1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Aggregate Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "clang/AST/ASTContext.h" 17 #include "clang/AST/StmtVisitor.h" 18 #include "llvm/Constants.h" 19 #include "llvm/Function.h" 20 #include "llvm/GlobalVariable.h" 21 #include "llvm/Support/Compiler.h" 22 #include "llvm/Intrinsics.h" 23 using namespace clang; 24 using namespace CodeGen; 25 26 //===----------------------------------------------------------------------===// 27 // Aggregate Expression Emitter 28 //===----------------------------------------------------------------------===// 29 30 namespace { 31 class VISIBILITY_HIDDEN AggExprEmitter : public StmtVisitor<AggExprEmitter> { 32 CodeGenFunction &CGF; 33 CGBuilderTy &Builder; 34 llvm::Value *DestPtr; 35 bool VolatileDest; 36 public: 37 AggExprEmitter(CodeGenFunction &cgf, llvm::Value *destPtr, bool volatileDest) 38 : CGF(cgf), Builder(CGF.Builder), 39 DestPtr(destPtr), VolatileDest(volatileDest) { 40 } 41 42 //===--------------------------------------------------------------------===// 43 // Utilities 44 //===--------------------------------------------------------------------===// 45 46 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 47 /// represents a value lvalue, this method emits the address of the lvalue, 48 /// then loads the result into DestPtr. 49 void EmitAggLoadOfLValue(const Expr *E); 50 51 void EmitNonConstInit(InitListExpr *E); 52 53 //===--------------------------------------------------------------------===// 54 // Visitor Methods 55 //===--------------------------------------------------------------------===// 56 57 void VisitStmt(Stmt *S) { 58 CGF.ErrorUnsupported(S, "aggregate expression"); 59 } 60 void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); } 61 void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); } 62 63 // l-values. 64 void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); } 65 void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); } 66 void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); } 67 void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); } 68 void VisitCompoundLiteralExpr(CompoundLiteralExpr *E) 69 { EmitAggLoadOfLValue(E); } 70 71 void VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 72 EmitAggLoadOfLValue(E); 73 } 74 75 void VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) 76 { EmitAggLoadOfLValue(E); } 77 78 // Operators. 79 // case Expr::UnaryOperatorClass: 80 // case Expr::CastExprClass: 81 void VisitCStyleCastExpr(CStyleCastExpr *E); 82 void VisitImplicitCastExpr(ImplicitCastExpr *E); 83 void VisitCallExpr(const CallExpr *E); 84 void VisitStmtExpr(const StmtExpr *E); 85 void VisitBinaryOperator(const BinaryOperator *BO); 86 void VisitBinAssign(const BinaryOperator *E); 87 void VisitBinComma(const BinaryOperator *E); 88 89 void VisitObjCMessageExpr(ObjCMessageExpr *E); 90 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 91 EmitAggLoadOfLValue(E); 92 } 93 void VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E); 94 void VisitObjCKVCRefExpr(ObjCKVCRefExpr *E); 95 96 void VisitConditionalOperator(const ConditionalOperator *CO); 97 void VisitInitListExpr(InitListExpr *E); 98 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 99 Visit(DAE->getExpr()); 100 } 101 void VisitVAArgExpr(VAArgExpr *E); 102 103 void EmitInitializationToLValue(Expr *E, LValue Address); 104 void EmitNullInitializationToLValue(LValue Address, QualType T); 105 // case Expr::ChooseExprClass: 106 107 }; 108 } // end anonymous namespace. 109 110 //===----------------------------------------------------------------------===// 111 // Utilities 112 //===----------------------------------------------------------------------===// 113 114 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 115 /// represents a value lvalue, this method emits the address of the lvalue, 116 /// then loads the result into DestPtr. 117 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) { 118 LValue LV = CGF.EmitLValue(E); 119 assert(LV.isSimple() && "Can't have aggregate bitfield, vector, etc"); 120 llvm::Value *SrcPtr = LV.getAddress(); 121 122 // If the result is ignored, don't copy from the value. 