1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Aggregate Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "clang/AST/ASTContext.h" 17 #include "clang/AST/DeclCXX.h" 18 #include "clang/AST/StmtVisitor.h" 19 #include "llvm/Constants.h" 20 #include "llvm/Function.h" 21 #include "llvm/GlobalVariable.h" 22 #include "llvm/Support/Compiler.h" 23 #include "llvm/Intrinsics.h" 24 using namespace clang; 25 using namespace CodeGen; 26 27 //===----------------------------------------------------------------------===// 28 // Aggregate Expression Emitter 29 //===----------------------------------------------------------------------===// 30 31 namespace { 32 class VISIBILITY_HIDDEN AggExprEmitter : public StmtVisitor<AggExprEmitter> { 33 CodeGenFunction &CGF; 34 CGBuilderTy &Builder; 35 llvm::Value *DestPtr; 36 bool VolatileDest; 37 public: 38 AggExprEmitter(CodeGenFunction &cgf, llvm::Value *destPtr, bool volatileDest) 39 : CGF(cgf), Builder(CGF.Builder), 40 DestPtr(destPtr), VolatileDest(volatileDest) { 41 } 42 43 //===--------------------------------------------------------------------===// 44 // Utilities 45 //===--------------------------------------------------------------------===// 46 47 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 48 /// represents a value lvalue, this method emits the address of the lvalue, 49 /// then loads the result into DestPtr. 50 void EmitAggLoadOfLValue(const Expr *E); 51 52 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 53 void EmitFinalDestCopy(const Expr *E, LValue Src); 54 void EmitFinalDestCopy(const Expr *E, RValue Src); 55 56 //===--------------------------------------------------------------------===// 57 // Visitor Methods 58 //===--------------------------------------------------------------------===// 59 60 void VisitStmt(Stmt *S) { 61 CGF.ErrorUnsupported(S, "aggregate expression"); 62 } 63 void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); } 64 void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); } 65 66 // l-values. 67 void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); } 68 void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); } 69 void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); } 70 void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); } 71 void VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 72 EmitAggLoadOfLValue(E); 73 } 74 void VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 75 EmitAggLoadOfLValue(E); 76 } 77 void VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) { 78 EmitAggLoadOfLValue(E); 79 } 80 void VisitPredefinedExpr(const PredefinedExpr *E) { 81 EmitAggLoadOfLValue(E); 82 } 83 84 // Operators. 85 void VisitCStyleCastExpr(CStyleCastExpr *E); 86 void VisitImplicitCastExpr(ImplicitCastExpr *E); 87 void VisitCallExpr(const CallExpr *E); 88 void VisitStmtExpr(const StmtExpr *E); 89 void VisitBinaryOperator(const BinaryOperator *BO); 90 void VisitBinAssign(const BinaryOperator *E); 91 void VisitBinComma(const BinaryOperator *E); 92 93 void VisitObjCMessageExpr(ObjCMessageExpr *E); 94 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 95 EmitAggLoadOfLValue(E); 96 } 97 void VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E); 98 void VisitObjCKVCRefExpr(ObjCKVCRefExpr *E); 99 100 void VisitConditionalOperator(const ConditionalOperator *CO); 101 void VisitInitListExpr(InitListExpr *E); 102 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 103 Visit(DAE->getExpr()); 104 } 105 void VisitCXXConstructExpr(const CXXConstructExpr *E); 106 void VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E); 107 108 void VisitVAArgExpr(VAArgExpr *E); 109 110 void EmitInitializationToLValue(Expr *E, LValue Address); 111 void EmitNullInitializationToLValue(LValue Address, QualType T); 112 // case Expr::ChooseExprClass: 113 114 }; 115 } // end anonymous namespace. 