1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Aggregate Expr nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenFunction.h"
14 #include "CGCXXABI.h"
15 #include "CGObjCRuntime.h"
16 #include "CodeGenModule.h"
17 #include "ConstantEmitter.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/DeclCXX.h"
20 #include "clang/AST/DeclTemplate.h"
21 #include "clang/AST/StmtVisitor.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/Function.h"
24 #include "llvm/IR/GlobalVariable.h"
25 #include "llvm/IR/Intrinsics.h"
26 #include "llvm/IR/IntrinsicInst.h"
27 using namespace clang;
28 using namespace CodeGen;
29 
30 //===----------------------------------------------------------------------===//
31 //                        Aggregate Expression Emitter
32 //===----------------------------------------------------------------------===//
33 
34 namespace  {
35 class AggExprEmitter : public StmtVisitor<AggExprEmitter> {
36   CodeGenFunction &CGF;
37   CGBuilderTy &Builder;
38   AggValueSlot Dest;
39   bool IsResultUnused;
40 
41   AggValueSlot EnsureSlot(QualType T) {
42     if (!Dest.isIgnored()) return Dest;
43     return CGF.CreateAggTemp(T, "agg.tmp.ensured");
44   }
45   void EnsureDest(QualType T) {
46     if (!Dest.isIgnored()) return;
47     Dest = CGF.CreateAggTemp(T, "agg.tmp.ensured");
48   }
49 
50   // Calls `Fn` with a valid return value slot, potentially creating a temporary
51   // to do so. If a temporary is created, an appropriate copy into `Dest` will
52   // be emitted, as will lifetime markers.
53   //
54   // The given function should take a ReturnValueSlot, and return an RValue that
55   // points to said slot.
56   void withReturnValueSlot(const Expr *E,
57                            llvm::function_ref<RValue(ReturnValueSlot)> Fn);
58 
59 public:
60   AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest, bool IsResultUnused)
61     : CGF(cgf), Builder(CGF.Builder), Dest(Dest),
62     IsResultUnused(IsResultUnused) { }
63 
64   //===--------------------------------------------------------------------===//
65   //                               Utilities
66   //===--------------------------------------------------------------------===//
67 
68   /// EmitAggLoadOfLValue - Given an expression with aggregate type that
69   /// represents a value lvalue, this method emits the address of the lvalue,
70   /// then loads the result into DestPtr.
71   void EmitAggLoadOfLValue(const Expr *E);
72 
73   enum ExprValueKind {
74     EVK_RValue,
75     EVK_NonRValue
76   };
77 
78   /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
79   /// SrcIsRValue is true if source comes from an RValue.
80   void EmitFinalDestCopy(QualType type, const LValue &src,
81                          ExprValueKind SrcValueKind = EVK_NonRValue);
82   void EmitFinalDestCopy(QualType type, RValue src);
83   void EmitCopy(QualType type, const AggValueSlot &dest,
84                 const AggValueSlot &src);
85 
86   void EmitMoveFromReturnSlot(const Expr *E, RValue Src);
87 
88   void EmitArrayInit(Address DestPtr, llvm::ArrayType *AType,
89                      QualType ArrayQTy, InitListExpr *E);
90 
91   AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) {
92     if (CGF.getLangOpts().getGC() && TypeRequiresGCollection(T))
93       return AggValueSlot::NeedsGCBarriers;
94     return AggValueSlot::DoesNotNeedGCBarriers;
95   }
96 
97   bool TypeRequiresGCollection(QualType T);
98 
99   //===--------------------------------------------------------------------===//
100   //                            Visitor Methods
101   //===--------------------------------------------------------------------===//
102 
103   void Visit(Expr *E) {
104     ApplyDebugLocation DL(CGF, E);
105     StmtVisitor<AggExprEmitter>::Visit(E);
106   }
107 
108   void VisitStmt(Stmt *S) {
109     CGF.ErrorUnsupported(S, "aggregate expression");
110   }
111   void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
112   void VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
113     Visit(GE->getResultExpr());
114   }
115   void VisitCoawaitExpr(CoawaitExpr *E) {
116     CGF.EmitCoawaitExpr(*E, Dest, IsResultUnused);
117   }
118   void VisitCoyieldExpr(CoyieldExpr *E) {
119     CGF.EmitCoyieldExpr(*E, Dest, IsResultUnused);
120   }
121   void VisitUnaryCoawait(UnaryOperator *E) { Visit(E->getSubExpr()); }
122   void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
123   void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
124     return Visit(E->getReplacement());
125   }
126 
127   void VisitConstantExpr(ConstantExpr *E) {
128     return Visit(E->getSubExpr());
129   }
130 
131   // l-values.
132   void VisitDeclRefExpr(DeclRefExpr *E) { EmitAggLoadOfLValue(E); }
133   void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
134   void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
135   void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
136   void VisitCompoundLiteralExpr(CompoundLiteralExpr *E);
137   void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
138     EmitAggLoadOfLValue(E);
139   }
140   void VisitPredefinedExpr(const PredefinedExpr *E) {
141     EmitAggLoadOfLValue(E);
142   }
143 
144   // Operators.
145   void VisitCastExpr(CastExpr *E);
146   void VisitCallExpr(const CallExpr *E);
147   void VisitStmtExpr(const StmtExpr *E);
148   void VisitBinaryOperator(const BinaryOperator *BO);
149   void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO);
150   void VisitBinAssign(const BinaryOperator *E);
151   void VisitBinComma(const BinaryOperator *E);
152   void VisitBinCmp(const BinaryOperator *E);
153 
154   void VisitObjCMessageExpr(ObjCMessageExpr *E);
155   void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
156     EmitAggLoadOfLValue(E);
157   }
158 
159   void VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E);
160   void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
161   void VisitChooseExpr(const ChooseExpr *CE);
162   void VisitInitListExpr(InitListExpr *E);
163   void VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E,
164                               llvm::Value *outerBegin = nullptr);
165   void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E);
166   void VisitNoInitExpr(NoInitExpr *E) { } // Do nothing.
167   void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
168     Visit(DAE->getExpr());
169   }
170   void VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
171     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF);
172     Visit(DIE->getExpr());
173   }
174   void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E);
175   void VisitCXXConstructExpr(const CXXConstructExpr *E);
176   void VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E);
177   void VisitLambdaExpr(LambdaExpr *E);
178   void VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E);
179   void VisitExprWithCleanups(ExprWithCleanups *E);
180   void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E);
181   void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); }
182   void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E);
183   void VisitOpaqueValueExpr(OpaqueValueExpr *E);
184 
185   void VisitPseudoObjectExpr(PseudoObjectExpr *E) {
186     if (E->isGLValue()) {
187       LValue LV = CGF.EmitPseudoObjectLValue(E);
188       return EmitFinalDestCopy(E->getType(), LV);
189     }
190 
191     CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType()));
192   }
193 
194   void VisitVAArgExpr(VAArgExpr *E);
195 
196   void EmitInitializationToLValue(Expr *E, LValue Address);
197   void EmitNullInitializationToLValue(LValue Address);
198   //  case Expr::ChooseExprClass:
199   void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); }
200   void VisitAtomicExpr(AtomicExpr *E) {
201     RValue Res = CGF.EmitAtomicExpr(E);
202     EmitFinalDestCopy(E->getType(), Res);
203   }
204 };
205 }  // end anonymous namespace.
206 
207 //===----------------------------------------------------------------------===//
208 //                                Utilities
209 //===----------------------------------------------------------------------===//
210 
211 /// EmitAggLoadOfLValue - Given an expression with aggregate type that
212 /// represents a value lvalue, this method emits the address of the lvalue,
213 /// then loads the result into DestPtr.
214 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
215   LValue LV = CGF.EmitLValue(E);
216 
217   // If the type of the l-value is atomic, then do an atomic load.
218   if (LV.getType()->isAtomicType() || CGF.LValueIsSuitableForInlineAtomic(LV)) {
219     CGF.EmitAtomicLoad(LV, E->getExprLoc(), Dest);
220     return;
221   }
222 
223   EmitFinalDestCopy(E->getType(), LV);
224 }
225 
226 /// True if the given aggregate type requires special GC API calls.
227 bool AggExprEmitter::TypeRequiresGCollection(QualType T) {
228   // Only record types have members that might require garbage collection.
229   const RecordType *RecordTy = T->getAs<RecordType>();
230   if (!RecordTy) return false;
231 
232   // Don't mess with non-trivial C++ types.
233   RecordDecl *Record = RecordTy->getDecl();
234   if (isa<CXXRecordDecl>(Record) &&
235       (cast<CXXRecordDecl>(Record)->hasNonTrivialCopyConstructor() ||
236        !cast<CXXRecordDecl>(Record)->hasTrivialDestructor()))
237     return false;
238 
239   // Check whether the type has an object member.
240   return Record->hasObjectMember();
241 }
242 
243 void AggExprEmitter::withReturnValueSlot(
244     const Expr *E, llvm::function_ref<RValue(ReturnValueSlot)> EmitCall) {
245   QualType RetTy = E->getType();
246   bool RequiresDestruction =
247       Dest.isIgnored() &&
248       RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct;
249 
250   // If it makes no observable difference, save a memcpy + temporary.
251   //
252   // We need to always provide our own temporary if destruction is required.
253   // Otherwise, EmitCall will emit its own, notice that it's "unused", and end
254   // its lifetime before we have the chance to emit a proper destructor call.
