1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Aggregate Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "clang/AST/ASTContext.h" 17 #include "clang/AST/DeclCXX.h" 18 #include "clang/AST/StmtVisitor.h" 19 #include "llvm/Constants.h" 20 #include "llvm/Function.h" 21 #include "llvm/GlobalVariable.h" 22 #include "llvm/Support/Compiler.h" 23 #include "llvm/Intrinsics.h" 24 using namespace clang; 25 using namespace CodeGen; 26 27 //===----------------------------------------------------------------------===// 28 // Aggregate Expression Emitter 29 //===----------------------------------------------------------------------===// 30 31 namespace { 32 class VISIBILITY_HIDDEN AggExprEmitter : public StmtVisitor<AggExprEmitter> { 33 CodeGenFunction &CGF; 34 CGBuilderTy &Builder; 35 llvm::Value *DestPtr; 36 bool VolatileDest; 37 public: 38 AggExprEmitter(CodeGenFunction &cgf, llvm::Value *destPtr, bool volatileDest) 39 : CGF(cgf), Builder(CGF.Builder), 40 DestPtr(destPtr), VolatileDest(volatileDest) { 41 } 42 43 //===--------------------------------------------------------------------===// 44 // Utilities 45 //===--------------------------------------------------------------------===// 46 47 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 48 /// represents a value lvalue, this method emits the address of the lvalue, 49 /// then loads the result into DestPtr. 50 void EmitAggLoadOfLValue(const Expr *E); 51 52 //===--------------------------------------------------------------------===// 53 // Visitor Methods 54 //===--------------------------------------------------------------------===// 55 56 void VisitStmt(Stmt *S) { 57 CGF.ErrorUnsupported(S, "aggregate expression"); 58 } 59 void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); } 60 void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); } 61 62 // l-values. 63 void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); } 64 void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); } 65 void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); } 66 void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); } 67 void VisitCompoundLiteralExpr(CompoundLiteralExpr *E) 68 { EmitAggLoadOfLValue(E); } 69 70 void VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 71 EmitAggLoadOfLValue(E); 72 } 73 74 void VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) 75 { EmitAggLoadOfLValue(E); } 76 77 // Operators. 78 // case Expr::UnaryOperatorClass: 79 // case Expr::CastExprClass: 80 void VisitCStyleCastExpr(CStyleCastExpr *E); 81 void VisitImplicitCastExpr(ImplicitCastExpr *E); 82 void VisitCallExpr(const CallExpr *E); 83 void VisitStmtExpr(const StmtExpr *E); 84 void VisitBinaryOperator(const BinaryOperator *BO); 85 void VisitBinAssign(const BinaryOperator *E); 86 void VisitBinComma(const BinaryOperator *E); 87 88 void VisitObjCMessageExpr(ObjCMessageExpr *E); 89 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 90 EmitAggLoadOfLValue(E); 91 } 92 void VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E); 93 void VisitObjCKVCRefExpr(ObjCKVCRefExpr *E); 94 95 void VisitConditionalOperator(const ConditionalOperator *CO); 96 void VisitInitListExpr(InitListExpr *E); 97 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 98 Visit(DAE->getExpr()); 99 } 100 void VisitCXXTemporaryObjectExpr(const CXXTemporaryObjectExpr *E); 101 void VisitVAArgExpr(VAArgExpr *E); 102 103 void EmitInitializationToLValue(Expr *E, LValue Address); 104 void EmitNullInitializationToLValue(LValue Address, QualType T); 105 // case Expr::ChooseExprClass: 106 107 }; 108 } // end anonymous namespace. 