116 117 //===----------------------------------------------------------------------===// 118 // Utilities 119 //===----------------------------------------------------------------------===// 120 121 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 122 /// represents a value lvalue, this method emits the address of the lvalue, 123 /// then loads the result into DestPtr. 124 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) { 125 LValue LV = CGF.EmitLValue(E); 126 EmitFinalDestCopy(E, LV); 127 } 128 129 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 130 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, RValue Src) { 131 assert(Src.isAggregate() && "value must be aggregate value!"); 132 133 // If the result is ignored, don't copy from the value. 134 if (DestPtr == 0) { 135 if (Src.isVolatileQualified()) 136 // If the source is volatile, we must read from it; to do that, we need 137 // some place to put it. 138 DestPtr = CGF.CreateTempAlloca(CGF.ConvertType(E->getType()), "agg.tmp"); 139 else 140 return; 141 } 142 143 // If the result of the assignment is used, copy the LHS there also. 144 // FIXME: Pass VolatileDest as well. I think we also need to merge volatile 145 // from the source as well, as we can't eliminate it if either operand 146 // is volatile, unless copy has volatile for both source and destination.. 147 CGF.EmitAggregateCopy(DestPtr, Src.getAggregateAddr(), E->getType(), 148 VolatileDest|Src.isVolatileQualified()); 149 } 150 151 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 152 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, LValue Src) { 153 assert(Src.isSimple() && "Can't have aggregate bitfield, vector, etc"); 154 155 EmitFinalDestCopy(E, RValue::getAggregate(Src.getAddress(), 156 Src.isVolatileQualified())); 157 } 158 159 //===----------------------------------------------------------------------===// 160 // Visitor Methods 161 //===----------------------------------------------------------------------===// 162 163 void AggExprEmitter::VisitCStyleCastExpr(CStyleCastExpr *E) { 164 // GCC union extension 165 if (E->getType()->isUnionType()) { 166 RecordDecl *SD = E->getType()->getAsRecordType()->getDecl(); 167 LValue FieldLoc = CGF.EmitLValueForField(DestPtr, 168 *SD->field_begin(CGF.getContext()), 169 true, 0); 170 EmitInitializationToLValue(E->getSubExpr(), FieldLoc); 171 return; 172 } 173 174 Visit(E->getSubExpr()); 175 } 176 177 void AggExprEmitter::VisitImplicitCastExpr(ImplicitCastExpr *E) { 178 assert(CGF.getContext().typesAreCompatible( 179 E->getSubExpr()->getType().getUnqualifiedType(), 180 E->getType().getUnqualifiedType()) && 181 "Implicit cast types must be compatible"); 182 Visit(E->getSubExpr()); 183 } 184 185 void AggExprEmitter::VisitCallExpr(const CallExpr *E) { 186 RValue RV = CGF.EmitCallExpr(E); 187 EmitFinalDestCopy(E, RV); 188 } 189 190 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) { 191 RValue RV = CGF.EmitObjCMessageExpr(E); 192 EmitFinalDestCopy(E, RV); 193 } 194 195 void AggExprEmitter::VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) { 196 RValue RV = CGF.EmitObjCPropertyGet(E); 197 EmitFinalDestCopy(E, RV); 198 } 199 200 void AggExprEmitter::VisitObjCKVCRefExpr(ObjCKVCRefExpr *E) { 201 RValue RV = CGF.EmitObjCPropertyGet(E); 202 EmitFinalDestCopy(E, RV); 203 } 204 205 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) { 206 CGF.EmitAnyExpr(E->getLHS()); 207 CGF.EmitAggExpr(E->getRHS(), DestPtr, VolatileDest); 208 } 209 210 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) { 211 CGF.EmitCompoundStmt(*E->getSubStmt(), true, DestPtr, VolatileDest); 212 } 213 214 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) { 215 CGF.ErrorUnsupported(E, "aggregate binary expression"); 216 } 217 218 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) { 219 // For an assignment to work, the value on the right has 220 // to be compatible with the value on the left. 221 assert(CGF.getContext().typesAreCompatible( 222 E->getLHS()->getType().getUnqualifiedType(), 223 E->getRHS()->getType().getUnqualifiedType()) 224 && "Invalid assignment"); 225 LValue LHS = CGF.EmitLValue(E->getLHS()); 226 227 // We have to special case property setters, otherwise we must have 228 // a simple lvalue (no aggregates inside vectors, bitfields). 