255   bool UseTemp = Dest.isPotentiallyAliased() || Dest.requiresGCollection() ||
256                  (RequiresDestruction && !Dest.getAddress().isValid());
257 
258   Address RetAddr = Address::invalid();
259   Address RetAllocaAddr = Address::invalid();
260 
261   EHScopeStack::stable_iterator LifetimeEndBlock;
262   llvm::Value *LifetimeSizePtr = nullptr;
263   llvm::IntrinsicInst *LifetimeStartInst = nullptr;
264   if (!UseTemp) {
265     RetAddr = Dest.getAddress();
266   } else {
267     RetAddr = CGF.CreateMemTemp(RetTy, "tmp", &RetAllocaAddr);
268     uint64_t Size =
269         CGF.CGM.getDataLayout().getTypeAllocSize(CGF.ConvertTypeForMem(RetTy));
270     LifetimeSizePtr = CGF.EmitLifetimeStart(Size, RetAllocaAddr.getPointer());
271     if (LifetimeSizePtr) {
272       LifetimeStartInst =
273           cast<llvm::IntrinsicInst>(std::prev(Builder.GetInsertPoint()));
274       assert(LifetimeStartInst->getIntrinsicID() ==
275                  llvm::Intrinsic::lifetime_start &&
276              "Last insertion wasn't a lifetime.start?");
277 
278       CGF.pushFullExprCleanup<CodeGenFunction::CallLifetimeEnd>(
279           NormalEHLifetimeMarker, RetAllocaAddr, LifetimeSizePtr);
280       LifetimeEndBlock = CGF.EHStack.stable_begin();
281     }
282   }
283 
284   RValue Src =
285       EmitCall(ReturnValueSlot(RetAddr, Dest.isVolatile(), IsResultUnused));
286 
287   if (RequiresDestruction)
288     CGF.pushDestroy(RetTy.isDestructedType(), Src.getAggregateAddress(), RetTy);
289 
290   if (!UseTemp)
291     return;
292 
293   assert(Dest.getPointer() != Src.getAggregatePointer());
294   EmitFinalDestCopy(E->getType(), Src);
295 
296   if (!RequiresDestruction && LifetimeStartInst) {
297     // If there's no dtor to run, the copy was the last use of our temporary.
298     // Since we're not guaranteed to be in an ExprWithCleanups, clean up
299     // eagerly.
300     CGF.DeactivateCleanupBlock(LifetimeEndBlock, LifetimeStartInst);
301     CGF.EmitLifetimeEnd(LifetimeSizePtr, RetAllocaAddr.getPointer());
302   }
303 }
304 
305 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
306 void AggExprEmitter::EmitFinalDestCopy(QualType type, RValue src) {
307   assert(src.isAggregate() && "value must be aggregate value!");
308   LValue srcLV = CGF.MakeAddrLValue(src.getAggregateAddress(), type);
309   EmitFinalDestCopy(type, srcLV, EVK_RValue);
310 }
311 
312 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
313 void AggExprEmitter::EmitFinalDestCopy(QualType type, const LValue &src,
314                                        ExprValueKind SrcValueKind) {
315   // If Dest is ignored, then we're evaluating an aggregate expression
316   // in a context that doesn't care about the result.  Note that loads
317   // from volatile l-values force the existence of a non-ignored
318   // destination.
319   if (Dest.isIgnored())
320     return;
321 
322   // Copy non-trivial C structs here.
323   LValue DstLV = CGF.MakeAddrLValue(
324       Dest.getAddress(), Dest.isVolatile() ? type.withVolatile() : type);
325 
326   if (SrcValueKind == EVK_RValue) {
327     if (type.isNonTrivialToPrimitiveDestructiveMove() == QualType::PCK_Struct) {
328       if (Dest.isPotentiallyAliased())
329         CGF.callCStructMoveAssignmentOperator(DstLV, src);
330       else
331         CGF.callCStructMoveConstructor(DstLV, src);
332       return;
333     }
334   } else {
335     if (type.isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) {
336       if (Dest.isPotentiallyAliased())
337         CGF.callCStructCopyAssignmentOperator(DstLV, src);
338       else
339         CGF.callCStructCopyConstructor(DstLV, src);
340       return;
341     }
342   }
343 
344   AggValueSlot srcAgg =
345     AggValueSlot::forLValue(src, AggValueSlot::IsDestructed,
346                             needsGC(type), AggValueSlot::IsAliased,
347                             AggValueSlot::MayOverlap);
348   EmitCopy(type, Dest, srcAgg);
349 }
350 
351 /// Perform a copy from the source into the destination.
352 ///
353 /// \param type - the type of the aggregate being copied; qualifiers are
354 ///   ignored
355 void AggExprEmitter::EmitCopy(QualType type, const AggValueSlot &dest,
356                               const AggValueSlot &src) {
357   if (dest.requiresGCollection()) {
358     CharUnits sz = dest.getPreferredSize(CGF.getContext(), type);
359     llvm::Value *size = llvm::ConstantInt::get(CGF.SizeTy, sz.getQuantity());
360     CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF,
361                                                       dest.getAddress(),
362                                                       src.getAddress(),
363                                                       size);
364     return;
365   }
366 
367   // If the result of the assignment is used, copy the LHS there also.
368   // It's volatile if either side is.  Use the minimum alignment of
369   // the two sides.
370   LValue DestLV = CGF.MakeAddrLValue(dest.getAddress(), type);
371   LValue SrcLV = CGF.MakeAddrLValue(src.getAddress(), type);
372   CGF.EmitAggregateCopy(DestLV, SrcLV, type, dest.mayOverlap(),
373                         dest.isVolatile() || src.isVolatile());
374 }
375 
376 /// Emit the initializer for a std::initializer_list initialized with a
377 /// real initializer list.
378 void
379 AggExprEmitter::VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E) {
380   // Emit an array containing the elements.  The array is externally destructed
381   // if the std::initializer_list object is.
382   ASTContext &Ctx = CGF.getContext();
383   LValue Array = CGF.EmitLValue(E->getSubExpr());
384   assert(Array.isSimple() && "initializer_list array not a simple lvalue");
385   Address ArrayPtr = Array.getAddress();
386 
387   const ConstantArrayType *ArrayType =
388       Ctx.getAsConstantArrayType(E->getSubExpr()->getType());
389   assert(ArrayType && "std::initializer_list constructed from non-array");
390 
391   // FIXME: Perform the checks on the field types in SemaInit.
392   RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl();
393   RecordDecl::field_iterator Field = Record->field_begin();
394   if (Field == Record->field_end()) {
395     CGF.ErrorUnsupported(E, "weird std::initializer_list");
396     return;
397   }
398 
399   // Start pointer.
400   if (!Field->getType()->isPointerType() ||
401       !Ctx.hasSameType(Field->getType()->getPointeeType(),
402                        ArrayType->getElementType())) {
403     CGF.ErrorUnsupported(E, "weird std::initializer_list");
404     return;
405   }
406 
407   AggValueSlot Dest = EnsureSlot(E->getType());
408   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
409   LValue Start = CGF.EmitLValueForFieldInitialization(DestLV, *Field);
410   llvm::Value *Zero = llvm::ConstantInt::get(CGF.PtrDiffTy, 0);
411   llvm::Value *IdxStart[] = { Zero, Zero };
412   llvm::Value *ArrayStart =
413       Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxStart, "arraystart");
414   CGF.EmitStoreThroughLValue(RValue::get(ArrayStart), Start);
415   ++Field;
416 
417   if (Field == Record->field_end()) {
418     CGF.ErrorUnsupported(E, "weird std::initializer_list");
419     return;
420   }
421 
422   llvm::Value *Size = Builder.getInt(ArrayType->getSize());
423   LValue EndOrLength = CGF.EmitLValueForFieldInitialization(DestLV, *Field);
424   if (Field->getType()->isPointerType() &&
425       Ctx.hasSameType(Field->getType()->getPointeeType(),
426                       ArrayType->getElementType())) {
427     // End pointer.
428     llvm::Value *IdxEnd[] = { Zero, Size };
429     llvm::Value *ArrayEnd =
430         Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxEnd, "arrayend");
431     CGF.EmitStoreThroughLValue(RValue::get(ArrayEnd), EndOrLength);
432   } else if (Ctx.hasSameType(Field->getType(), Ctx.getSizeType())) {
433     // Length.
434     CGF.EmitStoreThroughLValue(RValue::get(Size), EndOrLength);
435   } else {
436     CGF.ErrorUnsupported(E, "weird std::initializer_list");
437     return;
438   }
439 }
440 
441 /// Determine if E is a trivial array filler, that is, one that is
442 /// equivalent to zero-initialization.
443 static bool isTrivialFiller(Expr *E) {
444   if (!E)
445     return true;
446 
447   if (isa<ImplicitValueInitExpr>(E))
448     return true;
449 
450   if (auto *ILE = dyn_cast<InitListExpr>(E)) {
451     if (ILE->getNumInits())
452       return false;
453     return isTrivialFiller(ILE->getArrayFiller());
454   }
455 
456   if (auto *Cons = dyn_cast_or_null<CXXConstructExpr>(E))
457     return Cons->getConstructor()->isDefaultConstructor() &&
458            Cons->getConstructor()->isTrivial();
459 
460   // FIXME: Are there other cases where we can avoid emitting an initializer?
461   return false;
462 }
463 
464 /// Emit initialization of an array from an initializer list.
465 void AggExprEmitter::EmitArrayInit(Address DestPtr, llvm::ArrayType *AType,
466                                    QualType ArrayQTy, InitListExpr *E) {
467   uint64_t NumInitElements = E->getNumInits();
468 
469   uint64_t NumArrayElements = AType->getNumElements();
470   assert(NumInitElements <= NumArrayElements);
471 
472   QualType elementType =
473       CGF.getContext().getAsArrayType(ArrayQTy)->getElementType();
474 
475   // DestPtr is an array*.  Construct an elementType* by drilling
476   // down a level.
477   llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
478   llvm::Value *indices[] = { zero, zero };
479   llvm::Value *begin =
480     Builder.CreateInBoundsGEP(DestPtr.getPointer(), indices, "arrayinit.begin");
481 
482   CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
483   CharUnits elementAlign =
484     DestPtr.getAlignment().alignmentOfArrayElement(elementSize);
485 
486   // Consider initializing the array by copying from a global. For this to be
487   // more efficient than per-element initialization, the size of the elements
488   // with explicit initializers should be large enough.
489   if (NumInitElements * elementSize.getQuantity() > 16 &&
490       elementType.isTriviallyCopyableType(CGF.getContext())) {
491     CodeGen::CodeGenModule &CGM = CGF.CGM;
492     ConstantEmitter Emitter(CGM);
493     LangAS AS = ArrayQTy.getAddressSpace();
494     if (llvm::Constant *C = Emitter.tryEmitForInitializer(E, AS, ArrayQTy)) {
495       auto GV = new llvm::GlobalVariable(
496           CGM.getModule(), C->getType(),
497           CGM.isTypeConstant(ArrayQTy, /* ExcludeCtorDtor= */ true),
498           llvm::GlobalValue::PrivateLinkage, C, "constinit",
499           /* InsertBefore= */ nullptr, llvm::GlobalVariable::NotThreadLocal,
500           CGM.getContext().getTargetAddressSpace(AS));
501       Emitter.finalize(GV);
502       CharUnits Align = CGM.getContext().getTypeAlignInChars(ArrayQTy);
503       GV->setAlignment(Align.getQuantity());
504       EmitFinalDestCopy(ArrayQTy, CGF.MakeAddrLValue(GV, ArrayQTy, Align));
505       return;
506     }
507   }
508 
509   // Exception safety requires us to destroy all the
510   // already-constructed members if an initializer throws.
