1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Aggregate Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGObjCRuntime.h"
16 #include "CodeGenModule.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/DeclTemplate.h"
20 #include "clang/AST/StmtVisitor.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/Function.h"
23 #include "llvm/IR/GlobalVariable.h"
24 #include "llvm/IR/Intrinsics.h"
25 using namespace clang;
26 using namespace CodeGen;
27 
28 //===----------------------------------------------------------------------===//
29 //                        Aggregate Expression Emitter
30 //===----------------------------------------------------------------------===//
31 
32 namespace  {
33 class AggExprEmitter : public StmtVisitor<AggExprEmitter> {
34   CodeGenFunction &CGF;
35   CGBuilderTy &Builder;
36   AggValueSlot Dest;
37   bool IsResultUnused;
38 
39   /// We want to use 'dest' as the return slot except under two
40   /// conditions:
41   ///   - The destination slot requires garbage collection, so we
42   ///     need to use the GC API.
43   ///   - The destination slot is potentially aliased.
44   bool shouldUseDestForReturnSlot() const {
45     return !(Dest.requiresGCollection() || Dest.isPotentiallyAliased());
46   }
47 
48   ReturnValueSlot getReturnValueSlot() const {
49     if (!shouldUseDestForReturnSlot())
50       return ReturnValueSlot();
51 
52     return ReturnValueSlot(Dest.getAddress(), Dest.isVolatile(),
53                            IsResultUnused);
54   }
55 
56   AggValueSlot EnsureSlot(QualType T) {
57     if (!Dest.isIgnored()) return Dest;
58     return CGF.CreateAggTemp(T, "agg.tmp.ensured");
59   }
60   void EnsureDest(QualType T) {
61     if (!Dest.isIgnored()) return;
62     Dest = CGF.CreateAggTemp(T, "agg.tmp.ensured");
63   }
64 
65 public:
66   AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest, bool IsResultUnused)
67     : CGF(cgf), Builder(CGF.Builder), Dest(Dest),
68     IsResultUnused(IsResultUnused) { }
69 
70   //===--------------------------------------------------------------------===//
71   //                               Utilities
72   //===--------------------------------------------------------------------===//
73 
74   /// EmitAggLoadOfLValue - Given an expression with aggregate type that
75   /// represents a value lvalue, this method emits the address of the lvalue,
76   /// then loads the result into DestPtr.
77   void EmitAggLoadOfLValue(const Expr *E);
78 
79   /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
80   void EmitFinalDestCopy(QualType type, const LValue &src);
81   void EmitFinalDestCopy(QualType type, RValue src);
82   void EmitCopy(QualType type, const AggValueSlot &dest,
83                 const AggValueSlot &src);
84 
85   void EmitMoveFromReturnSlot(const Expr *E, RValue Src);
86 
87   void EmitArrayInit(Address DestPtr, llvm::ArrayType *AType,
88                      QualType elementType, InitListExpr *E);
89 
90   AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) {
91     if (CGF.getLangOpts().getGC() && TypeRequiresGCollection(T))
92       return AggValueSlot::NeedsGCBarriers;
93     return AggValueSlot::DoesNotNeedGCBarriers;
94   }
95 
96   bool TypeRequiresGCollection(QualType T);
97 
98   //===--------------------------------------------------------------------===//
99   //                            Visitor Methods
100   //===--------------------------------------------------------------------===//
101 
102   void Visit(Expr *E) {
103     ApplyDebugLocation DL(CGF, E);
104     StmtVisitor<AggExprEmitter>::Visit(E);
105   }
106 
107   void VisitStmt(Stmt *S) {
108     CGF.ErrorUnsupported(S, "aggregate expression");
109   }
110   void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
111   void VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
112     Visit(GE->getResultExpr());
113   }
114   void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
115   void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
116     return Visit(E->getReplacement());
117   }
118 
119   // l-values.
120   void VisitDeclRefExpr(DeclRefExpr *E) {
121     // For aggregates, we should always be able to emit the variable
122     // as an l-value unless it's a reference.  This is due to the fact
123     // that we can't actually ever see a normal l2r conversion on an
124     // aggregate in C++, and in C there's no language standard
125     // actively preventing us from listing variables in the captures
126     // list of a block.
127     if (E->getDecl()->getType()->isReferenceType()) {
128       if (CodeGenFunction::ConstantEmission result
129             = CGF.tryEmitAsConstant(E)) {
130         EmitFinalDestCopy(E->getType(), result.getReferenceLValue(CGF, E));
131         return;
132       }
133     }
134 
135     EmitAggLoadOfLValue(E);
136   }
137 
138   void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
139   void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
140   void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
141   void VisitCompoundLiteralExpr(CompoundLiteralExpr *E);
142   void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
143     EmitAggLoadOfLValue(E);
144   }
145   void VisitPredefinedExpr(const PredefinedExpr *E) {
146     EmitAggLoadOfLValue(E);
147   }
148 
149   // Operators.
150   void VisitCastExpr(CastExpr *E);
151   void VisitCallExpr(const CallExpr *E);
152   void VisitStmtExpr(const StmtExpr *E);
153   void VisitBinaryOperator(const BinaryOperator *BO);
154   void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO);
155   void VisitBinAssign(const BinaryOperator *E);
156   void VisitBinComma(const BinaryOperator *E);
157 
158   void VisitObjCMessageExpr(ObjCMessageExpr *E);
159   void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
160     EmitAggLoadOfLValue(E);
161   }
162 
163   void VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E);
164   void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
165   void VisitChooseExpr(const ChooseExpr *CE);
166   void VisitInitListExpr(InitListExpr *E);
167   void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E);
168   void VisitNoInitExpr(NoInitExpr *E) { } // Do nothing.
169   void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
170     Visit(DAE->getExpr());
171   }
172   void VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
173     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF);
174     Visit(DIE->getExpr());
175   }
176   void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E);
177   void VisitCXXConstructExpr(const CXXConstructExpr *E);
178   void VisitLambdaExpr(LambdaExpr *E);
179   void VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E);
180   void VisitExprWithCleanups(ExprWithCleanups *E);
181   void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E);
182   void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); }
183   void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E);
184   void VisitOpaqueValueExpr(OpaqueValueExpr *E);
185 
186   void VisitPseudoObjectExpr(PseudoObjectExpr *E) {
187     if (E->isGLValue()) {
188       LValue LV = CGF.EmitPseudoObjectLValue(E);
189       return EmitFinalDestCopy(E->getType(), LV);
190     }
191 
192     CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType()));
193   }
194 
195   void VisitVAArgExpr(VAArgExpr *E);
196 
197   void EmitInitializationToLValue(Expr *E, LValue Address);
198   void EmitNullInitializationToLValue(LValue Address);
199   //  case Expr::ChooseExprClass:
200   void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); }
201   void VisitAtomicExpr(AtomicExpr *E) {
202     CGF.EmitAtomicExpr(E, EnsureSlot(E->getType()).getAddress());
203   }
204 };
205 }  // end anonymous namespace.
206 
207 //===----------------------------------------------------------------------===//
208 //                                Utilities
209 //===----------------------------------------------------------------------===//
210 
211 /// EmitAggLoadOfLValue - Given an expression with aggregate type that
212 /// represents a value lvalue, this method emits the address of the lvalue,
213 /// then loads the result into DestPtr.
214 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
215   LValue LV = CGF.EmitLValue(E);
216 
217   // If the type of the l-value is atomic, then do an atomic load.