229 if (LHS.isPropertyRef()) { 230 llvm::Value *AggLoc = DestPtr; 231 if (!AggLoc) 232 AggLoc = CGF.CreateTempAlloca(CGF.ConvertType(E->getRHS()->getType())); 233 CGF.EmitAggExpr(E->getRHS(), AggLoc, VolatileDest); 234 CGF.EmitObjCPropertySet(LHS.getPropertyRefExpr(), 235 RValue::getAggregate(AggLoc, VolatileDest)); 236 } 237 else if (LHS.isKVCRef()) { 238 llvm::Value *AggLoc = DestPtr; 239 if (!AggLoc) 240 AggLoc = CGF.CreateTempAlloca(CGF.ConvertType(E->getRHS()->getType())); 241 CGF.EmitAggExpr(E->getRHS(), AggLoc, VolatileDest); 242 CGF.EmitObjCPropertySet(LHS.getKVCRefExpr(), 243 RValue::getAggregate(AggLoc, VolatileDest)); 244 } else { 245 // Codegen the RHS so that it stores directly into the LHS. 246 CGF.EmitAggExpr(E->getRHS(), LHS.getAddress(), LHS.isVolatileQualified()); 247 EmitFinalDestCopy(E, LHS); 248 } 249 } 250 251 void AggExprEmitter::VisitConditionalOperator(const ConditionalOperator *E) { 252 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 253 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 254 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 255 256 llvm::Value *Cond = CGF.EvaluateExprAsBool(E->getCond()); 257 Builder.CreateCondBr(Cond, LHSBlock, RHSBlock); 258 259 CGF.EmitBlock(LHSBlock); 260 261 // Handle the GNU extension for missing LHS. 262 assert(E->getLHS() && "Must have LHS for aggregate value"); 263 264 Visit(E->getLHS()); 265 CGF.EmitBranch(ContBlock); 266 267 CGF.EmitBlock(RHSBlock); 268 269 Visit(E->getRHS()); 270 CGF.EmitBranch(ContBlock); 271 272 CGF.EmitBlock(ContBlock); 273 } 274 275 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 276 llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr()); 277 llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType()); 278 279 if (!ArgPtr) { 280 CGF.ErrorUnsupported(VE, "aggregate va_arg expression"); 281 return; 282 } 283 284 EmitFinalDestCopy(VE, LValue::MakeAddr(ArgPtr, 0)); 285 } 286 287 void 288 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) { 289 llvm::Value *V = DestPtr; 290 291 if (!V) { 292 assert(isa<CXXTempVarDecl>(E->getVarDecl()) && 293 "Must have a temp var decl when there's no destination!"); 294 295 V = CGF.CreateTempAlloca(CGF.ConvertType(E->getVarDecl()->getType()), 296 "tmpvar"); 297 } 298 299 CGF.EmitCXXConstructExpr(V, E); 300 } 301 302 void AggExprEmitter::VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E) { 303 // FIXME: Do something with the temporaries! 304 Visit(E->getSubExpr()); 305 } 306 307 void AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV) { 308 // FIXME: Are initializers affected by volatile? 309 if (isa<ImplicitValueInitExpr>(E)) { 310 EmitNullInitializationToLValue(LV, E->getType()); 311 } else if (E->getType()->isComplexType()) { 312 CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false); 313 } else if (CGF.hasAggregateLLVMType(E->getType())) { 314 CGF.EmitAnyExpr(E, LV.getAddress(), false); 315 } else { 316 CGF.EmitStoreThroughLValue(CGF.EmitAnyExpr(E), LV, E->getType()); 317 } 318 } 319 320 void AggExprEmitter::EmitNullInitializationToLValue(LValue LV, QualType T) { 321 if (!CGF.hasAggregateLLVMType(T)) { 322 // For non-aggregates, we can store zero 323 llvm::Value *Null = llvm::Constant::getNullValue(CGF.ConvertType(T)); 324 CGF.EmitStoreThroughLValue(RValue::get(Null), LV, T); 325 } else { 326 // Otherwise, just memset the whole thing to zero. This is legal 327 // because in LLVM, all default initializers are guaranteed to have a 328 // bit pattern of all zeros. 329 // FIXME: That isn't true for member pointers! 