1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Aggregate Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/StmtVisitor.h"
18 #include "llvm/Constants.h"
19 #include "llvm/Function.h"
20 #include "llvm/GlobalVariable.h"
21 #include "llvm/Support/Compiler.h"
22 #include "llvm/Intrinsics.h"
23 using namespace clang;
24 using namespace CodeGen;
25 
26 //===----------------------------------------------------------------------===//
27 //                        Aggregate Expression Emitter
28 //===----------------------------------------------------------------------===//
29 
30 namespace  {
31 class VISIBILITY_HIDDEN AggExprEmitter : public StmtVisitor<AggExprEmitter> {
32   CodeGenFunction &CGF;
33   CGBuilderTy &Builder;
34   llvm::Value *DestPtr;
35   bool VolatileDest;
36 public:
37   AggExprEmitter(CodeGenFunction &cgf, llvm::Value *destPtr, bool volatileDest)
38     : CGF(cgf), Builder(CGF.Builder),
39       DestPtr(destPtr), VolatileDest(volatileDest) {
40   }
41 
42   //===--------------------------------------------------------------------===//
43   //                               Utilities
44   //===--------------------------------------------------------------------===//
45 
46   /// EmitAggLoadOfLValue - Given an expression with aggregate type that
47   /// represents a value lvalue, this method emits the address of the lvalue,
48   /// then loads the result into DestPtr.
49   void EmitAggLoadOfLValue(const Expr *E);
50 
51   void EmitNonConstInit(InitListExpr *E);
52 
53   //===--------------------------------------------------------------------===//
54   //                            Visitor Methods
55   //===--------------------------------------------------------------------===//
56 
57   void VisitStmt(Stmt *S) {
58     CGF.ErrorUnsupported(S, "aggregate expression");
59   }
60   void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
61   void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
62 
63   // l-values.
64   void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); }
65   void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
66   void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
67   void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
68   void VisitCompoundLiteralExpr(CompoundLiteralExpr *E)
69       { EmitAggLoadOfLValue(E); }
70 
71   void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
72     EmitAggLoadOfLValue(E);
73   }
74 
75   void VisitBlockDeclRefExpr(const BlockDeclRefExpr *E)
76       { EmitAggLoadOfLValue(E); }
77 
78   // Operators.
79   //  case Expr::UnaryOperatorClass:
80   //  case Expr::CastExprClass:
81   void VisitCStyleCastExpr(CStyleCastExpr *E);
82   void VisitImplicitCastExpr(ImplicitCastExpr *E);
83   void VisitCallExpr(const CallExpr *E);
84   void VisitStmtExpr(const StmtExpr *E);
85   void VisitBinaryOperator(const BinaryOperator *BO);
86   void VisitBinAssign(const BinaryOperator *E);
87   void VisitBinComma(const BinaryOperator *E);
88 
89   void VisitObjCMessageExpr(ObjCMessageExpr *E);
90   void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
91     EmitAggLoadOfLValue(E);
92   }
93   void VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E);
94   void VisitObjCKVCRefExpr(ObjCKVCRefExpr *E);
95 
96   void VisitConditionalOperator(const ConditionalOperator *CO);
97   void VisitInitListExpr(InitListExpr *E);
98   void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
99     Visit(DAE->getExpr());
100   }
101   void VisitVAArgExpr(VAArgExpr *E);
102 
103   void EmitInitializationToLValue(Expr *E, LValue Address);
104   void EmitNullInitializationToLValue(LValue Address, QualType T);
105   //  case Expr::ChooseExprClass:
106 
107 };
108 }  // end anonymous namespace.
109 
110 //===----------------------------------------------------------------------===//
111 //                                Utilities
112 //===----------------------------------------------------------------------===//
113 
114 /// EmitAggLoadOfLValue - Given an expression with aggregate type that
115 /// represents a value lvalue, this method emits the address of the lvalue,
116 /// then loads the result into DestPtr.
117 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
118   LValue LV = CGF.EmitLValue(E);
119   assert(LV.isSimple() && "Can't have aggregate bitfield, vector, etc");
120   llvm::Value *SrcPtr = LV.getAddress();
121 
122   // If the result is ignored, don't copy from the value.
123   if (DestPtr == 0)
124     // FIXME: If the source is volatile, we must read from it.