218   if (LV.getType()->isAtomicType() || CGF.LValueIsSuitableForInlineAtomic(LV)) {
219     CGF.EmitAtomicLoad(LV, E->getExprLoc(), Dest);
220     return;
221   }
222 
223   EmitFinalDestCopy(E->getType(), LV);
224 }
225 
226 /// \brief True if the given aggregate type requires special GC API calls.
227 bool AggExprEmitter::TypeRequiresGCollection(QualType T) {
228   // Only record types have members that might require garbage collection.
229   const RecordType *RecordTy = T->getAs<RecordType>();
230   if (!RecordTy) return false;
231 
232   // Don't mess with non-trivial C++ types.
233   RecordDecl *Record = RecordTy->getDecl();
234   if (isa<CXXRecordDecl>(Record) &&
235       (cast<CXXRecordDecl>(Record)->hasNonTrivialCopyConstructor() ||
236        !cast<CXXRecordDecl>(Record)->hasTrivialDestructor()))
237     return false;
238 
239   // Check whether the type has an object member.
240   return Record->hasObjectMember();
241 }
242 
243 /// \brief Perform the final move to DestPtr if for some reason
244 /// getReturnValueSlot() didn't use it directly.
245 ///
246 /// The idea is that you do something like this:
247 ///   RValue Result = EmitSomething(..., getReturnValueSlot());
248 ///   EmitMoveFromReturnSlot(E, Result);
249 ///
250 /// If nothing interferes, this will cause the result to be emitted
251 /// directly into the return value slot.  Otherwise, a final move
252 /// will be performed.
253 void AggExprEmitter::EmitMoveFromReturnSlot(const Expr *E, RValue src) {
254   if (shouldUseDestForReturnSlot()) {
255     // Logically, Dest.getAddr() should equal Src.getAggregateAddr().
256     // The possibility of undef rvalues complicates that a lot,
257     // though, so we can't really assert.
258     return;
259   }
260 
261   // Otherwise, copy from there to the destination.
262   assert(Dest.getPointer() != src.getAggregatePointer());
263   EmitFinalDestCopy(E->getType(), src);
264 }
265 
266 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
267 void AggExprEmitter::EmitFinalDestCopy(QualType type, RValue src) {
268   assert(src.isAggregate() && "value must be aggregate value!");
269   LValue srcLV = CGF.MakeAddrLValue(src.getAggregateAddress(), type);
270   EmitFinalDestCopy(type, srcLV);
271 }
272 
273 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
274 void AggExprEmitter::EmitFinalDestCopy(QualType type, const LValue &src) {
275   // If Dest is ignored, then we're evaluating an aggregate expression
276   // in a context that doesn't care about the result.  Note that loads
277   // from volatile l-values force the existence of a non-ignored
278   // destination.
279   if (Dest.isIgnored())
280     return;
281 
282   AggValueSlot srcAgg =
283     AggValueSlot::forLValue(src, AggValueSlot::IsDestructed,
284                             needsGC(type), AggValueSlot::IsAliased);
285   EmitCopy(type, Dest, srcAgg);
286 }
287 
288 /// Perform a copy from the source into the destination.
289 ///
290 /// \param type - the type of the aggregate being copied; qualifiers are
291 ///   ignored
292 void AggExprEmitter::EmitCopy(QualType type, const AggValueSlot &dest,
293                               const AggValueSlot &src) {
294   if (dest.requiresGCollection()) {
295     CharUnits sz = CGF.getContext().getTypeSizeInChars(type);
296     llvm::Value *size = llvm::ConstantInt::get(CGF.SizeTy, sz.getQuantity());
297     CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF,
298                                                       dest.getAddress(),
299                                                       src.getAddress(),
300                                                       size);
301     return;
302   }
303 
304   // If the result of the assignment is used, copy the LHS there also.
305   // It's volatile if either side is.  Use the minimum alignment of
306   // the two sides.
307   CGF.EmitAggregateCopy(dest.getAddress(), src.getAddress(), type,
308                         dest.isVolatile() || src.isVolatile());
309 }
310 
311 /// \brief Emit the initializer for a std::initializer_list initialized with a
312 /// real initializer list.
313 void
314 AggExprEmitter::VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E) {
315   // Emit an array containing the elements.  The array is externally destructed
316   // if the std::initializer_list object is.
317   ASTContext &Ctx = CGF.getContext();
318   LValue Array = CGF.EmitLValue(E->getSubExpr());
319   assert(Array.isSimple() && "initializer_list array not a simple lvalue");
320   Address ArrayPtr = Array.getAddress();
321 
322   const ConstantArrayType *ArrayType =
323       Ctx.getAsConstantArrayType(E->getSubExpr()->getType());
324   assert(ArrayType && "std::initializer_list constructed from non-array");
325 
326   // FIXME: Perform the checks on the field types in SemaInit.
327   RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl();
328   RecordDecl::field_iterator Field = Record->field_begin();
329   if (Field == Record->field_end()) {
330     CGF.ErrorUnsupported(E, "weird std::initializer_list");
331     return;
332   }
333 
334   // Start pointer.
335   if (!Field->getType()->isPointerType() ||
336       !Ctx.hasSameType(Field->getType()->getPointeeType(),
337                        ArrayType->getElementType())) {
338     CGF.ErrorUnsupported(E, "weird std::initializer_list");
339     return;
340   }
341 
342   AggValueSlot Dest = EnsureSlot(E->getType());
343   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
344   LValue Start = CGF.EmitLValueForFieldInitialization(DestLV, *Field);
345   llvm::Value *Zero = llvm::ConstantInt::get(CGF.PtrDiffTy, 0);
346   llvm::Value *IdxStart[] = { Zero, Zero };
347   llvm::Value *ArrayStart =
348       Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxStart, "arraystart");
349   CGF.EmitStoreThroughLValue(RValue::get(ArrayStart), Start);
350   ++Field;
351 
352   if (Field == Record->field_end()) {
353     CGF.ErrorUnsupported(E, "weird std::initializer_list");
354     return;
355   }
356 
357   llvm::Value *Size = Builder.getInt(ArrayType->getSize());
358   LValue EndOrLength = CGF.EmitLValueForFieldInitialization(DestLV, *Field);
359   if (Field->getType()->isPointerType() &&
360       Ctx.hasSameType(Field->getType()->getPointeeType(),
361                       ArrayType->getElementType())) {
362     // End pointer.
363     llvm::Value *IdxEnd[] = { Zero, Size };
364     llvm::Value *ArrayEnd =
365         Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxEnd, "arrayend");
366     CGF.EmitStoreThroughLValue(RValue::get(ArrayEnd), EndOrLength);
367   } else if (Ctx.hasSameType(Field->getType(), Ctx.getSizeType())) {
368     // Length.
369     CGF.EmitStoreThroughLValue(RValue::get(Size), EndOrLength);
370   } else {
371     CGF.ErrorUnsupported(E, "weird std::initializer_list");
372     return;
373   }
374 }
375 
376 /// \brief Determine if E is a trivial array filler, that is, one that is
377 /// equivalent to zero-initialization.