330 // There's a potential optimization opportunity in combining 331 // memsets; that would be easy for arrays, but relatively 332 // difficult for structures with the current code. 333 CGF.EmitMemSetToZero(LV.getAddress(), T); 334 } 335 } 336 337 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) { 338 #if 0 339 // FIXME: Disabled while we figure out what to do about 340 // test/CodeGen/bitfield.c 341 // 342 // If we can, prefer a copy from a global; this is a lot less code for long 343 // globals, and it's easier for the current optimizers to analyze. 344 // FIXME: Should we really be doing this? Should we try to avoid cases where 345 // we emit a global with a lot of zeros? Should we try to avoid short 346 // globals? 347 if (E->isConstantInitializer(CGF.getContext(), 0)) { 348 llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, &CGF); 349 llvm::GlobalVariable* GV = 350 new llvm::GlobalVariable(C->getType(), true, 351 llvm::GlobalValue::InternalLinkage, 352 C, "", &CGF.CGM.getModule(), 0); 353 EmitFinalDestCopy(E, LValue::MakeAddr(GV, 0)); 354 return; 355 } 356 #endif 357 if (E->hadArrayRangeDesignator()) { 358 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 359 } 360 361 // Handle initialization of an array. 362 if (E->getType()->isArrayType()) { 363 const llvm::PointerType *APType = 364 cast<llvm::PointerType>(DestPtr->getType()); 365 const llvm::ArrayType *AType = 366 cast<llvm::ArrayType>(APType->getElementType()); 367 368 uint64_t NumInitElements = E->getNumInits(); 369 370 if (E->getNumInits() > 0) { 371 QualType T1 = E->getType(); 372 QualType T2 = E->getInit(0)->getType(); 373 if (CGF.getContext().getCanonicalType(T1).getUnqualifiedType() == 374 CGF.getContext().getCanonicalType(T2).getUnqualifiedType()) { 375 EmitAggLoadOfLValue(E->getInit(0)); 376 return; 377 } 378 } 379 380 uint64_t NumArrayElements = AType->getNumElements(); 381 QualType ElementType = CGF.getContext().getCanonicalType(E->getType()); 382 ElementType = CGF.getContext().getAsArrayType(ElementType)->getElementType(); 383 384 unsigned CVRqualifier = ElementType.getCVRQualifiers(); 385 386 for (uint64_t i = 0; i != NumArrayElements; ++i) { 387 llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array"); 388 if (i < NumInitElements) 389 EmitInitializationToLValue(E->getInit(i), 390 LValue::MakeAddr(NextVal, CVRqualifier)); 391 else 392 EmitNullInitializationToLValue(LValue::MakeAddr(NextVal, CVRqualifier), 393 ElementType); 394 } 395 return; 396 } 397 398 assert(E->getType()->isRecordType() && "Only support structs/unions here!"); 399 400 // Do struct initialization; this code just sets each individual member 401 // to the approprate value. This makes bitfield support automatic; 402 // the disadvantage is that the generated code is more difficult for 403 // the optimizer, especially with bitfields. 404 unsigned NumInitElements = E->getNumInits(); 405 RecordDecl *SD = E->getType()->getAsRecordType()->getDecl(); 406 unsigned CurInitVal = 0; 407 408 if (E->getType()->isUnionType()) { 409 // Only initialize one field of a union. The field itself is 410 // specified by the initializer list. 411 if (!E->getInitializedFieldInUnion()) { 412 // Empty union; we have nothing to do. 413 414 #ifndef NDEBUG 415 // Make sure that it's really an empty and not a failure of 416 // semantic analysis. 417 for (RecordDecl::field_iterator Field = SD->field_begin(CGF.getContext()), 418 FieldEnd = SD->field_end(CGF.getContext()); 419 Field != FieldEnd; ++Field) 420 assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed"); 421 #endif 422 return; 423 } 424 425 // FIXME: volatility 426 FieldDecl *Field = E->getInitializedFieldInUnion(); 427 LValue FieldLoc = CGF.EmitLValueForField(DestPtr, Field, true, 0); 428 429 if (NumInitElements) { 430 // Store the initializer into the field 431 EmitInitializationToLValue(E->getInit(0), FieldLoc); 432 } else { 433 // Default-initialize to null 434 EmitNullInitializationToLValue(FieldLoc, Field->getType()); 435 } 436 437 return; 438 } 439 440 // Here we iterate over the fields; this makes it simpler to both 441 // default-initialize fields and skip over unnamed fields. 