109 110 //===----------------------------------------------------------------------===// 111 // Utilities 112 //===----------------------------------------------------------------------===// 113 114 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 115 /// represents a value lvalue, this method emits the address of the lvalue, 116 /// then loads the result into DestPtr. 117 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) { 118 LValue LV = CGF.EmitLValue(E); 119 assert(LV.isSimple() && "Can't have aggregate bitfield, vector, etc"); 120 llvm::Value *SrcPtr = LV.getAddress(); 121 122 // If the result is ignored, don't copy from the value. 123 if (DestPtr == 0) 124 // FIXME: If the source is volatile, we must read from it. 125 return; 126 127 CGF.EmitAggregateCopy(DestPtr, SrcPtr, E->getType()); 128 } 129 130 //===----------------------------------------------------------------------===// 131 // Visitor Methods 132 //===----------------------------------------------------------------------===// 133 134 void AggExprEmitter::VisitCStyleCastExpr(CStyleCastExpr *E) { 135 // GCC union extension 136 if (E->getType()->isUnionType()) { 137 RecordDecl *SD = E->getType()->getAsRecordType()->getDecl(); 138 LValue FieldLoc = CGF.EmitLValueForField(DestPtr, 139 *SD->field_begin(CGF.getContext()), 140 true, 0); 141 EmitInitializationToLValue(E->getSubExpr(), FieldLoc); 142 return; 143 } 144 145 Visit(E->getSubExpr()); 146 } 147 148 void AggExprEmitter::VisitImplicitCastExpr(ImplicitCastExpr *E) { 149 assert(CGF.getContext().typesAreCompatible( 150 E->getSubExpr()->getType().getUnqualifiedType(), 151 E->getType().getUnqualifiedType()) && 152 "Implicit cast types must be compatible"); 153 Visit(E->getSubExpr()); 154 } 155 156 void AggExprEmitter::VisitCallExpr(const CallExpr *E) { 157 RValue RV = CGF.EmitCallExpr(E); 158 assert(RV.isAggregate() && "Return value must be aggregate value!"); 159 160 // If the result is ignored, don't copy from the value. 161 if (DestPtr == 0) 162 // FIXME: If the source is volatile, we must read from it. 163 return; 164 165 CGF.EmitAggregateCopy(DestPtr, RV.getAggregateAddr(), E->getType()); 166 } 167 168 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) { 169 RValue RV = CGF.EmitObjCMessageExpr(E); 170 assert(RV.isAggregate() && "Return value must be aggregate value!"); 171 172 // If the result is ignored, don't copy from the value. 173 if (DestPtr == 0) 174 // FIXME: If the source is volatile, we must read from it. 175 return; 176 177 CGF.EmitAggregateCopy(DestPtr, RV.getAggregateAddr(), E->getType()); 178 } 179 180 void AggExprEmitter::VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) { 181 RValue RV = CGF.EmitObjCPropertyGet(E); 182 assert(RV.isAggregate() && "Return value must be aggregate value!"); 183 184 // If the result is ignored, don't copy from the value. 185 if (DestPtr == 0) 186 // FIXME: If the source is volatile, we must read from it. 187 return; 188 189 CGF.EmitAggregateCopy(DestPtr, RV.getAggregateAddr(), E->getType()); 190 } 191 192 void AggExprEmitter::VisitObjCKVCRefExpr(ObjCKVCRefExpr *E) { 193 RValue RV = CGF.EmitObjCPropertyGet(E); 194 assert(RV.isAggregate() && "Return value must be aggregate value!"); 195 196 // If the result is ignored, don't copy from the value. 197 if (DestPtr == 0) 198 // FIXME: If the source is volatile, we must read from it. 199 return; 200 201 CGF.EmitAggregateCopy(DestPtr, RV.getAggregateAddr(), E->getType()); 202 } 203 204 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) { 205 CGF.EmitAnyExpr(E->getLHS()); 206 CGF.EmitAggExpr(E->getRHS(), DestPtr, false); 207 } 208 209 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) { 210 CGF.EmitCompoundStmt(*E->getSubStmt(), true, DestPtr, VolatileDest); 211 } 212 213 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) { 214 CGF.ErrorUnsupported(E, "aggregate binary expression"); 215 } 216 217 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) { 218 // For an assignment to work, the value on the right has 219 // to be compatible with the value on the left. 220 assert(CGF.getContext().typesAreCompatible( 221 E->getLHS()->getType().getUnqualifiedType(), 222 E->getRHS()->getType().getUnqualifiedType()) 223 && "Invalid assignment"); 224 LValue LHS = CGF.EmitLValue(E->getLHS()); 225 226 // We have to special case property setters, otherwise we must have 227 // a simple lvalue (no aggregates inside vectors, bitfields). 