378 static bool isTrivialFiller(Expr *E) {
379   if (!E)
380     return true;
381 
382   if (isa<ImplicitValueInitExpr>(E))
383     return true;
384 
385   if (auto *ILE = dyn_cast<InitListExpr>(E)) {
386     if (ILE->getNumInits())
387       return false;
388     return isTrivialFiller(ILE->getArrayFiller());
389   }
390 
391   if (auto *Cons = dyn_cast_or_null<CXXConstructExpr>(E))
392     return Cons->getConstructor()->isDefaultConstructor() &&
393            Cons->getConstructor()->isTrivial();
394 
395   // FIXME: Are there other cases where we can avoid emitting an initializer?
396   return false;
397 }
398 
399 /// \brief Emit initialization of an array from an initializer list.
400 void AggExprEmitter::EmitArrayInit(Address DestPtr, llvm::ArrayType *AType,
401                                    QualType elementType, InitListExpr *E) {
402   uint64_t NumInitElements = E->getNumInits();
403 
404   uint64_t NumArrayElements = AType->getNumElements();
405   assert(NumInitElements <= NumArrayElements);
406 
407   // DestPtr is an array*.  Construct an elementType* by drilling
408   // down a level.
409   llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
410   llvm::Value *indices[] = { zero, zero };
411   llvm::Value *begin =
412     Builder.CreateInBoundsGEP(DestPtr.getPointer(), indices, "arrayinit.begin");
413 
414   CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
415   CharUnits elementAlign =
416     DestPtr.getAlignment().alignmentOfArrayElement(elementSize);
417 
418   // Exception safety requires us to destroy all the
419   // already-constructed members if an initializer throws.
420   // For that, we'll need an EH cleanup.
421   QualType::DestructionKind dtorKind = elementType.isDestructedType();
422   Address endOfInit = Address::invalid();
423   EHScopeStack::stable_iterator cleanup;
424   llvm::Instruction *cleanupDominator = nullptr;
425   if (CGF.needsEHCleanup(dtorKind)) {
426     // In principle we could tell the cleanup where we are more
427     // directly, but the control flow can get so varied here that it
428     // would actually be quite complex.  Therefore we go through an
429     // alloca.
430     endOfInit = CGF.CreateTempAlloca(begin->getType(), CGF.getPointerAlign(),
431                                      "arrayinit.endOfInit");
432     cleanupDominator = Builder.CreateStore(begin, endOfInit);
433     CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType,
434                                          elementAlign,
435                                          CGF.getDestroyer(dtorKind));
436     cleanup = CGF.EHStack.stable_begin();
437 
438   // Otherwise, remember that we didn't need a cleanup.
439   } else {
440     dtorKind = QualType::DK_none;
441   }
442 
443   llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1);
444 
445   // The 'current element to initialize'.  The invariants on this
446   // variable are complicated.  Essentially, after each iteration of
447   // the loop, it points to the last initialized element, except
448   // that it points to the beginning of the array before any
449   // elements have been initialized.
450   llvm::Value *element = begin;
451 
452   // Emit the explicit initializers.
453   for (uint64_t i = 0; i != NumInitElements; ++i) {
454     // Advance to the next element.
455     if (i > 0) {
456       element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element");
457 
458       // Tell the cleanup that it needs to destroy up to this
459       // element.  TODO: some of these stores can be trivially
460       // observed to be unnecessary.
461       if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit);
462     }
463 
464     LValue elementLV =
465       CGF.MakeAddrLValue(Address(element, elementAlign), elementType);
466     EmitInitializationToLValue(E->getInit(i), elementLV);
467   }
468 
469   // Check whether there's a non-trivial array-fill expression.
470   Expr *filler = E->getArrayFiller();
471   bool hasTrivialFiller = isTrivialFiller(filler);
472 
473   // Any remaining elements need to be zero-initialized, possibly
474   // using the filler expression.  We can skip this if the we're
475   // emitting to zeroed memory.
476   if (NumInitElements != NumArrayElements &&
477       !(Dest.isZeroed() && hasTrivialFiller &&
478         CGF.getTypes().isZeroInitializable(elementType))) {
479 
480     // Use an actual loop.  This is basically
481     //   do { *array++ = filler; } while (array != end);
482 
483     // Advance to the start of the rest of the array.
484     if (NumInitElements) {
485       element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start");
486       if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit);
487     }
488 
489     // Compute the end of the array.
490     llvm::Value *end = Builder.CreateInBoundsGEP(begin,
491                       llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements),
492                                                  "arrayinit.end");
493 
494     llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
495     llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
496 
497     // Jump into the body.
498     CGF.EmitBlock(bodyBB);
499     llvm::PHINode *currentElement =
500       Builder.CreatePHI(element->getType(), 2, "arrayinit.cur");
501     currentElement->addIncoming(element, entryBB);
502 
503     // Emit the actual filler expression.
504     LValue elementLV =
505       CGF.MakeAddrLValue(Address(currentElement, elementAlign), elementType);
506     if (filler)
507       EmitInitializationToLValue(filler, elementLV);
508     else
509       EmitNullInitializationToLValue(elementLV);
510 
511     // Move on to the next element.
512     llvm::Value *nextElement =
513       Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next");
514 
515     // Tell the EH cleanup that we finished with the last element.
516     if (endOfInit.isValid()) Builder.CreateStore(nextElement, endOfInit);
517 
518     // Leave the loop if we're done.
519     llvm::Value *done = Builder.CreateICmpEQ(nextElement, end,
520                                              "arrayinit.done");
521     llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
522     Builder.CreateCondBr(done, endBB, bodyBB);
523     currentElement->addIncoming(nextElement, Builder.GetInsertBlock());
524 
525     CGF.EmitBlock(endBB);
526   }
527 
528   // Leave the partial-array cleanup if we entered one.
529   if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator);
530 }
531 
532 //===----------------------------------------------------------------------===//
533 //                            Visitor Methods
534 //===----------------------------------------------------------------------===//
535 
536 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){
537   Visit(E->GetTemporaryExpr());
538 }
539 
540 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) {
541   EmitFinalDestCopy(e->getType(), CGF.getOpaqueLValueMapping(e));
542 }
543 
544 void
545 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
546   if (Dest.isPotentiallyAliased() &&
547       E->getType().isPODType(CGF.getContext())) {
548     // For a POD type, just emit a load of the lvalue + a copy, because our
549     // compound literal might alias the destination.
550     EmitAggLoadOfLValue(E);
551     return;
552   }
553 
554   AggValueSlot Slot = EnsureSlot(E->getType());
555   CGF.EmitAggExpr(E->getInitializer(), Slot);
556 }
557 
558 /// Attempt to look through various unimportant expressions to find a
559 /// cast of the given kind.
560 static Expr *findPeephole(Expr *op, CastKind kind) {
561   while (true) {
562     op = op->IgnoreParens();
563     if (CastExpr *castE = dyn_cast<CastExpr>(op)) {
564       if (castE->getCastKind() == kind)
565         return castE->getSubExpr();
566       if (castE->getCastKind() == CK_NoOp)
567         continue;
568     }
569     return nullptr;
570   }
571 }
572 
573 void AggExprEmitter::VisitCastExpr(CastExpr *E) {
574   switch (E->getCastKind()) {
575   case CK_Dynamic: {
576     // FIXME: Can this actually happen? We have no test coverage for it.
577     assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?");
578     LValue LV = CGF.EmitCheckedLValue(E->getSubExpr(),
579                                       CodeGenFunction::TCK_Load);
580     // FIXME: Do we also need to handle property references here?