442 for (RecordDecl::field_iterator Field = SD->field_begin(CGF.getContext()), 443 FieldEnd = SD->field_end(CGF.getContext()); 444 Field != FieldEnd; ++Field) { 445 // We're done once we hit the flexible array member 446 if (Field->getType()->isIncompleteArrayType()) 447 break; 448 449 if (Field->isUnnamedBitfield()) 450 continue; 451 452 // FIXME: volatility 453 LValue FieldLoc = CGF.EmitLValueForField(DestPtr, *Field, false, 0); 454 if (CurInitVal < NumInitElements) { 455 // Store the initializer into the field 456 EmitInitializationToLValue(E->getInit(CurInitVal++), FieldLoc); 457 } else { 458 // We're out of initalizers; default-initialize to null 459 EmitNullInitializationToLValue(FieldLoc, Field->getType()); 460 } 461 } 462 } 463 464 //===----------------------------------------------------------------------===// 465 // Entry Points into this File 466 //===----------------------------------------------------------------------===// 467 468 /// EmitAggExpr - Emit the computation of the specified expression of 469 /// aggregate type. The result is computed into DestPtr. Note that if 470 /// DestPtr is null, the value of the aggregate expression is not needed. 471 void CodeGenFunction::EmitAggExpr(const Expr *E, llvm::Value *DestPtr, 472 bool VolatileDest) { 473 assert(E && hasAggregateLLVMType(E->getType()) && 474 "Invalid aggregate expression to emit"); 475 476 AggExprEmitter(*this, DestPtr, VolatileDest).Visit(const_cast<Expr*>(E)); 477 } 478 479 void CodeGenFunction::EmitAggregateClear(llvm::Value *DestPtr, QualType Ty) { 480 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 481 482 EmitMemSetToZero(DestPtr, Ty); 483 } 484 485 void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr, 486 llvm::Value *SrcPtr, QualType Ty, 487 bool isVolatile) { 488 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 489 490 // Aggregate assignment turns into llvm.memcpy. This is almost valid per 491 // C99 6.5.16.1p3, which states "If the value being stored in an object is 492 // read from another object that overlaps in anyway the storage of the first 493 // object, then the overlap shall be exact and the two objects shall have 494 // qualified or unqualified versions of a compatible type." 495 // 496 // memcpy is not defined if the source and destination pointers are exactly 497 // equal, but other compilers do this optimization, and almost every memcpy 498 // implementation handles this case safely. If there is a libc that does not 499 // safely handle this, we can add a target hook. 500 const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 501 if (DestPtr->getType() != BP) 502 DestPtr = Builder.CreateBitCast(DestPtr, BP, "tmp"); 503 if (SrcPtr->getType() != BP) 504 SrcPtr = Builder.CreateBitCast(SrcPtr, BP, "tmp"); 505 506 // Get size and alignment info for this aggregate. 507 std::pair<uint64_t, unsigned> TypeInfo = getContext().getTypeInfo(Ty); 508 509 // FIXME: Handle variable sized types. 510 const llvm::Type *IntPtr = llvm::IntegerType::get(LLVMPointerWidth); 511 512 // FIXME: If we have a volatile struct, the optimizer can remove what might 513 // appear to be `extra' memory ops: 514 // 515 // volatile struct { int i; } a, b; 516 // 517 // int main() { 518 // a = b; 519 // a = b; 520 // } 521 // 522 // either, we need to use a differnt call here, or the backend needs to be 523 // taught to not do this. We use isVolatile to indicate when either the 524 // source or the destination is volatile. 525 Builder.CreateCall4(CGM.getMemCpyFn(), 526 DestPtr, SrcPtr, 527 // TypeInfo.first describes size in bits. 528 llvm::ConstantInt::get(IntPtr, TypeInfo.first/8), 529 llvm::ConstantInt::get(llvm::Type::Int32Ty, 530 TypeInfo.second/8)); 531 } 532