125     return;
126 
127   CGF.EmitAggregateCopy(DestPtr, SrcPtr, E->getType());
128 }
129 
130 //===----------------------------------------------------------------------===//
131 //                            Visitor Methods
132 //===----------------------------------------------------------------------===//
133 
134 void AggExprEmitter::VisitCStyleCastExpr(CStyleCastExpr *E) {
135   // GCC union extension
136   if (E->getType()->isUnionType()) {
137     RecordDecl *SD = E->getType()->getAsRecordType()->getDecl();
138     LValue FieldLoc = CGF.EmitLValueForField(DestPtr, *SD->field_begin(), true, 0);
139     EmitInitializationToLValue(E->getSubExpr(), FieldLoc);
140     return;
141   }
142 
143   Visit(E->getSubExpr());
144 }
145 
146 void AggExprEmitter::VisitImplicitCastExpr(ImplicitCastExpr *E) {
147   assert(CGF.getContext().typesAreCompatible(
148                           E->getSubExpr()->getType().getUnqualifiedType(),
149                           E->getType().getUnqualifiedType()) &&
150          "Implicit cast types must be compatible");
151   Visit(E->getSubExpr());
152 }
153 
154 void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
155   RValue RV = CGF.EmitCallExpr(E);
156   assert(RV.isAggregate() && "Return value must be aggregate value!");
157 
158   // If the result is ignored, don't copy from the value.
159   if (DestPtr == 0)
160     // FIXME: If the source is volatile, we must read from it.
161     return;
162 
163   CGF.EmitAggregateCopy(DestPtr, RV.getAggregateAddr(), E->getType());
164 }
165 
166 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
167   RValue RV = CGF.EmitObjCMessageExpr(E);
168   assert(RV.isAggregate() && "Return value must be aggregate value!");
169 
170   // If the result is ignored, don't copy from the value.
171   if (DestPtr == 0)
172     // FIXME: If the source is volatile, we must read from it.
173     return;
174 
175   CGF.EmitAggregateCopy(DestPtr, RV.getAggregateAddr(), E->getType());
176 }
177 
178 void AggExprEmitter::VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
179   RValue RV = CGF.EmitObjCPropertyGet(E);
180   assert(RV.isAggregate() && "Return value must be aggregate value!");
181 
182   // If the result is ignored, don't copy from the value.
183   if (DestPtr == 0)
184     // FIXME: If the source is volatile, we must read from it.
185     return;
186 
187   CGF.EmitAggregateCopy(DestPtr, RV.getAggregateAddr(), E->getType());
188 }
189 
190 void AggExprEmitter::VisitObjCKVCRefExpr(ObjCKVCRefExpr *E) {
191   RValue RV = CGF.EmitObjCPropertyGet(E);
192   assert(RV.isAggregate() && "Return value must be aggregate value!");
193 
194   // If the result is ignored, don't copy from the value.
195   if (DestPtr == 0)
196     // FIXME: If the source is volatile, we must read from it.
197     return;
198 
199   CGF.EmitAggregateCopy(DestPtr, RV.getAggregateAddr(), E->getType());
200 }
201 
202 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
203   CGF.EmitAnyExpr(E->getLHS());
204   CGF.EmitAggExpr(E->getRHS(), DestPtr, false);
205 }
206 
207 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
208   CGF.EmitCompoundStmt(*E->getSubStmt(), true, DestPtr, VolatileDest);
209 }
210 
211 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
212   CGF.ErrorUnsupported(E, "aggregate binary expression");
213 }
214 
215 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
216   // For an assignment to work, the value on the right has
217   // to be compatible with the value on the left.
218   assert(CGF.getContext().typesAreCompatible(
219              E->getLHS()->getType().getUnqualifiedType(),
220              E->getRHS()->getType().getUnqualifiedType())
221          && "Invalid assignment");
222   LValue LHS = CGF.EmitLValue(E->getLHS());
223 
224   // We have to special case property setters, otherwise we must have
225   // a simple lvalue (no aggregates inside vectors, bitfields).
226   if (LHS.isPropertyRef()) {
227     // FIXME: Volatility?
228     llvm::Value *AggLoc = DestPtr;
229     if (!AggLoc)
230       AggLoc = CGF.CreateTempAlloca(CGF.ConvertType(E->getRHS()->getType()));
231     CGF.EmitAggExpr(E->getRHS(), AggLoc, false);
232     CGF.EmitObjCPropertySet(LHS.getPropertyRefExpr(),
233                             RValue::getAggregate(AggLoc));
234   }
235   else if (LHS.isKVCRef()) {
236     // FIXME: Volatility?