581     if (LV.isSimple())
582       CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E));
583     else
584       CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast");
585 
586     if (!Dest.isIgnored())
587       CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination");
588     break;
589   }
590 
591   case CK_ToUnion: {
592     // Evaluate even if the destination is ignored.
593     if (Dest.isIgnored()) {
594       CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(),
595                       /*ignoreResult=*/true);
596       break;
597     }
598 
599     // GCC union extension
600     QualType Ty = E->getSubExpr()->getType();
601     Address CastPtr =
602       Builder.CreateElementBitCast(Dest.getAddress(), CGF.ConvertType(Ty));
603     EmitInitializationToLValue(E->getSubExpr(),
604                                CGF.MakeAddrLValue(CastPtr, Ty));
605     break;
606   }
607 
608   case CK_DerivedToBase:
609   case CK_BaseToDerived:
610   case CK_UncheckedDerivedToBase: {
611     llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: "
612                 "should have been unpacked before we got here");
613   }
614 
615   case CK_NonAtomicToAtomic:
616   case CK_AtomicToNonAtomic: {
617     bool isToAtomic = (E->getCastKind() == CK_NonAtomicToAtomic);
618 
619     // Determine the atomic and value types.
620     QualType atomicType = E->getSubExpr()->getType();
621     QualType valueType = E->getType();
622     if (isToAtomic) std::swap(atomicType, valueType);
623 
624     assert(atomicType->isAtomicType());
625     assert(CGF.getContext().hasSameUnqualifiedType(valueType,
626                           atomicType->castAs<AtomicType>()->getValueType()));
627 
628     // Just recurse normally if we're ignoring the result or the
629     // atomic type doesn't change representation.
630     if (Dest.isIgnored() || !CGF.CGM.isPaddedAtomicType(atomicType)) {
631       return Visit(E->getSubExpr());
632     }
633 
634     CastKind peepholeTarget =
635       (isToAtomic ? CK_AtomicToNonAtomic : CK_NonAtomicToAtomic);
636 
637     // These two cases are reverses of each other; try to peephole them.
638     if (Expr *op = findPeephole(E->getSubExpr(), peepholeTarget)) {
639       assert(CGF.getContext().hasSameUnqualifiedType(op->getType(),
640                                                      E->getType()) &&
641            "peephole significantly changed types?");
642       return Visit(op);
643     }
644 
645     // If we're converting an r-value of non-atomic type to an r-value
646     // of atomic type, just emit directly into the relevant sub-object.
647     if (isToAtomic) {
648       AggValueSlot valueDest = Dest;
649       if (!valueDest.isIgnored() && CGF.CGM.isPaddedAtomicType(atomicType)) {
650         // Zero-initialize.  (Strictly speaking, we only need to intialize
651         // the padding at the end, but this is simpler.)
652         if (!Dest.isZeroed())
653           CGF.EmitNullInitialization(Dest.getAddress(), atomicType);
654 
655         // Build a GEP to refer to the subobject.
656         Address valueAddr =
657             CGF.Builder.CreateStructGEP(valueDest.getAddress(), 0,
658                                         CharUnits());
659         valueDest = AggValueSlot::forAddr(valueAddr,
660                                           valueDest.getQualifiers(),
661                                           valueDest.isExternallyDestructed(),
662                                           valueDest.requiresGCollection(),
663                                           valueDest.isPotentiallyAliased(),
664                                           AggValueSlot::IsZeroed);
665       }
666 
667       CGF.EmitAggExpr(E->getSubExpr(), valueDest);
668       return;
669     }
670 
671     // Otherwise, we're converting an atomic type to a non-atomic type.
672     // Make an atomic temporary, emit into that, and then copy the value out.
673     AggValueSlot atomicSlot =
674       CGF.CreateAggTemp(atomicType, "atomic-to-nonatomic.temp");
675     CGF.EmitAggExpr(E->getSubExpr(), atomicSlot);
676 
677     Address valueAddr =
678       Builder.CreateStructGEP(atomicSlot.getAddress(), 0, CharUnits());
679     RValue rvalue = RValue::getAggregate(valueAddr, atomicSlot.isVolatile());
680     return EmitFinalDestCopy(valueType, rvalue);
681   }
682 
683   case CK_LValueToRValue:
684     // If we're loading from a volatile type, force the destination
685     // into existence.
686     if (E->getSubExpr()->getType().isVolatileQualified()) {
687       EnsureDest(E->getType());
688       return Visit(E->getSubExpr());
689     }
690 
691     // fallthrough
692 
693   case CK_NoOp:
694   case CK_UserDefinedConversion:
695   case CK_ConstructorConversion:
696     assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(),
697                                                    E->getType()) &&
698            "Implicit cast types must be compatible");
699     Visit(E->getSubExpr());
700     break;
701 
702   case CK_LValueBitCast:
703     llvm_unreachable("should not be emitting lvalue bitcast as rvalue");
704 
705   case CK_Dependent:
706   case CK_BitCast:
707   case CK_ArrayToPointerDecay:
708   case CK_FunctionToPointerDecay:
709   case CK_NullToPointer:
710   case CK_NullToMemberPointer:
711   case CK_BaseToDerivedMemberPointer:
712   case CK_DerivedToBaseMemberPointer:
713   case CK_MemberPointerToBoolean:
714   case CK_ReinterpretMemberPointer:
715   case CK_IntegralToPointer:
716   case CK_PointerToIntegral:
717   case CK_PointerToBoolean:
718   case CK_ToVoid:
719   case CK_VectorSplat:
720   case CK_IntegralCast:
721   case CK_IntegralToBoolean:
722   case CK_IntegralToFloating:
723   case CK_FloatingToIntegral:
724   case CK_FloatingToBoolean:
725   case CK_FloatingCast:
726   case CK_CPointerToObjCPointerCast:
727   case CK_BlockPointerToObjCPointerCast:
728   case CK_AnyPointerToBlockPointerCast:
729   case CK_ObjCObjectLValueCast:
730   case CK_FloatingRealToComplex:
731   case CK_FloatingComplexToReal:
732   case CK_FloatingComplexToBoolean:
733   case CK_FloatingComplexCast:
734   case CK_FloatingComplexToIntegralComplex:
735   case CK_IntegralRealToComplex:
736   case CK_IntegralComplexToReal:
737   case CK_IntegralComplexToBoolean:
738   case CK_IntegralComplexCast:
739   case CK_IntegralComplexToFloatingComplex:
740   case CK_ARCProduceObject:
741   case CK_ARCConsumeObject:
742   case CK_ARCReclaimReturnedObject:
743   case CK_ARCExtendBlockObject:
744   case CK_CopyAndAutoreleaseBlockObject:
745   case CK_BuiltinFnToFnPtr:
746   case CK_ZeroToOCLEvent:
747   case CK_AddressSpaceConversion:
748     llvm_unreachable("cast kind invalid for aggregate types");
749   }
750 }
751 
752 void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
753   if (E->getCallReturnType(CGF.getContext())->isReferenceType()) {
754     EmitAggLoadOfLValue(E);
755     return;
756   }
757 
758   RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot());
759   EmitMoveFromReturnSlot(E, RV);
760 }
761 
762 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
763   RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot());
764   EmitMoveFromReturnSlot(E, RV);
765 }
766 
767 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
768   CGF.EmitIgnoredExpr(E->getLHS());
769   Visit(E->getRHS());
770 }
771 
772 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
773   CodeGenFunction::StmtExprEvaluation eval(CGF);
774   CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest);
775 }
776 
777 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
778   if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI)
779     VisitPointerToDataMemberBinaryOperator(E);
780   else
781     CGF.ErrorUnsupported(E, "aggregate binary expression");
782 }
783 
784 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator(
785                                                     const BinaryOperator *E) {
786   LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E);
787   EmitFinalDestCopy(E->getType(), LV);
788 }
789 
790 /// Is the value of the given expression possibly a reference to or
791 /// into a __block variable?
