1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Aggregate Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGObjCRuntime.h" 16 #include "CodeGenModule.h" 17 #include "clang/AST/ASTContext.h" 18 #include "clang/AST/DeclCXX.h" 19 #include "clang/AST/DeclTemplate.h" 20 #include "clang/AST/StmtVisitor.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/Function.h" 23 #include "llvm/IR/GlobalVariable.h" 24 #include "llvm/IR/Intrinsics.h" 25 using namespace clang; 26 using namespace CodeGen; 27 28 //===----------------------------------------------------------------------===// 29 // Aggregate Expression Emitter 30 //===----------------------------------------------------------------------===// 31 32 namespace { 33 class AggExprEmitter : public StmtVisitor<AggExprEmitter> { 34 CodeGenFunction &CGF; 35 CGBuilderTy &Builder; 36 AggValueSlot Dest; 37 bool IsResultUnused; 38 39 /// We want to use 'dest' as the return slot except under two 40 /// conditions: 41 /// - The destination slot requires garbage collection, so we 42 /// need to use the GC API. 43 /// - The destination slot is potentially aliased. 44 bool shouldUseDestForReturnSlot() const { 45 return !(Dest.requiresGCollection() || Dest.isPotentiallyAliased()); 46 } 47 48 ReturnValueSlot getReturnValueSlot() const { 49 if (!shouldUseDestForReturnSlot()) 50 return ReturnValueSlot(); 51 52 return ReturnValueSlot(Dest.getAddress(), Dest.isVolatile(), 53 IsResultUnused); 54 } 55 56 AggValueSlot EnsureSlot(QualType T) { 57 if (!Dest.isIgnored()) return Dest; 58 return CGF.CreateAggTemp(T, "agg.tmp.ensured"); 59 } 60 void EnsureDest(QualType T) { 61 if (!Dest.isIgnored()) return; 62 Dest = CGF.CreateAggTemp(T, "agg.tmp.ensured"); 63 } 64 65 public: 66 AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest, bool IsResultUnused) 67 : CGF(cgf), Builder(CGF.Builder), Dest(Dest), 68 IsResultUnused(IsResultUnused) { } 69 70 //===--------------------------------------------------------------------===// 71 // Utilities 72 //===--------------------------------------------------------------------===// 73 74 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 75 /// represents a value lvalue, this method emits the address of the lvalue, 76 /// then loads the result into DestPtr. 77 void EmitAggLoadOfLValue(const Expr *E); 78 79 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 80 void EmitFinalDestCopy(QualType type, const LValue &src); 81 void EmitFinalDestCopy(QualType type, RValue src); 82 void EmitCopy(QualType type, const AggValueSlot &dest, 83 const AggValueSlot &src); 84 85 void EmitMoveFromReturnSlot(const Expr *E, RValue Src); 86 87 void EmitArrayInit(Address DestPtr, llvm::ArrayType *AType, 88 QualType elementType, InitListExpr *E); 89 90 AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) { 91 if (CGF.getLangOpts().getGC() && TypeRequiresGCollection(T)) 92 return AggValueSlot::NeedsGCBarriers; 93 return AggValueSlot::DoesNotNeedGCBarriers; 94 } 95 96 bool TypeRequiresGCollection(QualType T); 97 98 //===--------------------------------------------------------------------===// 99 // Visitor Methods 100 //===--------------------------------------------------------------------===// 101 102 void Visit(Expr *E) { 103 ApplyDebugLocation DL(CGF, E); 104 StmtVisitor<AggExprEmitter>::Visit(E); 105 } 106 107 void VisitStmt(Stmt *S) { 108 CGF.ErrorUnsupported(S, "aggregate expression"); 109 } 110 void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); } 111 void VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 112 Visit(GE->getResultExpr()); 113 } 114 void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); } 115 void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 116 return Visit(E->getReplacement()); 117 } 118 119 // l-values. 120 void VisitDeclRefExpr(DeclRefExpr *E) { 121 // For aggregates, we should always be able to emit the variable 122 // as an l-value unless it's a reference. This is due to the fact 123 // that we can't actually ever see a normal l2r conversion on an 124 // aggregate in C++, and in C there's no language standard 125 // actively preventing us from listing variables in the captures 126 // list of a block. 127 if (E->getDecl()->getType()->isReferenceType()) { 128 if (CodeGenFunction::ConstantEmission result 129 = CGF.tryEmitAsConstant(E)) { 130 EmitFinalDestCopy(E->getType(), result.getReferenceLValue(CGF, E)); 131 return; 132 } 133 } 134 135 EmitAggLoadOfLValue(E); 136 } 137 138 void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); } 139 void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); } 140 void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); } 141 void VisitCompoundLiteralExpr(CompoundLiteralExpr *E); 142 void VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 143 EmitAggLoadOfLValue(E); 144 } 145 void VisitPredefinedExpr(const PredefinedExpr *E) { 146 EmitAggLoadOfLValue(E); 147 } 148 149 // Operators. 150 void VisitCastExpr(CastExpr *E); 151 void VisitCallExpr(const CallExpr *E); 152 void VisitStmtExpr(const StmtExpr *E); 153 void VisitBinaryOperator(const BinaryOperator *BO); 154 void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO); 155 void VisitBinAssign(const BinaryOperator *E); 156 void VisitBinComma(const BinaryOperator *E); 157 158 void VisitObjCMessageExpr(ObjCMessageExpr *E); 159 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 160 EmitAggLoadOfLValue(E); 161 } 162 163 void VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E); 164 void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO); 165 void VisitChooseExpr(const ChooseExpr *CE); 166 void VisitInitListExpr(InitListExpr *E); 167 void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E); 168 void VisitNoInitExpr(NoInitExpr *E) { } // Do nothing. 169 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 170 Visit(DAE->getExpr()); 171 } 172 void VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 173 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF); 174 Visit(DIE->getExpr()); 175 } 176 void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E); 177 void VisitCXXConstructExpr(const CXXConstructExpr *E); 178 void VisitLambdaExpr(LambdaExpr *E); 179 void VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E); 180 void VisitExprWithCleanups(ExprWithCleanups *E); 181 void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E); 182 void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); } 183 void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E); 184 void VisitOpaqueValueExpr(OpaqueValueExpr *E); 185 186 void VisitPseudoObjectExpr(PseudoObjectExpr *E) { 187 if (E->isGLValue()) { 188 LValue LV = CGF.EmitPseudoObjectLValue(E); 189 return EmitFinalDestCopy(E->getType(), LV); 190 } 191 192 CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType())); 193 } 194 195 void VisitVAArgExpr(VAArgExpr *E); 196 197 void EmitInitializationToLValue(Expr *E, LValue Address); 198 void EmitNullInitializationToLValue(LValue Address); 199 // case Expr::ChooseExprClass: 200 void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); } 201 void VisitAtomicExpr(AtomicExpr *E) { 202 CGF.EmitAtomicExpr(E, EnsureSlot(E->getType()).getAddress()); 203 } 204 }; 205 } // end anonymous namespace. 