511   // For that, we'll need an EH cleanup.
512   QualType::DestructionKind dtorKind = elementType.isDestructedType();
513   Address endOfInit = Address::invalid();
514   EHScopeStack::stable_iterator cleanup;
515   llvm::Instruction *cleanupDominator = nullptr;
516   if (CGF.needsEHCleanup(dtorKind)) {
517     // In principle we could tell the cleanup where we are more
518     // directly, but the control flow can get so varied here that it
519     // would actually be quite complex.  Therefore we go through an
520     // alloca.
521     endOfInit = CGF.CreateTempAlloca(begin->getType(), CGF.getPointerAlign(),
522                                      "arrayinit.endOfInit");
523     cleanupDominator = Builder.CreateStore(begin, endOfInit);
524     CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType,
525                                          elementAlign,
526                                          CGF.getDestroyer(dtorKind));
527     cleanup = CGF.EHStack.stable_begin();
528 
529   // Otherwise, remember that we didn't need a cleanup.
530   } else {
531     dtorKind = QualType::DK_none;
532   }
533 
534   llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1);
535 
536   // The 'current element to initialize'.  The invariants on this
537   // variable are complicated.  Essentially, after each iteration of
538   // the loop, it points to the last initialized element, except
539   // that it points to the beginning of the array before any
540   // elements have been initialized.
541   llvm::Value *element = begin;
542 
543   // Emit the explicit initializers.
544   for (uint64_t i = 0; i != NumInitElements; ++i) {
545     // Advance to the next element.
546     if (i > 0) {
547       element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element");
548 
549       // Tell the cleanup that it needs to destroy up to this
550       // element.  TODO: some of these stores can be trivially
551       // observed to be unnecessary.
552       if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit);
553     }
554 
555     LValue elementLV =
556       CGF.MakeAddrLValue(Address(element, elementAlign), elementType);
557     EmitInitializationToLValue(E->getInit(i), elementLV);
558   }
559 
560   // Check whether there's a non-trivial array-fill expression.
561   Expr *filler = E->getArrayFiller();
562   bool hasTrivialFiller = isTrivialFiller(filler);
563 
564   // Any remaining elements need to be zero-initialized, possibly
565   // using the filler expression.  We can skip this if the we're
566   // emitting to zeroed memory.
567   if (NumInitElements != NumArrayElements &&
568       !(Dest.isZeroed() && hasTrivialFiller &&
569         CGF.getTypes().isZeroInitializable(elementType))) {
570 
571     // Use an actual loop.  This is basically
572     //   do { *array++ = filler; } while (array != end);
573 
574     // Advance to the start of the rest of the array.
575     if (NumInitElements) {
576       element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start");
577       if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit);
578     }
579 
580     // Compute the end of the array.
581     llvm::Value *end = Builder.CreateInBoundsGEP(begin,
582                       llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements),
583                                                  "arrayinit.end");
584 
585     llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
586     llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
587 
588     // Jump into the body.
589     CGF.EmitBlock(bodyBB);
590     llvm::PHINode *currentElement =
591       Builder.CreatePHI(element->getType(), 2, "arrayinit.cur");
592     currentElement->addIncoming(element, entryBB);
593 
594     // Emit the actual filler expression.
595     {
596       // C++1z [class.temporary]p5:
597       //   when a default constructor is called to initialize an element of
598       //   an array with no corresponding initializer [...] the destruction of
599       //   every temporary created in a default argument is sequenced before
600       //   the construction of the next array element, if any
601       CodeGenFunction::RunCleanupsScope CleanupsScope(CGF);
602       LValue elementLV =
603         CGF.MakeAddrLValue(Address(currentElement, elementAlign), elementType);
604       if (filler)
605         EmitInitializationToLValue(filler, elementLV);
606       else
607         EmitNullInitializationToLValue(elementLV);
608     }
609 
610     // Move on to the next element.
611     llvm::Value *nextElement =
612       Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next");
613 
614     // Tell the EH cleanup that we finished with the last element.
615     if (endOfInit.isValid()) Builder.CreateStore(nextElement, endOfInit);
616 
617     // Leave the loop if we're done.
618     llvm::Value *done = Builder.CreateICmpEQ(nextElement, end,
619                                              "arrayinit.done");
620     llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
621     Builder.CreateCondBr(done, endBB, bodyBB);
622     currentElement->addIncoming(nextElement, Builder.GetInsertBlock());
623 
624     CGF.EmitBlock(endBB);
625   }
626 
627   // Leave the partial-array cleanup if we entered one.
628   if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator);
629 }
630 
631 //===----------------------------------------------------------------------===//
632 //                            Visitor Methods
633 //===----------------------------------------------------------------------===//
634 
635 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){
636   Visit(E->GetTemporaryExpr());
637 }
638 
639 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) {
640   // If this is a unique OVE, just visit its source expression.
641   if (e->isUnique())
642     Visit(e->getSourceExpr());
643   else
644     EmitFinalDestCopy(e->getType(), CGF.getOrCreateOpaqueLValueMapping(e));
645 }
646 
647 void
648 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
649   if (Dest.isPotentiallyAliased() &&
650       E->getType().isPODType(CGF.getContext())) {
651     // For a POD type, just emit a load of the lvalue + a copy, because our
652     // compound literal might alias the destination.
653     EmitAggLoadOfLValue(E);
654     return;
655   }
656 
657   AggValueSlot Slot = EnsureSlot(E->getType());
658   CGF.EmitAggExpr(E->getInitializer(), Slot);
659 }
660 
661 /// Attempt to look through various unimportant expressions to find a
662 /// cast of the given kind.
663 static Expr *findPeephole(Expr *op, CastKind kind) {
664   while (true) {
665     op = op->IgnoreParens();
666     if (CastExpr *castE = dyn_cast<CastExpr>(op)) {
667       if (castE->getCastKind() == kind)
668         return castE->getSubExpr();
669       if (castE->getCastKind() == CK_NoOp)
670         continue;
671     }
672     return nullptr;
673   }
674 }
675 
676 void AggExprEmitter::VisitCastExpr(CastExpr *E) {
677   if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E))
678     CGF.CGM.EmitExplicitCastExprType(ECE, &CGF);
679   switch (E->getCastKind()) {
680   case CK_Dynamic: {
681     // FIXME: Can this actually happen? We have no test coverage for it.
682     assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?");
683     LValue LV = CGF.EmitCheckedLValue(E->getSubExpr(),
684                                       CodeGenFunction::TCK_Load);
685     // FIXME: Do we also need to handle property references here?
686     if (LV.isSimple())
687       CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E));
688     else
689       CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast");
690 
691     if (!Dest.isIgnored())
692       CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination");
693     break;
694   }
695 
696   case CK_ToUnion: {
697     // Evaluate even if the destination is ignored.
698     if (Dest.isIgnored()) {
699       CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(),
700                       /*ignoreResult=*/true);
701       break;
702     }
703 
704     // GCC union extension
705     QualType Ty = E->getSubExpr()->getType();
706     Address CastPtr =
707       Builder.CreateElementBitCast(Dest.getAddress(), CGF.ConvertType(Ty));
708     EmitInitializationToLValue(E->getSubExpr(),
709                                CGF.MakeAddrLValue(CastPtr, Ty));
710     break;
711   }
712 
713   case CK_DerivedToBase:
714   case CK_BaseToDerived:
715   case CK_UncheckedDerivedToBase: {
716     llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: "
717                 "should have been unpacked before we got here");
718   }
719 
720   case CK_NonAtomicToAtomic:
721   case CK_AtomicToNonAtomic: {
722     bool isToAtomic = (E->getCastKind() == CK_NonAtomicToAtomic);
723 
724     // Determine the atomic and value types.
725     QualType atomicType = E->getSubExpr()->getType();
726     QualType valueType = E->getType();
727     if (isToAtomic) std::swap(atomicType, valueType);
728 
729     assert(atomicType->isAtomicType());
730     assert(CGF.getContext().hasSameUnqualifiedType(valueType,
731                           atomicType->castAs<AtomicType>()->getValueType()));
732 
733     // Just recurse normally if we're ignoring the result or the
734     // atomic type doesn't change representation.
735     if (Dest.isIgnored() || !CGF.CGM.isPaddedAtomicType(atomicType)) {
736       return Visit(E->getSubExpr());
737     }
738 
739     CastKind peepholeTarget =
740       (isToAtomic ? CK_AtomicToNonAtomic : CK_NonAtomicToAtomic);
741 
742     // These two cases are reverses of each other; try to peephole them.
743     if (Expr *op = findPeephole(E->getSubExpr(), peepholeTarget)) {
744       assert(CGF.getContext().hasSameUnqualifiedType(op->getType(),
745                                                      E->getType()) &&
746            "peephole significantly changed types?");
747       return Visit(op);
748     }
749 
750     // If we're converting an r-value of non-atomic type to an r-value
751     // of atomic type, just emit directly into the relevant sub-object.
752     if (isToAtomic) {
753       AggValueSlot valueDest = Dest;
754       if (!valueDest.isIgnored() && CGF.CGM.isPaddedAtomicType(atomicType)) {
755         // Zero-initialize.  (Strictly speaking, we only need to initialize
756         // the padding at the end, but this is simpler.)
757         if (!Dest.isZeroed())
758           CGF.EmitNullInitialization(Dest.getAddress(), atomicType);
759 
760         // Build a GEP to refer to the subobject.
