GE->getResultExpr());
100   }
101   void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
102   void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
103     return Visit(E->getReplacement());
104   }
105 
106   // l-values.
107   void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); }
108   void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
109   void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
110   void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
111   void VisitCompoundLiteralExpr(CompoundLiteralExpr *E);
112   void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
113     EmitAggLoadOfLValue(E);
114   }
115   void VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
116     EmitAggLoadOfLValue(E);
117   }
118   void VisitPredefinedExpr(const PredefinedExpr *E) {
119     EmitAggLoadOfLValue(E);
120   }
121 
122   // Operators.
123   void VisitCastExpr(CastExpr *E);
124   void VisitCallExpr(const CallExpr *E);
125   void VisitStmtExpr(const StmtExpr *E);
126   void VisitBinaryOperator(const BinaryOperator *BO);
127   void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO);
128   void VisitBinAssign(const BinaryOperator *E);
129   void VisitBinComma(const BinaryOperator *E);
130 
131   void VisitObjCMessageExpr(ObjCMessageExpr *E);
132   void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
133     EmitAggLoadOfLValue(E);
134   }
135 
136   void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
137   void VisitChooseExpr(const ChooseExpr *CE);
138   void VisitInitListExpr(InitListExpr *E);
139   void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E);
140   void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
141     Visit(DAE->getExpr());
142   }
143   void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E);
144   void VisitCXXConstructExpr(const CXXConstructExpr *E);
145   void VisitLambdaExpr(LambdaExpr *E);
146   void VisitExprWithCleanups(ExprWithCleanups *E);
147   void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E);
148   void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); }
149   void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E);
150   void VisitOpaqueValueExpr(OpaqueValueExpr *E);
151 
152   void VisitPseudoObjectExpr(PseudoObjectExpr *E) {
153     if (E->isGLValue()) {
154       LValue LV = CGF.EmitPseudoObjectLValue(E);
155       return EmitFinalDestCopy(E, LV);
156     }
157 
158     CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType()));
159   }
160 
161   void VisitVAArgExpr(VAArgExpr *E);
162 
163   void EmitInitializationToLValue(Expr *E, LValue Address);
164   void EmitNullInitializationToLValue(LValue Address);
165   //  case Expr::ChooseExprClass:
166   void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); }
167   void VisitAtomicExpr(AtomicExpr *E) {
168     CGF.EmitAtomicExpr(E, EnsureSlot(E->getType()).getAddr());
169   }
170 };
171 }  // end anonymous namespace.
172 
173 //===----------------------------------------------------------------------===//
174 //                                Utilities
175 //===----------------------------------------------------------------------===//
176 
177 /// EmitAggLoadOfLValue - Given an expression with aggregate type that
178 /// represents a value lvalue, this method emits the address of the lvalue,
179 /// then loads the result into DestPtr.
180 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
181   LValue LV = CGF.EmitLValue(E);
182   EmitFinalDestCopy(E, LV);
183 }
184 
185 /// \brief True if the given aggregate type requires special GC API calls.
186 bool AggExprEmitter::TypeRequiresGCollection(QualType T) {
187   // Only record types have members that might require garbage collection.
188   const RecordType *RecordTy = T->getAs<RecordType>();
189   if (!RecordTy) return false;
190 
191   // Don't mess with non-trivial C++ types.
192   RecordDecl *Record = RecordTy->getDecl();
193   if (isa<CXXRecordDecl>(Record) &&
194       (!cast<CXXRecordDecl>(Record)->hasTrivialCopyConstructor() ||
195        !cast<CXXRecordDecl>(Record)->hasTrivialDestructor()))
196     return false;
197 
198   // Check whether the type has an object member.
199   return Record->hasObjectMember();
200 }
201 
202 /// \brief Perform the final move to DestPtr if for some reason
203 /// getReturnValueSlot() didn't use it directly.
204 ///
205 /// The idea is that you do something like this:
206 ///   RValue Result = EmitSomething(..., getReturnValueSlot());
207 ///   EmitMoveFromReturnSlot(E, Result);
208 ///
209 /// If nothing interferes, this will cause the result to be emitted
210 /// directly into the return value slot.  Otherwise, a final move
211 /// will be performed.
212 void AggExprEmitter::EmitMoveFromReturnSlot(const Expr *E, RValue Src) {
213   if (shouldUseDestForReturnSlot()) {
214     // Logically, Dest.getAddr() should equal Src.getAggregateAddr().
215     // The possibility of undef rvalues complicates that a lot,
216     // though, so we can't really assert.
217     return;
218   }
219 
220   // Otherwise, do a final copy,
221   assert(Dest.getAddr() != Src.getAggregateAddr());
222   EmitFinalDestCopy(E, Src, /*Ignore*/ true);
223 }
224 
225 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
226 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore,
227                                        unsigned Alignment) {
228   assert(Src.isAggregate() && "value must be aggregate value!");
229 
230   // If Dest is ignored, then we're evaluating an aggregate expression
231   // in a context (like an expression statement) that doesn't care
232   // about the result.  C says that an lvalue-to-rvalue conversion is
233   // performed in these cases; C++ says that it is not.  In either
234   // case, we don't actually need to do anything unless the value is
235   // volatile.