792 static bool isBlockVarRef(const Expr *E) {
793   // Make sure we look through parens.
794   E = E->IgnoreParens();
795 
796   // Check for a direct reference to a __block variable.
797   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
798     const VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
799     return (var && var->hasAttr<BlocksAttr>());
800   }
801 
802   // More complicated stuff.
803 
804   // Binary operators.
805   if (const BinaryOperator *op = dyn_cast<BinaryOperator>(E)) {
806     // For an assignment or pointer-to-member operation, just care
807     // about the LHS.
808     if (op->isAssignmentOp() || op->isPtrMemOp())
809       return isBlockVarRef(op->getLHS());
810 
811     // For a comma, just care about the RHS.
812     if (op->getOpcode() == BO_Comma)
813       return isBlockVarRef(op->getRHS());
814 
815     // FIXME: pointer arithmetic?
816     return false;
817 
818   // Check both sides of a conditional operator.
819   } else if (const AbstractConditionalOperator *op
820                = dyn_cast<AbstractConditionalOperator>(E)) {
821     return isBlockVarRef(op->getTrueExpr())
822         || isBlockVarRef(op->getFalseExpr());
823 
824   // OVEs are required to support BinaryConditionalOperators.
825   } else if (const OpaqueValueExpr *op
826                = dyn_cast<OpaqueValueExpr>(E)) {
827     if (const Expr *src = op->getSourceExpr())
828       return isBlockVarRef(src);
829 
830   // Casts are necessary to get things like (*(int*)&var) = foo().
831   // We don't really care about the kind of cast here, except
832   // we don't want to look through l2r casts, because it's okay
833   // to get the *value* in a __block variable.
834   } else if (const CastExpr *cast = dyn_cast<CastExpr>(E)) {
835     if (cast->getCastKind() == CK_LValueToRValue)
836       return false;
837     return isBlockVarRef(cast->getSubExpr());
838 
839   // Handle unary operators.  Again, just aggressively look through
840   // it, ignoring the operation.
841   } else if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E)) {
842     return isBlockVarRef(uop->getSubExpr());
843 
844   // Look into the base of a field access.
845   } else if (const MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
846     return isBlockVarRef(mem->getBase());
847 
848   // Look into the base of a subscript.
849   } else if (const ArraySubscriptExpr *sub = dyn_cast<ArraySubscriptExpr>(E)) {
850     return isBlockVarRef(sub->getBase());
851   }
852 
853   return false;
854 }
855 
856 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
857   // For an assignment to work, the value on the right has
858   // to be compatible with the value on the left.
859   assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
860                                                  E->getRHS()->getType())
861          && "Invalid assignment");
862 
863   // If the LHS might be a __block variable, and the RHS can
864   // potentially cause a block copy, we need to evaluate the RHS first
865   // so that the assignment goes the right place.
866   // This is pretty semantically fragile.
867   if (isBlockVarRef(E->getLHS()) &&
868       E->getRHS()->HasSideEffects(CGF.getContext())) {
869     // Ensure that we have a destination, and evaluate the RHS into that.
870     EnsureDest(E->getRHS()->getType());
871     Visit(E->getRHS());
872 
873     // Now emit the LHS and copy into it.
874     LValue LHS = CGF.EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
875 
876     // That copy is an atomic copy if the LHS is atomic.
877     if (LHS.getType()->isAtomicType() ||
878         CGF.LValueIsSuitableForInlineAtomic(LHS)) {
879       CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false);
880       return;
881     }
882 
883     EmitCopy(E->getLHS()->getType(),
884              AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed,
885                                      needsGC(E->getLHS()->getType()),
886                                      AggValueSlot::IsAliased),
887              Dest);
888     return;
889   }
890 
891   LValue LHS = CGF.EmitLValue(E->getLHS());
892 
893   // If we have an atomic type, evaluate into the destination and then
894   // do an atomic copy.
895   if (LHS.getType()->isAtomicType() ||
896       CGF.LValueIsSuitableForInlineAtomic(LHS)) {
897     EnsureDest(E->getRHS()->getType());
898     Visit(E->getRHS());
899     CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false);
900     return;
901   }
902 
903   // Codegen the RHS so that it stores directly into the LHS.
904   AggValueSlot LHSSlot =
905     AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed,
906                             needsGC(E->getLHS()->getType()),
907                             AggValueSlot::IsAliased);
908   // A non-volatile aggregate destination might have volatile member.
909   if (!LHSSlot.isVolatile() &&
910       CGF.hasVolatileMember(E->getLHS()->getType()))
911     LHSSlot.setVolatile(true);
912 
913   CGF.EmitAggExpr(E->getRHS(), LHSSlot);
914 
915   // Copy into the destination if the assignment isn't ignored.
916   EmitFinalDestCopy(E->getType(), LHS);
917 }
918 
919 void AggExprEmitter::
920 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
921   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
922   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
923   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
924 
925   // Bind the common expression if necessary.
926   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
927 
928   CodeGenFunction::ConditionalEvaluation eval(CGF);
929   CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock,
930                            CGF.getProfileCount(E));
931 
932   // Save whether the destination's lifetime is externally managed.
933   bool isExternallyDestructed = Dest.isExternallyDestructed();
934 
935   eval.begin(CGF);
936   CGF.EmitBlock(LHSBlock);
937   CGF.incrementProfileCounter(E);
938   Visit(E->getTrueExpr());
939   eval.end(CGF);
940 
941   assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!");
942   CGF.Builder.CreateBr(ContBlock);
943 
944   // If the result of an agg expression is unused, then the emission
945   // of the LHS might need to create a destination slot.  That's fine
946   // with us, and we can safely emit the RHS into the same slot, but
947   // we shouldn't claim that it's already being destructed.
948   Dest.setExternallyDestructed(isExternallyDestructed);
949 
950   eval.begin(CGF);
951   CGF.EmitBlock(RHSBlock);
952   Visit(E->getFalseExpr());
953   eval.end(CGF);
954 
955   CGF.EmitBlock(ContBlock);
956 }
957 
958 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) {
959   Visit(CE->getChosenSubExpr());
960 }
961 
962 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
963   Address ArgValue = Address::invalid();
964   Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
965 
966   if (!ArgPtr.isValid()) {
967     // If EmitVAArg fails, we fall back to the LLVM instruction.
968     llvm::Value *Val = Builder.CreateVAArg(ArgValue.getPointer(),
969                                            CGF.ConvertType(VE->getType()));
970     if (!Dest.isIgnored())
971       Builder.CreateStore(Val, Dest.getAddress());
972     return;
973   }
974 
975   EmitFinalDestCopy(VE->getType(), CGF.MakeAddrLValue(ArgPtr, VE->getType()));
976 }
977 
978 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
979   // Ensure that we have a slot, but if we already do, remember
980   // whether it was externally destructed.
981   bool wasExternallyDestructed = Dest.isExternallyDestructed();
982   EnsureDest(E->getType());
983 
984   // We're going to push a destructor if there isn't already one.