237     llvm::Value *AggLoc = DestPtr;
238     if (!AggLoc)
239       AggLoc = CGF.CreateTempAlloca(CGF.ConvertType(E->getRHS()->getType()));
240     CGF.EmitAggExpr(E->getRHS(), AggLoc, false);
241     CGF.EmitObjCPropertySet(LHS.getKVCRefExpr(),
242                             RValue::getAggregate(AggLoc));
243   } else {
244     // Codegen the RHS so that it stores directly into the LHS.
245     CGF.EmitAggExpr(E->getRHS(), LHS.getAddress(), false /*FIXME: VOLATILE LHS*/);
246 
247     if (DestPtr == 0)
248       return;
249 
250     // If the result of the assignment is used, copy the RHS there also.
251     CGF.EmitAggregateCopy(DestPtr, LHS.getAddress(), E->getType());
252   }
253 }
254 
255 void AggExprEmitter::VisitConditionalOperator(const ConditionalOperator *E) {
256   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
257   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
258   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
259 
260   llvm::Value *Cond = CGF.EvaluateExprAsBool(E->getCond());
261   Builder.CreateCondBr(Cond, LHSBlock, RHSBlock);
262 
263   CGF.EmitBlock(LHSBlock);
264 
265   // Handle the GNU extension for missing LHS.
266   assert(E->getLHS() && "Must have LHS for aggregate value");
267 
268   Visit(E->getLHS());
269   CGF.EmitBranch(ContBlock);
270 
271   CGF.EmitBlock(RHSBlock);
272 
273   Visit(E->getRHS());
274   CGF.EmitBranch(ContBlock);
275 
276   CGF.EmitBlock(ContBlock);
277 }
278 
279 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
280   llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
281   llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
282 
283   if (!ArgPtr) {
284     CGF.ErrorUnsupported(VE, "aggregate va_arg expression");
285     return;
286   }
287 
288   if (DestPtr)
289     // FIXME: volatility
290     CGF.EmitAggregateCopy(DestPtr, ArgPtr, VE->getType());
291 }
292 
293 void AggExprEmitter::EmitNonConstInit(InitListExpr *E) {
294   const llvm::PointerType *APType =
295     cast<llvm::PointerType>(DestPtr->getType());
296   const llvm::Type *DestType = APType->getElementType();
297 
298   if (E->hadArrayRangeDesignator()) {
299     CGF.ErrorUnsupported(E, "GNU array range designator extension");
300   }
301 
302   if (const llvm::ArrayType *AType = dyn_cast<llvm::ArrayType>(DestType)) {
303     unsigned NumInitElements = E->getNumInits();
304 
305     unsigned i;
306     for (i = 0; i != NumInitElements; ++i) {
307       llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array");
308       Expr *Init = E->getInit(i);
309       if (isa<InitListExpr>(Init))
310         CGF.EmitAggExpr(Init, NextVal, VolatileDest);
311       else
312         // FIXME: volatility
313         Builder.CreateStore(CGF.EmitScalarExpr(Init), NextVal);
314     }
315 
316     // Emit remaining default initializers
317     unsigned NumArrayElements = AType->getNumElements();
318     QualType QType = E->getInit(0)->getType();
319     const llvm::Type *EType = AType->getElementType();
320     for (/*Do not initialize i*/; i < NumArrayElements; ++i) {
321       llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array");
322       if (EType->isSingleValueType())
323         // FIXME: volatility
324         Builder.CreateStore(llvm::Constant::getNullValue(EType), NextVal);
325       else
326         CGF.EmitAggregateClear(NextVal, QType);
327     }
328   } else
329     assert(false && "Invalid initializer");
330 }
331 
332 void AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV) {
333   // FIXME: Are initializers affected by volatile?
334   if (isa<ImplicitValueInitExpr>(E)) {
335     EmitNullInitializationToLValue(LV, E->getType());
336   } else if (E->getType()->isComplexType()) {
337     CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false);
338   } else if (CGF.hasAggregateLLVMType(E->getType())) {
339     CGF.EmitAnyExpr(E, LV.getAddress(), false);
340   } else {
341     CGF.EmitStoreThroughLValue(CGF.EmitAnyExpr(E), LV, E->getType());
342   }
343 }
344 
345 void AggExprEmitter::EmitNullInitializationToLValue(LValue LV, QualType T) {
346   if (!CGF.hasAggregateLLVMType(T)) {
347     // For non-aggregates, we can store zero
348     llvm::Value *Null = llvm::Constant::getNullValue(CGF.ConvertType(T));
349     CGF.EmitStoreThroughLValue(RValue::get(Null), LV, T);
350   } else {
351     // Otherwise, just memset the whole thing to zero.  This is legal
352     // because in LLVM, all default initializers are guaranteed to have a
353     // bit pattern of all zeros.