123 if (DestPtr == 0) 124 // FIXME: If the source is volatile, we must read from it. 125 return; 126 127 CGF.EmitAggregateCopy(DestPtr, SrcPtr, E->getType()); 128 } 129 130 //===----------------------------------------------------------------------===// 131 // Visitor Methods 132 //===----------------------------------------------------------------------===// 133 134 void AggExprEmitter::VisitCStyleCastExpr(CStyleCastExpr *E) { 135 // GCC union extension 136 if (E->getType()->isUnionType()) { 137 RecordDecl *SD = E->getType()->getAsRecordType()->getDecl(); 138 LValue FieldLoc = CGF.EmitLValueForField(DestPtr, *SD->field_begin(), true, 0); 139 EmitInitializationToLValue(E->getSubExpr(), FieldLoc); 140 return; 141 } 142 143 Visit(E->getSubExpr()); 144 } 145 146 void AggExprEmitter::VisitImplicitCastExpr(ImplicitCastExpr *E) { 147 assert(CGF.getContext().typesAreCompatible( 148 E->getSubExpr()->getType().getUnqualifiedType(), 149 E->getType().getUnqualifiedType()) && 150 "Implicit cast types must be compatible"); 151 Visit(E->getSubExpr()); 152 } 153 154 void AggExprEmitter::VisitCallExpr(const CallExpr *E) { 155 RValue RV = CGF.EmitCallExpr(E); 156 assert(RV.isAggregate() && "Return value must be aggregate value!"); 157 158 // If the result is ignored, don't copy from the value. 159 if (DestPtr == 0) 160 // FIXME: If the source is volatile, we must read from it. 161 return; 162 163 CGF.EmitAggregateCopy(DestPtr, RV.getAggregateAddr(), E->getType()); 164 } 165 166 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) { 167 RValue RV = CGF.EmitObjCMessageExpr(E); 168 assert(RV.isAggregate() && "Return value must be aggregate value!"); 169 170 // If the result is ignored, don't copy from the value. 171 if (DestPtr == 0) 172 // FIXME: If the source is volatile, we must read from it. 173 return; 174 175 CGF.EmitAggregateCopy(DestPtr, RV.getAggregateAddr(), E->getType()); 176 } 177 178 void AggExprEmitter::VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) { 179 RValue RV = CGF.EmitObjCPropertyGet(E); 180 assert(RV.isAggregate() && "Return value must be aggregate value!"); 181 182 // If the result is ignored, don't copy from the value. 183 if (DestPtr == 0) 184 // FIXME: If the source is volatile, we must read from it. 185 return; 186 187 CGF.EmitAggregateCopy(DestPtr, RV.getAggregateAddr(), E->getType()); 188 } 189 190 void AggExprEmitter::VisitObjCKVCRefExpr(ObjCKVCRefExpr *E) { 191 RValue RV = CGF.EmitObjCPropertyGet(E); 192 assert(RV.isAggregate() && "Return value must be aggregate value!"); 193 194 // If the result is ignored, don't copy from the value. 195 if (DestPtr == 0) 196 // FIXME: If the source is volatile, we must read from it. 197 return; 198 199 CGF.EmitAggregateCopy(DestPtr, RV.getAggregateAddr(), E->getType()); 200 } 201 202 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) { 203 CGF.EmitAnyExpr(E->getLHS()); 204 CGF.EmitAggExpr(E->getRHS(), DestPtr, false); 205 } 206 207 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) { 208 CGF.EmitCompoundStmt(*E->getSubStmt(), true, DestPtr, VolatileDest); 209 } 210 211 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) { 212 CGF.ErrorUnsupported(E, "aggregate binary expression"); 213 } 214 215 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) { 216 // For an assignment to work, the value on the right has 217 // to be compatible with the value on the left. 218 assert(CGF.getContext().typesAreCompatible( 219 E->getLHS()->getType().getUnqualifiedType(), 220 E->getRHS()->getType().getUnqualifiedType()) 221 && "Invalid assignment"); 222 LValue LHS = CGF.EmitLValue(E->getLHS()); 223 224 // We have to special case property setters, otherwise we must have 225 // a simple lvalue (no aggregates inside vectors, bitfields). 226 if (LHS.isPropertyRef()) { 227 // FIXME: Volatility? 