206 207 //===----------------------------------------------------------------------===// 208 // Utilities 209 //===----------------------------------------------------------------------===// 210 211 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 212 /// represents a value lvalue, this method emits the address of the lvalue, 213 /// then loads the result into DestPtr. 214 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) { 215 LValue LV = CGF.EmitLValue(E); 216 217 // If the type of the l-value is atomic, then do an atomic load. 218 if (LV.getType()->isAtomicType() || CGF.LValueIsSuitableForInlineAtomic(LV)) { 219 CGF.EmitAtomicLoad(LV, E->getExprLoc(), Dest); 220 return; 221 } 222 223 EmitFinalDestCopy(E->getType(), LV); 224 } 225 226 /// \brief True if the given aggregate type requires special GC API calls. 227 bool AggExprEmitter::TypeRequiresGCollection(QualType T) { 228 // Only record types have members that might require garbage collection. 229 const RecordType *RecordTy = T->getAs<RecordType>(); 230 if (!RecordTy) return false; 231 232 // Don't mess with non-trivial C++ types. 233 RecordDecl *Record = RecordTy->getDecl(); 234 if (isa<CXXRecordDecl>(Record) && 235 (cast<CXXRecordDecl>(Record)->hasNonTrivialCopyConstructor() || 236 !cast<CXXRecordDecl>(Record)->hasTrivialDestructor())) 237 return false; 238 239 // Check whether the type has an object member. 240 return Record->hasObjectMember(); 241 } 242 243 /// \brief Perform the final move to DestPtr if for some reason 244 /// getReturnValueSlot() didn't use it directly. 245 /// 246 /// The idea is that you do something like this: 247 /// RValue Result = EmitSomething(..., getReturnValueSlot()); 248 /// EmitMoveFromReturnSlot(E, Result); 249 /// 250 /// If nothing interferes, this will cause the result to be emitted 251 /// directly into the return value slot. Otherwise, a final move 252 /// will be performed. 253 void AggExprEmitter::EmitMoveFromReturnSlot(const Expr *E, RValue src) { 254 if (shouldUseDestForReturnSlot()) { 255 // Logically, Dest.getAddr() should equal Src.getAggregateAddr(). 256 // The possibility of undef rvalues complicates that a lot, 257 // though, so we can't really assert. 258 return; 259 } 260 261 // Otherwise, copy from there to the destination. 262 assert(Dest.getPointer() != src.getAggregatePointer()); 263 EmitFinalDestCopy(E->getType(), src); 264 } 265 266 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 267 void AggExprEmitter::EmitFinalDestCopy(QualType type, RValue src) { 268 assert(src.isAggregate() && "value must be aggregate value!"); 269 LValue srcLV = CGF.MakeAddrLValue(src.getAggregateAddress(), type); 270 EmitFinalDestCopy(type, srcLV); 271 } 272 273 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 274 void AggExprEmitter::EmitFinalDestCopy(QualType type, const LValue &src) { 275 // If Dest is ignored, then we're evaluating an aggregate expression 276 // in a context that doesn't care about the result. Note that loads 277 // from volatile l-values force the existence of a non-ignored 278 // destination. 279 if (Dest.isIgnored()) 280 return; 281 282 AggValueSlot srcAgg = 283 AggValueSlot::forLValue(src, AggValueSlot::IsDestructed, 284 needsGC(type), AggValueSlot::IsAliased); 285 EmitCopy(type, Dest, srcAgg); 286 } 287 288 /// Perform a copy from the source into the destination. 289 /// 290 /// \param type - the type of the aggregate being copied; qualifiers are 291 /// ignored 292 void AggExprEmitter::EmitCopy(QualType type, const AggValueSlot &dest, 293 const AggValueSlot &src) { 294 if (dest.requiresGCollection()) { 295 CharUnits sz = CGF.getContext().getTypeSizeInChars(type); 296 llvm::Value *size = llvm::ConstantInt::get(CGF.SizeTy, sz.getQuantity()); 297 CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, 298 dest.getAddress(), 299 src.getAddress(), 300 size); 301 return; 302 } 303 304 // If the result of the assignment is used, copy the LHS there also. 305 // It's volatile if either side is. Use the minimum alignment of 306 // the two sides. 307 CGF.EmitAggregateCopy(dest.getAddress(), src.getAddress(), type, 308 dest.isVolatile() || src.isVolatile()); 309 } 310 311 /// \brief Emit the initializer for a std::initializer_list initialized with a 312 /// real initializer list. 313 void 314 AggExprEmitter::VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E) { 315 // Emit an array containing the elements. The array is externally destructed 316 // if the std::initializer_list object is. 317 ASTContext &Ctx = CGF.getContext(); 318 LValue Array = CGF.EmitLValue(E->getSubExpr()); 319 assert(Array.isSimple() && "initializer_list array not a simple lvalue"); 320 Address ArrayPtr = Array.getAddress(); 321 322 const ConstantArrayType *ArrayType = 323 Ctx.getAsConstantArrayType(E->getSubExpr()->getType()); 324 assert(ArrayType && "std::initializer_list constructed from non-array"); 325 326 // FIXME: Perform the checks on the field types in SemaInit. 327 RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl(); 328 RecordDecl::field_iterator Field = Record->field_begin(); 329 if (Field == Record->field_end()) { 330 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 331 return; 332 } 333 334 // Start pointer. 335 if (!Field->getType()->isPointerType() || 336 !Ctx.hasSameType(Field->getType()->getPointeeType(), 337 ArrayType->getElementType())) { 338 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 339 return; 340 } 341 342 AggValueSlot Dest = EnsureSlot(E->getType()); 343 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType()); 344 LValue Start = CGF.EmitLValueForFieldInitialization(DestLV, *Field); 345 llvm::Value *Zero = llvm::ConstantInt::get(CGF.PtrDiffTy, 0); 346 llvm::Value *IdxStart[] = { Zero, Zero }; 347 llvm::Value *ArrayStart = 348 Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxStart, "arraystart"); 349 CGF.EmitStoreThroughLValue(RValue::get(ArrayStart), Start); 350 ++Field; 351 352 if (Field == Record->field_end()) { 353 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 354 return; 355 } 356 357 llvm::Value *Size = Builder.getInt(ArrayType->getSize()); 358 LValue EndOrLength = CGF.EmitLValueForFieldInitialization(DestLV, *Field); 359 if (Field->getType()->isPointerType() && 360 Ctx.hasSameType(Field->getType()->getPointeeType(), 361 ArrayType->getElementType())) { 362 // End pointer. 363 llvm::Value *IdxEnd[] = { Zero, Size }; 364 llvm::Value *ArrayEnd = 365 Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxEnd, "arrayend"); 366 CGF.EmitStoreThroughLValue(RValue::get(ArrayEnd), EndOrLength); 367 } else if (Ctx.hasSameType(Field->getType(), Ctx.getSizeType())) { 368 // Length. 369 CGF.EmitStoreThroughLValue(RValue::get(Size), EndOrLength); 370 } else { 371 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 372 return; 373 } 374 } 375 376 /// \brief Determine if E is a trivial array filler, that is, one that is 377 /// equivalent to zero-initialization. 