1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Aggregate Expr nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenFunction.h" 14 #include "CGCXXABI.h" 15 #include "CGObjCRuntime.h" 16 #include "CodeGenModule.h" 17 #include "ConstantEmitter.h" 18 #include "clang/AST/ASTContext.h" 19 #include "clang/AST/DeclCXX.h" 20 #include "clang/AST/DeclTemplate.h" 21 #include "clang/AST/StmtVisitor.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/Function.h" 24 #include "llvm/IR/GlobalVariable.h" 25 #include "llvm/IR/Intrinsics.h" 26 #include "llvm/IR/IntrinsicInst.h" 27 using namespace clang; 28 using namespace CodeGen; 29 30 //===----------------------------------------------------------------------===// 31 // Aggregate Expression Emitter 32 //===----------------------------------------------------------------------===// 33 34 namespace { 35 class AggExprEmitter : public StmtVisitor<AggExprEmitter> { 36 CodeGenFunction &CGF; 37 CGBuilderTy &Builder; 38 AggValueSlot Dest; 39 bool IsResultUnused; 40 41 AggValueSlot EnsureSlot(QualType T) { 42 if (!Dest.isIgnored()) return Dest; 43 return CGF.CreateAggTemp(T, "agg.tmp.ensured"); 44 } 45 void EnsureDest(QualType T) { 46 if (!Dest.isIgnored()) return; 47 Dest = CGF.CreateAggTemp(T, "agg.tmp.ensured"); 48 } 49 50 // Calls `Fn` with a valid return value slot, potentially creating a temporary 51 // to do so. If a temporary is created, an appropriate copy into `Dest` will 52 // be emitted, as will lifetime markers. 53 // 54 // The given function should take a ReturnValueSlot, and return an RValue that 55 // points to said slot. 56 void withReturnValueSlot(const Expr *E, 57 llvm::function_ref<RValue(ReturnValueSlot)> Fn); 58 59 public: 60 AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest, bool IsResultUnused) 61 : CGF(cgf), Builder(CGF.Builder), Dest(Dest), 62 IsResultUnused(IsResultUnused) { } 63 64 //===--------------------------------------------------------------------===// 65 // Utilities 66 //===--------------------------------------------------------------------===// 67 68 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 69 /// represents a value lvalue, this method emits the address of the lvalue, 70 /// then loads the result into DestPtr. 71 void EmitAggLoadOfLValue(const Expr *E); 72 73 enum ExprValueKind { 74 EVK_RValue, 75 EVK_NonRValue 76 }; 77 78 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 79 /// SrcIsRValue is true if source comes from an RValue. 80 void EmitFinalDestCopy(QualType type, const LValue &src, 81 ExprValueKind SrcValueKind = EVK_NonRValue); 82 void EmitFinalDestCopy(QualType type, RValue src); 83 void EmitCopy(QualType type, const AggValueSlot &dest, 84 const AggValueSlot &src); 85 86 void EmitMoveFromReturnSlot(const Expr *E, RValue Src); 87 88 void EmitArrayInit(Address DestPtr, llvm::ArrayType *AType, 89 QualType ArrayQTy, InitListExpr *E); 90 91 AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) { 92 if (CGF.getLangOpts().getGC() && TypeRequiresGCollection(T)) 93 return AggValueSlot::NeedsGCBarriers; 94 return AggValueSlot::DoesNotNeedGCBarriers; 95 } 96 97 bool TypeRequiresGCollection(QualType T); 98 99 //===--------------------------------------------------------------------===// 100 // Visitor Methods 101 //===--------------------------------------------------------------------===// 102 103 void Visit(Expr *E) { 104 ApplyDebugLocation DL(CGF, E); 105 StmtVisitor<AggExprEmitter>::Visit(E); 106 } 107 108 void VisitStmt(Stmt *S) { 109 CGF.ErrorUnsupported(S, "aggregate expression"); 110 } 111 void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); } 112 void VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 113 Visit(GE->getResultExpr()); 114 } 115 void VisitCoawaitExpr(CoawaitExpr *E) { 116 CGF.EmitCoawaitExpr(*E, Dest, IsResultUnused); 117 } 118 void VisitCoyieldExpr(CoyieldExpr *E) { 119 CGF.EmitCoyieldExpr(*E, Dest, IsResultUnused); 120 } 121 void VisitUnaryCoawait(UnaryOperator *E) { Visit(E->getSubExpr()); } 122 void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); } 123 void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 124 return Visit(E->getReplacement()); 125 } 126 127 void VisitConstantExpr(ConstantExpr *E) { 128 return Visit(E->getSubExpr()); 129 } 130 131 // l-values. 