228 llvm::Value *AggLoc = DestPtr; 229 if (!AggLoc) 230 AggLoc = CGF.CreateTempAlloca(CGF.ConvertType(E->getRHS()->getType())); 231 CGF.EmitAggExpr(E->getRHS(), AggLoc, false); 232 CGF.EmitObjCPropertySet(LHS.getPropertyRefExpr(), 233 RValue::getAggregate(AggLoc)); 234 } 235 else if (LHS.isKVCRef()) { 236 // FIXME: Volatility? 237 llvm::Value *AggLoc = DestPtr; 238 if (!AggLoc) 239 AggLoc = CGF.CreateTempAlloca(CGF.ConvertType(E->getRHS()->getType())); 240 CGF.EmitAggExpr(E->getRHS(), AggLoc, false); 241 CGF.EmitObjCPropertySet(LHS.getKVCRefExpr(), 242 RValue::getAggregate(AggLoc)); 243 } else { 244 // Codegen the RHS so that it stores directly into the LHS. 245 CGF.EmitAggExpr(E->getRHS(), LHS.getAddress(), false /*FIXME: VOLATILE LHS*/); 246 247 if (DestPtr == 0) 248 return; 249 250 // If the result of the assignment is used, copy the RHS there also. 251 CGF.EmitAggregateCopy(DestPtr, LHS.getAddress(), E->getType()); 252 } 253 } 254 255 void AggExprEmitter::VisitConditionalOperator(const ConditionalOperator *E) { 256 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 257 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 258 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 259 260 llvm::Value *Cond = CGF.EvaluateExprAsBool(E->getCond()); 261 Builder.CreateCondBr(Cond, LHSBlock, RHSBlock); 262 263 CGF.EmitBlock(LHSBlock); 264 265 // Handle the GNU extension for missing LHS. 266 assert(E->getLHS() && "Must have LHS for aggregate value"); 267 268 Visit(E->getLHS()); 269 CGF.EmitBranch(ContBlock); 270 271 CGF.EmitBlock(RHSBlock); 272 273 Visit(E->getRHS()); 274 CGF.EmitBranch(ContBlock); 275 276 CGF.EmitBlock(ContBlock); 277 } 278 279 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 280 llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr()); 281 llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType()); 282 283 if (!ArgPtr) { 284 CGF.ErrorUnsupported(VE, "aggregate va_arg expression"); 285 return; 286 } 287 288 if (DestPtr) 289 // FIXME: volatility 290 CGF.EmitAggregateCopy(DestPtr, ArgPtr, VE->getType()); 291 } 292 293 void AggExprEmitter::EmitNonConstInit(InitListExpr *E) { 294 const llvm::PointerType *APType = 295 cast<llvm::PointerType>(DestPtr->getType()); 296 const llvm::Type *DestType = APType->getElementType(); 297 298 if (E->hadArrayRangeDesignator()) { 299 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 300 } 301 302 if (const llvm::ArrayType *AType = dyn_cast<llvm::ArrayType>(DestType)) { 303 unsigned NumInitElements = E->getNumInits(); 304 305 unsigned i; 306 for (i = 0; i != NumInitElements; ++i) { 307 llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array"); 308 Expr *Init = E->getInit(i); 309 if (isa<InitListExpr>(Init)) 310 CGF.EmitAggExpr(Init, NextVal, VolatileDest); 311 else 312 // FIXME: volatility 313 Builder.CreateStore(CGF.EmitScalarExpr(Init), NextVal); 314 } 315 316 // Emit remaining default initializers 317 unsigned NumArrayElements = AType->getNumElements(); 318 QualType QType = E->getInit(0)->getType(); 319 const llvm::Type *EType = AType->getElementType(); 320 for (/*Do not initialize i*/; i < NumArrayElements; ++i) { 321 llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array"); 322 if (EType->isSingleValueType()) 323 // FIXME: volatility 324 Builder.CreateStore(llvm::Constant::getNullValue(EType), NextVal); 325 else 326 CGF.EmitAggregateClear(NextVal, QType); 327 } 328 } else 329 assert(false && "Invalid initializer"); 330 } 331 332 void AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV) { 333 // FIXME: Are initializers affected by volatile? 334 if (isa<ImplicitValueInitExpr>(E)) { 335 EmitNullInitializationToLValue(LV, E->getType()); 336 } else if (E->getType()->isComplexType()) { 337 CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false); 338 } else if (CGF.hasAggregateLLVMType(E->getType())) { 339 CGF.EmitAnyExpr(E, LV.getAddress(), false); 340 } else { 341 CGF.EmitStoreThroughLValue(CGF.EmitAnyExpr(E), LV, E->getType()); 342 } 343 } 344 345 void AggExprEmitter::EmitNullInitializationToLValue(LValue LV, QualType T) { 346 if (!CGF.hasAggregateLLVMType(T)) { 347 // For non-aggregates, we can store zero 348 llvm::Value *Null = llvm::Constant::getNullValue(CGF.ConvertType(T)); 349 CGF.EmitStoreThroughLValue(RValue::get(Null), LV, T); 350 } else { 351 // Otherwise, just memset the whole thing to zero. This is legal 352 // because in LLVM, all default initializers are guaranteed to have a 353 // bit pattern of all zeros. 