985   Dest.setExternallyDestructed();
986 
987   Visit(E->getSubExpr());
988 
989   // Push that destructor we promised.
990   if (!wasExternallyDestructed)
991     CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddress());
992 }
993 
994 void
995 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) {
996   AggValueSlot Slot = EnsureSlot(E->getType());
997   CGF.EmitCXXConstructExpr(E, Slot);
998 }
999 
1000 void
1001 AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) {
1002   AggValueSlot Slot = EnsureSlot(E->getType());
1003   CGF.EmitLambdaExpr(E, Slot);
1004 }
1005 
1006 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
1007   CGF.enterFullExpression(E);
1008   CodeGenFunction::RunCleanupsScope cleanups(CGF);
1009   Visit(E->getSubExpr());
1010 }
1011 
1012 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
1013   QualType T = E->getType();
1014   AggValueSlot Slot = EnsureSlot(T);
1015   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T));
1016 }
1017 
1018 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
1019   QualType T = E->getType();
1020   AggValueSlot Slot = EnsureSlot(T);
1021   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T));
1022 }
1023 
1024 /// isSimpleZero - If emitting this value will obviously just cause a store of
1025 /// zero to memory, return true.  This can return false if uncertain, so it just
1026 /// handles simple cases.
1027 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) {
1028   E = E->IgnoreParens();
1029 
1030   // 0
1031   if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E))
1032     return IL->getValue() == 0;
1033   // +0.0
1034   if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E))
1035     return FL->getValue().isPosZero();
1036   // int()
1037   if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) &&
1038       CGF.getTypes().isZeroInitializable(E->getType()))
1039     return true;
1040   // (int*)0 - Null pointer expressions.
1041   if (const CastExpr *ICE = dyn_cast<CastExpr>(E))
1042     return ICE->getCastKind() == CK_NullToPointer;
1043   // '\0'
1044   if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E))
1045     return CL->getValue() == 0;
1046 
1047   // Otherwise, hard case: conservatively return false.
1048   return false;
1049 }
1050 
1051 
1052 void
1053 AggExprEmitter::EmitInitializationToLValue(Expr *E, LValue LV) {
1054   QualType type = LV.getType();
1055   // FIXME: Ignore result?
1056   // FIXME: Are initializers affected by volatile?
1057   if (Dest.isZeroed() && isSimpleZero(E, CGF)) {
1058     // Storing "i32 0" to a zero'd memory location is a noop.
1059     return;
1060   } else if (isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) {
1061     return EmitNullInitializationToLValue(LV);
1062   } else if (isa<NoInitExpr>(E)) {
1063     // Do nothing.
1064     return;
1065   } else if (type->isReferenceType()) {
1066     RValue RV = CGF.EmitReferenceBindingToExpr(E);
1067     return CGF.EmitStoreThroughLValue(RV, LV);
1068   }
1069 
1070   switch (CGF.getEvaluationKind(type)) {
1071   case TEK_Complex:
1072     CGF.EmitComplexExprIntoLValue(E, LV, /*isInit*/ true);
1073     return;
1074   case TEK_Aggregate:
1075     CGF.EmitAggExpr(E, AggValueSlot::forLValue(LV,
1076                                                AggValueSlot::IsDestructed,
1077                                       AggValueSlot::DoesNotNeedGCBarriers,
1078                                                AggValueSlot::IsNotAliased,
1079                                                Dest.isZeroed()));
1080     return;
1081   case TEK_Scalar:
1082     if (LV.isSimple()) {
1083       CGF.EmitScalarInit(E, /*D=*/nullptr, LV, /*Captured=*/false);
1084     } else {
1085       CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV);
1086     }
1087     return;
1088   }
1089   llvm_unreachable("bad evaluation kind");
1090 }
1091 
1092 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) {
1093   QualType type = lv.getType();
1094 
1095   // If the destination slot is already zeroed out before the aggregate is
1096   // copied into it, we don't have to emit any zeros here.
1097   if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type))
1098     return;
1099 
1100   if (CGF.hasScalarEvaluationKind(type)) {
1101     // For non-aggregates, we can store the appropriate null constant.
1102     llvm::Value *null = CGF.CGM.EmitNullConstant(type);
1103     // Note that the following is not equivalent to
1104     // EmitStoreThroughBitfieldLValue for ARC types.
1105     if (lv.isBitField()) {
1106       CGF.EmitStoreThroughBitfieldLValue(RValue::get(null), lv);
1107     } else {
1108       assert(lv.isSimple());
1109       CGF.EmitStoreOfScalar(null, lv, /* isInitialization */ true);
1110     }
1111   } else {
1112     // There's a potential optimization opportunity in combining
1113     // memsets; that would be easy for arrays, but relatively
1114     // difficult for structures with the current code.
1115     CGF.EmitNullInitialization(lv.getAddress(), lv.getType());
1116   }
1117 }
1118 
1119 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
1120 #if 0
1121   // FIXME: Assess perf here?  Figure out what cases are worth optimizing here
1122   // (Length of globals? Chunks of zeroed-out space?).
1123   //
1124   // If we can, prefer a copy from a global; this is a lot less code for long
1125   // globals, and it's easier for the current optimizers to analyze.
1126   if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) {
1127     llvm::GlobalVariable* GV =
1128     new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true,
1129                              llvm::GlobalValue::InternalLinkage, C, "");
1130     EmitFinalDestCopy(E->getType(), CGF.MakeAddrLValue(GV, E->getType()));
1131     return;
1132   }
1133 #endif
1134   if (E->hadArrayRangeDesignator())
1135     CGF.ErrorUnsupported(E, "GNU array range designator extension");
1136 
1137   AggValueSlot Dest = EnsureSlot(E->getType());
1138 
1139   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
1140 
1141   // Handle initialization of an array.
1142   if (E->getType()->isArrayType()) {
1143     if (E->isStringLiteralInit())
1144       return Visit(E->getInit(0));
1145 
1146     QualType elementType =
1147         CGF.getContext().getAsArrayType(E->getType())->getElementType();
1148 
1149     auto AType = cast<llvm::ArrayType>(Dest.getAddress().getElementType());
1150     EmitArrayInit(Dest.getAddress(), AType, elementType, E);
1151     return;
1152   }
1153 
1154   if (E->getType()->isAtomicType()) {
1155     // An _Atomic(T) object can be list-initialized from an expression
1156     // of the same type.
1157     assert(E->getNumInits() == 1 &&
1158            CGF.getContext().hasSameUnqualifiedType(E->getInit(0)->getType(),
1159                                                    E->getType()) &&
1160            "unexpected list initialization for atomic object");
1161     return Visit(E->getInit(0));
1162   }
1163 
1164   assert(E->getType()->isRecordType() && "Only support structs/unions here!");
1165 
1166   // Do struct initialization; this code just sets each individual member
1167   // to the approprate value.  This makes bitfield support automatic;
1168   // the disadvantage is that the generated code is more difficult for
1169   // the optimizer, especially with bitfields.
1170   unsigned NumInitElements = E->getNumInits();
1171   RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl();
1172 
1173   // Prepare a 'this' for CXXDefaultInitExprs.
1174   CodeGenFunction::FieldConstructionScope FCS(CGF, Dest.getAddress());
1175 
1176   if (record->isUnion()) {
1177     // Only initialize one field of a union. The field itself is
1178     // specified by the initializer list.