378 static bool isTrivialFiller(Expr *E) { 379 if (!E) 380 return true; 381 382 if (isa<ImplicitValueInitExpr>(E)) 383 return true; 384 385 if (auto *ILE = dyn_cast<InitListExpr>(E)) { 386 if (ILE->getNumInits()) 387 return false; 388 return isTrivialFiller(ILE->getArrayFiller()); 389 } 390 391 if (auto *Cons = dyn_cast_or_null<CXXConstructExpr>(E)) 392 return Cons->getConstructor()->isDefaultConstructor() && 393 Cons->getConstructor()->isTrivial(); 394 395 // FIXME: Are there other cases where we can avoid emitting an initializer? 396 return false; 397 } 398 399 /// \brief Emit initialization of an array from an initializer list. 400 void AggExprEmitter::EmitArrayInit(Address DestPtr, llvm::ArrayType *AType, 401 QualType elementType, InitListExpr *E) { 402 uint64_t NumInitElements = E->getNumInits(); 403 404 uint64_t NumArrayElements = AType->getNumElements(); 405 assert(NumInitElements <= NumArrayElements); 406 407 // DestPtr is an array*. Construct an elementType* by drilling 408 // down a level. 409 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 410 llvm::Value *indices[] = { zero, zero }; 411 llvm::Value *begin = 412 Builder.CreateInBoundsGEP(DestPtr.getPointer(), indices, "arrayinit.begin"); 413 414 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType); 415 CharUnits elementAlign = 416 DestPtr.getAlignment().alignmentOfArrayElement(elementSize); 417 418 // Exception safety requires us to destroy all the 419 // already-constructed members if an initializer throws. 420 // For that, we'll need an EH cleanup. 421 QualType::DestructionKind dtorKind = elementType.isDestructedType(); 422 Address endOfInit = Address::invalid(); 423 EHScopeStack::stable_iterator cleanup; 424 llvm::Instruction *cleanupDominator = nullptr; 425 if (CGF.needsEHCleanup(dtorKind)) { 426 // In principle we could tell the cleanup where we are more 427 // directly, but the control flow can get so varied here that it 428 // would actually be quite complex. Therefore we go through an 429 // alloca. 430 endOfInit = CGF.CreateTempAlloca(begin->getType(), CGF.getPointerAlign(), 431 "arrayinit.endOfInit"); 432 cleanupDominator = Builder.CreateStore(begin, endOfInit); 433 CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType, 434 elementAlign, 435 CGF.getDestroyer(dtorKind)); 436 cleanup = CGF.EHStack.stable_begin(); 437 438 // Otherwise, remember that we didn't need a cleanup. 439 } else { 440 dtorKind = QualType::DK_none; 441 } 442 443 llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1); 444 445 // The 'current element to initialize'. The invariants on this 446 // variable are complicated. Essentially, after each iteration of 447 // the loop, it points to the last initialized element, except 448 // that it points to the beginning of the array before any 449 // elements have been initialized. 450 llvm::Value *element = begin; 451 452 // Emit the explicit initializers. 453 for (uint64_t i = 0; i != NumInitElements; ++i) { 454 // Advance to the next element. 455 if (i > 0) { 456 element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element"); 457 458 // Tell the cleanup that it needs to destroy up to this 459 // element. TODO: some of these stores can be trivially 460 // observed to be unnecessary. 461 if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit); 462 } 463 464 LValue elementLV = 465 CGF.MakeAddrLValue(Address(element, elementAlign), elementType); 466 EmitInitializationToLValue(E->getInit(i), elementLV); 467 } 468 469 // Check whether there's a non-trivial array-fill expression. 470 Expr *filler = E->getArrayFiller(); 471 bool hasTrivialFiller = isTrivialFiller(filler); 472 473 // Any remaining elements need to be zero-initialized, possibly 474 // using the filler expression. We can skip this if the we're 475 // emitting to zeroed memory. 476 if (NumInitElements != NumArrayElements && 477 !(Dest.isZeroed() && hasTrivialFiller && 478 CGF.getTypes().isZeroInitializable(elementType))) { 479 480 // Use an actual loop. This is basically 481 // do { *array++ = filler; } while (array != end); 482 483 // Advance to the start of the rest of the array. 484 if (NumInitElements) { 485 element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start"); 486 if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit); 487 } 488 489 // Compute the end of the array. 490 llvm::Value *end = Builder.CreateInBoundsGEP(begin, 491 llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements), 492 "arrayinit.end"); 493 494 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 495 llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body"); 496 497 // Jump into the body. 498 CGF.EmitBlock(bodyBB); 499 llvm::PHINode *currentElement = 500 Builder.CreatePHI(element->getType(), 2, "arrayinit.cur"); 501 currentElement->addIncoming(element, entryBB); 502 503 // Emit the actual filler expression. 504 LValue elementLV = 505 CGF.MakeAddrLValue(Address(currentElement, elementAlign), elementType); 506 if (filler) 507 EmitInitializationToLValue(filler, elementLV); 508 else 509 EmitNullInitializationToLValue(elementLV); 510 511 // Move on to the next element. 512 llvm::Value *nextElement = 513 Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next"); 514 515 // Tell the EH cleanup that we finished with the last element. 516 if (endOfInit.isValid()) Builder.CreateStore(nextElement, endOfInit); 517 518 // Leave the loop if we're done. 519 llvm::Value *done = Builder.CreateICmpEQ(nextElement, end, 520 "arrayinit.done"); 521 llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end"); 522 Builder.CreateCondBr(done, endBB, bodyBB); 523 currentElement->addIncoming(nextElement, Builder.GetInsertBlock()); 524 525 CGF.EmitBlock(endBB); 526 } 527 528 // Leave the partial-array cleanup if we entered one. 529 if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator); 530 } 531 532 //===----------------------------------------------------------------------===// 533 // Visitor Methods 534 //===----------------------------------------------------------------------===// 535 536 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){ 537 Visit(E->GetTemporaryExpr()); 538 } 539 540 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) { 541 EmitFinalDestCopy(e->getType(), CGF.getOpaqueLValueMapping(e)); 542 } 543 544 void 545 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 546 if (Dest.isPotentiallyAliased() && 547 E->getType().isPODType(CGF.getContext())) { 548 // For a POD type, just emit a load of the lvalue + a copy, because our 549 // compound literal might alias the destination. 