761         Address valueAddr =
762             CGF.Builder.CreateStructGEP(valueDest.getAddress(), 0);
763         valueDest = AggValueSlot::forAddr(valueAddr,
764                                           valueDest.getQualifiers(),
765                                           valueDest.isExternallyDestructed(),
766                                           valueDest.requiresGCollection(),
767                                           valueDest.isPotentiallyAliased(),
768                                           AggValueSlot::DoesNotOverlap,
769                                           AggValueSlot::IsZeroed);
770       }
771 
772       CGF.EmitAggExpr(E->getSubExpr(), valueDest);
773       return;
774     }
775 
776     // Otherwise, we're converting an atomic type to a non-atomic type.
777     // Make an atomic temporary, emit into that, and then copy the value out.
778     AggValueSlot atomicSlot =
779       CGF.CreateAggTemp(atomicType, "atomic-to-nonatomic.temp");
780     CGF.EmitAggExpr(E->getSubExpr(), atomicSlot);
781 
782     Address valueAddr = Builder.CreateStructGEP(atomicSlot.getAddress(), 0);
783     RValue rvalue = RValue::getAggregate(valueAddr, atomicSlot.isVolatile());
784     return EmitFinalDestCopy(valueType, rvalue);
785   }
786   case CK_AddressSpaceConversion:
787      return Visit(E->getSubExpr());
788 
789   case CK_LValueToRValue:
790     // If we're loading from a volatile type, force the destination
791     // into existence.
792     if (E->getSubExpr()->getType().isVolatileQualified()) {
793       EnsureDest(E->getType());
794       return Visit(E->getSubExpr());
795     }
796 
797     LLVM_FALLTHROUGH;
798 
799 
800   case CK_NoOp:
801   case CK_UserDefinedConversion:
802   case CK_ConstructorConversion:
803     assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(),
804                                                    E->getType()) &&
805            "Implicit cast types must be compatible");
806     Visit(E->getSubExpr());
807     break;
808 
809   case CK_LValueBitCast:
810     llvm_unreachable("should not be emitting lvalue bitcast as rvalue");
811 
812   case CK_Dependent:
813   case CK_BitCast:
814   case CK_ArrayToPointerDecay:
815   case CK_FunctionToPointerDecay:
816   case CK_NullToPointer:
817   case CK_NullToMemberPointer:
818   case CK_BaseToDerivedMemberPointer:
819   case CK_DerivedToBaseMemberPointer:
820   case CK_MemberPointerToBoolean:
821   case CK_ReinterpretMemberPointer:
822   case CK_IntegralToPointer:
823   case CK_PointerToIntegral:
824   case CK_PointerToBoolean:
825   case CK_ToVoid:
826   case CK_VectorSplat:
827   case CK_IntegralCast:
828   case CK_BooleanToSignedIntegral:
829   case CK_IntegralToBoolean:
830   case CK_IntegralToFloating:
831   case CK_FloatingToIntegral:
832   case CK_FloatingToBoolean:
833   case CK_FloatingCast:
834   case CK_CPointerToObjCPointerCast:
835   case CK_BlockPointerToObjCPointerCast:
836   case CK_AnyPointerToBlockPointerCast:
837   case CK_ObjCObjectLValueCast:
838   case CK_FloatingRealToComplex:
839   case CK_FloatingComplexToReal:
840   case CK_FloatingComplexToBoolean:
841   case CK_FloatingComplexCast:
842   case CK_FloatingComplexToIntegralComplex:
843   case CK_IntegralRealToComplex:
844   case CK_IntegralComplexToReal:
845   case CK_IntegralComplexToBoolean:
846   case CK_IntegralComplexCast:
847   case CK_IntegralComplexToFloatingComplex:
848   case CK_ARCProduceObject:
849   case CK_ARCConsumeObject:
850   case CK_ARCReclaimReturnedObject:
851   case CK_ARCExtendBlockObject:
852   case CK_CopyAndAutoreleaseBlockObject:
853   case CK_BuiltinFnToFnPtr:
854   case CK_ZeroToOCLOpaqueType:
855 
856   case CK_IntToOCLSampler:
857   case CK_FixedPointCast:
858   case CK_FixedPointToBoolean:
859   case CK_FixedPointToIntegral:
860   case CK_IntegralToFixedPoint:
861     llvm_unreachable("cast kind invalid for aggregate types");
862   }
863 }
864 
865 void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
866   if (E->getCallReturnType(CGF.getContext())->isReferenceType()) {
867     EmitAggLoadOfLValue(E);
868     return;
869   }
870 
871   withReturnValueSlot(E, [&](ReturnValueSlot Slot) {
872     return CGF.EmitCallExpr(E, Slot);
873   });
874 }
875 
876 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
877   withReturnValueSlot(E, [&](ReturnValueSlot Slot) {
878     return CGF.EmitObjCMessageExpr(E, Slot);
879   });
880 }
881 
882 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
883   CGF.EmitIgnoredExpr(E->getLHS());
884   Visit(E->getRHS());
885 }
886 
887 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
888   CodeGenFunction::StmtExprEvaluation eval(CGF);
889   CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest);
890 }
891 
892 enum CompareKind {
893   CK_Less,
894   CK_Greater,
895   CK_Equal,
896 };
897 
898 static llvm::Value *EmitCompare(CGBuilderTy &Builder, CodeGenFunction &CGF,
899                                 const BinaryOperator *E, llvm::Value *LHS,
900                                 llvm::Value *RHS, CompareKind Kind,
901                                 const char *NameSuffix = "") {
902   QualType ArgTy = E->getLHS()->getType();
903   if (const ComplexType *CT = ArgTy->getAs<ComplexType>())
904     ArgTy = CT->getElementType();
905 
906   if (const auto *MPT = ArgTy->getAs<MemberPointerType>()) {
907     assert(Kind == CK_Equal &&
908            "member pointers may only be compared for equality");
909     return CGF.CGM.getCXXABI().EmitMemberPointerComparison(
910         CGF, LHS, RHS, MPT, /*IsInequality*/ false);
911   }
912 
913   // Compute the comparison instructions for the specified comparison kind.
914   struct CmpInstInfo {
915     const char *Name;
916     llvm::CmpInst::Predicate FCmp;
917     llvm::CmpInst::Predicate SCmp;
918     llvm::CmpInst::Predicate UCmp;
919   };
920   CmpInstInfo InstInfo = [&]() -> CmpInstInfo {
921     using FI = llvm::FCmpInst;
922     using II = llvm::ICmpInst;
923     switch (Kind) {
924     case CK_Less:
925       return {"cmp.lt", FI::FCMP_OLT, II::ICMP_SLT, II::ICMP_ULT};
926     case CK_Greater:
927       return {"cmp.gt", FI::FCMP_OGT, II::ICMP_SGT, II::ICMP_UGT};
928     case CK_Equal:
929       return {"cmp.eq", FI::FCMP_OEQ, II::ICMP_EQ, II::ICMP_EQ};
930     }
931     llvm_unreachable("Unrecognised CompareKind enum");
932   }();
933 
934   if (ArgTy->hasFloatingRepresentation())
935     return Builder.CreateFCmp(InstInfo.FCmp, LHS, RHS,
936                               llvm::Twine(InstInfo.Name) + NameSuffix);
937   if (ArgTy->isIntegralOrEnumerationType() || ArgTy->isPointerType()) {
938     auto Inst =
939         ArgTy->hasSignedIntegerRepresentation() ? InstInfo.SCmp : InstInfo.UCmp;
940     return Builder.CreateICmp(Inst, LHS, RHS,
941                               llvm::Twine(InstInfo.Name) + NameSuffix);
942   }
943 
944   llvm_unreachable("unsupported aggregate binary expression should have "
945                    "already been handled");
946 }
947 
948 void AggExprEmitter::VisitBinCmp(const BinaryOperator *E) {
949   using llvm::BasicBlock;
950   using llvm::PHINode;
951   using llvm::Value;
952   assert(CGF.getContext().hasSameType(E->getLHS()->getType(),
953                                       E->getRHS()->getType()));
954   const ComparisonCategoryInfo &CmpInfo =
955       CGF.getContext().CompCategories.getInfoForType(E->getType());
956   assert(CmpInfo.Record->isTriviallyCopyable() &&
957          "cannot copy non-trivially copyable aggregate");
958 
959   QualType ArgTy = E->getLHS()->getType();
960 
961   // TODO: Handle comparing these types.
962   if (ArgTy->isVectorType())
963     return CGF.ErrorUnsupported(
964         E, "aggregate three-way comparison with vector arguments");
965   if (!ArgTy->isIntegralOrEnumerationType() && !ArgTy->isRealFloatingType() &&
966       !ArgTy->isNullPtrType() && !ArgTy->isPointerType() &&
967       !ArgTy->isMemberPointerType() && !ArgTy->isAnyComplexType()) {
968     return CGF.ErrorUnsupported(E, "aggregate three-way comparison");
969   }
970   bool IsComplex = ArgTy->isAnyComplexType();
971 
972   // Evaluate the operands to the expression and extract their values.
973   auto EmitOperand = [&](Expr *E) -> std::pair<Value *, Value *> {
974     RValue RV = CGF.EmitAnyExpr(E);
975     if (RV.isScalar())
976       return {RV.getScalarVal(), nullptr};
977     if (RV.isAggregate())
978       return {RV.getAggregatePointer(), nullptr};
979     assert(RV.isComplex());
980     return RV.getComplexVal();
981   };
982   auto LHSValues = EmitOperand(E->getLHS()),
983        RHSValues = EmitOperand(E->getRHS());
984 
985   auto EmitCmp = [&](CompareKind K) {
986     Value *Cmp = EmitCompare(Builder, CGF, E, LHSValues.first, RHSValues.first,
987                              K, IsComplex ? ".r" : "");
988     if (!IsComplex)
989       return Cmp;
990     assert(K == CompareKind::CK_Equal);
991     Value *CmpImag = EmitCompare(Builder, CGF, E, LHSValues.second,
992                                  RHSValues.second, K, ".i");
993     return Builder.CreateAnd(Cmp, CmpImag, "and.eq");
994   };
995   auto EmitCmpRes = [&](const ComparisonCategoryInfo::ValueInfo *VInfo) {
996     return Builder.getInt(VInfo->getIntValue());
997   };
998 
999   Value *Select;
1000   if (ArgTy->isNullPtrType()) {
1001     Select = EmitCmpRes(CmpInfo.getEqualOrEquiv());
1002   } else if (CmpInfo.isEquality()) {
1003     Select = Builder.CreateSelect(
1004         EmitCmp(CK_Equal), EmitCmpRes(CmpInfo.getEqualOrEquiv()),
1005         EmitCmpRes(CmpInfo.getNonequalOrNonequiv()), "sel.eq");
1006   } else if (!CmpInfo.isPartial()) {
1007     Value *SelectOne =
1008         Builder.CreateSelect(EmitCmp(CK_Less), EmitCmpRes(CmpInfo.getLess()),
1009                              EmitCmpRes(CmpInfo.getGreater()), "sel.lt");
1010     Select = Builder.CreateSelect(EmitCmp(CK_Equal),
1011                                   EmitCmpRes(CmpInfo.getEqualOrEquiv()),
1012                                   SelectOne, "sel.eq");
1013   } else {
1014     Value *SelectEq = Builder.CreateSelect(
1015         EmitCmp(CK_Equal), EmitCmpRes(CmpInfo.getEqualOrEquiv()),
1016         EmitCmpRes(CmpInfo.getUnordered()), "sel.eq");
1017     Value *SelectGT = Builder.CreateSelect(EmitCmp(CK_Greater),
1018                                            EmitCmpRes(CmpInfo.getGreater()),
1019                                            SelectEq, "sel.gt");
1020     Select = Builder.CreateSelect(
1021         EmitCmp(CK_Less), EmitCmpRes(CmpInfo.getLess()), SelectGT, "sel.lt");
1022   }
1023   // Create the return value in the destination slot.