236   if (Dest.isIgnored()) {
237     if (!Src.isVolatileQualified() ||
238         CGF.CGM.getLangOptions().CPlusPlus ||
239         (IgnoreResult && Ignore))
240       return;
241 
242     // If the source is volatile, we must read from it; to do that, we need
243     // some place to put it.
244     Dest = CGF.CreateAggTemp(E->getType(), "agg.tmp");
245   }
246 
247   if (Dest.requiresGCollection()) {
248     CharUnits size = CGF.getContext().getTypeSizeInChars(E->getType());
249     llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType());
250     llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity());
251     CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF,
252                                                       Dest.getAddr(),
253                                                       Src.getAggregateAddr(),
254                                                       SizeVal);
255     return;
256   }
257   // If the result of the assignment is used, copy the LHS there also.
258   // FIXME: Pass VolatileDest as well.  I think we also need to merge volatile
259   // from the source as well, as we can't eliminate it if either operand
260   // is volatile, unless copy has volatile for both source and destination..
261   CGF.EmitAggregateCopy(Dest.getAddr(), Src.getAggregateAddr(), E->getType(),
262                         Dest.isVolatile()|Src.isVolatileQualified(),
263                         Alignment);
264 }
265 
266 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
267 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore) {
268   assert(Src.isSimple() && "Can't have aggregate bitfield, vector, etc");
269 
270   CharUnits Alignment = std::min(Src.getAlignment(), Dest.getAlignment());
271   EmitFinalDestCopy(E, Src.asAggregateRValue(), Ignore, Alignment.getQuantity());
272 }
273 
274 //===----------------------------------------------------------------------===//
275 //                            Visitor Methods
276 //===----------------------------------------------------------------------===//
277 
278 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){
279   Visit(E->GetTemporaryExpr());
280 }
281 
282 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) {
283   EmitFinalDestCopy(e, CGF.getOpaqueLValueMapping(e));
284 }
285 
286 void
287 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
288   if (E->getType().isPODType(CGF.getContext())) {
289     // For a POD type, just emit a load of the lvalue + a copy, because our
290     // compound literal might alias the destination.
291     // FIXME: This is a band-aid; the real problem appears to be in our handling
292     // of assignments, where we store directly into the LHS without checking
293     // whether anything in the RHS aliases.
294     EmitAggLoadOfLValue(E);
295     return;
296   }
297 
298   AggValueSlot Slot = EnsureSlot(E->getType());
299   CGF.EmitAggExpr(E->getInitializer(), Slot);
300 }
301 
302 
303 void AggExprEmitter::VisitCastExpr(CastExpr *E) {
304   switch (E->getCastKind()) {
305   case CK_Dynamic: {
306     assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?");
307     LValue LV = CGF.EmitCheckedLValue(E->getSubExpr());
308     // FIXME: Do we also need to handle property references here?
309     if (LV.isSimple())
310       CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E));
311     else
312       CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast");
313 
314     if (!Dest.isIgnored())
315       CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination");
316     break;
317   }
318 
319   case CK_ToUnion: {
320     if (Dest.isIgnored()) break;
321 
322     // GCC union extension
323     QualType Ty = E->getSubExpr()->getType();
324     QualType PtrTy = CGF.getContext().getPointerType(Ty);
325     llvm::Value *CastPtr = Builder.CreateBitCast(Dest.getAddr(),
326                                                  CGF.ConvertType(PtrTy));
327     EmitInitializationToLValue(E->getSubExpr(),
328                                CGF.MakeAddrLValue(CastPtr, Ty));
329     break;
330   }
331 
332   case CK_DerivedToBase:
333   case CK_BaseToDerived:
334   case CK_UncheckedDerivedToBase: {
335     llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: "
336                 "should have been unpacked before we got here");
337   }
338 
339   case CK_LValueToRValue: // hope for downstream optimization
340   case CK_NoOp:
341   case CK_AtomicToNonAtomic:
342   case CK_NonAtomicToAtomic:
343   case CK_UserDefinedConversion:
344   case CK_ConstructorConversion:
345     assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(),
346                                                    E->getType()) &&
347            "Implicit cast types must be compatible");
348     Visit(E->getSubExpr());
349     break;
350 
351   case CK_LValueBitCast:
352     llvm_unreachable("should not be emitting lvalue bitcast as rvalue");
353 
354   case CK_Dependent:
355   case CK_BitCast:
356   case CK_ArrayToPointerDecay:
357   case CK_FunctionToPointerDecay:
358   case CK_NullToPointer:
359   case CK_NullToMemberPointer:
360   case CK_BaseToDerivedMemberPointer:
361   case CK_DerivedToBaseMemberPointer:
362   case CK_MemberPointerToBoolean:
363   case CK_IntegralToPointer:
364   case CK_PointerToIntegral:
365   case CK_PointerToBoolean:
366   case CK_ToVoid:
367   case CK_VectorSplat:
368   case CK_IntegralCast:
369   case CK_IntegralToBoolean:
370   case CK_IntegralToFloating:
371   case CK_FloatingToIntegral:
372   case CK_FloatingToBoolean:
373   case CK_FloatingCast:
374   case CK_CPointerToObjCPointerCast:
375   case CK_BlockPointerToObjCPointerCast:
376   case CK_AnyPointerToBlockPointerCast:
377   case CK_ObjCObjectLValueCast:
378   case CK_FloatingRealToComplex:
379   case CK_FloatingComplexToReal:
380   case CK_FloatingComplexToBoolean:
381   case CK_FloatingComplexCast:
382   case CK_FloatingComplexToIntegralComplex:
383   case CK_IntegralRealToComplex:
384   case CK_IntegralComplexToReal:
385   case CK_IntegralComplexToBoolean:
386   case CK_IntegralComplexCast:
387   case CK_IntegralComplexToFloatingComplex:
388   case CK_ARCProduceObject:
389   case CK_ARCConsumeObject:
390   case CK_ARCReclaimReturnedObject:
391   case CK_ARCExtendBlockObject:
392     llvm_unreachable("cast kind invalid for aggregate types");
393   }
394 }
395 
396 void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
397   if (E->getCallReturnType()->isReferenceType()) {
398     EmitAggLoadOfLValue(E);
399     return;
400   }
401 
402   RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot());
403   EmitMoveFromReturnSlot(E, RV);
404 }
405 
406 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
407   RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot());
408   EmitMoveFromReturnSlot(E, RV);
409 }
410 
411 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
412   CGF.EmitIgnoredExpr(E->getLHS());
413   Visit(E->getRHS());
414 }
415 
416 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
417   CodeGenFunction::StmtExprEvaluation eval(CGF);
418   CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest);
419 }
420 
421 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
422   if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI)
423     VisitPointerToDataMemberBinaryOperator(E);
424   else
425     CGF.ErrorUnsupported(E, "aggregate binary expression");
426 }
427 
428 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator(
429                                                     const BinaryOperator *E) {
430   LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E);
431   EmitFinalDestCopy(E, LV);
432 }
433 
434 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
435   // For an assignment to work, the value on the right has
436   // to be compatible with the value on the left.
437   assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
438                                                  E->getRHS()->getType())
439          && "Invalid assignment");
440 
441   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->getLHS()))
442     if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
443       if (VD->hasAttr<BlocksAttr>() &&
444           E->getRHS()->HasSideEffects(CGF.getContext())) {
445         // When __block variable on LHS, the RHS must be evaluated first
446         // as it may change the 'forwarding' field via call to Block_copy.
447         LValue RHS = CGF.EmitLValue(E->getRHS());
448         LValue LHS = CGF.EmitLValue(E->getLHS());
449         Dest = AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed,
450                                        needsGC(E->getLHS()->getType()),
451                                        AggValueSlot::IsAliased);
452         EmitFinalDestCopy(E, RHS, true);
453         return;
454       }
455 
456   LValue LHS = CGF.EmitLValue(E->getLHS());
457 
458   // Codegen the RHS so that it stores directly into the LHS.
459   AggValueSlot LHSSlot =
460     AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed,
461                             needsGC(E->getLHS()->getType()),
462                             AggValueSlot::IsAliased);
463   CGF.EmitAggExpr(E->getRHS(), LHSSlot, false);
464   EmitFinalDestCopy(E, LHS, true);
465 }
466 
467 void AggExprEmitter::
468 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
469   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
470   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
471   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
472 
473   // Bind the common expression if necessary.
474   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
475 
476   CodeGenFunction::ConditionalEvaluation eval(CGF);
477   CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock);
478 
479   // Save whether the destination's lifetime is externally managed.
480   bool isExternallyDestructed = Dest.isExternallyDestructed();
481 
482   eval.begin(CGF);
483   CGF.EmitBlock(LHSBlock);
484   Visit(E->getTrueExpr());
485   eval.end(CGF);
486 
487   assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!");
488   CGF.Builder.CreateBr(ContBlock);
489 
490   // If the result of an agg expression is unused, then the emission
491   // of the LHS might need to create a destination slot.  That's fine
492   // with us, and we can safely emit the RHS into the same slot, but
493   // we shouldn't claim that it's already being destructed.
494   Dest.setExternallyDestructed(isExternallyDestructed);
495 
496   eval.begin(CGF);
497   CGF.EmitBlock(RHSBlock);
498   Visit(E->getFalseExpr());
499   eval.end(CGF);
500 
501   CGF.EmitBlock(ContBlock);
502 }
503 
504 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) {
505   Visit(CE->getChosenSubExpr(CGF.getContext()));
506 }
507 
508 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
509   llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
510   llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
511 
512   if (!ArgPtr) {
513     CGF.ErrorUnsupported(VE, "aggregate va_arg expression");
514     return;
515   }
516 
517   EmitFinalDestCopy(VE, CGF.MakeAddrLValue(ArgPtr, VE->getType()));
518 }
519 
520 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
521   // Ensure that we have a slot, but if we already do, remember
522   // whether it was externally destructed.