550 EmitAggLoadOfLValue(E); 551 return; 552 } 553 554 AggValueSlot Slot = EnsureSlot(E->getType()); 555 CGF.EmitAggExpr(E->getInitializer(), Slot); 556 } 557 558 /// Attempt to look through various unimportant expressions to find a 559 /// cast of the given kind. 560 static Expr *findPeephole(Expr *op, CastKind kind) { 561 while (true) { 562 op = op->IgnoreParens(); 563 if (CastExpr *castE = dyn_cast<CastExpr>(op)) { 564 if (castE->getCastKind() == kind) 565 return castE->getSubExpr(); 566 if (castE->getCastKind() == CK_NoOp) 567 continue; 568 } 569 return nullptr; 570 } 571 } 572 573 void AggExprEmitter::VisitCastExpr(CastExpr *E) { 574 switch (E->getCastKind()) { 575 case CK_Dynamic: { 576 // FIXME: Can this actually happen? We have no test coverage for it. 577 assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?"); 578 LValue LV = CGF.EmitCheckedLValue(E->getSubExpr(), 579 CodeGenFunction::TCK_Load); 580 // FIXME: Do we also need to handle property references here? 581 if (LV.isSimple()) 582 CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E)); 583 else 584 CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast"); 585 586 if (!Dest.isIgnored()) 587 CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination"); 588 break; 589 } 590 591 case CK_ToUnion: { 592 // Evaluate even if the destination is ignored. 593 if (Dest.isIgnored()) { 594 CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(), 595 /*ignoreResult=*/true); 596 break; 597 } 598 599 // GCC union extension 600 QualType Ty = E->getSubExpr()->getType(); 601 Address CastPtr = 602 Builder.CreateElementBitCast(Dest.getAddress(), CGF.ConvertType(Ty)); 603 EmitInitializationToLValue(E->getSubExpr(), 604 CGF.MakeAddrLValue(CastPtr, Ty)); 605 break; 606 } 607 608 case CK_DerivedToBase: 609 case CK_BaseToDerived: 610 case CK_UncheckedDerivedToBase: { 611 llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: " 612 "should have been unpacked before we got here"); 613 } 614 615 case CK_NonAtomicToAtomic: 616 case CK_AtomicToNonAtomic: { 617 bool isToAtomic = (E->getCastKind() == CK_NonAtomicToAtomic); 618 619 // Determine the atomic and value types. 620 QualType atomicType = E->getSubExpr()->getType(); 621 QualType valueType = E->getType(); 622 if (isToAtomic) std::swap(atomicType, valueType); 623 624 assert(atomicType->isAtomicType()); 625 assert(CGF.getContext().hasSameUnqualifiedType(valueType, 626 atomicType->castAs<AtomicType>()->getValueType())); 627 628 // Just recurse normally if we're ignoring the result or the 629 // atomic type doesn't change representation. 630 if (Dest.isIgnored() || !CGF.CGM.isPaddedAtomicType(atomicType)) { 631 return Visit(E->getSubExpr()); 632 } 633 634 CastKind peepholeTarget = 635 (isToAtomic ? CK_AtomicToNonAtomic : CK_NonAtomicToAtomic); 636 637 // These two cases are reverses of each other; try to peephole them. 638 if (Expr *op = findPeephole(E->getSubExpr(), peepholeTarget)) { 639 assert(CGF.getContext().hasSameUnqualifiedType(op->getType(), 640 E->getType()) && 641 "peephole significantly changed types?"); 642 return Visit(op); 643 } 644 645 // If we're converting an r-value of non-atomic type to an r-value 646 // of atomic type, just emit directly into the relevant sub-object. 647 if (isToAtomic) { 648 AggValueSlot valueDest = Dest; 649 if (!valueDest.isIgnored() && CGF.CGM.isPaddedAtomicType(atomicType)) { 650 // Zero-initialize. (Strictly speaking, we only need to intialize 651 // the padding at the end, but this is simpler.) 652 if (!Dest.isZeroed()) 653 CGF.EmitNullInitialization(Dest.getAddress(), atomicType); 654 655 // Build a GEP to refer to the subobject. 656 Address valueAddr = 657 CGF.Builder.CreateStructGEP(valueDest.getAddress(), 0, 658 CharUnits()); 659 valueDest = AggValueSlot::forAddr(valueAddr, 660 valueDest.getQualifiers(), 661 valueDest.isExternallyDestructed(), 662 valueDest.requiresGCollection(), 663 valueDest.isPotentiallyAliased(), 664 AggValueSlot::IsZeroed); 665 } 666 667 CGF.EmitAggExpr(E->getSubExpr(), valueDest); 668 return; 669 } 670 671 // Otherwise, we're converting an atomic type to a non-atomic type. 672 // Make an atomic temporary, emit into that, and then copy the value out. 673 AggValueSlot atomicSlot = 674 CGF.CreateAggTemp(atomicType, "atomic-to-nonatomic.temp"); 675 CGF.EmitAggExpr(E->getSubExpr(), atomicSlot); 676 677 Address valueAddr = 678 Builder.CreateStructGEP(atomicSlot.getAddress(), 0, CharUnits()); 679 RValue rvalue = RValue::getAggregate(valueAddr, atomicSlot.isVolatile()); 680 return EmitFinalDestCopy(valueType, rvalue); 681 } 682 683 case CK_LValueToRValue: 684 // If we're loading from a volatile type, force the destination 685 // into existence. 686 if (E->getSubExpr()->getType().isVolatileQualified()) { 687 EnsureDest(E->getType()); 688 return Visit(E->getSubExpr()); 689 } 690 691 // fallthrough 692 693 case CK_NoOp: 694 case CK_UserDefinedConversion: 695 case CK_ConstructorConversion: 696 assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(), 697 E->getType()) && 698 "Implicit cast types must be compatible"); 699 Visit(E->getSubExpr()); 700 break; 701 702 case CK_LValueBitCast: 703 llvm_unreachable("should not be emitting lvalue bitcast as rvalue"); 704 705 case CK_Dependent: 706 case CK_BitCast: 707 case CK_ArrayToPointerDecay: 708 case CK_FunctionToPointerDecay: 709 case CK_NullToPointer: 710 case CK_NullToMemberPointer: 711 case CK_BaseToDerivedMemberPointer: 712 case CK_DerivedToBaseMemberPointer: 713 case CK_MemberPointerToBoolean: 714 case CK_ReinterpretMemberPointer: 715 case CK_IntegralToPointer: 716 case CK_PointerToIntegral: 717 case CK_PointerToBoolean: 718 case CK_ToVoid: 719 case CK_VectorSplat: 720 case CK_IntegralCast: 721 case CK_IntegralToBoolean: 722 case CK_IntegralToFloating: 723 case CK_FloatingToIntegral: 724 case CK_FloatingToBoolean: 725 case CK_FloatingCast: 726 case CK_CPointerToObjCPointerCast: 727 case CK_BlockPointerToObjCPointerCast: 728 case CK_AnyPointerToBlockPointerCast: 729 case CK_ObjCObjectLValueCast: 730 case CK_FloatingRealToComplex: 731 case CK_FloatingComplexToReal: 732 case CK_FloatingComplexToBoolean: 733 case CK_FloatingComplexCast: 734 case CK_FloatingComplexToIntegralComplex: 735 case CK_IntegralRealToComplex: 736 case CK_IntegralComplexToReal: 737 case CK_IntegralComplexToBoolean: 738 case CK_IntegralComplexCast: 739 case CK_IntegralComplexToFloatingComplex: 740 case CK_ARCProduceObject: 741 case CK_ARCConsumeObject: 742 case CK_ARCReclaimReturnedObject: 743 case CK_ARCExtendBlockObject: 744 case CK_CopyAndAutoreleaseBlockObject: 745 case CK_BuiltinFnToFnPtr: 746 case CK_ZeroToOCLEvent: 747 case CK_AddressSpaceConversion: 748 llvm_unreachable("cast kind invalid for aggregate types"); 749 } 750 } 751 752 void AggExprEmitter::VisitCallExpr(const CallExpr *E) { 753 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) { 754 EmitAggLoadOfLValue(E); 755 return; 756 } 757 758 RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot()); 759 EmitMoveFromReturnSlot(E, RV); 760 } 761 762 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) { 763 RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot()); 764 EmitMoveFromReturnSlot(E, RV); 765 } 766 767 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) { 768 CGF.EmitIgnoredExpr(E->getLHS()); 769 Visit(E->getRHS()); 770 } 771 772 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) { 773 CodeGenFunction::StmtExprEvaluation eval(CGF); 774 CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest); 775 } 776 777 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) { 778 if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI) 779 VisitPointerToDataMemberBinaryOperator(E); 780 else 781 CGF.ErrorUnsupported(E, "aggregate binary expression"); 782 } 783 784 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator( 785 const BinaryOperator *E) { 786 LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E); 787 EmitFinalDestCopy(E->getType(), LV); 788 } 789 790 /// Is the value of the given expression possibly a reference to or 791 /// into a __block variable? 