132 void VisitDeclRefExpr(DeclRefExpr *E) { EmitAggLoadOfLValue(E); } 133 void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); } 134 void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); } 135 void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); } 136 void VisitCompoundLiteralExpr(CompoundLiteralExpr *E); 137 void VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 138 EmitAggLoadOfLValue(E); 139 } 140 void VisitPredefinedExpr(const PredefinedExpr *E) { 141 EmitAggLoadOfLValue(E); 142 } 143 144 // Operators. 145 void VisitCastExpr(CastExpr *E); 146 void VisitCallExpr(const CallExpr *E); 147 void VisitStmtExpr(const StmtExpr *E); 148 void VisitBinaryOperator(const BinaryOperator *BO); 149 void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO); 150 void VisitBinAssign(const BinaryOperator *E); 151 void VisitBinComma(const BinaryOperator *E); 152 void VisitBinCmp(const BinaryOperator *E); 153 154 void VisitObjCMessageExpr(ObjCMessageExpr *E); 155 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 156 EmitAggLoadOfLValue(E); 157 } 158 159 void VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E); 160 void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO); 161 void VisitChooseExpr(const ChooseExpr *CE); 162 void VisitInitListExpr(InitListExpr *E); 163 void VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E, 164 llvm::Value *outerBegin = nullptr); 165 void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E); 166 void VisitNoInitExpr(NoInitExpr *E) { } // Do nothing. 167 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 168 CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE); 169 Visit(DAE->getExpr()); 170 } 171 void VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 172 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE); 173 Visit(DIE->getExpr()); 174 } 175 void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E); 176 void VisitCXXConstructExpr(const CXXConstructExpr *E); 177 void VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E); 178 void VisitLambdaExpr(LambdaExpr *E); 179 void VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E); 180 void VisitExprWithCleanups(ExprWithCleanups *E); 181 void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E); 182 void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); } 183 void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E); 184 void VisitOpaqueValueExpr(OpaqueValueExpr *E); 185 186 void VisitPseudoObjectExpr(PseudoObjectExpr *E) { 187 if (E->isGLValue()) { 188 LValue LV = CGF.EmitPseudoObjectLValue(E); 189 return EmitFinalDestCopy(E->getType(), LV); 190 } 191 192 CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType())); 193 } 194 195 void VisitVAArgExpr(VAArgExpr *E); 196 197 void EmitInitializationToLValue(Expr *E, LValue Address); 198 void EmitNullInitializationToLValue(LValue Address); 199 // case Expr::ChooseExprClass: 200 void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); } 201 void VisitAtomicExpr(AtomicExpr *E) { 202 RValue Res = CGF.EmitAtomicExpr(E); 203 EmitFinalDestCopy(E->getType(), Res); 204 } 205 }; 206 } // end anonymous namespace. 207 208 //===----------------------------------------------------------------------===// 209 // Utilities 210 //===----------------------------------------------------------------------===// 211 212 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 213 /// represents a value lvalue, this method emits the address of the lvalue, 214 /// then loads the result into DestPtr. 215 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) { 216 LValue LV = CGF.EmitLValue(E); 217 218 // If the type of the l-value is atomic, then do an atomic load. 219 if (LV.getType()->isAtomicType() || CGF.LValueIsSuitableForInlineAtomic(LV)) { 220 CGF.EmitAtomicLoad(LV, E->getExprLoc(), Dest); 221 return; 222 } 223 224 EmitFinalDestCopy(E->getType(), LV); 225 } 226 227 /// True if the given aggregate type requires special GC API calls. 228 bool AggExprEmitter::TypeRequiresGCollection(QualType T) { 229 // Only record types have members that might require garbage collection. 