228 if (LHS.isPropertyRef()) { 229 // FIXME: Volatility? 230 llvm::Value *AggLoc = DestPtr; 231 if (!AggLoc) 232 AggLoc = CGF.CreateTempAlloca(CGF.ConvertType(E->getRHS()->getType())); 233 CGF.EmitAggExpr(E->getRHS(), AggLoc, false); 234 CGF.EmitObjCPropertySet(LHS.getPropertyRefExpr(), 235 RValue::getAggregate(AggLoc)); 236 } 237 else if (LHS.isKVCRef()) { 238 // FIXME: Volatility? 239 llvm::Value *AggLoc = DestPtr; 240 if (!AggLoc) 241 AggLoc = CGF.CreateTempAlloca(CGF.ConvertType(E->getRHS()->getType())); 242 CGF.EmitAggExpr(E->getRHS(), AggLoc, false); 243 CGF.EmitObjCPropertySet(LHS.getKVCRefExpr(), 244 RValue::getAggregate(AggLoc)); 245 } else { 246 // Codegen the RHS so that it stores directly into the LHS. 247 CGF.EmitAggExpr(E->getRHS(), LHS.getAddress(), false /*FIXME: VOLATILE LHS*/); 248 249 if (DestPtr == 0) 250 return; 251 252 // If the result of the assignment is used, copy the RHS there also. 253 CGF.EmitAggregateCopy(DestPtr, LHS.getAddress(), E->getType()); 254 } 255 } 256 257 void AggExprEmitter::VisitConditionalOperator(const ConditionalOperator *E) { 258 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 259 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 260 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 261 262 llvm::Value *Cond = CGF.EvaluateExprAsBool(E->getCond()); 263 Builder.CreateCondBr(Cond, LHSBlock, RHSBlock); 264 265 CGF.EmitBlock(LHSBlock); 266 267 // Handle the GNU extension for missing LHS. 268 assert(E->getLHS() && "Must have LHS for aggregate value"); 269 270 Visit(E->getLHS()); 271 CGF.EmitBranch(ContBlock); 272 273 CGF.EmitBlock(RHSBlock); 274 275 Visit(E->getRHS()); 276 CGF.EmitBranch(ContBlock); 277 278 CGF.EmitBlock(ContBlock); 279 } 280 281 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 282 llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr()); 283 llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType()); 284 285 if (!ArgPtr) { 286 CGF.ErrorUnsupported(VE, "aggregate va_arg expression"); 287 return; 288 } 289 290 if (DestPtr) 291 // FIXME: volatility 292 CGF.EmitAggregateCopy(DestPtr, ArgPtr, VE->getType()); 293 } 294 295 void 296 AggExprEmitter::VisitCXXTemporaryObjectExpr(const CXXTemporaryObjectExpr *E) { 297 llvm::Value *This = 0; 298 299 if (DestPtr) 300 This = DestPtr; 301 else 302 This = CGF.CreateTempAlloca(CGF.ConvertType(E->getType()), "tmp"); 303 304 CGF.EmitCXXTemporaryObjectExpr(This, E); 305 } 306 307 void AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV) { 308 // FIXME: Are initializers affected by volatile? 309 if (isa<ImplicitValueInitExpr>(E)) { 310 EmitNullInitializationToLValue(LV, E->getType()); 311 } else if (E->getType()->isComplexType()) { 312 CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false); 313 } else if (CGF.hasAggregateLLVMType(E->getType())) { 314 CGF.EmitAnyExpr(E, LV.getAddress(), false); 315 } else { 316 CGF.EmitStoreThroughLValue(CGF.EmitAnyExpr(E), LV, E->getType()); 317 } 318 } 319 320 void AggExprEmitter::EmitNullInitializationToLValue(LValue LV, QualType T) { 321 if (!CGF.hasAggregateLLVMType(T)) { 322 // For non-aggregates, we can store zero 323 llvm::Value *Null = llvm::Constant::getNullValue(CGF.ConvertType(T)); 324 CGF.EmitStoreThroughLValue(RValue::get(Null), LV, T); 325 } else { 326 // Otherwise, just memset the whole thing to zero. This is legal 327 // because in LLVM, all default initializers are guaranteed to have a 328 // bit pattern of all zeros. 