792 static bool isBlockVarRef(const Expr *E) { 793 // Make sure we look through parens. 794 E = E->IgnoreParens(); 795 796 // Check for a direct reference to a __block variable. 797 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { 798 const VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl()); 799 return (var && var->hasAttr<BlocksAttr>()); 800 } 801 802 // More complicated stuff. 803 804 // Binary operators. 805 if (const BinaryOperator *op = dyn_cast<BinaryOperator>(E)) { 806 // For an assignment or pointer-to-member operation, just care 807 // about the LHS. 808 if (op->isAssignmentOp() || op->isPtrMemOp()) 809 return isBlockVarRef(op->getLHS()); 810 811 // For a comma, just care about the RHS. 812 if (op->getOpcode() == BO_Comma) 813 return isBlockVarRef(op->getRHS()); 814 815 // FIXME: pointer arithmetic? 816 return false; 817 818 // Check both sides of a conditional operator. 819 } else if (const AbstractConditionalOperator *op 820 = dyn_cast<AbstractConditionalOperator>(E)) { 821 return isBlockVarRef(op->getTrueExpr()) 822 || isBlockVarRef(op->getFalseExpr()); 823 824 // OVEs are required to support BinaryConditionalOperators. 825 } else if (const OpaqueValueExpr *op 826 = dyn_cast<OpaqueValueExpr>(E)) { 827 if (const Expr *src = op->getSourceExpr()) 828 return isBlockVarRef(src); 829 830 // Casts are necessary to get things like (*(int*)&var) = foo(). 831 // We don't really care about the kind of cast here, except 832 // we don't want to look through l2r casts, because it's okay 833 // to get the *value* in a __block variable. 834 } else if (const CastExpr *cast = dyn_cast<CastExpr>(E)) { 835 if (cast->getCastKind() == CK_LValueToRValue) 836 return false; 837 return isBlockVarRef(cast->getSubExpr()); 838 839 // Handle unary operators. Again, just aggressively look through 840 // it, ignoring the operation. 841 } else if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E)) { 842 return isBlockVarRef(uop->getSubExpr()); 843 844 // Look into the base of a field access. 845 } else if (const MemberExpr *mem = dyn_cast<MemberExpr>(E)) { 846 return isBlockVarRef(mem->getBase()); 847 848 // Look into the base of a subscript. 849 } else if (const ArraySubscriptExpr *sub = dyn_cast<ArraySubscriptExpr>(E)) { 850 return isBlockVarRef(sub->getBase()); 851 } 852 853 return false; 854 } 855 856 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) { 857 // For an assignment to work, the value on the right has 858 // to be compatible with the value on the left. 859 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), 860 E->getRHS()->getType()) 861 && "Invalid assignment"); 862 863 // If the LHS might be a __block variable, and the RHS can 864 // potentially cause a block copy, we need to evaluate the RHS first 865 // so that the assignment goes the right place. 866 // This is pretty semantically fragile. 867 if (isBlockVarRef(E->getLHS()) && 868 E->getRHS()->HasSideEffects(CGF.getContext())) { 869 // Ensure that we have a destination, and evaluate the RHS into that. 870 EnsureDest(E->getRHS()->getType()); 871 Visit(E->getRHS()); 872 873 // Now emit the LHS and copy into it. 874 LValue LHS = CGF.EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 875 876 // That copy is an atomic copy if the LHS is atomic. 877 if (LHS.getType()->isAtomicType() || 878 CGF.LValueIsSuitableForInlineAtomic(LHS)) { 879 CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false); 880 return; 881 } 882 883 EmitCopy(E->getLHS()->getType(), 884 AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed, 885 needsGC(E->getLHS()->getType()), 886 AggValueSlot::IsAliased), 887 Dest); 888 return; 889 } 890 891 LValue LHS = CGF.EmitLValue(E->getLHS()); 892 893 // If we have an atomic type, evaluate into the destination and then 894 // do an atomic copy. 895 if (LHS.getType()->isAtomicType() || 896 CGF.LValueIsSuitableForInlineAtomic(LHS)) { 897 EnsureDest(E->getRHS()->getType()); 898 Visit(E->getRHS()); 899 CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false); 900 return; 901 } 902 903 // Codegen the RHS so that it stores directly into the LHS. 904 AggValueSlot LHSSlot = 905 AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed, 906 needsGC(E->getLHS()->getType()), 907 AggValueSlot::IsAliased); 908 // A non-volatile aggregate destination might have volatile member. 909 if (!LHSSlot.isVolatile() && 910 CGF.hasVolatileMember(E->getLHS()->getType())) 911 LHSSlot.setVolatile(true); 912 913 CGF.EmitAggExpr(E->getRHS(), LHSSlot); 914 915 // Copy into the destination if the assignment isn't ignored. 916 EmitFinalDestCopy(E->getType(), LHS); 917 } 918 919 void AggExprEmitter:: 920 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 921 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 922 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 923 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 924 925 // Bind the common expression if necessary. 926 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 927 928 CodeGenFunction::ConditionalEvaluation eval(CGF); 929 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock, 930 CGF.getProfileCount(E)); 931 932 // Save whether the destination's lifetime is externally managed. 933 bool isExternallyDestructed = Dest.isExternallyDestructed(); 934 935 eval.begin(CGF); 936 CGF.EmitBlock(LHSBlock); 937 CGF.incrementProfileCounter(E); 938 Visit(E->getTrueExpr()); 939 eval.end(CGF); 940 941 assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!"); 942 CGF.Builder.CreateBr(ContBlock); 943 944 // If the result of an agg expression is unused, then the emission 945 // of the LHS might need to create a destination slot. That's fine 946 // with us, and we can safely emit the RHS into the same slot, but 947 // we shouldn't claim that it's already being destructed. 948 Dest.setExternallyDestructed(isExternallyDestructed); 949 950 eval.begin(CGF); 951 CGF.EmitBlock(RHSBlock); 952 Visit(E->getFalseExpr()); 953 eval.end(CGF); 954 955 CGF.EmitBlock(ContBlock); 956 } 957 958 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) { 959 Visit(CE->getChosenSubExpr()); 960 } 961 962 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 963 Address ArgValue = Address::invalid(); 964 Address ArgPtr = CGF.EmitVAArg(VE, ArgValue); 965 966 if (!ArgPtr.isValid()) { 967 // If EmitVAArg fails, we fall back to the LLVM instruction. 968 llvm::Value *Val = Builder.CreateVAArg(ArgValue.getPointer(), 969 CGF.ConvertType(VE->getType())); 970 if (!Dest.isIgnored()) 971 Builder.CreateStore(Val, Dest.getAddress()); 972 return; 973 } 974 975 EmitFinalDestCopy(VE->getType(), CGF.MakeAddrLValue(ArgPtr, VE->getType())); 976 } 977 978 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 979 // Ensure that we have a slot, but if we already do, remember 980 // whether it was externally destructed. 