230 const RecordType *RecordTy = T->getAs<RecordType>(); 231 if (!RecordTy) return false; 232 233 // Don't mess with non-trivial C++ types. 234 RecordDecl *Record = RecordTy->getDecl(); 235 if (isa<CXXRecordDecl>(Record) && 236 (cast<CXXRecordDecl>(Record)->hasNonTrivialCopyConstructor() || 237 !cast<CXXRecordDecl>(Record)->hasTrivialDestructor())) 238 return false; 239 240 // Check whether the type has an object member. 241 return Record->hasObjectMember(); 242 } 243 244 void AggExprEmitter::withReturnValueSlot( 245 const Expr *E, llvm::function_ref<RValue(ReturnValueSlot)> EmitCall) { 246 QualType RetTy = E->getType(); 247 bool RequiresDestruction = 248 Dest.isIgnored() && 249 RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct; 250 251 // If it makes no observable difference, save a memcpy + temporary. 252 // 253 // We need to always provide our own temporary if destruction is required. 254 // Otherwise, EmitCall will emit its own, notice that it's "unused", and end 255 // its lifetime before we have the chance to emit a proper destructor call. 256 bool UseTemp = Dest.isPotentiallyAliased() || Dest.requiresGCollection() || 257 (RequiresDestruction && !Dest.getAddress().isValid()); 258 259 Address RetAddr = Address::invalid(); 260 Address RetAllocaAddr = Address::invalid(); 261 262 EHScopeStack::stable_iterator LifetimeEndBlock; 263 llvm::Value *LifetimeSizePtr = nullptr; 264 llvm::IntrinsicInst *LifetimeStartInst = nullptr; 265 if (!UseTemp) { 266 RetAddr = Dest.getAddress(); 267 } else { 268 RetAddr = CGF.CreateMemTemp(RetTy, "tmp", &RetAllocaAddr); 269 uint64_t Size = 270 CGF.CGM.getDataLayout().getTypeAllocSize(CGF.ConvertTypeForMem(RetTy)); 271 LifetimeSizePtr = CGF.EmitLifetimeStart(Size, RetAllocaAddr.getPointer()); 272 if (LifetimeSizePtr) { 273 LifetimeStartInst = 274 cast<llvm::IntrinsicInst>(std::prev(Builder.GetInsertPoint())); 275 assert(LifetimeStartInst->getIntrinsicID() == 276 llvm::Intrinsic::lifetime_start && 277 "Last insertion wasn't a lifetime.start?"); 278 279 CGF.pushFullExprCleanup<CodeGenFunction::CallLifetimeEnd>( 280 NormalEHLifetimeMarker, RetAllocaAddr, LifetimeSizePtr); 281 LifetimeEndBlock = CGF.EHStack.stable_begin(); 282 } 283 } 284 285 RValue Src = 286 EmitCall(ReturnValueSlot(RetAddr, Dest.isVolatile(), IsResultUnused)); 287 288 if (RequiresDestruction) 289 CGF.pushDestroy(RetTy.isDestructedType(), Src.getAggregateAddress(), RetTy); 290 291 if (!UseTemp) 292 return; 293 294 assert(Dest.getPointer() != Src.getAggregatePointer()); 295 EmitFinalDestCopy(E->getType(), Src); 296 297 if (!RequiresDestruction && LifetimeStartInst) { 298 // If there's no dtor to run, the copy was the last use of our temporary. 299 // Since we're not guaranteed to be in an ExprWithCleanups, clean up 300 // eagerly. 301 CGF.DeactivateCleanupBlock(LifetimeEndBlock, LifetimeStartInst); 302 CGF.EmitLifetimeEnd(LifetimeSizePtr, RetAllocaAddr.getPointer()); 303 } 304 } 305 306 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 307 void AggExprEmitter::EmitFinalDestCopy(QualType type, RValue src) { 308 assert(src.isAggregate() && "value must be aggregate value!"); 309 LValue srcLV = CGF.MakeAddrLValue(src.getAggregateAddress(), type); 310 EmitFinalDestCopy(type, srcLV, EVK_RValue); 311 } 312 313 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 314 void AggExprEmitter::EmitFinalDestCopy(QualType type, const LValue &src, 315 ExprValueKind SrcValueKind) { 316 // If Dest is ignored, then we're evaluating an aggregate expression 317 // in a context that doesn't care about the result. Note that loads 318 // from volatile l-values force the existence of a non-ignored 319 // destination. 320 if (Dest.isIgnored()) 321 return; 322 323 // Copy non-trivial C structs here. 324 LValue DstLV = CGF.MakeAddrLValue( 325 Dest.getAddress(), Dest.isVolatile() ? type.withVolatile() : type); 326 327 if (SrcValueKind == EVK_RValue) { 328 if (type.isNonTrivialToPrimitiveDestructiveMove() == QualType::PCK_Struct) { 329 if (Dest.isPotentiallyAliased()) 330 CGF.callCStructMoveAssignmentOperator(DstLV, src); 331 else 332 CGF.callCStructMoveConstructor(DstLV, src); 333 return; 334 } 335 } else { 336 if (type.isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) { 337 if (Dest.isPotentiallyAliased()) 338 CGF.callCStructCopyAssignmentOperator(DstLV, src); 339 else 340 CGF.callCStructCopyConstructor(DstLV, src); 341 return; 342 } 343 } 344 345 AggValueSlot srcAgg = 346 AggValueSlot::forLValue(src, AggValueSlot::IsDestructed, 347 needsGC(type), AggValueSlot::IsAliased, 348 AggValueSlot::MayOverlap); 349 EmitCopy(type, Dest, srcAgg); 350 } 351 352 /// Perform a copy from the source into the destination. 