1024   EnsureDest(E->getType());
1025   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
1026 
1027   // Emit the address of the first (and only) field in the comparison category
1028   // type, and initialize it from the constant integer value selected above.
1029   LValue FieldLV = CGF.EmitLValueForFieldInitialization(
1030       DestLV, *CmpInfo.Record->field_begin());
1031   CGF.EmitStoreThroughLValue(RValue::get(Select), FieldLV, /*IsInit*/ true);
1032 
1033   // All done! The result is in the Dest slot.
1034 }
1035 
1036 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
1037   if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI)
1038     VisitPointerToDataMemberBinaryOperator(E);
1039   else
1040     CGF.ErrorUnsupported(E, "aggregate binary expression");
1041 }
1042 
1043 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator(
1044                                                     const BinaryOperator *E) {
1045   LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E);
1046   EmitFinalDestCopy(E->getType(), LV);
1047 }
1048 
1049 /// Is the value of the given expression possibly a reference to or
1050 /// into a __block variable?
1051 static bool isBlockVarRef(const Expr *E) {
1052   // Make sure we look through parens.
1053   E = E->IgnoreParens();
1054 
1055   // Check for a direct reference to a __block variable.
1056   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
1057     const VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
1058     return (var && var->hasAttr<BlocksAttr>());
1059   }
1060 
1061   // More complicated stuff.
1062 
1063   // Binary operators.
1064   if (const BinaryOperator *op = dyn_cast<BinaryOperator>(E)) {
1065     // For an assignment or pointer-to-member operation, just care
1066     // about the LHS.
1067     if (op->isAssignmentOp() || op->isPtrMemOp())
1068       return isBlockVarRef(op->getLHS());
1069 
1070     // For a comma, just care about the RHS.
1071     if (op->getOpcode() == BO_Comma)
1072       return isBlockVarRef(op->getRHS());
1073 
1074     // FIXME: pointer arithmetic?
1075     return false;
1076 
1077   // Check both sides of a conditional operator.
1078   } else if (const AbstractConditionalOperator *op
1079                = dyn_cast<AbstractConditionalOperator>(E)) {
1080     return isBlockVarRef(op->getTrueExpr())
1081         || isBlockVarRef(op->getFalseExpr());
1082 
1083   // OVEs are required to support BinaryConditionalOperators.
1084   } else if (const OpaqueValueExpr *op
1085                = dyn_cast<OpaqueValueExpr>(E)) {
1086     if (const Expr *src = op->getSourceExpr())
1087       return isBlockVarRef(src);
1088 
1089   // Casts are necessary to get things like (*(int*)&var) = foo().
1090   // We don't really care about the kind of cast here, except
1091   // we don't want to look through l2r casts, because it's okay
1092   // to get the *value* in a __block variable.
1093   } else if (const CastExpr *cast = dyn_cast<CastExpr>(E)) {
1094     if (cast->getCastKind() == CK_LValueToRValue)
1095       return false;
1096     return isBlockVarRef(cast->getSubExpr());
1097 
1098   // Handle unary operators.  Again, just aggressively look through
1099   // it, ignoring the operation.
1100   } else if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E)) {
1101     return isBlockVarRef(uop->getSubExpr());
1102 
1103   // Look into the base of a field access.
1104   } else if (const MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
1105     return isBlockVarRef(mem->getBase());
1106 
1107   // Look into the base of a subscript.
1108   } else if (const ArraySubscriptExpr *sub = dyn_cast<ArraySubscriptExpr>(E)) {
1109     return isBlockVarRef(sub->getBase());
1110   }
1111 
1112   return false;
1113 }
1114 
1115 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
1116   // For an assignment to work, the value on the right has
1117   // to be compatible with the value on the left.
1118   assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
1119                                                  E->getRHS()->getType())
1120          && "Invalid assignment");
1121 
1122   // If the LHS might be a __block variable, and the RHS can
1123   // potentially cause a block copy, we need to evaluate the RHS first
1124   // so that the assignment goes the right place.
1125   // This is pretty semantically fragile.
1126   if (isBlockVarRef(E->getLHS()) &&
1127       E->getRHS()->HasSideEffects(CGF.getContext())) {
1128     // Ensure that we have a destination, and evaluate the RHS into that.
1129     EnsureDest(E->getRHS()->getType());
1130     Visit(E->getRHS());
1131 
1132     // Now emit the LHS and copy into it.
1133     LValue LHS = CGF.EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
1134 
1135     // That copy is an atomic copy if the LHS is atomic.
1136     if (LHS.getType()->isAtomicType() ||
1137         CGF.LValueIsSuitableForInlineAtomic(LHS)) {
1138       CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false);
1139       return;
1140     }
1141 
1142     EmitCopy(E->getLHS()->getType(),
1143              AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed,
1144                                      needsGC(E->getLHS()->getType()),
1145                                      AggValueSlot::IsAliased,
1146                                      AggValueSlot::MayOverlap),
1147              Dest);
1148     return;
1149   }
1150 
1151   LValue LHS = CGF.EmitLValue(E->getLHS());
1152 
1153   // If we have an atomic type, evaluate into the destination and then
1154   // do an atomic copy.
1155   if (LHS.getType()->isAtomicType() ||
1156       CGF.LValueIsSuitableForInlineAtomic(LHS)) {
1157     EnsureDest(E->getRHS()->getType());
1158     Visit(E->getRHS());
1159     CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false);
1160     return;
1161   }
1162 
1163   // Codegen the RHS so that it stores directly into the LHS.
1164   AggValueSlot LHSSlot =
1165     AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed,
1166                             needsGC(E->getLHS()->getType()),
1167                             AggValueSlot::IsAliased,
1168                             AggValueSlot::MayOverlap);
1169   // A non-volatile aggregate destination might have volatile member.
1170   if (!LHSSlot.isVolatile() &&
1171       CGF.hasVolatileMember(E->getLHS()->getType()))
1172     LHSSlot.setVolatile(true);
1173 
1174   CGF.EmitAggExpr(E->getRHS(), LHSSlot);
1175 
1176   // Copy into the destination if the assignment isn't ignored.
1177   EmitFinalDestCopy(E->getType(), LHS);
1178 }
1179 
1180 void AggExprEmitter::
1181 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
1182   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
1183   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
1184   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
1185 
1186   // Bind the common expression if necessary.
1187   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
1188 
1189   CodeGenFunction::ConditionalEvaluation eval(CGF);
1190   CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock,
1191                            CGF.getProfileCount(E));
1192 
1193   // Save whether the destination's lifetime is externally managed.
1194   bool isExternallyDestructed = Dest.isExternallyDestructed();
1195 
1196   eval.begin(CGF);
1197   CGF.EmitBlock(LHSBlock);
1198   CGF.incrementProfileCounter(E);
1199   Visit(E->getTrueExpr());
1200   eval.end(CGF);
1201 
1202   assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!");
1203   CGF.Builder.CreateBr(ContBlock);
1204 
1205   // If the result of an agg expression is unused, then the emission
1206   // of the LHS might need to create a destination slot.  That's fine
1207   // with us, and we can safely emit the RHS into the same slot, but
1208   // we shouldn't claim that it's already being destructed.
1209   Dest.setExternallyDestructed(isExternallyDestructed);
1210 
1211   eval.begin(CGF);
1212   CGF.EmitBlock(RHSBlock);
1213   Visit(E->getFalseExpr());
1214   eval.end(CGF);
1215 
1216   CGF.EmitBlock(ContBlock);
1217 }
1218 
1219 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) {
1220   Visit(CE->getChosenSubExpr());
1221 }
1222 
1223 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
1224   Address ArgValue = Address::invalid();
1225   Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
1226 
1227   // If EmitVAArg fails, emit an error.
1228   if (!ArgPtr.isValid()) {
1229     CGF.ErrorUnsupported(VE, "aggregate va_arg expression");
1230     return;
1231   }
1232 
1233   EmitFinalDestCopy(VE->getType(), CGF.MakeAddrLValue(ArgPtr, VE->getType()));
1234 }
1235 
1236 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
1237   // Ensure that we have a slot, but if we already do, remember
1238   // whether it was externally destructed.
1239   bool wasExternallyDestructed = Dest.isExternallyDestructed();
1240   EnsureDest(E->getType());
1241 
1242   // We're going to push a destructor if there isn't already one.
1243   Dest.setExternallyDestructed();
1244 
1245   Visit(E->getSubExpr());
1246 
1247   // Push that destructor we promised.