981 bool wasExternallyDestructed = Dest.isExternallyDestructed(); 982 EnsureDest(E->getType()); 983 984 // We're going to push a destructor if there isn't already one. 985 Dest.setExternallyDestructed(); 986 987 Visit(E->getSubExpr()); 988 989 // Push that destructor we promised. 990 if (!wasExternallyDestructed) 991 CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddress()); 992 } 993 994 void 995 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) { 996 AggValueSlot Slot = EnsureSlot(E->getType()); 997 CGF.EmitCXXConstructExpr(E, Slot); 998 } 999 1000 void 1001 AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) { 1002 AggValueSlot Slot = EnsureSlot(E->getType()); 1003 CGF.EmitLambdaExpr(E, Slot); 1004 } 1005 1006 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) { 1007 CGF.enterFullExpression(E); 1008 CodeGenFunction::RunCleanupsScope cleanups(CGF); 1009 Visit(E->getSubExpr()); 1010 } 1011 1012 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) { 1013 QualType T = E->getType(); 1014 AggValueSlot Slot = EnsureSlot(T); 1015 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T)); 1016 } 1017 1018 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) { 1019 QualType T = E->getType(); 1020 AggValueSlot Slot = EnsureSlot(T); 1021 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T)); 1022 } 1023 1024 /// isSimpleZero - If emitting this value will obviously just cause a store of 1025 /// zero to memory, return true. This can return false if uncertain, so it just 1026 /// handles simple cases. 1027 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) { 1028 E = E->IgnoreParens(); 1029 1030 // 0 1031 if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) 1032 return IL->getValue() == 0; 1033 // +0.0 1034 if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E)) 1035 return FL->getValue().isPosZero(); 1036 // int() 1037 if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) && 1038 CGF.getTypes().isZeroInitializable(E->getType())) 1039 return true; 1040 // (int*)0 - Null pointer expressions. 1041 if (const CastExpr *ICE = dyn_cast<CastExpr>(E)) 1042 return ICE->getCastKind() == CK_NullToPointer; 1043 // '\0' 1044 if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) 1045 return CL->getValue() == 0; 1046 1047 // Otherwise, hard case: conservatively return false. 1048 return false; 1049 } 1050 1051 1052 void 1053 AggExprEmitter::EmitInitializationToLValue(Expr *E, LValue LV) { 1054 QualType type = LV.getType(); 1055 // FIXME: Ignore result? 1056 // FIXME: Are initializers affected by volatile? 1057 if (Dest.isZeroed() && isSimpleZero(E, CGF)) { 1058 // Storing "i32 0" to a zero'd memory location is a noop. 1059 return; 1060 } else if (isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) { 1061 return EmitNullInitializationToLValue(LV); 1062 } else if (isa<NoInitExpr>(E)) { 1063 // Do nothing. 1064 return; 1065 } else if (type->isReferenceType()) { 1066 RValue RV = CGF.EmitReferenceBindingToExpr(E); 1067 return CGF.EmitStoreThroughLValue(RV, LV); 1068 } 1069 1070 switch (CGF.getEvaluationKind(type)) { 1071 case TEK_Complex: 1072 CGF.EmitComplexExprIntoLValue(E, LV, /*isInit*/ true); 1073 return; 1074 case TEK_Aggregate: 1075 CGF.EmitAggExpr(E, AggValueSlot::forLValue(LV, 1076 AggValueSlot::IsDestructed, 1077 AggValueSlot::DoesNotNeedGCBarriers, 1078 AggValueSlot::IsNotAliased, 1079 Dest.isZeroed())); 1080 return; 1081 case TEK_Scalar: 1082 if (LV.isSimple()) { 1083 CGF.EmitScalarInit(E, /*D=*/nullptr, LV, /*Captured=*/false); 1084 } else { 1085 CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV); 1086 } 1087 return; 1088 } 1089 llvm_unreachable("bad evaluation kind"); 1090 } 1091 1092 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) { 1093 QualType type = lv.getType(); 1094 1095 // If the destination slot is already zeroed out before the aggregate is 1096 // copied into it, we don't have to emit any zeros here. 1097 if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type)) 1098 return; 1099 1100 if (CGF.hasScalarEvaluationKind(type)) { 1101 // For non-aggregates, we can store the appropriate null constant. 1102 llvm::Value *null = CGF.CGM.EmitNullConstant(type); 1103 // Note that the following is not equivalent to 1104 // EmitStoreThroughBitfieldLValue for ARC types. 1105 if (lv.isBitField()) { 1106 CGF.EmitStoreThroughBitfieldLValue(RValue::get(null), lv); 1107 } else { 1108 assert(lv.isSimple()); 1109 CGF.EmitStoreOfScalar(null, lv, /* isInitialization */ true); 1110 } 1111 } else { 1112 // There's a potential optimization opportunity in combining 1113 // memsets; that would be easy for arrays, but relatively 1114 // difficult for structures with the current code. 1115 CGF.EmitNullInitialization(lv.getAddress(), lv.getType()); 1116 } 1117 } 1118 1119 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) { 1120 #if 0 1121 // FIXME: Assess perf here? Figure out what cases are worth optimizing here 1122 // (Length of globals? Chunks of zeroed-out space?). 1123 // 1124 // If we can, prefer a copy from a global; this is a lot less code for long 1125 // globals, and it's easier for the current optimizers to analyze. 1126 if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) { 1127 llvm::GlobalVariable* GV = 1128 new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true, 1129 llvm::GlobalValue::InternalLinkage, C, ""); 1130 EmitFinalDestCopy(E->getType(), CGF.MakeAddrLValue(GV, E->getType())); 1131 return; 1132 } 1133 #endif 1134 if (E->hadArrayRangeDesignator()) 1135 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 1136 1137 AggValueSlot Dest = EnsureSlot(E->getType()); 1138 1139 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType()); 1140 1141 // Handle initialization of an array. 1142 if (E->getType()->isArrayType()) { 1143 if (E->isStringLiteralInit()) 1144 return Visit(E->getInit(0)); 1145 1146 QualType elementType = 1147 CGF.getContext().getAsArrayType(E->getType())->getElementType(); 1148 1149 auto AType = cast<llvm::ArrayType>(Dest.getAddress().getElementType()); 1150 EmitArrayInit(Dest.getAddress(), AType, elementType, E); 1151 return; 1152 } 1153 1154 if (E->getType()->isAtomicType()) { 1155 // An _Atomic(T) object can be list-initialized from an expression 1156 // of the same type. 1157 assert(E->getNumInits() == 1 && 1158 CGF.getContext().hasSameUnqualifiedType(E->getInit(0)->getType(), 1159 E->getType()) && 1160 "unexpected list initialization for atomic object"); 1161 return Visit(E->getInit(0)); 1162 } 1163 1164 assert(E->getType()->isRecordType() && "Only support structs/unions here!"); 1165 1166 // Do struct initialization; this code just sets each individual member 1167 // to the approprate value. This makes bitfield support automatic; 1168 // the disadvantage is that the generated code is more difficult for 1169 // the optimizer, especially with bitfields. 1170 unsigned NumInitElements = E->getNumInits(); 1171 RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl(); 1172 1173 // Prepare a 'this' for CXXDefaultInitExprs. 