329 // FIXME: That isn't true for member pointers! 330 // There's a potential optimization opportunity in combining 331 // memsets; that would be easy for arrays, but relatively 332 // difficult for structures with the current code. 333 CGF.EmitMemSetToZero(LV.getAddress(), T); 334 } 335 } 336 337 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) { 338 #if 0 339 // FIXME: Disabled while we figure out what to do about 340 // test/CodeGen/bitfield.c 341 // 342 // If we can, prefer a copy from a global; this is a lot less 343 // code for long globals, and it's easier for the current optimizers 344 // to analyze. 345 // FIXME: Should we really be doing this? Should we try to avoid 346 // cases where we emit a global with a lot of zeros? Should 347 // we try to avoid short globals? 348 if (E->isConstantInitializer(CGF.getContext(), 0)) { 349 llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, &CGF); 350 llvm::GlobalVariable* GV = 351 new llvm::GlobalVariable(C->getType(), true, 352 llvm::GlobalValue::InternalLinkage, 353 C, "", &CGF.CGM.getModule(), 0); 354 CGF.EmitAggregateCopy(DestPtr, GV, E->getType()); 355 return; 356 } 357 #endif 358 if (E->hadArrayRangeDesignator()) { 359 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 360 } 361 362 // Handle initialization of an array. 363 if (E->getType()->isArrayType()) { 364 const llvm::PointerType *APType = 365 cast<llvm::PointerType>(DestPtr->getType()); 366 const llvm::ArrayType *AType = 367 cast<llvm::ArrayType>(APType->getElementType()); 368 369 uint64_t NumInitElements = E->getNumInits(); 370 371 if (E->getNumInits() > 0) { 372 QualType T1 = E->getType(); 373 QualType T2 = E->getInit(0)->getType(); 374 if (CGF.getContext().getCanonicalType(T1).getUnqualifiedType() == 375 CGF.getContext().getCanonicalType(T2).getUnqualifiedType()) { 376 EmitAggLoadOfLValue(E->getInit(0)); 377 return; 378 } 379 } 380 381 uint64_t NumArrayElements = AType->getNumElements(); 382 QualType ElementType = CGF.getContext().getCanonicalType(E->getType()); 383 ElementType = CGF.getContext().getAsArrayType(ElementType)->getElementType(); 384 385 unsigned CVRqualifier = ElementType.getCVRQualifiers(); 386 387 for (uint64_t i = 0; i != NumArrayElements; ++i) { 388 llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array"); 389 if (i < NumInitElements) 390 EmitInitializationToLValue(E->getInit(i), 391 LValue::MakeAddr(NextVal, CVRqualifier)); 392 else 393 EmitNullInitializationToLValue(LValue::MakeAddr(NextVal, CVRqualifier), 394 ElementType); 395 } 396 return; 397 } 398 399 assert(E->getType()->isRecordType() && "Only support structs/unions here!"); 400 401 // Do struct initialization; this code just sets each individual member 402 // to the approprate value. This makes bitfield support automatic; 403 // the disadvantage is that the generated code is more difficult for 404 // the optimizer, especially with bitfields. 405 unsigned NumInitElements = E->getNumInits(); 406 RecordDecl *SD = E->getType()->getAsRecordType()->getDecl(); 407 unsigned CurInitVal = 0; 408 409 if (E->getType()->isUnionType()) { 410 // Only initialize one field of a union. The field itself is 411 // specified by the initializer list. 412 if (!E->getInitializedFieldInUnion()) { 413 // Empty union; we have nothing to do. 414 415 #ifndef NDEBUG 416 // Make sure that it's really an empty and not a failure of 417 // semantic analysis. 