1179     if (!E->getInitializedFieldInUnion()) {
1180       // Empty union; we have nothing to do.
1181 
1182 #ifndef NDEBUG
1183       // Make sure that it's really an empty and not a failure of
1184       // semantic analysis.
1185       for (const auto *Field : record->fields())
1186         assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed");
1187 #endif
1188       return;
1189     }
1190 
1191     // FIXME: volatility
1192     FieldDecl *Field = E->getInitializedFieldInUnion();
1193 
1194     LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestLV, Field);
1195     if (NumInitElements) {
1196       // Store the initializer into the field
1197       EmitInitializationToLValue(E->getInit(0), FieldLoc);
1198     } else {
1199       // Default-initialize to null.
1200       EmitNullInitializationToLValue(FieldLoc);
1201     }
1202 
1203     return;
1204   }
1205 
1206   // We'll need to enter cleanup scopes in case any of the member
1207   // initializers throw an exception.
1208   SmallVector<EHScopeStack::stable_iterator, 16> cleanups;
1209   llvm::Instruction *cleanupDominator = nullptr;
1210 
1211   // Here we iterate over the fields; this makes it simpler to both
1212   // default-initialize fields and skip over unnamed fields.
1213   unsigned curInitIndex = 0;
1214   for (const auto *field : record->fields()) {
1215     // We're done once we hit the flexible array member.
1216     if (field->getType()->isIncompleteArrayType())
1217       break;
1218 
1219     // Always skip anonymous bitfields.
1220     if (field->isUnnamedBitfield())
1221       continue;
1222 
1223     // We're done if we reach the end of the explicit initializers, we
1224     // have a zeroed object, and the rest of the fields are
1225     // zero-initializable.
1226     if (curInitIndex == NumInitElements && Dest.isZeroed() &&
1227         CGF.getTypes().isZeroInitializable(E->getType()))
1228       break;
1229 
1230 
1231     LValue LV = CGF.EmitLValueForFieldInitialization(DestLV, field);
1232     // We never generate write-barries for initialized fields.
1233     LV.setNonGC(true);
1234 
1235     if (curInitIndex < NumInitElements) {
1236       // Store the initializer into the field.
1237       EmitInitializationToLValue(E->getInit(curInitIndex++), LV);
1238     } else {
1239       // We're out of initalizers; default-initialize to null
1240       EmitNullInitializationToLValue(LV);
1241     }
1242 
1243     // Push a destructor if necessary.
1244     // FIXME: if we have an array of structures, all explicitly
1245     // initialized, we can end up pushing a linear number of cleanups.
1246     bool pushedCleanup = false;
1247     if (QualType::DestructionKind dtorKind
1248           = field->getType().isDestructedType()) {
1249       assert(LV.isSimple());
1250       if (CGF.needsEHCleanup(dtorKind)) {
1251         if (!cleanupDominator)
1252           cleanupDominator = CGF.Builder.CreateAlignedLoad(
1253               CGF.Int8Ty,
1254               llvm::Constant::getNullValue(CGF.Int8PtrTy),
1255               CharUnits::One()); // placeholder
1256 
1257         CGF.pushDestroy(EHCleanup, LV.getAddress(), field->getType(),
1258                         CGF.getDestroyer(dtorKind), false);
1259         cleanups.push_back(CGF.EHStack.stable_begin());
1260         pushedCleanup = true;
1261       }
1262     }
1263 
1264     // If the GEP didn't get used because of a dead zero init or something
1265     // else, clean it up for -O0 builds and general tidiness.
1266     if (!pushedCleanup && LV.isSimple())
1267       if (llvm::GetElementPtrInst *GEP =
1268             dyn_cast<llvm::GetElementPtrInst>(LV.getPointer()))
1269         if (GEP->use_empty())
1270           GEP->eraseFromParent();
1271   }
1272 
1273   // Deactivate all the partial cleanups in reverse order, which
1274   // generally means popping them.
1275   for (unsigned i = cleanups.size(); i != 0; --i)
1276     CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator);
1277 
1278   // Destroy the placeholder if we made one.
1279   if (cleanupDominator)
1280     cleanupDominator->eraseFromParent();
1281 }
1282 
1283 void AggExprEmitter::VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E) {
1284   AggValueSlot Dest = EnsureSlot(E->getType());
1285 
1286   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
1287   EmitInitializationToLValue(E->getBase(), DestLV);
1288   VisitInitListExpr(E->getUpdater());
1289 }
1290 
1291 //===----------------------------------------------------------------------===//
1292 //                        Entry Points into this File
1293 //===----------------------------------------------------------------------===//
1294 
1295 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of
1296 /// non-zero bytes that will be stored when outputting the initializer for the
1297 /// specified initializer expression.
1298 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) {
1299   E = E->IgnoreParens();
1300 
1301   // 0 and 0.0 won't require any non-zero stores!
1302   if (isSimpleZero(E, CGF)) return CharUnits::Zero();
1303 
1304   // If this is an initlist expr, sum up the size of sizes of the (present)
1305   // elements.  If this is something weird, assume the whole thing is non-zero.
1306   const InitListExpr *ILE = dyn_cast<InitListExpr>(E);
1307   if (!ILE || !CGF.getTypes().isZeroInitializable(ILE->getType()))
1308     return CGF.getContext().getTypeSizeInChars(E->getType());
1309 
1310   // InitListExprs for structs have to be handled carefully.  If there are
1311   // reference members, we need to consider the size of the reference, not the
1312   // referencee.  InitListExprs for unions and arrays can't have references.
1313   if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
1314     if (!RT->isUnionType()) {
1315       RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl();
1316       CharUnits NumNonZeroBytes = CharUnits::Zero();
1317 
1318       unsigned ILEElement = 0;
1319       for (const auto *Field : SD->fields()) {
1320         // We're done once we hit the flexible array member or run out of
1321         // InitListExpr elements.
1322         if (Field->getType()->isIncompleteArrayType() ||
1323             ILEElement == ILE->getNumInits())
1324           break;
1325         if (Field->isUnnamedBitfield())
1326           continue;
1327 
1328         const Expr *E = ILE->getInit(ILEElement++);
1329 
1330         // Reference values are always non-null and have the width of a pointer.
1331         if (Field->getType()->isReferenceType())
1332           NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits(
1333               CGF.getTarget().getPointerWidth(0));
1334         else
1335           NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF);
1336       }
1337 
1338       return NumNonZeroBytes;
1339     }
1340   }
1341 
1342 
1343   CharUnits NumNonZeroBytes = CharUnits::Zero();
1344   for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1345     NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF);
1346   return NumNonZeroBytes;
1347 }
1348 
1349 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of
1350 /// zeros in it, emit a memset and avoid storing the individual zeros.
1351 ///
1352 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E,
1353                                      CodeGenFunction &CGF) {
1354   // If the slot is already known to be zeroed, nothing to do.  Don't mess with
1355   // volatile stores.
1356   if (Slot.isZeroed() || Slot.isVolatile() || !Slot.getAddress().isValid())
1357     return;
1358 
1359   // C++ objects with a user-declared constructor don't need zero'ing.
1360   if (CGF.getLangOpts().CPlusPlus)
1361     if (const RecordType *RT = CGF.getContext()
1362                        .getBaseElementType(E->getType())->getAs<RecordType>()) {
1363       const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1364       if (RD->hasUserDeclaredConstructor())
1365         return;
1366     }
1367 
1368   // If the type is 16-bytes or smaller, prefer individual stores over memset.