1248   if (!wasExternallyDestructed)
1249     CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddress());
1250 }
1251 
1252 void
1253 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) {
1254   AggValueSlot Slot = EnsureSlot(E->getType());
1255   CGF.EmitCXXConstructExpr(E, Slot);
1256 }
1257 
1258 void AggExprEmitter::VisitCXXInheritedCtorInitExpr(
1259     const CXXInheritedCtorInitExpr *E) {
1260   AggValueSlot Slot = EnsureSlot(E->getType());
1261   CGF.EmitInheritedCXXConstructorCall(
1262       E->getConstructor(), E->constructsVBase(), Slot.getAddress(),
1263       E->inheritedFromVBase(), E);
1264 }
1265 
1266 void
1267 AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) {
1268   AggValueSlot Slot = EnsureSlot(E->getType());
1269   LValue SlotLV = CGF.MakeAddrLValue(Slot.getAddress(), E->getType());
1270 
1271   // We'll need to enter cleanup scopes in case any of the element
1272   // initializers throws an exception.
1273   SmallVector<EHScopeStack::stable_iterator, 16> Cleanups;
1274   llvm::Instruction *CleanupDominator = nullptr;
1275 
1276   CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin();
1277   for (LambdaExpr::const_capture_init_iterator i = E->capture_init_begin(),
1278                                                e = E->capture_init_end();
1279        i != e; ++i, ++CurField) {
1280     // Emit initialization
1281     LValue LV = CGF.EmitLValueForFieldInitialization(SlotLV, *CurField);
1282     if (CurField->hasCapturedVLAType()) {
1283       CGF.EmitLambdaVLACapture(CurField->getCapturedVLAType(), LV);
1284       continue;
1285     }
1286 
1287     EmitInitializationToLValue(*i, LV);
1288 
1289     // Push a destructor if necessary.
1290     if (QualType::DestructionKind DtorKind =
1291             CurField->getType().isDestructedType()) {
1292       assert(LV.isSimple());
1293       if (CGF.needsEHCleanup(DtorKind)) {
1294         if (!CleanupDominator)
1295           CleanupDominator = CGF.Builder.CreateAlignedLoad(
1296               CGF.Int8Ty,
1297               llvm::Constant::getNullValue(CGF.Int8PtrTy),
1298               CharUnits::One()); // placeholder
1299 
1300         CGF.pushDestroy(EHCleanup, LV.getAddress(), CurField->getType(),
1301                         CGF.getDestroyer(DtorKind), false);
1302         Cleanups.push_back(CGF.EHStack.stable_begin());
1303       }
1304     }
1305   }
1306 
1307   // Deactivate all the partial cleanups in reverse order, which
1308   // generally means popping them.
1309   for (unsigned i = Cleanups.size(); i != 0; --i)
1310     CGF.DeactivateCleanupBlock(Cleanups[i-1], CleanupDominator);
1311 
1312   // Destroy the placeholder if we made one.
1313   if (CleanupDominator)
1314     CleanupDominator->eraseFromParent();
1315 }
1316 
1317 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
1318   CGF.enterFullExpression(E);
1319   CodeGenFunction::RunCleanupsScope cleanups(CGF);
1320   Visit(E->getSubExpr());
1321 }
1322 
1323 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
1324   QualType T = E->getType();
1325   AggValueSlot Slot = EnsureSlot(T);
1326   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T));
1327 }
1328 
1329 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
1330   QualType T = E->getType();
1331   AggValueSlot Slot = EnsureSlot(T);
1332   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T));
1333 }
1334 
1335 /// isSimpleZero - If emitting this value will obviously just cause a store of
1336 /// zero to memory, return true.  This can return false if uncertain, so it just
1337 /// handles simple cases.
1338 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) {
1339   E = E->IgnoreParens();
1340 
1341   // 0
1342   if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E))
1343     return IL->getValue() == 0;
1344   // +0.0
1345   if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E))
1346     return FL->getValue().isPosZero();
1347   // int()
1348   if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) &&
1349       CGF.getTypes().isZeroInitializable(E->getType()))
1350     return true;
1351   // (int*)0 - Null pointer expressions.
1352   if (const CastExpr *ICE = dyn_cast<CastExpr>(E))
1353     return ICE->getCastKind() == CK_NullToPointer &&
1354         CGF.getTypes().isPointerZeroInitializable(E->getType());
1355   // '\0'
1356   if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E))
1357     return CL->getValue() == 0;
1358 
1359   // Otherwise, hard case: conservatively return false.
1360   return false;
1361 }
1362 
1363 
1364 void
1365 AggExprEmitter::EmitInitializationToLValue(Expr *E, LValue LV) {
1366   QualType type = LV.getType();
1367   // FIXME: Ignore result?
1368   // FIXME: Are initializers affected by volatile?
1369   if (Dest.isZeroed() && isSimpleZero(E, CGF)) {
1370     // Storing "i32 0" to a zero'd memory location is a noop.
1371     return;
1372   } else if (isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) {
1373     return EmitNullInitializationToLValue(LV);
1374   } else if (isa<NoInitExpr>(E)) {
1375     // Do nothing.
1376     return;
1377   } else if (type->isReferenceType()) {
1378     RValue RV = CGF.EmitReferenceBindingToExpr(E);
1379     return CGF.EmitStoreThroughLValue(RV, LV);
1380   }
1381 
1382   switch (CGF.getEvaluationKind(type)) {
1383   case TEK_Complex:
1384     CGF.EmitComplexExprIntoLValue(E, LV, /*isInit*/ true);
1385     return;
1386   case TEK_Aggregate:
1387     CGF.EmitAggExpr(E, AggValueSlot::forLValue(LV,
1388                                                AggValueSlot::IsDestructed,
1389                                       AggValueSlot::DoesNotNeedGCBarriers,
1390                                                AggValueSlot::IsNotAliased,
1391                                                AggValueSlot::MayOverlap,
1392                                                Dest.isZeroed()));
1393     return;
1394   case TEK_Scalar:
1395     if (LV.isSimple()) {
1396       CGF.EmitScalarInit(E, /*D=*/nullptr, LV, /*Captured=*/false);
1397     } else {
1398       CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV);
1399     }
1400     return;
1401   }
1402   llvm_unreachable("bad evaluation kind");
1403 }
1404 
1405 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) {
1406   QualType type = lv.getType();
1407 
1408   // If the destination slot is already zeroed out before the aggregate is
1409   // copied into it, we don't have to emit any zeros here.
1410   if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type))
1411     return;
1412 
1413   if (CGF.hasScalarEvaluationKind(type)) {
1414     // For non-aggregates, we can store the appropriate null constant.
1415     llvm::Value *null = CGF.CGM.EmitNullConstant(type);
1416     // Note that the following is not equivalent to
1417     // EmitStoreThroughBitfieldLValue for ARC types.
1418     if (lv.isBitField()) {
1419       CGF.EmitStoreThroughBitfieldLValue(RValue::get(null), lv);
1420     } else {
1421       assert(lv.isSimple());
1422       CGF.EmitStoreOfScalar(null, lv, /* isInitialization */ true);
1423     }
1424   } else {
1425     // There's a potential optimization opportunity in combining
1426     // memsets; that would be easy for arrays, but relatively
1427     // difficult for structures with the current code.
1428     CGF.EmitNullInitialization(lv.getAddress(), lv.getType());
1429   }
1430 }
1431 
1432 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
1433 #if 0
1434   // FIXME: Assess perf here?  Figure out what cases are worth optimizing here
1435   // (Length of globals? Chunks of zeroed-out space?).
1436   //
1437   // If we can, prefer a copy from a global; this is a lot less code for long
1438   // globals, and it's easier for the current optimizers to analyze.
1439   if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) {
1440     llvm::GlobalVariable* GV =
1441     new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true,
1442                              llvm::GlobalValue::InternalLinkage, C, "");
1443     EmitFinalDestCopy(E->getType(), CGF.MakeAddrLValue(GV, E->getType()));
1444     return;
1445   }
1446 #endif
1447   if (E->hadArrayRangeDesignator())
1448     CGF.ErrorUnsupported(E, "GNU array range designator extension");
1449 
1450   if (E->isTransparent())
1451     return Visit(E->getInit(0));
1452 
1453   AggValueSlot Dest = EnsureSlot(E->getType());
1454 
1455   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
1456 
1457   // Handle initialization of an array.
1458   if (E->getType()->isArrayType()) {
1459     auto AType = cast<llvm::ArrayType>(Dest.getAddress().getElementType());
1460     EmitArrayInit(Dest.getAddress(), AType, E->getType(), E);
1461     return;
1462   }
1463 
1464   assert(E->getType()->isRecordType() && "Only support structs/unions here!");
1465 
1466   // Do struct initialization; this code just sets each individual member
1467   // to the approprate value.  This makes bitfield support automatic;
1468   // the disadvantage is that the generated code is more difficult for
1469   // the optimizer, especially with bitfields.
1470   unsigned NumInitElements = E->getNumInits();
1471   RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl();
1472 
1473   // We'll need to enter cleanup scopes in case any of the element
1474   // initializers throws an exception.
1475   SmallVector<EHScopeStack::stable_iterator, 16> cleanups;
1476   llvm::Instruction *cleanupDominator = nullptr;
1477 
1478   unsigned curInitIndex = 0;
1479 
1480   // Emit initialization of base classes.
1481   if (auto *CXXRD = dyn_cast<CXXRecordDecl>(record)) {
1482     assert(E->getNumInits() >= CXXRD->getNumBases() &&
1483            "missing initializer for base class");
1484     for (auto &Base : CXXRD->bases()) {
1485       assert(!Base.isVirtual() && "should not see vbases here");
1486       auto *BaseRD = Base.getType()->getAsCXXRecordDecl();
1487       Address V = CGF.GetAddressOfDirectBaseInCompleteClass(
1488           Dest.getAddress(), CXXRD, BaseRD,
1489           /*isBaseVirtual*/ false);
1490       AggValueSlot AggSlot = AggValueSlot::forAddr(
1491           V, Qualifiers(),
1492           AggValueSlot::IsDestructed,
1493           AggValueSlot::DoesNotNeedGCBarriers,
1494           AggValueSlot::IsNotAliased,
1495           CGF.overlapForBaseInit(CXXRD, BaseRD, Base.isVirtual()));
1496       CGF.EmitAggExpr(E->getInit(curInitIndex++), AggSlot);
1497 
1498       if (QualType::DestructionKind dtorKind =
1499               Base.getType().isDestructedType()) {
1500         CGF.pushDestroy(dtorKind, V, Base.getType());
1501         cleanups.push_back(CGF.EHStack.stable_begin());
1502       }
1503     }
1504   }
1505 
1506   // Prepare a 'this' for CXXDefaultInitExprs.