418 for (RecordDecl::field_iterator Field = SD->field_begin(CGF.getContext()), 419 FieldEnd = SD->field_end(CGF.getContext()); 420 Field != FieldEnd; ++Field) 421 assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed"); 422 #endif 423 return; 424 } 425 426 // FIXME: volatility 427 FieldDecl *Field = E->getInitializedFieldInUnion(); 428 LValue FieldLoc = CGF.EmitLValueForField(DestPtr, Field, true, 0); 429 430 if (NumInitElements) { 431 // Store the initializer into the field 432 EmitInitializationToLValue(E->getInit(0), FieldLoc); 433 } else { 434 // Default-initialize to null 435 EmitNullInitializationToLValue(FieldLoc, Field->getType()); 436 } 437 438 return; 439 } 440 441 // Here we iterate over the fields; this makes it simpler to both 442 // default-initialize fields and skip over unnamed fields. 443 for (RecordDecl::field_iterator Field = SD->field_begin(CGF.getContext()), 444 FieldEnd = SD->field_end(CGF.getContext()); 445 Field != FieldEnd; ++Field) { 446 // We're done once we hit the flexible array member 447 if (Field->getType()->isIncompleteArrayType()) 448 break; 449 450 if (Field->isUnnamedBitfield()) 451 continue; 452 453 // FIXME: volatility 454 LValue FieldLoc = CGF.EmitLValueForField(DestPtr, *Field, false, 0); 455 if (CurInitVal < NumInitElements) { 456 // Store the initializer into the field 457 EmitInitializationToLValue(E->getInit(CurInitVal++), FieldLoc); 458 } else { 459 // We're out of initalizers; default-initialize to null 460 EmitNullInitializationToLValue(FieldLoc, Field->getType()); 461 } 462 } 463 } 464 465 //===----------------------------------------------------------------------===// 466 // Entry Points into this File 467 //===----------------------------------------------------------------------===// 468 469 /// EmitAggExpr - Emit the computation of the specified expression of 470 /// aggregate type. The result is computed into DestPtr. Note that if 471 /// DestPtr is null, the value of the aggregate expression is not needed. 472 void CodeGenFunction::EmitAggExpr(const Expr *E, llvm::Value *DestPtr, 473 bool VolatileDest) { 474 assert(E && hasAggregateLLVMType(E->getType()) && 475 "Invalid aggregate expression to emit"); 476 477 AggExprEmitter(*this, DestPtr, VolatileDest).Visit(const_cast<Expr*>(E)); 478 } 479 480 void CodeGenFunction::EmitAggregateClear(llvm::Value *DestPtr, QualType Ty) { 481 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 482 483 EmitMemSetToZero(DestPtr, Ty); 484 } 485 486 void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr, 487 llvm::Value *SrcPtr, QualType Ty) { 488 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 489 490 // Aggregate assignment turns into llvm.memcpy. This is almost valid per 491 // C99 6.5.16.1p3, which states "If the value being stored in an object is 492 // read from another object that overlaps in anyway the storage of the first 493 // object, then the overlap shall be exact and the two objects shall have 494 // qualified or unqualified versions of a compatible type." 495 // 496 // memcpy is not defined if the source and destination pointers are exactly 497 // equal, but other compilers do this optimization, and almost every memcpy 498 // implementation handles this case safely. If there is a libc that does not 499 // safely handle this, we can add a target hook. 500 const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 501 if (DestPtr->getType() != BP) 502 DestPtr = Builder.CreateBitCast(DestPtr, BP, "tmp"); 503 if (SrcPtr->getType() != BP) 504 SrcPtr = Builder.CreateBitCast(SrcPtr, BP, "tmp"); 505 506 // Get size and alignment info for this aggregate. 507 std::pair<uint64_t, unsigned> TypeInfo = getContext().getTypeInfo(Ty); 508 509 // FIXME: Handle variable sized types. 510 const llvm::Type *IntPtr = llvm::IntegerType::get(LLVMPointerWidth); 511 512 Builder.CreateCall4(CGM.getMemCpyFn(), 513 DestPtr, SrcPtr, 514 // TypeInfo.first describes size in bits. 515 llvm::ConstantInt::get(IntPtr, TypeInfo.first/8), 516 llvm::ConstantInt::get(llvm::Type::Int32Ty, 517 TypeInfo.second/8)); 518 } 519