1369   CharUnits Size = CGF.getContext().getTypeSizeInChars(E->getType());
1370   if (Size <= CharUnits::fromQuantity(16))
1371     return;
1372 
1373   // Check to see if over 3/4 of the initializer are known to be zero.  If so,
1374   // we prefer to emit memset + individual stores for the rest.
1375   CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF);
1376   if (NumNonZeroBytes*4 > Size)
1377     return;
1378 
1379   // Okay, it seems like a good idea to use an initial memset, emit the call.
1380   llvm::Constant *SizeVal = CGF.Builder.getInt64(Size.getQuantity());
1381 
1382   Address Loc = Slot.getAddress();
1383   Loc = CGF.Builder.CreateElementBitCast(Loc, CGF.Int8Ty);
1384   CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, false);
1385 
1386   // Tell the AggExprEmitter that the slot is known zero.
1387   Slot.setZeroed();
1388 }
1389 
1390 
1391 
1392 
1393 /// EmitAggExpr - Emit the computation of the specified expression of aggregate
1394 /// type.  The result is computed into DestPtr.  Note that if DestPtr is null,
1395 /// the value of the aggregate expression is not needed.  If VolatileDest is
1396 /// true, DestPtr cannot be 0.
1397 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot) {
1398   assert(E && hasAggregateEvaluationKind(E->getType()) &&
1399          "Invalid aggregate expression to emit");
1400   assert((Slot.getAddress().isValid() || Slot.isIgnored()) &&
1401          "slot has bits but no address");
1402 
1403   // Optimize the slot if possible.
1404   CheckAggExprForMemSetUse(Slot, E, *this);
1405 
1406   AggExprEmitter(*this, Slot, Slot.isIgnored()).Visit(const_cast<Expr*>(E));
1407 }
1408 
1409 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) {
1410   assert(hasAggregateEvaluationKind(E->getType()) && "Invalid argument!");
1411   Address Temp = CreateMemTemp(E->getType());
1412   LValue LV = MakeAddrLValue(Temp, E->getType());
1413   EmitAggExpr(E, AggValueSlot::forLValue(LV, AggValueSlot::IsNotDestructed,
1414                                          AggValueSlot::DoesNotNeedGCBarriers,
1415                                          AggValueSlot::IsNotAliased));
1416   return LV;
1417 }
1418 
1419 void CodeGenFunction::EmitAggregateCopy(Address DestPtr,
1420                                         Address SrcPtr, QualType Ty,
1421                                         bool isVolatile,
1422                                         bool isAssignment) {
1423   assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
1424 
1425   if (getLangOpts().CPlusPlus) {
1426     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1427       CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
1428       assert((Record->hasTrivialCopyConstructor() ||
1429               Record->hasTrivialCopyAssignment() ||
1430               Record->hasTrivialMoveConstructor() ||
1431               Record->hasTrivialMoveAssignment() ||
1432               Record->isUnion()) &&
1433              "Trying to aggregate-copy a type without a trivial copy/move "
1434              "constructor or assignment operator");
1435       // Ignore empty classes in C++.
1436       if (Record->isEmpty())
1437         return;
1438     }
1439   }
1440 
1441   // Aggregate assignment turns into llvm.memcpy.  This is almost valid per
1442   // C99 6.5.16.1p3, which states "If the value being stored in an object is
1443   // read from another object that overlaps in anyway the storage of the first
1444   // object, then the overlap shall be exact and the two objects shall have
1445   // qualified or unqualified versions of a compatible type."
1446   //
1447   // memcpy is not defined if the source and destination pointers are exactly
1448   // equal, but other compilers do this optimization, and almost every memcpy
1449   // implementation handles this case safely.  If there is a libc that does not
1450   // safely handle this, we can add a target hook.
1451 
1452   // Get data size info for this aggregate. If this is an assignment,
1453   // don't copy the tail padding, because we might be assigning into a
1454   // base subobject where the tail padding is claimed.  Otherwise,
1455   // copying it is fine.
1456   std::pair<CharUnits, CharUnits> TypeInfo;
1457   if (isAssignment)
1458     TypeInfo = getContext().getTypeInfoDataSizeInChars(Ty);
1459   else
1460     TypeInfo = getContext().getTypeInfoInChars(Ty);
1461 
1462   llvm::Value *SizeVal = nullptr;
1463   if (TypeInfo.first.isZero()) {
1464     // But note that getTypeInfo returns 0 for a VLA.
1465     if (auto *VAT = dyn_cast_or_null<VariableArrayType>(
1466             getContext().getAsArrayType(Ty))) {
1467       QualType BaseEltTy;
1468       SizeVal = emitArrayLength(VAT, BaseEltTy, DestPtr);
1469       TypeInfo = getContext().getTypeInfoDataSizeInChars(BaseEltTy);
1470       std::pair<CharUnits, CharUnits> LastElementTypeInfo;
1471       if (!isAssignment)
1472         LastElementTypeInfo = getContext().getTypeInfoInChars(BaseEltTy);
1473       assert(!TypeInfo.first.isZero());
1474       SizeVal = Builder.CreateNUWMul(
1475           SizeVal,
1476           llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity()));
1477       if (!isAssignment) {
1478         SizeVal = Builder.CreateNUWSub(
1479             SizeVal,
1480             llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity()));
1481         SizeVal = Builder.CreateNUWAdd(
1482             SizeVal, llvm::ConstantInt::get(
1483                          SizeTy, LastElementTypeInfo.first.getQuantity()));
1484       }
1485     }
1486   }
1487   if (!SizeVal) {
1488     SizeVal = llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity());
1489   }
1490 
1491   // FIXME: If we have a volatile struct, the optimizer can remove what might
1492   // appear to be `extra' memory ops:
1493   //
1494   // volatile struct { int i; } a, b;
1495   //
1496   // int main() {
1497   //   a = b;
1498   //   a = b;
1499   // }
1500   //
1501   // we need to use a different call here.  We use isVolatile to indicate when
1502   // either the source or the destination is volatile.
1503 
1504   DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1505   SrcPtr = Builder.CreateElementBitCast(SrcPtr, Int8Ty);
1506 
1507   // Don't do any of the memmove_collectable tests if GC isn't set.
1508   if (CGM.getLangOpts().getGC() == LangOptions::NonGC) {
1509     // fall through
1510   } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
1511     RecordDecl *Record = RecordTy->getDecl();
1512     if (Record->hasObjectMember()) {
1513       CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
1514                                                     SizeVal);
1515       return;
1516     }
1517   } else if (Ty->isArrayType()) {
1518     QualType BaseType = getContext().getBaseElementType(Ty);
1519     if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
1520       if (RecordTy->getDecl()->hasObjectMember()) {
1521         CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
1522                                                       SizeVal);
1523         return;
1524       }
1525     }
1526   }
1527 
1528   auto Inst = Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, isVolatile);
1529 
1530   // Determine the metadata to describe the position of any padding in this
1531   // memcpy, as well as the TBAA tags for the members of the struct, in case
1532   // the optimizer wishes to expand it in to scalar memory operations.
1533   if (llvm::MDNode *TBAAStructTag = CGM.getTBAAStructInfo(Ty))
1534     Inst->setMetadata(llvm::LLVMContext::MD_tbaa_struct, TBAAStructTag);
1535 }
1536