353 /// 354 /// \param type - the type of the aggregate being copied; qualifiers are 355 /// ignored 356 void AggExprEmitter::EmitCopy(QualType type, const AggValueSlot &dest, 357 const AggValueSlot &src) { 358 if (dest.requiresGCollection()) { 359 CharUnits sz = dest.getPreferredSize(CGF.getContext(), type); 360 llvm::Value *size = llvm::ConstantInt::get(CGF.SizeTy, sz.getQuantity()); 361 CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, 362 dest.getAddress(), 363 src.getAddress(), 364 size); 365 return; 366 } 367 368 // If the result of the assignment is used, copy the LHS there also. 369 // It's volatile if either side is. Use the minimum alignment of 370 // the two sides. 371 LValue DestLV = CGF.MakeAddrLValue(dest.getAddress(), type); 372 LValue SrcLV = CGF.MakeAddrLValue(src.getAddress(), type); 373 CGF.EmitAggregateCopy(DestLV, SrcLV, type, dest.mayOverlap(), 374 dest.isVolatile() || src.isVolatile()); 375 } 376 377 /// Emit the initializer for a std::initializer_list initialized with a 378 /// real initializer list. 379 void 380 AggExprEmitter::VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E) { 381 // Emit an array containing the elements. The array is externally destructed 382 // if the std::initializer_list object is. 383 ASTContext &Ctx = CGF.getContext(); 384 LValue Array = CGF.EmitLValue(E->getSubExpr()); 385 assert(Array.isSimple() && "initializer_list array not a simple lvalue"); 386 Address ArrayPtr = Array.getAddress(); 387 388 const ConstantArrayType *ArrayType = 389 Ctx.getAsConstantArrayType(E->getSubExpr()->getType()); 390 assert(ArrayType && "std::initializer_list constructed from non-array"); 391 392 // FIXME: Perform the checks on the field types in SemaInit. 393 RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl(); 394 RecordDecl::field_iterator Field = Record->field_begin(); 395 if (Field == Record->field_end()) { 396 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 397 return; 398 } 399 400 // Start pointer. 401 if (!Field->getType()->isPointerType() || 402 !Ctx.hasSameType(Field->getType()->getPointeeType(), 403 ArrayType->getElementType())) { 404 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 405 return; 406 } 407 408 AggValueSlot Dest = EnsureSlot(E->getType()); 409 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType()); 410 LValue Start = CGF.EmitLValueForFieldInitialization(DestLV, *Field); 411 llvm::Value *Zero = llvm::ConstantInt::get(CGF.PtrDiffTy, 0); 412 llvm::Value *IdxStart[] = { Zero, Zero }; 413 llvm::Value *ArrayStart = 414 Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxStart, "arraystart"); 415 CGF.EmitStoreThroughLValue(RValue::get(ArrayStart), Start); 416 ++Field; 417 418 if (Field == Record->field_end()) { 419 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 420 return; 421 } 422 423 llvm::Value *Size = Builder.getInt(ArrayType->getSize()); 424 LValue EndOrLength = CGF.EmitLValueForFieldInitialization(DestLV, *Field); 425 if (Field->getType()->isPointerType() && 426 Ctx.hasSameType(Field->getType()->getPointeeType(), 427 ArrayType->getElementType())) { 428 // End pointer. 429 llvm::Value *IdxEnd[] = { Zero, Size }; 430 llvm::Value *ArrayEnd = 431 Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxEnd, "arrayend"); 432 CGF.EmitStoreThroughLValue(RValue::get(ArrayEnd), EndOrLength); 433 } else if (Ctx.hasSameType(Field->getType(), Ctx.getSizeType())) { 434 // Length. 435 CGF.EmitStoreThroughLValue(RValue::get(Size), EndOrLength); 436 } else { 437 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 438 return; 439 } 440 } 441 442 /// Determine if E is a trivial array filler, that is, one that is 443 /// equivalent to zero-initialization. 