523   bool wasExternallyDestructed = Dest.isExternallyDestructed();
524   Dest = EnsureSlot(E->getType());
525 
526   // We're going to push a destructor if there isn't already one.
527   Dest.setExternallyDestructed();
528 
529   Visit(E->getSubExpr());
530 
531   // Push that destructor we promised.
532   if (!wasExternallyDestructed)
533     CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddr());
534 }
535 
536 void
537 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) {
538   AggValueSlot Slot = EnsureSlot(E->getType());
539   CGF.EmitCXXConstructExpr(E, Slot);
540 }
541 
542 void
543 AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) {
544   AggValueSlot Slot = EnsureSlot(E->getType());
545   CGF.EmitLambdaExpr(E, Slot);
546 }
547 
548 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
549   CGF.enterFullExpression(E);
550   CodeGenFunction::RunCleanupsScope cleanups(CGF);
551   Visit(E->getSubExpr());
552 }
553 
554 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
555   QualType T = E->getType();
556   AggValueSlot Slot = EnsureSlot(T);
557   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T));
558 }
559 
560 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
561   QualType T = E->getType();
562   AggValueSlot Slot = EnsureSlot(T);
563   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T));
564 }
565 
566 /// isSimpleZero - If emitting this value will obviously just cause a store of
567 /// zero to memory, return true.  This can return false if uncertain, so it just
568 /// handles simple cases.
569 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) {
570   E = E->IgnoreParens();
571 
572   // 0
573   if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E))
574     return IL->getValue() == 0;
575   // +0.0
576   if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E))
577     return FL->getValue().isPosZero();
578   // int()
579   if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) &&
580       CGF.getTypes().isZeroInitializable(E->getType()))
581     return true;
582   // (int*)0 - Null pointer expressions.
583   if (const CastExpr *ICE = dyn_cast<CastExpr>(E))
584     return ICE->getCastKind() == CK_NullToPointer;
585   // '\0'
586   if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E))
587     return CL->getValue() == 0;
588 
589   // Otherwise, hard case: conservatively return false.
590   return false;
591 }
592 
593 
594 void
595 AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV) {
596   QualType type = LV.getType();
597   // FIXME: Ignore result?
598   // FIXME: Are initializers affected by volatile?
599   if (Dest.isZeroed() && isSimpleZero(E, CGF)) {
600     // Storing "i32 0" to a zero'd memory location is a noop.
601   } else if (isa<ImplicitValueInitExpr>(E)) {
602     EmitNullInitializationToLValue(LV);
603   } else if (type->isReferenceType()) {
604     RValue RV = CGF.EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0);
605     CGF.EmitStoreThroughLValue(RV, LV);
606   } else if (type->isAnyComplexType()) {
607     CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false);
608   } else if (CGF.hasAggregateLLVMType(type)) {
609     CGF.EmitAggExpr(E, AggValueSlot::forLValue(LV,
610                                                AggValueSlot::IsDestructed,
611                                       AggValueSlot::DoesNotNeedGCBarriers,
612                                                AggValueSlot::IsNotAliased,
613                                                Dest.isZeroed()));
614   } else if (LV.isSimple()) {
615     CGF.EmitScalarInit(E, /*D=*/0, LV, /*Captured=*/false);
616   } else {
617     CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV);
618   }
619 }
620 
621 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) {
622   QualType type = lv.getType();
623 
624   // If the destination slot is already zeroed out before the aggregate is
625   // copied into it, we don't have to emit any zeros here.
626   if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type))
627     return;
628 
629   if (!CGF.hasAggregateLLVMType(type)) {
630     // For non-aggregates, we can store zero
631     llvm::Value *null = llvm::Constant::getNullValue(CGF.ConvertType(type));
632     CGF.EmitStoreThroughLValue(RValue::get(null), lv);
633   } else {
634     // There's a potential optimization opportunity in combining
635     // memsets; that would be easy for arrays, but relatively
636     // difficult for structures with the current code.
637     CGF.EmitNullInitialization(lv.getAddress(), lv.getType());
638   }
639 }
640 
641 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
642 #if 0
643   // FIXME: Assess perf here?  Figure out what cases are worth optimizing here
644   // (Length of globals? Chunks of zeroed-out space?).
645   //
646   // If we can, prefer a copy from a global; this is a lot less code for long
647   // globals, and it's easier for the current optimizers to analyze.
648   if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) {
649     llvm::GlobalVariable* GV =
650     new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true,
651                              llvm::GlobalValue::InternalLinkage, C, "");
652     EmitFinalDestCopy(E, CGF.MakeAddrLValue(GV, E->getType()));
653     return;
654   }
655 #endif
656   if (E->hadArrayRangeDesignator())
657     CGF.ErrorUnsupported(E, "GNU array range designator extension");
658 
659   llvm::Value *DestPtr = Dest.getAddr();
660 
661   // Handle initialization of an array.