1507   CodeGenFunction::FieldConstructionScope FCS(CGF, Dest.getAddress());
1508 
1509   if (record->isUnion()) {
1510     // Only initialize one field of a union. The field itself is
1511     // specified by the initializer list.
1512     if (!E->getInitializedFieldInUnion()) {
1513       // Empty union; we have nothing to do.
1514 
1515 #ifndef NDEBUG
1516       // Make sure that it's really an empty and not a failure of
1517       // semantic analysis.
1518       for (const auto *Field : record->fields())
1519         assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed");
1520 #endif
1521       return;
1522     }
1523 
1524     // FIXME: volatility
1525     FieldDecl *Field = E->getInitializedFieldInUnion();
1526 
1527     LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestLV, Field);
1528     if (NumInitElements) {
1529       // Store the initializer into the field
1530       EmitInitializationToLValue(E->getInit(0), FieldLoc);
1531     } else {
1532       // Default-initialize to null.
1533       EmitNullInitializationToLValue(FieldLoc);
1534     }
1535 
1536     return;
1537   }
1538 
1539   // Here we iterate over the fields; this makes it simpler to both
1540   // default-initialize fields and skip over unnamed fields.
1541   for (const auto *field : record->fields()) {
1542     // We're done once we hit the flexible array member.
1543     if (field->getType()->isIncompleteArrayType())
1544       break;
1545 
1546     // Always skip anonymous bitfields.
1547     if (field->isUnnamedBitfield())
1548       continue;
1549 
1550     // We're done if we reach the end of the explicit initializers, we
1551     // have a zeroed object, and the rest of the fields are
1552     // zero-initializable.
1553     if (curInitIndex == NumInitElements && Dest.isZeroed() &&
1554         CGF.getTypes().isZeroInitializable(E->getType()))
1555       break;
1556 
1557 
1558     LValue LV = CGF.EmitLValueForFieldInitialization(DestLV, field);
1559     // We never generate write-barries for initialized fields.
1560     LV.setNonGC(true);
1561 
1562     if (curInitIndex < NumInitElements) {
1563       // Store the initializer into the field.
1564       EmitInitializationToLValue(E->getInit(curInitIndex++), LV);
1565     } else {
1566       // We're out of initializers; default-initialize to null
1567       EmitNullInitializationToLValue(LV);
1568     }
1569 
1570     // Push a destructor if necessary.
1571     // FIXME: if we have an array of structures, all explicitly
1572     // initialized, we can end up pushing a linear number of cleanups.
1573     bool pushedCleanup = false;
1574     if (QualType::DestructionKind dtorKind
1575           = field->getType().isDestructedType()) {
1576       assert(LV.isSimple());
1577       if (CGF.needsEHCleanup(dtorKind)) {
1578         if (!cleanupDominator)
1579           cleanupDominator = CGF.Builder.CreateAlignedLoad(
1580               CGF.Int8Ty,
1581               llvm::Constant::getNullValue(CGF.Int8PtrTy),
1582               CharUnits::One()); // placeholder
1583 
1584         CGF.pushDestroy(EHCleanup, LV.getAddress(), field->getType(),
1585                         CGF.getDestroyer(dtorKind), false);
1586         cleanups.push_back(CGF.EHStack.stable_begin());
1587         pushedCleanup = true;
1588       }
1589     }
1590 
1591     // If the GEP didn't get used because of a dead zero init or something
1592     // else, clean it up for -O0 builds and general tidiness.
1593     if (!pushedCleanup && LV.isSimple())
1594       if (llvm::GetElementPtrInst *GEP =
1595             dyn_cast<llvm::GetElementPtrInst>(LV.getPointer()))
1596         if (GEP->use_empty())
1597           GEP->eraseFromParent();
1598   }
1599 
1600   // Deactivate all the partial cleanups in reverse order, which
1601   // generally means popping them.
1602   for (unsigned i = cleanups.size(); i != 0; --i)
1603     CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator);
1604 
1605   // Destroy the placeholder if we made one.
1606   if (cleanupDominator)
1607     cleanupDominator->eraseFromParent();
1608 }
1609 
1610 void AggExprEmitter::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E,
1611                                             llvm::Value *outerBegin) {
1612   // Emit the common subexpression.
1613   CodeGenFunction::OpaqueValueMapping binding(CGF, E->getCommonExpr());
1614 
1615   Address destPtr = EnsureSlot(E->getType()).getAddress();
1616   uint64_t numElements = E->getArraySize().getZExtValue();
1617 
1618   if (!numElements)
1619     return;
1620 
1621   // destPtr is an array*. Construct an elementType* by drilling down a level.
1622   llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
1623   llvm::Value *indices[] = {zero, zero};
1624   llvm::Value *begin = Builder.CreateInBoundsGEP(destPtr.getPointer(), indices,
1625                                                  "arrayinit.begin");
1626 
1627   // Prepare to special-case multidimensional array initialization: we avoid
1628   // emitting multiple destructor loops in that case.
1629   if (!outerBegin)
1630     outerBegin = begin;
1631   ArrayInitLoopExpr *InnerLoop = dyn_cast<ArrayInitLoopExpr>(E->getSubExpr());
1632 
1633   QualType elementType =
1634       CGF.getContext().getAsArrayType(E->getType())->getElementType();
1635   CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
1636   CharUnits elementAlign =
1637       destPtr.getAlignment().alignmentOfArrayElement(elementSize);
1638 
1639   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1640   llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
1641 
1642   // Jump into the body.
1643   CGF.EmitBlock(bodyBB);
1644   llvm::PHINode *index =
1645       Builder.CreatePHI(zero->getType(), 2, "arrayinit.index");
1646   index->addIncoming(zero, entryBB);
1647   llvm::Value *element = Builder.CreateInBoundsGEP(begin, index);
1648 
1649   // Prepare for a cleanup.
1650   QualType::DestructionKind dtorKind = elementType.isDestructedType();
1651   EHScopeStack::stable_iterator cleanup;
1652   if (CGF.needsEHCleanup(dtorKind) && !InnerLoop) {
1653     if (outerBegin->getType() != element->getType())
1654       outerBegin = Builder.CreateBitCast(outerBegin, element->getType());
1655     CGF.pushRegularPartialArrayCleanup(outerBegin, element, elementType,
1656                                        elementAlign,
1657                                        CGF.getDestroyer(dtorKind));
1658     cleanup = CGF.EHStack.stable_begin();
1659   } else {
1660     dtorKind = QualType::DK_none;
1661   }
1662 
1663   // Emit the actual filler expression.
1664   {
1665     // Temporaries created in an array initialization loop are destroyed
1666     // at the end of each iteration.
1667     CodeGenFunction::RunCleanupsScope CleanupsScope(CGF);
1668     CodeGenFunction::ArrayInitLoopExprScope Scope(CGF, index);
1669     LValue elementLV =
1670         CGF.MakeAddrLValue(Address(element, elementAlign), elementType);
1671 
1672     if (InnerLoop) {
1673       // If the subexpression is an ArrayInitLoopExpr, share its cleanup.
1674       auto elementSlot = AggValueSlot::forLValue(
1675           elementLV, AggValueSlot::IsDestructed,
1676           AggValueSlot::DoesNotNeedGCBarriers,
1677           AggValueSlot::IsNotAliased,
1678           AggValueSlot::DoesNotOverlap);
1679       AggExprEmitter(CGF, elementSlot, false)
1680           .VisitArrayInitLoopExpr(InnerLoop, outerBegin);
1681     } else
1682       EmitInitializationToLValue(E->getSubExpr(), elementLV);
1683   }
1684 
1685   // Move on to the next element.
1686   llvm::Value *nextIndex = Builder.CreateNUWAdd(
1687       index, llvm::ConstantInt::get(CGF.SizeTy, 1), "arrayinit.next");
1688   index->addIncoming(nextIndex, Builder.GetInsertBlock());
1689 
1690   // Leave the loop if we're done.
1691   llvm::Value *done = Builder.CreateICmpEQ(
1692       nextIndex, llvm::ConstantInt::get(CGF.SizeTy, numElements),
1693       "arrayinit.done");
1694   llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
1695   Builder.CreateCondBr(done, endBB, bodyBB);
1696 
1697   CGF.EmitBlock(endBB);
1698 
1699   // Leave the partial-array cleanup if we entered one.
1700   if (dtorKind)
1701     CGF.DeactivateCleanupBlock(cleanup, index);
1702 }
1703 
1704 void AggExprEmitter::VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E) {
1705   AggValueSlot Dest = EnsureSlot(E->getType());
1706 
1707   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
1708   EmitInitializationToLValue(E->getBase(), DestLV);
1709   VisitInitListExpr(E->getUpdater());
1710 }
1711 
1712 //===----------------------------------------------------------------------===//
1713 //                        Entry Points into this File
1714 //===----------------------------------------------------------------------===//
1715 
1716 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of
1717 /// non-zero bytes that will be stored when outputting the initializer for the
1718 /// specified initializer expression.
1719 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) {
1720   E = E->IgnoreParens();
1721 
1722   // 0 and 0.0 won't require any non-zero stores!
1723   if (isSimpleZero(E, CGF)) return CharUnits::Zero();
1724 
1725   // If this is an initlist expr, sum up the size of sizes of the (present)
1726   // elements.  If this is something weird, assume the whole thing is non-zero.
1727   const InitListExpr *ILE = dyn_cast<InitListExpr>(E);
1728   while (ILE && ILE->isTransparent())
1729     ILE = dyn_cast<InitListExpr>(ILE->getInit(0));
1730   if (!ILE || !CGF.getTypes().isZeroInitializable(ILE->getType()))
1731     return CGF.getContext().getTypeSizeInChars(E->getType());
1732 
1733   // InitListExprs for structs have to be handled carefully.  If there are
1734   // reference members, we need to consider the size of the reference, not the
1735   // referencee.  InitListExprs for unions and arrays can't have references.