354     // There's a potential optimization opportunity in combining
355     // memsets; that would be easy for arrays, but relatively
356     // difficult for structures with the current code.
357     const llvm::Type *SizeTy = llvm::Type::Int64Ty;
358     llvm::Value *MemSet = CGF.CGM.getIntrinsic(llvm::Intrinsic::memset,
359                                                &SizeTy, 1);
360     uint64_t Size = CGF.getContext().getTypeSize(T);
361 
362     const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
363     llvm::Value* DestPtr = Builder.CreateBitCast(LV.getAddress(), BP, "tmp");
364     Builder.CreateCall4(MemSet, DestPtr,
365                         llvm::ConstantInt::get(llvm::Type::Int8Ty, 0),
366                         llvm::ConstantInt::get(SizeTy, Size/8),
367                         llvm::ConstantInt::get(llvm::Type::Int32Ty, 0));
368   }
369 }
370 
371 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
372 #if 0
373   // FIXME: Disabled while we figure out what to do about
374   // test/CodeGen/bitfield.c
375   //
376   // If we can, prefer a copy from a global; this is a lot less
377   // code for long globals, and it's easier for the current optimizers
378   // to analyze.
379   // FIXME: Should we really be doing this? Should we try to avoid
380   // cases where we emit a global with a lot of zeros?  Should
381   // we try to avoid short globals?
382   if (E->isConstantInitializer(CGF.getContext(), 0)) {
383     llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, &CGF);
384     llvm::GlobalVariable* GV =
385     new llvm::GlobalVariable(C->getType(), true,
386                              llvm::GlobalValue::InternalLinkage,
387                              C, "", &CGF.CGM.getModule(), 0);
388     CGF.EmitAggregateCopy(DestPtr, GV, E->getType());
389     return;
390   }
391 #endif
392   if (E->hadArrayRangeDesignator()) {
393     CGF.ErrorUnsupported(E, "GNU array range designator extension");
394   }
395 
396   // Handle initialization of an array.
397   if (E->getType()->isArrayType()) {
398     const llvm::PointerType *APType =
399       cast<llvm::PointerType>(DestPtr->getType());
400     const llvm::ArrayType *AType =
401       cast<llvm::ArrayType>(APType->getElementType());
402 
403     uint64_t NumInitElements = E->getNumInits();
404 
405     if (E->getNumInits() > 0) {
406       QualType T1 = E->getType();
407       QualType T2 = E->getInit(0)->getType();
408       if (CGF.getContext().getCanonicalType(T1).getUnqualifiedType() ==
409           CGF.getContext().getCanonicalType(T2).getUnqualifiedType()) {
410         EmitAggLoadOfLValue(E->getInit(0));
411         return;
412       }
413     }
414 
415     uint64_t NumArrayElements = AType->getNumElements();
416     QualType ElementType = CGF.getContext().getCanonicalType(E->getType());
417     ElementType = CGF.getContext().getAsArrayType(ElementType)->getElementType();
418 
419     unsigned CVRqualifier = ElementType.getCVRQualifiers();
420 
421     for (uint64_t i = 0; i != NumArrayElements; ++i) {
422       llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array");
423       if (i < NumInitElements)
424         EmitInitializationToLValue(E->getInit(i),
425                                    LValue::MakeAddr(NextVal, CVRqualifier));
426       else
427         EmitNullInitializationToLValue(LValue::MakeAddr(NextVal, CVRqualifier),
428                                        ElementType);
429     }
430     return;
431   }
432 
433   assert(E->getType()->isRecordType() && "Only support structs/unions here!");
434 
435   // Do struct initialization; this code just sets each individual member
436   // to the approprate value.  This makes bitfield support automatic;
437   // the disadvantage is that the generated code is more difficult for
438   // the optimizer, especially with bitfields.
439   unsigned NumInitElements = E->getNumInits();
440   RecordDecl *SD = E->getType()->getAsRecordType()->getDecl();
441   unsigned CurInitVal = 0;
442 
443   if (E->getType()->isUnionType()) {
444     // Only initialize one field of a union. The field itself is
445     // specified by the initializer list.
446     if (!E->getInitializedFieldInUnion()) {
447       // Empty union; we have nothing to do.