662   if (E->getType()->isArrayType()) {
663     llvm::PointerType *APType =
664       cast<llvm::PointerType>(DestPtr->getType());
665     llvm::ArrayType *AType =
666       cast<llvm::ArrayType>(APType->getElementType());
667 
668     uint64_t NumInitElements = E->getNumInits();
669 
670     if (E->getNumInits() > 0) {
671       QualType T1 = E->getType();
672       QualType T2 = E->getInit(0)->getType();
673       if (CGF.getContext().hasSameUnqualifiedType(T1, T2)) {
674         EmitAggLoadOfLValue(E->getInit(0));
675         return;
676       }
677     }
678 
679     uint64_t NumArrayElements = AType->getNumElements();
680     assert(NumInitElements <= NumArrayElements);
681 
682     QualType elementType = E->getType().getCanonicalType();
683     elementType = CGF.getContext().getQualifiedType(
684                     cast<ArrayType>(elementType)->getElementType(),
685                     elementType.getQualifiers() + Dest.getQualifiers());
686 
687     // DestPtr is an array*.  Construct an elementType* by drilling
688     // down a level.
689     llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
690     llvm::Value *indices[] = { zero, zero };
691     llvm::Value *begin =
692       Builder.CreateInBoundsGEP(DestPtr, indices, "arrayinit.begin");
693 
694     // Exception safety requires us to destroy all the
695     // already-constructed members if an initializer throws.
696     // For that, we'll need an EH cleanup.
697     QualType::DestructionKind dtorKind = elementType.isDestructedType();
698     llvm::AllocaInst *endOfInit = 0;
699     EHScopeStack::stable_iterator cleanup;
700     llvm::Instruction *cleanupDominator = 0;
701     if (CGF.needsEHCleanup(dtorKind)) {
702       // In principle we could tell the cleanup where we are more
703       // directly, but the control flow can get so varied here that it
704       // would actually be quite complex.  Therefore we go through an
705       // alloca.
706       endOfInit = CGF.CreateTempAlloca(begin->getType(),
707                                        "arrayinit.endOfInit");
708       cleanupDominator = Builder.CreateStore(begin, endOfInit);
709       CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType,
710                                            CGF.getDestroyer(dtorKind));
711       cleanup = CGF.EHStack.stable_begin();
712 
713     // Otherwise, remember that we didn't need a cleanup.
714     } else {
715       dtorKind = QualType::DK_none;
716     }
717 
718     llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1);
719 
720     // The 'current element to initialize'.  The invariants on this
721     // variable are complicated.  Essentially, after each iteration of
722     // the loop, it points to the last initialized element, except
723     // that it points to the beginning of the array before any
724     // elements have been initialized.
725     llvm::Value *element = begin;
726 
727     // Emit the explicit initializers.
728     for (uint64_t i = 0; i != NumInitElements; ++i) {
729       // Advance to the next element.
730       if (i > 0) {
731         element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element");
732 
733         // Tell the cleanup that it needs to destroy up to this
734         // element.  TODO: some of these stores can be trivially
735         // observed to be unnecessary.
736         if (endOfInit) Builder.CreateStore(element, endOfInit);
737       }
738 
739       LValue elementLV = CGF.MakeAddrLValue(element, elementType);
740       EmitInitializationToLValue(E->getInit(i), elementLV);
741     }
742 
743     // Check whether there's a non-trivial array-fill expression.
744     // Note that this will be a CXXConstructExpr even if the element
745     // type is an array (or array of array, etc.) of class type.
746     Expr *filler = E->getArrayFiller();
747     bool hasTrivialFiller = true;
748     if (CXXConstructExpr *cons = dyn_cast_or_null<CXXConstructExpr>(filler)) {
749       assert(cons->getConstructor()->isDefaultConstructor());
750       hasTrivialFiller = cons->getConstructor()->isTrivial();
751     }
752 
753     // Any remaining elements need to be zero-initialized, possibly
754     // using the filler expression.  We can skip this if the we're
755     // emitting to zeroed memory.
756     if (NumInitElements != NumArrayElements &&
757         !(Dest.isZeroed() && hasTrivialFiller &&
758           CGF.getTypes().isZeroInitializable(elementType))) {
759 
760       // Use an actual loop.  This is basically
761       //   do { *array++ = filler; } while (array != end);
762 
763       // Advance to the start of the rest of the array.
764       if (NumInitElements) {
765         element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start");
766         if (endOfInit) Builder.CreateStore(element, endOfInit);
767       }
768 
769       // Compute the end of the array.
770       llvm::Value *end = Builder.CreateInBoundsGEP(begin,
771                         llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements),
772                                                    "arrayinit.end");
773 
774       llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
775       llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
776 
777       // Jump into the body.
778       CGF.EmitBlock(bodyBB);
779       llvm::PHINode *currentElement =
780         Builder.CreatePHI(element->getType(), 2, "arrayinit.cur");
781       currentElement->addIncoming(element, entryBB);
782 
783       // Emit the actual filler expression.