354 // There's a potential optimization opportunity in combining 355 // memsets; that would be easy for arrays, but relatively 356 // difficult for structures with the current code. 357 const llvm::Type *SizeTy = llvm::Type::Int64Ty; 358 llvm::Value *MemSet = CGF.CGM.getIntrinsic(llvm::Intrinsic::memset, 359 &SizeTy, 1); 360 uint64_t Size = CGF.getContext().getTypeSize(T); 361 362 const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 363 llvm::Value* DestPtr = Builder.CreateBitCast(LV.getAddress(), BP, "tmp"); 364 Builder.CreateCall4(MemSet, DestPtr, 365 llvm::ConstantInt::get(llvm::Type::Int8Ty, 0), 366 llvm::ConstantInt::get(SizeTy, Size/8), 367 llvm::ConstantInt::get(llvm::Type::Int32Ty, 0)); 368 } 369 } 370 371 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) { 372 #if 0 373 // FIXME: Disabled while we figure out what to do about 374 // test/CodeGen/bitfield.c 375 // 376 // If we can, prefer a copy from a global; this is a lot less 377 // code for long globals, and it's easier for the current optimizers 378 // to analyze. 379 // FIXME: Should we really be doing this? Should we try to avoid 380 // cases where we emit a global with a lot of zeros? Should 381 // we try to avoid short globals? 382 if (E->isConstantInitializer(CGF.getContext(), 0)) { 383 llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, &CGF); 384 llvm::GlobalVariable* GV = 385 new llvm::GlobalVariable(C->getType(), true, 386 llvm::GlobalValue::InternalLinkage, 387 C, "", &CGF.CGM.getModule(), 0); 388 CGF.EmitAggregateCopy(DestPtr, GV, E->getType()); 389 return; 390 } 391 #endif 392 if (E->hadArrayRangeDesignator()) { 393 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 394 } 395 396 // Handle initialization of an array. 397 if (E->getType()->isArrayType()) { 398 const llvm::PointerType *APType = 399 cast<llvm::PointerType>(DestPtr->getType()); 400 const llvm::ArrayType *AType = 401 cast<llvm::ArrayType>(APType->getElementType()); 402 403 uint64_t NumInitElements = E->getNumInits(); 404 405 if (E->getNumInits() > 0) { 406 QualType T1 = E->getType(); 407 QualType T2 = E->getInit(0)->getType(); 408 if (CGF.getContext().getCanonicalType(T1).getUnqualifiedType() == 409 CGF.getContext().getCanonicalType(T2).getUnqualifiedType()) { 410 EmitAggLoadOfLValue(E->getInit(0)); 411 return; 412 } 413 } 414 415 uint64_t NumArrayElements = AType->getNumElements(); 416 QualType ElementType = CGF.getContext().getCanonicalType(E->getType()); 417 ElementType = CGF.getContext().getAsArrayType(ElementType)->getElementType(); 418 419 unsigned CVRqualifier = ElementType.getCVRQualifiers(); 420 421 for (uint64_t i = 0; i != NumArrayElements; ++i) { 422 llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array"); 423 if (i < NumInitElements) 424 EmitInitializationToLValue(E->getInit(i), 425 LValue::MakeAddr(NextVal, CVRqualifier)); 426 else 427 EmitNullInitializationToLValue(LValue::MakeAddr(NextVal, CVRqualifier), 428 ElementType); 429 } 430 return; 431 } 432 433 assert(E->getType()->isRecordType() && "Only support structs/unions here!"); 434 435 // Do struct initialization; this code just sets each individual member 436 // to the approprate value. This makes bitfield support automatic; 437 // the disadvantage is that the generated code is more difficult for 438 // the optimizer, especially with bitfields. 439 unsigned NumInitElements = E->getNumInits(); 440 RecordDecl *SD = E->getType()->getAsRecordType()->getDecl(); 441 unsigned CurInitVal = 0; 442 443 if (E->getType()->isUnionType()) { 444 // Only initialize one field of a union. The field itself is 445 // specified by the initializer list. 446 if (!E->getInitializedFieldInUnion()) { 447 // Empty union; we have nothing to do. 448 449 #ifndef NDEBUG 450 // Make sure that it's really an empty and not a failure of 451 // semantic analysis. 