1174 CodeGenFunction::FieldConstructionScope FCS(CGF, Dest.getAddress()); 1175 1176 if (record->isUnion()) { 1177 // Only initialize one field of a union. The field itself is 1178 // specified by the initializer list. 1179 if (!E->getInitializedFieldInUnion()) { 1180 // Empty union; we have nothing to do. 1181 1182 #ifndef NDEBUG 1183 // Make sure that it's really an empty and not a failure of 1184 // semantic analysis. 1185 for (const auto *Field : record->fields()) 1186 assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed"); 1187 #endif 1188 return; 1189 } 1190 1191 // FIXME: volatility 1192 FieldDecl *Field = E->getInitializedFieldInUnion(); 1193 1194 LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestLV, Field); 1195 if (NumInitElements) { 1196 // Store the initializer into the field 1197 EmitInitializationToLValue(E->getInit(0), FieldLoc); 1198 } else { 1199 // Default-initialize to null. 1200 EmitNullInitializationToLValue(FieldLoc); 1201 } 1202 1203 return; 1204 } 1205 1206 // We'll need to enter cleanup scopes in case any of the member 1207 // initializers throw an exception. 1208 SmallVector<EHScopeStack::stable_iterator, 16> cleanups; 1209 llvm::Instruction *cleanupDominator = nullptr; 1210 1211 // Here we iterate over the fields; this makes it simpler to both 1212 // default-initialize fields and skip over unnamed fields. 1213 unsigned curInitIndex = 0; 1214 for (const auto *field : record->fields()) { 1215 // We're done once we hit the flexible array member. 1216 if (field->getType()->isIncompleteArrayType()) 1217 break; 1218 1219 // Always skip anonymous bitfields. 1220 if (field->isUnnamedBitfield()) 1221 continue; 1222 1223 // We're done if we reach the end of the explicit initializers, we 1224 // have a zeroed object, and the rest of the fields are 1225 // zero-initializable. 1226 if (curInitIndex == NumInitElements && Dest.isZeroed() && 1227 CGF.getTypes().isZeroInitializable(E->getType())) 1228 break; 1229 1230 1231 LValue LV = CGF.EmitLValueForFieldInitialization(DestLV, field); 1232 // We never generate write-barries for initialized fields. 1233 LV.setNonGC(true); 1234 1235 if (curInitIndex < NumInitElements) { 1236 // Store the initializer into the field. 1237 EmitInitializationToLValue(E->getInit(curInitIndex++), LV); 1238 } else { 1239 // We're out of initalizers; default-initialize to null 1240 EmitNullInitializationToLValue(LV); 1241 } 1242 1243 // Push a destructor if necessary. 1244 // FIXME: if we have an array of structures, all explicitly 1245 // initialized, we can end up pushing a linear number of cleanups. 1246 bool pushedCleanup = false; 1247 if (QualType::DestructionKind dtorKind 1248 = field->getType().isDestructedType()) { 1249 assert(LV.isSimple()); 1250 if (CGF.needsEHCleanup(dtorKind)) { 1251 if (!cleanupDominator) 1252 cleanupDominator = CGF.Builder.CreateAlignedLoad( 1253 CGF.Int8Ty, 1254 llvm::Constant::getNullValue(CGF.Int8PtrTy), 1255 CharUnits::One()); // placeholder 1256 1257 CGF.pushDestroy(EHCleanup, LV.getAddress(), field->getType(), 1258 CGF.getDestroyer(dtorKind), false); 1259 cleanups.push_back(CGF.EHStack.stable_begin()); 1260 pushedCleanup = true; 1261 } 1262 } 1263 1264 // If the GEP didn't get used because of a dead zero init or something 1265 // else, clean it up for -O0 builds and general tidiness. 1266 if (!pushedCleanup && LV.isSimple()) 1267 if (llvm::GetElementPtrInst *GEP = 1268 dyn_cast<llvm::GetElementPtrInst>(LV.getPointer())) 1269 if (GEP->use_empty()) 1270 GEP->eraseFromParent(); 1271 } 1272 1273 // Deactivate all the partial cleanups in reverse order, which 1274 // generally means popping them. 1275 for (unsigned i = cleanups.size(); i != 0; --i) 1276 CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator); 1277 1278 // Destroy the placeholder if we made one. 1279 if (cleanupDominator) 1280 cleanupDominator->eraseFromParent(); 1281 } 1282 1283 void AggExprEmitter::VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E) { 1284 AggValueSlot Dest = EnsureSlot(E->getType()); 1285 1286 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType()); 1287 EmitInitializationToLValue(E->getBase(), DestLV); 1288 VisitInitListExpr(E->getUpdater()); 1289 } 1290 1291 //===----------------------------------------------------------------------===// 1292 // Entry Points into this File 1293 //===----------------------------------------------------------------------===// 1294 1295 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of 1296 /// non-zero bytes that will be stored when outputting the initializer for the 1297 /// specified initializer expression. 1298 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) { 1299 E = E->IgnoreParens(); 1300 1301 // 0 and 0.0 won't require any non-zero stores! 1302 if (isSimpleZero(E, CGF)) return CharUnits::Zero(); 1303 1304 // If this is an initlist expr, sum up the size of sizes of the (present) 1305 // elements. If this is something weird, assume the whole thing is non-zero. 1306 const InitListExpr *ILE = dyn_cast<InitListExpr>(E); 1307 if (!ILE || !CGF.getTypes().isZeroInitializable(ILE->getType())) 1308 return CGF.getContext().getTypeSizeInChars(E->getType()); 1309 1310 // InitListExprs for structs have to be handled carefully. If there are 1311 // reference members, we need to consider the size of the reference, not the 1312 // referencee. InitListExprs for unions and arrays can't have references. 1313 if (const RecordType *RT = E->getType()->getAs<RecordType>()) { 1314 if (!RT->isUnionType()) { 1315 RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl(); 1316 CharUnits NumNonZeroBytes = CharUnits::Zero(); 1317 1318 unsigned ILEElement = 0; 1319 for (const auto *Field : SD->fields()) { 1320 // We're done once we hit the flexible array member or run out of 1321 // InitListExpr elements. 1322 if (Field->getType()->isIncompleteArrayType() || 1323 ILEElement == ILE->getNumInits()) 1324 break; 1325 if (Field->isUnnamedBitfield()) 1326 continue; 1327 1328 const Expr *E = ILE->getInit(ILEElement++); 1329 1330 // Reference values are always non-null and have the width of a pointer. 1331 if (Field->getType()->isReferenceType()) 1332 NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits( 1333 CGF.getTarget().getPointerWidth(0)); 1334 else 1335 NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF); 1336 } 1337 1338 return NumNonZeroBytes; 1339 } 1340 } 1341 1342 1343 CharUnits NumNonZeroBytes = CharUnits::Zero(); 1344 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) 1345 NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF); 1346 return NumNonZeroBytes; 1347 } 1348 1349 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of 1350 /// zeros in it, emit a memset and avoid storing the individual zeros. 1351 /// 1352 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E, 1353 CodeGenFunction &CGF) { 1354 // If the slot is already known to be zeroed, nothing to do. Don't mess with 1355 // volatile stores. 