784       LValue elementLV = CGF.MakeAddrLValue(currentElement, elementType);
785       if (filler)
786         EmitInitializationToLValue(filler, elementLV);
787       else
788         EmitNullInitializationToLValue(elementLV);
789 
790       // Move on to the next element.
791       llvm::Value *nextElement =
792         Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next");
793 
794       // Tell the EH cleanup that we finished with the last element.
795       if (endOfInit) Builder.CreateStore(nextElement, endOfInit);
796 
797       // Leave the loop if we're done.
798       llvm::Value *done = Builder.CreateICmpEQ(nextElement, end,
799                                                "arrayinit.done");
800       llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
801       Builder.CreateCondBr(done, endBB, bodyBB);
802       currentElement->addIncoming(nextElement, Builder.GetInsertBlock());
803 
804       CGF.EmitBlock(endBB);
805     }
806 
807     // Leave the partial-array cleanup if we entered one.
808     if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator);
809 
810     return;
811   }
812 
813   assert(E->getType()->isRecordType() && "Only support structs/unions here!");
814 
815   // Do struct initialization; this code just sets each individual member
816   // to the approprate value.  This makes bitfield support automatic;
817   // the disadvantage is that the generated code is more difficult for
818   // the optimizer, especially with bitfields.
819   unsigned NumInitElements = E->getNumInits();
820   RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl();
821 
822   if (record->isUnion()) {
823     // Only initialize one field of a union. The field itself is
824     // specified by the initializer list.
825     if (!E->getInitializedFieldInUnion()) {
826       // Empty union; we have nothing to do.
827 
828 #ifndef NDEBUG
829       // Make sure that it's really an empty and not a failure of
830       // semantic analysis.
831       for (RecordDecl::field_iterator Field = record->field_begin(),
832                                    FieldEnd = record->field_end();
833            Field != FieldEnd; ++Field)
834         assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed");
835 #endif
836       return;
837     }
838 
839     // FIXME: volatility
840     FieldDecl *Field = E->getInitializedFieldInUnion();
841 
842     LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestPtr, Field, 0);
843     if (NumInitElements) {
844       // Store the initializer into the field
845       EmitInitializationToLValue(E->getInit(0), FieldLoc);
846     } else {
847       // Default-initialize to null.
848       EmitNullInitializationToLValue(FieldLoc);
849     }
850 
851     return;
852   }
853 
854   // We'll need to enter cleanup scopes in case any of the member
855   // initializers throw an exception.
856   SmallVector<EHScopeStack::stable_iterator, 16> cleanups;
857   llvm::Instruction *cleanupDominator = 0;
858 
859   // Here we iterate over the fields; this makes it simpler to both
860   // default-initialize fields and skip over unnamed fields.
861   unsigned curInitIndex = 0;
862   for (RecordDecl::field_iterator field = record->field_begin(),
863                                fieldEnd = record->field_end();
864        field != fieldEnd; ++field) {
865     // We're done once we hit the flexible array member.
866     if (field->getType()->isIncompleteArrayType())
867       break;
868 
869     // Always skip anonymous bitfields.
870     if (field->isUnnamedBitfield())
871       continue;
872 
873     // We're done if we reach the end of the explicit initializers, we
874     // have a zeroed object, and the rest of the fields are
875     // zero-initializable.
876     if (curInitIndex == NumInitElements && Dest.isZeroed() &&
877         CGF.getTypes().isZeroInitializable(E->getType()))
878       break;
879 
880     // FIXME: volatility
881     LValue LV = CGF.EmitLValueForFieldInitialization(DestPtr, *field, 0);
882     // We never generate write-barries for initialized fields.
883     LV.setNonGC(true);
884 
885     if (curInitIndex < NumInitElements) {
886       // Store the initializer into the field.
887       EmitInitializationToLValue(E->getInit(curInitIndex++), LV);
888     } else {
889       // We're out of initalizers; default-initialize to null
890       EmitNullInitializationToLValue(LV);
891     }
892 
893     // Push a destructor if necessary.
894     // FIXME: if we have an array of structures, all explicitly
895     // initialized, we can end up pushing a linear number of cleanups.
896     bool pushedCleanup = false;
897     if (QualType::DestructionKind dtorKind
898           = field->getType().isDestructedType()) {
899       assert(LV.isSimple());
900       if (CGF.needsEHCleanup(dtorKind)) {
901         if (!cleanupDominator)
902           cleanupDominator = CGF.Builder.CreateUnreachable(); // placeholder
903 
904         CGF.pushDestroy(EHCleanup, LV.getAddress(), field->getType(),
905                         CGF.getDestroyer(dtorKind), false);
906         cleanups.push_back(CGF.EHStack.stable_begin());
907         pushedCleanup = true;
908       }
909     }
910 
911     // If the GEP didn't get used because of a dead zero init or something
912     // else, clean it up for -O0 builds and general tidiness.