444 static bool isTrivialFiller(Expr *E) { 445 if (!E) 446 return true; 447 448 if (isa<ImplicitValueInitExpr>(E)) 449 return true; 450 451 if (auto *ILE = dyn_cast<InitListExpr>(E)) { 452 if (ILE->getNumInits()) 453 return false; 454 return isTrivialFiller(ILE->getArrayFiller()); 455 } 456 457 if (auto *Cons = dyn_cast_or_null<CXXConstructExpr>(E)) 458 return Cons->getConstructor()->isDefaultConstructor() && 459 Cons->getConstructor()->isTrivial(); 460 461 // FIXME: Are there other cases where we can avoid emitting an initializer? 462 return false; 463 } 464 465 /// Emit initialization of an array from an initializer list. 466 void AggExprEmitter::EmitArrayInit(Address DestPtr, llvm::ArrayType *AType, 467 QualType ArrayQTy, InitListExpr *E) { 468 uint64_t NumInitElements = E->getNumInits(); 469 470 uint64_t NumArrayElements = AType->getNumElements(); 471 assert(NumInitElements <= NumArrayElements); 472 473 QualType elementType = 474 CGF.getContext().getAsArrayType(ArrayQTy)->getElementType(); 475 476 // DestPtr is an array*. Construct an elementType* by drilling 477 // down a level. 478 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 479 llvm::Value *indices[] = { zero, zero }; 480 llvm::Value *begin = 481 Builder.CreateInBoundsGEP(DestPtr.getPointer(), indices, "arrayinit.begin"); 482 483 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType); 484 CharUnits elementAlign = 485 DestPtr.getAlignment().alignmentOfArrayElement(elementSize); 486 487 // Consider initializing the array by copying from a global. For this to be 488 // more efficient than per-element initialization, the size of the elements 489 // with explicit initializers should be large enough. 490 if (NumInitElements * elementSize.getQuantity() > 16 && 491 elementType.isTriviallyCopyableType(CGF.getContext())) { 492 CodeGen::CodeGenModule &CGM = CGF.CGM; 493 ConstantEmitter Emitter(CGM); 494 LangAS AS = ArrayQTy.getAddressSpace(); 495 if (llvm::Constant *C = Emitter.tryEmitForInitializer(E, AS, ArrayQTy)) { 496 auto GV = new llvm::GlobalVariable( 497 CGM.getModule(), C->getType(), 498 CGM.isTypeConstant(ArrayQTy, /* ExcludeCtorDtor= */ true), 499 llvm::GlobalValue::PrivateLinkage, C, "constinit", 500 /* InsertBefore= */ nullptr, llvm::GlobalVariable::NotThreadLocal, 501 CGM.getContext().getTargetAddressSpace(AS)); 502 Emitter.finalize(GV); 503 CharUnits Align = CGM.getContext().getTypeAlignInChars(ArrayQTy); 504 GV->setAlignment(Align.getQuantity()); 505 EmitFinalDestCopy(ArrayQTy, CGF.MakeAddrLValue(GV, ArrayQTy, Align)); 506 return; 507 } 508 } 509 510 // Exception safety requires us to destroy all the 511 // already-constructed members if an initializer throws. 512 // For that, we'll need an EH cleanup. 513 QualType::DestructionKind dtorKind = elementType.isDestructedType(); 514 Address endOfInit = Address::invalid(); 515 EHScopeStack::stable_iterator cleanup; 516 llvm::Instruction *cleanupDominator = nullptr; 517 if (CGF.needsEHCleanup(dtorKind)) { 518 // In principle we could tell the cleanup where we are more 519 // directly, but the control flow can get so varied here that it 520 // would actually be quite complex. Therefore we go through an 521 // alloca. 522 endOfInit = CGF.CreateTempAlloca(begin->getType(), CGF.getPointerAlign(), 523 "arrayinit.endOfInit"); 524 cleanupDominator = Builder.CreateStore(begin, endOfInit); 525 CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType, 526 elementAlign, 527 CGF.getDestroyer(dtorKind)); 528 cleanup = CGF.EHStack.stable_begin(); 529 530 // Otherwise, remember that we didn't need a cleanup. 531 } else { 532 dtorKind = QualType::DK_none; 533 } 534 535 llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1); 536 537 // The 'current element to initialize'. The invariants on this 538 // variable are complicated. Essentially, after each iteration of 539 // the loop, it points to the last initialized element, except 540 // that it points to the beginning of the array before any 541 // elements have been initialized. 542 llvm::Value *element = begin; 543 544 // Emit the explicit initializers. 545 for (uint64_t i = 0; i != NumInitElements; ++i) { 546 // Advance to the next element. 