448 
449 #ifndef NDEBUG
450       // Make sure that it's really an empty and not a failure of
451       // semantic analysis.
452       for (RecordDecl::field_iterator Field = SD->field_begin(),
453                                    FieldEnd = SD->field_end();
454            Field != FieldEnd; ++Field)
455         assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed");
456 #endif
457       return;
458     }
459 
460     // FIXME: volatility
461     FieldDecl *Field = E->getInitializedFieldInUnion();
462     LValue FieldLoc = CGF.EmitLValueForField(DestPtr, Field, true, 0);
463 
464     if (NumInitElements) {
465       // Store the initializer into the field
466       EmitInitializationToLValue(E->getInit(0), FieldLoc);
467     } else {
468       // Default-initialize to null
469       EmitNullInitializationToLValue(FieldLoc, Field->getType());
470     }
471 
472     return;
473   }
474 
475   // Here we iterate over the fields; this makes it simpler to both
476   // default-initialize fields and skip over unnamed fields.
477   for (RecordDecl::field_iterator Field = SD->field_begin(),
478                                FieldEnd = SD->field_end();
479        Field != FieldEnd; ++Field) {
480     // We're done once we hit the flexible array member
481     if (Field->getType()->isIncompleteArrayType())
482       break;
483 
484     if (Field->isUnnamedBitfield())
485       continue;
486 
487     // FIXME: volatility
488     LValue FieldLoc = CGF.EmitLValueForField(DestPtr, *Field, false, 0);
489     if (CurInitVal < NumInitElements) {
490       // Store the initializer into the field
491       EmitInitializationToLValue(E->getInit(CurInitVal++), FieldLoc);
492     } else {
493       // We're out of initalizers; default-initialize to null
494       EmitNullInitializationToLValue(FieldLoc, Field->getType());
495     }
496   }
497 }
498 
499 //===----------------------------------------------------------------------===//
500 //                        Entry Points into this File
501 //===----------------------------------------------------------------------===//
502 
503 /// EmitAggExpr - Emit the computation of the specified expression of
504 /// aggregate type.  The result is computed into DestPtr.  Note that if
505 /// DestPtr is null, the value of the aggregate expression is not needed.
506 void CodeGenFunction::EmitAggExpr(const Expr *E, llvm::Value *DestPtr,
507                                   bool VolatileDest) {
508   assert(E && hasAggregateLLVMType(E->getType()) &&
509          "Invalid aggregate expression to emit");
510 
511   AggExprEmitter(*this, DestPtr, VolatileDest).Visit(const_cast<Expr*>(E));
512 }
513 
514 void CodeGenFunction::EmitAggregateClear(llvm::Value *DestPtr, QualType Ty) {
515   assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
516 
517   EmitMemSetToZero(DestPtr, Ty);
518 }
519 
520 void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr,
521                                         llvm::Value *SrcPtr, QualType Ty) {
522   assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
523 
524   // Aggregate assignment turns into llvm.memcpy.  This is almost valid per
525   // C99 6.5.16.1p3, which states "If the value being stored in an object is
526   // read from another object that overlaps in anyway the storage of the first
527   // object, then the overlap shall be exact and the two objects shall have
528   // qualified or unqualified versions of a compatible type."
529   //
530   // memcpy is not defined if the source and destination pointers are exactly
531   // equal, but other compilers do this optimization, and almost every memcpy
532   // implementation handles this case safely.  If there is a libc that does not
533   // safely handle this, we can add a target hook.
534   const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
535   if (DestPtr->getType() != BP)
536     DestPtr = Builder.CreateBitCast(DestPtr, BP, "tmp");
537   if (SrcPtr->getType() != BP)
538     SrcPtr = Builder.CreateBitCast(SrcPtr, BP, "tmp");
539 
540   // Get size and alignment info for this aggregate.
541   std::pair<uint64_t, unsigned> TypeInfo = getContext().getTypeInfo(Ty);
542 
543   // FIXME: Handle variable sized types.
544   const llvm::Type *IntPtr = llvm::IntegerType::get(LLVMPointerWidth);
545 
546   Builder.CreateCall4(CGM.getMemCpyFn(),
547                       DestPtr, SrcPtr,
548                       // TypeInfo.first describes size in bits.
549                       llvm::ConstantInt::get(IntPtr, TypeInfo.first/8),
550                       llvm::ConstantInt::get(llvm::Type::Int32Ty,
551                                              TypeInfo.second/8));
552 }
553