1356 if (Slot.isZeroed() || Slot.isVolatile() || !Slot.getAddress().isValid()) 1357 return; 1358 1359 // C++ objects with a user-declared constructor don't need zero'ing. 1360 if (CGF.getLangOpts().CPlusPlus) 1361 if (const RecordType *RT = CGF.getContext() 1362 .getBaseElementType(E->getType())->getAs<RecordType>()) { 1363 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1364 if (RD->hasUserDeclaredConstructor()) 1365 return; 1366 } 1367 1368 // If the type is 16-bytes or smaller, prefer individual stores over memset. 1369 CharUnits Size = CGF.getContext().getTypeSizeInChars(E->getType()); 1370 if (Size <= CharUnits::fromQuantity(16)) 1371 return; 1372 1373 // Check to see if over 3/4 of the initializer are known to be zero. If so, 1374 // we prefer to emit memset + individual stores for the rest. 1375 CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF); 1376 if (NumNonZeroBytes*4 > Size) 1377 return; 1378 1379 // Okay, it seems like a good idea to use an initial memset, emit the call. 1380 llvm::Constant *SizeVal = CGF.Builder.getInt64(Size.getQuantity()); 1381 1382 Address Loc = Slot.getAddress(); 1383 Loc = CGF.Builder.CreateElementBitCast(Loc, CGF.Int8Ty); 1384 CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, false); 1385 1386 // Tell the AggExprEmitter that the slot is known zero. 1387 Slot.setZeroed(); 1388 } 1389 1390 1391 1392 1393 /// EmitAggExpr - Emit the computation of the specified expression of aggregate 1394 /// type. The result is computed into DestPtr. Note that if DestPtr is null, 1395 /// the value of the aggregate expression is not needed. If VolatileDest is 1396 /// true, DestPtr cannot be 0. 1397 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot) { 1398 assert(E && hasAggregateEvaluationKind(E->getType()) && 1399 "Invalid aggregate expression to emit"); 1400 assert((Slot.getAddress().isValid() || Slot.isIgnored()) && 1401 "slot has bits but no address"); 1402 1403 // Optimize the slot if possible. 1404 CheckAggExprForMemSetUse(Slot, E, *this); 1405 1406 AggExprEmitter(*this, Slot, Slot.isIgnored()).Visit(const_cast<Expr*>(E)); 1407 } 1408 1409 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) { 1410 assert(hasAggregateEvaluationKind(E->getType()) && "Invalid argument!"); 1411 Address Temp = CreateMemTemp(E->getType()); 1412 LValue LV = MakeAddrLValue(Temp, E->getType()); 1413 EmitAggExpr(E, AggValueSlot::forLValue(LV, AggValueSlot::IsNotDestructed, 1414 AggValueSlot::DoesNotNeedGCBarriers, 1415 AggValueSlot::IsNotAliased)); 1416 return LV; 1417 } 1418 1419 void CodeGenFunction::EmitAggregateCopy(Address DestPtr, 1420 Address SrcPtr, QualType Ty, 1421 bool isVolatile, 1422 bool isAssignment) { 1423 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 1424 1425 if (getLangOpts().CPlusPlus) { 1426 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1427 CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl()); 1428 assert((Record->hasTrivialCopyConstructor() || 1429 Record->hasTrivialCopyAssignment() || 1430 Record->hasTrivialMoveConstructor() || 1431 Record->hasTrivialMoveAssignment() || 1432 Record->isUnion()) && 1433 "Trying to aggregate-copy a type without a trivial copy/move " 1434 "constructor or assignment operator"); 1435 // Ignore empty classes in C++. 1436 if (Record->isEmpty()) 1437 return; 1438 } 1439 } 1440 1441 // Aggregate assignment turns into llvm.memcpy. This is almost valid per 1442 // C99 6.5.16.1p3, which states "If the value being stored in an object is 1443 // read from another object that overlaps in anyway the storage of the first 1444 // object, then the overlap shall be exact and the two objects shall have 1445 // qualified or unqualified versions of a compatible type." 1446 // 1447 // memcpy is not defined if the source and destination pointers are exactly 1448 // equal, but other compilers do this optimization, and almost every memcpy 1449 // implementation handles this case safely. If there is a libc that does not 1450 // safely handle this, we can add a target hook. 1451 1452 // Get data size info for this aggregate. If this is an assignment, 1453 // don't copy the tail padding, because we might be assigning into a 1454 // base subobject where the tail padding is claimed. Otherwise, 1455 // copying it is fine. 1456 std::pair<CharUnits, CharUnits> TypeInfo; 1457 if (isAssignment) 1458 TypeInfo = getContext().getTypeInfoDataSizeInChars(Ty); 1459 else 1460 TypeInfo = getContext().getTypeInfoInChars(Ty); 1461 1462 llvm::Value *SizeVal = nullptr; 1463 if (TypeInfo.first.isZero()) { 1464 // But note that getTypeInfo returns 0 for a VLA. 1465 if (auto *VAT = dyn_cast_or_null<VariableArrayType>( 1466 getContext().getAsArrayType(Ty))) { 1467 QualType BaseEltTy; 1468 SizeVal = emitArrayLength(VAT, BaseEltTy, DestPtr); 1469 TypeInfo = getContext().getTypeInfoDataSizeInChars(BaseEltTy); 1470 std::pair<CharUnits, CharUnits> LastElementTypeInfo; 1471 if (!isAssignment) 1472 LastElementTypeInfo = getContext().getTypeInfoInChars(BaseEltTy); 1473 assert(!TypeInfo.first.isZero()); 1474 SizeVal = Builder.CreateNUWMul( 1475 SizeVal, 1476 llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity())); 1477 if (!isAssignment) { 1478 SizeVal = Builder.CreateNUWSub( 1479 SizeVal, 1480 llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity())); 1481 SizeVal = Builder.CreateNUWAdd( 1482 SizeVal, llvm::ConstantInt::get( 1483 SizeTy, LastElementTypeInfo.first.getQuantity())); 1484 } 1485 } 1486 } 1487 if (!SizeVal) { 1488 SizeVal = llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity()); 1489 } 1490 1491 // FIXME: If we have a volatile struct, the optimizer can remove what might 1492 // appear to be `extra' memory ops: 1493 // 1494 // volatile struct { int i; } a, b; 1495 // 1496 // int main() { 1497 // a = b; 1498 // a = b; 1499 // } 1500 // 1501 // we need to use a different call here. We use isVolatile to indicate when 1502 // either the source or the destination is volatile. 1503 1504 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1505 SrcPtr = Builder.CreateElementBitCast(SrcPtr, Int8Ty); 1506 1507 // Don't do any of the memmove_collectable tests if GC isn't set. 1508 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) { 1509 // fall through 1510 } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 1511 RecordDecl *Record = RecordTy->getDecl(); 1512 if (Record->hasObjectMember()) { 1513 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 1514 SizeVal); 1515 return; 1516 } 1517 } else if (Ty->isArrayType()) { 1518 QualType BaseType = getContext().getBaseElementType(Ty); 1519 if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) { 1520 if (RecordTy->getDecl()->hasObjectMember()) { 1521 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 1522 SizeVal); 1523 return; 1524 } 1525 } 1526 } 1527 1528 auto Inst = Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, isVolatile); 1529 1530 // Determine the metadata to describe the position of any padding in this 1531 // memcpy, as well as the TBAA tags for the members of the struct, in case 1532 // the optimizer wishes to expand it in to scalar memory operations. 1533 if (llvm::MDNode *TBAAStructTag = CGM.getTBAAStructInfo(Ty)) 1534 Inst->setMetadata(llvm::LLVMContext::MD_tbaa_struct, TBAAStructTag); 1535 } 1536