1736   if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
1737     if (!RT->isUnionType()) {
1738       RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl();
1739       CharUnits NumNonZeroBytes = CharUnits::Zero();
1740 
1741       unsigned ILEElement = 0;
1742       if (auto *CXXRD = dyn_cast<CXXRecordDecl>(SD))
1743         while (ILEElement != CXXRD->getNumBases())
1744           NumNonZeroBytes +=
1745               GetNumNonZeroBytesInInit(ILE->getInit(ILEElement++), CGF);
1746       for (const auto *Field : SD->fields()) {
1747         // We're done once we hit the flexible array member or run out of
1748         // InitListExpr elements.
1749         if (Field->getType()->isIncompleteArrayType() ||
1750             ILEElement == ILE->getNumInits())
1751           break;
1752         if (Field->isUnnamedBitfield())
1753           continue;
1754 
1755         const Expr *E = ILE->getInit(ILEElement++);
1756 
1757         // Reference values are always non-null and have the width of a pointer.
1758         if (Field->getType()->isReferenceType())
1759           NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits(
1760               CGF.getTarget().getPointerWidth(0));
1761         else
1762           NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF);
1763       }
1764 
1765       return NumNonZeroBytes;
1766     }
1767   }
1768 
1769 
1770   CharUnits NumNonZeroBytes = CharUnits::Zero();
1771   for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1772     NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF);
1773   return NumNonZeroBytes;
1774 }
1775 
1776 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of
1777 /// zeros in it, emit a memset and avoid storing the individual zeros.
1778 ///
1779 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E,
1780                                      CodeGenFunction &CGF) {
1781   // If the slot is already known to be zeroed, nothing to do.  Don't mess with
1782   // volatile stores.
1783   if (Slot.isZeroed() || Slot.isVolatile() || !Slot.getAddress().isValid())
1784     return;
1785 
1786   // C++ objects with a user-declared constructor don't need zero'ing.
1787   if (CGF.getLangOpts().CPlusPlus)
1788     if (const RecordType *RT = CGF.getContext()
1789                        .getBaseElementType(E->getType())->getAs<RecordType>()) {
1790       const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1791       if (RD->hasUserDeclaredConstructor())
1792         return;
1793     }
1794 
1795   // If the type is 16-bytes or smaller, prefer individual stores over memset.
1796   CharUnits Size = Slot.getPreferredSize(CGF.getContext(), E->getType());
1797   if (Size <= CharUnits::fromQuantity(16))
1798     return;
1799 
1800   // Check to see if over 3/4 of the initializer are known to be zero.  If so,
1801   // we prefer to emit memset + individual stores for the rest.
1802   CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF);
1803   if (NumNonZeroBytes*4 > Size)
1804     return;
1805 
1806   // Okay, it seems like a good idea to use an initial memset, emit the call.
1807   llvm::Constant *SizeVal = CGF.Builder.getInt64(Size.getQuantity());
1808 
1809   Address Loc = Slot.getAddress();
1810   Loc = CGF.Builder.CreateElementBitCast(Loc, CGF.Int8Ty);
1811   CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, false);
1812 
1813   // Tell the AggExprEmitter that the slot is known zero.
1814   Slot.setZeroed();
1815 }
1816 
1817 
1818 
1819 
1820 /// EmitAggExpr - Emit the computation of the specified expression of aggregate
1821 /// type.  The result is computed into DestPtr.  Note that if DestPtr is null,
1822 /// the value of the aggregate expression is not needed.  If VolatileDest is
1823 /// true, DestPtr cannot be 0.
1824 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot) {
1825   assert(E && hasAggregateEvaluationKind(E->getType()) &&
1826          "Invalid aggregate expression to emit");
1827   assert((Slot.getAddress().isValid() || Slot.isIgnored()) &&
1828          "slot has bits but no address");
1829 
1830   // Optimize the slot if possible.
1831   CheckAggExprForMemSetUse(Slot, E, *this);
1832 
1833   AggExprEmitter(*this, Slot, Slot.isIgnored()).Visit(const_cast<Expr*>(E));
1834 }
1835 
1836 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) {
1837   assert(hasAggregateEvaluationKind(E->getType()) && "Invalid argument!");
1838   Address Temp = CreateMemTemp(E->getType());
1839   LValue LV = MakeAddrLValue(Temp, E->getType());
1840   EmitAggExpr(E, AggValueSlot::forLValue(LV, AggValueSlot::IsNotDestructed,
1841                                          AggValueSlot::DoesNotNeedGCBarriers,
1842                                          AggValueSlot::IsNotAliased,
1843                                          AggValueSlot::DoesNotOverlap));
1844   return LV;
1845 }
1846 
1847 AggValueSlot::Overlap_t CodeGenFunction::overlapForBaseInit(
1848     const CXXRecordDecl *RD, const CXXRecordDecl *BaseRD, bool IsVirtual) {
1849   // Virtual bases are initialized first, in address order, so there's never
1850   // any overlap during their initialization.
1851   //
1852   // FIXME: Under P0840, this is no longer true: the tail padding of a vbase
1853   // of a field could be reused by a vbase of a containing class.
1854   if (IsVirtual)
1855     return AggValueSlot::DoesNotOverlap;
1856 
1857   // If the base class is laid out entirely within the nvsize of the derived
1858   // class, its tail padding cannot yet be initialized, so we can issue
1859   // stores at the full width of the base class.
1860   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
1861   if (Layout.getBaseClassOffset(BaseRD) +
1862           getContext().getASTRecordLayout(BaseRD).getSize() <=
1863       Layout.getNonVirtualSize())
1864     return AggValueSlot::DoesNotOverlap;
1865 
1866   // The tail padding may contain values we need to preserve.
1867   return AggValueSlot::MayOverlap;
1868 }
1869 
1870 void CodeGenFunction::EmitAggregateCopy(LValue Dest, LValue Src, QualType Ty,
1871                                         AggValueSlot::Overlap_t MayOverlap,
1872                                         bool isVolatile) {
1873   assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
1874 
1875   Address DestPtr = Dest.getAddress();
1876   Address SrcPtr = Src.getAddress();
1877 
1878   if (getLangOpts().CPlusPlus) {
1879     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1880       CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
1881       assert((Record->hasTrivialCopyConstructor() ||
1882               Record->hasTrivialCopyAssignment() ||
1883               Record->hasTrivialMoveConstructor() ||
1884               Record->hasTrivialMoveAssignment() ||
1885               Record->isUnion()) &&
1886              "Trying to aggregate-copy a type without a trivial copy/move "
1887              "constructor or assignment operator");
1888       // Ignore empty classes in C++.
1889       if (Record->isEmpty())
1890         return;
1891     }
1892   }
1893 
1894   // Aggregate assignment turns into llvm.memcpy.  This is almost valid per
1895   // C99 6.5.16.1p3, which states "If the value being stored in an object is
1896   // read from another object that overlaps in anyway the storage of the first
1897   // object, then the overlap shall be exact and the two objects shall have
1898   // qualified or unqualified versions of a compatible type."
1899   //
1900   // memcpy is not defined if the source and destination pointers are exactly
1901   // equal, but other compilers do this optimization, and almost every memcpy
1902   // implementation handles this case safely.  If there is a libc that does not
1903   // safely handle this, we can add a target hook.
1904 
1905   // Get data size info for this aggregate. Don't copy the tail padding if this
1906   // might be a potentially-overlapping subobject, since the tail padding might
1907   // be occupied by a different object. Otherwise, copying it is fine.
1908   std::pair<CharUnits, CharUnits> TypeInfo;
1909   if (MayOverlap)
1910     TypeInfo = getContext().getTypeInfoDataSizeInChars(Ty);
1911   else
1912     TypeInfo = getContext().getTypeInfoInChars(Ty);
1913 
1914   llvm::Value *SizeVal = nullptr;
1915   if (TypeInfo.first.isZero()) {
1916     // But note that getTypeInfo returns 0 for a VLA.
1917     if (auto *VAT = dyn_cast_or_null<VariableArrayType>(
1918             getContext().getAsArrayType(Ty))) {
1919       QualType BaseEltTy;
1920       SizeVal = emitArrayLength(VAT, BaseEltTy, DestPtr);
1921       TypeInfo = getContext().getTypeInfoInChars(BaseEltTy);
1922       assert(!TypeInfo.first.isZero());
1923       SizeVal = Builder.CreateNUWMul(
1924           SizeVal,
1925           llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity()));
1926     }
1927   }
1928   if (!SizeVal) {
1929     SizeVal = llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity());
1930   }
1931 
1932   // FIXME: If we have a volatile struct, the optimizer can remove what might
1933   // appear to be `extra' memory ops:
1934   //
1935   // volatile struct { int i; } a, b;
1936   //
1937   // int main() {
1938   //   a = b;
1939   //   a = b;
1940   // }
1941   //
1942   // we need to use a different call here.  We use isVolatile to indicate when
1943   // either the source or the destination is volatile.
1944 
1945   DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1946   SrcPtr = Builder.CreateElementBitCast(SrcPtr, Int8Ty);
1947 
1948   // Don't do any of the memmove_collectable tests if GC isn't set.
1949   if (CGM.getLangOpts().getGC() == LangOptions::NonGC) {
1950     // fall through
1951   } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
1952     RecordDecl *Record = RecordTy->getDecl();
1953     if (Record->hasObjectMember()) {
1954       CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
1955                                                     SizeVal);
1956       return;
1957     }
1958   } else if (Ty->isArrayType()) {
1959     QualType BaseType = getContext().getBaseElementType(Ty);
1960     if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
1961       if (RecordTy->getDecl()->hasObjectMember()) {
1962         CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
1963                                                       SizeVal);
1964         return;
1965       }
1966     }
1967   }
1968 
1969   auto Inst = Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, isVolatile);
1970 
1971   // Determine the metadata to describe the position of any padding in this
1972   // memcpy, as well as the TBAA tags for the members of the struct, in case
1973   // the optimizer wishes to expand it in to scalar memory operations.
1974   if (llvm::MDNode *TBAAStructTag = CGM.getTBAAStructInfo(Ty))
1975     Inst->setMetadata(llvm::LLVMContext::MD_tbaa_struct, TBAAStructTag);
1976 
1977   if (CGM.getCodeGenOpts().NewStructPathTBAA) {
1978     TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForMemoryTransfer(
1979         Dest.getTBAAInfo(), Src.getTBAAInfo());
1980     CGM.DecorateInstructionWithTBAA(Inst, TBAAInfo);
1981   }
1982 }
1983