913     if (!pushedCleanup && LV.isSimple())
914       if (llvm::GetElementPtrInst *GEP =
915             dyn_cast<llvm::GetElementPtrInst>(LV.getAddress()))
916         if (GEP->use_empty())
917           GEP->eraseFromParent();
918   }
919 
920   // Deactivate all the partial cleanups in reverse order, which
921   // generally means popping them.
922   for (unsigned i = cleanups.size(); i != 0; --i)
923     CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator);
924 
925   // Destroy the placeholder if we made one.
926   if (cleanupDominator)
927     cleanupDominator->eraseFromParent();
928 }
929 
930 //===----------------------------------------------------------------------===//
931 //                        Entry Points into this File
932 //===----------------------------------------------------------------------===//
933 
934 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of
935 /// non-zero bytes that will be stored when outputting the initializer for the
936 /// specified initializer expression.
937 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) {
938   E = E->IgnoreParens();
939 
940   // 0 and 0.0 won't require any non-zero stores!
941   if (isSimpleZero(E, CGF)) return CharUnits::Zero();
942 
943   // If this is an initlist expr, sum up the size of sizes of the (present)
944   // elements.  If this is something weird, assume the whole thing is non-zero.
945   const InitListExpr *ILE = dyn_cast<InitListExpr>(E);
946   if (ILE == 0 || !CGF.getTypes().isZeroInitializable(ILE->getType()))
947     return CGF.getContext().getTypeSizeInChars(E->getType());
948 
949   // InitListExprs for structs have to be handled carefully.  If there are
950   // reference members, we need to consider the size of the reference, not the
951   // referencee.  InitListExprs for unions and arrays can't have references.
952   if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
953     if (!RT->isUnionType()) {
954       RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl();
955       CharUnits NumNonZeroBytes = CharUnits::Zero();
956 
957       unsigned ILEElement = 0;
958       for (RecordDecl::field_iterator Field = SD->field_begin(),
959            FieldEnd = SD->field_end(); Field != FieldEnd; ++Field) {
960         // We're done once we hit the flexible array member or run out of
961         // InitListExpr elements.
962         if (Field->getType()->isIncompleteArrayType() ||
963             ILEElement == ILE->getNumInits())
964           break;
965         if (Field->isUnnamedBitfield())
966           continue;
967 
968         const Expr *E = ILE->getInit(ILEElement++);
969 
970         // Reference values are always non-null and have the width of a pointer.
971         if (Field->getType()->isReferenceType())
972           NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits(
973               CGF.getContext().getTargetInfo().getPointerWidth(0));
974         else
975           NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF);
976       }
977 
978       return NumNonZeroBytes;
979     }
980   }
981 
982 
983   CharUnits NumNonZeroBytes = CharUnits::Zero();
984   for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
985     NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF);
986   return NumNonZeroBytes;
987 }
988 
989 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of
990 /// zeros in it, emit a memset and avoid storing the individual zeros.
991 ///
992 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E,
993                                      CodeGenFunction &CGF) {
994   // If the slot is already known to be zeroed, nothing to do.  Don't mess with
995   // volatile stores.
996   if (Slot.isZeroed() || Slot.isVolatile() || Slot.getAddr() == 0) return;
997 
998   // C++ objects with a user-declared constructor don't need zero'ing.
999   if (CGF.getContext().getLangOptions().CPlusPlus)
1000     if (const RecordType *RT = CGF.getContext()
1001                        .getBaseElementType(E->getType())->getAs<RecordType>()) {
1002       const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1003       if (RD->hasUserDeclaredConstructor())
1004         return;
1005     }
1006 
1007   // If the type is 16-bytes or smaller, prefer individual stores over memset.
1008   std::pair<CharUnits, CharUnits> TypeInfo =
1009     CGF.getContext().getTypeInfoInChars(E->getType());
1010   if (TypeInfo.first <= CharUnits::fromQuantity(16))
1011     return;
1012 
1013   // Check to see if over 3/4 of the initializer are known to be zero.  If so,
1014   // we prefer to emit memset + individual stores for the rest.
1015   CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF);
1016   if (NumNonZeroBytes*4 > TypeInfo.first)
1017     return;
1018 
1019   // Okay, it seems like a good idea to use an initial memset, emit the call.
1020   llvm::Constant *SizeVal = CGF.Builder.getInt64(TypeInfo.first.getQuantity());
1021   CharUnits Align = TypeInfo.second;
1022 
1023   llvm::Value *Loc = Slot.getAddr();
1024 
1025   Loc = CGF.Builder.CreateBitCast(Loc, CGF.Int8PtrTy);
1026   CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal,
1027                            Align.getQuantity(), false);
1028 
1029   // Tell the AggExprEmitter that the slot is known zero.
1030   Slot.setZeroed();
1031 }
1032 
1033 
1034 
1035 
1036 /// EmitAggExpr - Emit the computation of the specified expression of aggregate
1037 /// type.  The result is computed into DestPtr.  Note that if DestPtr is null,
1038 /// the value of the aggregate expression is not needed.  If VolatileDest is
1039 /// true, DestPtr cannot be 0.