452 for (RecordDecl::field_iterator Field = SD->field_begin(), 453 FieldEnd = SD->field_end(); 454 Field != FieldEnd; ++Field) 455 assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed"); 456 #endif 457 return; 458 } 459 460 // FIXME: volatility 461 FieldDecl *Field = E->getInitializedFieldInUnion(); 462 LValue FieldLoc = CGF.EmitLValueForField(DestPtr, Field, true, 0); 463 464 if (NumInitElements) { 465 // Store the initializer into the field 466 EmitInitializationToLValue(E->getInit(0), FieldLoc); 467 } else { 468 // Default-initialize to null 469 EmitNullInitializationToLValue(FieldLoc, Field->getType()); 470 } 471 472 return; 473 } 474 475 // Here we iterate over the fields; this makes it simpler to both 476 // default-initialize fields and skip over unnamed fields. 477 for (RecordDecl::field_iterator Field = SD->field_begin(), 478 FieldEnd = SD->field_end(); 479 Field != FieldEnd; ++Field) { 480 // We're done once we hit the flexible array member 481 if (Field->getType()->isIncompleteArrayType()) 482 break; 483 484 if (Field->isUnnamedBitfield()) 485 continue; 486 487 // FIXME: volatility 488 LValue FieldLoc = CGF.EmitLValueForField(DestPtr, *Field, false, 0); 489 if (CurInitVal < NumInitElements) { 490 // Store the initializer into the field 491 EmitInitializationToLValue(E->getInit(CurInitVal++), FieldLoc); 492 } else { 493 // We're out of initalizers; default-initialize to null 494 EmitNullInitializationToLValue(FieldLoc, Field->getType()); 495 } 496 } 497 } 498 499 //===----------------------------------------------------------------------===// 500 // Entry Points into this File 501 //===----------------------------------------------------------------------===// 502 503 /// EmitAggExpr - Emit the computation of the specified expression of 504 /// aggregate type. The result is computed into DestPtr. Note that if 505 /// DestPtr is null, the value of the aggregate expression is not needed. 506 void CodeGenFunction::EmitAggExpr(const Expr *E, llvm::Value *DestPtr, 507 bool VolatileDest) { 508 assert(E && hasAggregateLLVMType(E->getType()) && 509 "Invalid aggregate expression to emit"); 510 511 AggExprEmitter(*this, DestPtr, VolatileDest).Visit(const_cast<Expr*>(E)); 512 } 513 514 void CodeGenFunction::EmitAggregateClear(llvm::Value *DestPtr, QualType Ty) { 515 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 516 517 EmitMemSetToZero(DestPtr, Ty); 518 } 519 520 void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr, 521 llvm::Value *SrcPtr, QualType Ty) { 522 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 523 524 // Aggregate assignment turns into llvm.memcpy. This is almost valid per 525 // C99 6.5.16.1p3, which states "If the value being stored in an object is 526 // read from another object that overlaps in anyway the storage of the first 527 // object, then the overlap shall be exact and the two objects shall have 528 // qualified or unqualified versions of a compatible type." 529 // 530 // memcpy is not defined if the source and destination pointers are exactly 531 // equal, but other compilers do this optimization, and almost every memcpy 532 // implementation handles this case safely. If there is a libc that does not 533 // safely handle this, we can add a target hook. 534 const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 535 if (DestPtr->getType() != BP) 536 DestPtr = Builder.CreateBitCast(DestPtr, BP, "tmp"); 537 if (SrcPtr->getType() != BP) 538 SrcPtr = Builder.CreateBitCast(SrcPtr, BP, "tmp"); 539 540 // Get size and alignment info for this aggregate. 541 std::pair<uint64_t, unsigned> TypeInfo = getContext().getTypeInfo(Ty); 542 543 // FIXME: Handle variable sized types. 544 const llvm::Type *IntPtr = llvm::IntegerType::get(LLVMPointerWidth); 545 546 Builder.CreateCall4(CGM.getMemCpyFn(), 547 DestPtr, SrcPtr, 548 // TypeInfo.first describes size in bits. 549 llvm::ConstantInt::get(IntPtr, TypeInfo.first/8), 550 llvm::ConstantInt::get(llvm::Type::Int32Ty, 551 TypeInfo.second/8)); 552 } 553