1040 ///
1041 /// \param IsInitializer - true if this evaluation is initializing an
1042 /// object whose lifetime is already being managed.
1043 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot,
1044                                   bool IgnoreResult) {
1045   assert(E && hasAggregateLLVMType(E->getType()) &&
1046          "Invalid aggregate expression to emit");
1047   assert((Slot.getAddr() != 0 || Slot.isIgnored()) &&
1048          "slot has bits but no address");
1049 
1050   // Optimize the slot if possible.
1051   CheckAggExprForMemSetUse(Slot, E, *this);
1052 
1053   AggExprEmitter(*this, Slot, IgnoreResult).Visit(const_cast<Expr*>(E));
1054 }
1055 
1056 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) {
1057   assert(hasAggregateLLVMType(E->getType()) && "Invalid argument!");
1058   llvm::Value *Temp = CreateMemTemp(E->getType());
1059   LValue LV = MakeAddrLValue(Temp, E->getType());
1060   EmitAggExpr(E, AggValueSlot::forLValue(LV, AggValueSlot::IsNotDestructed,
1061                                          AggValueSlot::DoesNotNeedGCBarriers,
1062                                          AggValueSlot::IsNotAliased));
1063   return LV;
1064 }
1065 
1066 void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr,
1067                                         llvm::Value *SrcPtr, QualType Ty,
1068                                         bool isVolatile, unsigned Alignment) {
1069   assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
1070 
1071   if (getContext().getLangOptions().CPlusPlus) {
1072     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1073       CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
1074       assert((Record->hasTrivialCopyConstructor() ||
1075               Record->hasTrivialCopyAssignment() ||
1076               Record->hasTrivialMoveConstructor() ||
1077               Record->hasTrivialMoveAssignment()) &&
1078              "Trying to aggregate-copy a type without a trivial copy "
1079              "constructor or assignment operator");
1080       // Ignore empty classes in C++.
1081       if (Record->isEmpty())
1082         return;
1083     }
1084   }
1085 
1086   // Aggregate assignment turns into llvm.memcpy.  This is almost valid per
1087   // C99 6.5.16.1p3, which states "If the value being stored in an object is
1088   // read from another object that overlaps in anyway the storage of the first
1089   // object, then the overlap shall be exact and the two objects shall have
1090   // qualified or unqualified versions of a compatible type."
1091   //
1092   // memcpy is not defined if the source and destination pointers are exactly
1093   // equal, but other compilers do this optimization, and almost every memcpy
1094   // implementation handles this case safely.  If there is a libc that does not
1095   // safely handle this, we can add a target hook.
1096 
1097   // Get size and alignment info for this aggregate.
1098   std::pair<CharUnits, CharUnits> TypeInfo =
1099     getContext().getTypeInfoInChars(Ty);
1100 
1101   if (!Alignment)
1102     Alignment = TypeInfo.second.getQuantity();
1103 
1104   // FIXME: Handle variable sized types.
1105 
1106   // FIXME: If we have a volatile struct, the optimizer can remove what might
1107   // appear to be `extra' memory ops:
1108   //
1109   // volatile struct { int i; } a, b;
1110   //
1111   // int main() {
1112   //   a = b;
1113   //   a = b;
1114   // }
1115   //
1116   // we need to use a different call here.  We use isVolatile to indicate when
1117   // either the source or the destination is volatile.
1118 
1119   llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType());
1120   llvm::Type *DBP =
1121     llvm::Type::getInt8PtrTy(getLLVMContext(), DPT->getAddressSpace());
1122   DestPtr = Builder.CreateBitCast(DestPtr, DBP);
1123 
1124   llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType());
1125   llvm::Type *SBP =
1126     llvm::Type::getInt8PtrTy(getLLVMContext(), SPT->getAddressSpace());
1127   SrcPtr = Builder.CreateBitCast(SrcPtr, SBP);
1128 
1129   // Don't do any of the memmove_collectable tests if GC isn't set.
1130   if (CGM.getLangOptions().getGC() == LangOptions::NonGC) {
1131     // fall through
1132   } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
1133     RecordDecl *Record = RecordTy->getDecl();
1134     if (Record->hasObjectMember()) {
1135       CharUnits size = TypeInfo.first;
1136       llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
1137       llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity());
1138       CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
1139                                                     SizeVal);
1140       return;
1141     }
1142   } else if (Ty->isArrayType()) {
1143     QualType BaseType = getContext().getBaseElementType(Ty);
1144     if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
1145       if (RecordTy->getDecl()->hasObjectMember()) {
1146         CharUnits size = TypeInfo.first;
1147         llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
1148         llvm::Value *SizeVal =
1149           llvm::ConstantInt::get(SizeTy, size.getQuantity());
1150         CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
1151                                                       SizeVal);
1152         return;
1153       }
1154     }
1155   }
1156 
1157   Builder.CreateMemCpy(DestPtr, SrcPtr,
1158                        llvm::ConstantInt::get(IntPtrTy,
1159                                               TypeInfo.first.getQuantity()),
1160                        Alignment, isVolatile);
1161 }
1162