547 if (i > 0) { 548 element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element"); 549 550 // Tell the cleanup that it needs to destroy up to this 551 // element. TODO: some of these stores can be trivially 552 // observed to be unnecessary. 553 if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit); 554 } 555 556 LValue elementLV = 557 CGF.MakeAddrLValue(Address(element, elementAlign), elementType); 558 EmitInitializationToLValue(E->getInit(i), elementLV); 559 } 560 561 // Check whether there's a non-trivial array-fill expression. 562 Expr *filler = E->getArrayFiller(); 563 bool hasTrivialFiller = isTrivialFiller(filler); 564 565 // Any remaining elements need to be zero-initialized, possibly 566 // using the filler expression. We can skip this if the we're 567 // emitting to zeroed memory. 568 if (NumInitElements != NumArrayElements && 569 !(Dest.isZeroed() && hasTrivialFiller && 570 CGF.getTypes().isZeroInitializable(elementType))) { 571 572 // Use an actual loop. This is basically 573 // do { *array++ = filler; } while (array != end); 574 575 // Advance to the start of the rest of the array. 576 if (NumInitElements) { 577 element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start"); 578 if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit); 579 } 580 581 // Compute the end of the array. 582 llvm::Value *end = Builder.CreateInBoundsGEP(begin, 583 llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements), 584 "arrayinit.end"); 585 586 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 587 llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body"); 588 589 // Jump into the body. 590 CGF.EmitBlock(bodyBB); 591 llvm::PHINode *currentElement = 592 Builder.CreatePHI(element->getType(), 2, "arrayinit.cur"); 593 currentElement->addIncoming(element, entryBB); 594 595 // Emit the actual filler expression. 596 { 597 // C++1z [class.temporary]p5: 598 // when a default constructor is called to initialize an element of 599 // an array with no corresponding initializer [...] the destruction of 600 // every temporary created in a default argument is sequenced before 601 // the construction of the next array element, if any 602 CodeGenFunction::RunCleanupsScope CleanupsScope(CGF); 603 LValue elementLV = 604 CGF.MakeAddrLValue(Address(currentElement, elementAlign), elementType); 605 if (filler) 606 EmitInitializationToLValue(filler, elementLV); 607 else 608 EmitNullInitializationToLValue(elementLV); 609 } 610 611 // Move on to the next element. 612 llvm::Value *nextElement = 613 Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next"); 614 615 // Tell the EH cleanup that we finished with the last element. 616 if (endOfInit.isValid()) Builder.CreateStore(nextElement, endOfInit); 617 618 // Leave the loop if we're done. 619 llvm::Value *done = Builder.CreateICmpEQ(nextElement, end, 620 "arrayinit.done"); 621 llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end"); 622 Builder.CreateCondBr(done, endBB, bodyBB); 623 currentElement->addIncoming(nextElement, Builder.GetInsertBlock()); 624 625 CGF.EmitBlock(endBB); 626 } 627 628 // Leave the partial-array cleanup if we entered one. 629 if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator); 630 } 631 632 //===----------------------------------------------------------------------===// 633 // Visitor Methods 634 //===----------------------------------------------------------------------===// 635 636 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){ 637 Visit(E->GetTemporaryExpr()); 638 } 639 640 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) { 641 // If this is a unique OVE, just visit its source expression. 642 if (e->isUnique()) 643 Visit(e->getSourceExpr()); 644 else 645 EmitFinalDestCopy(e->getType(), CGF.getOrCreateOpaqueLValueMapping(e)); 646 } 647 648 void 649 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 650 if (Dest.isPotentiallyAliased() && 651 E->getType().isPODType(CGF.getContext())) { 652 // For a POD type, just emit a load of the lvalue + a copy, because our 653 // compound literal might alias the destination. 654 EmitAggLoadOfLValue(E); 655 return; 656 } 657 658 AggValueSlot Slot = EnsureSlot(E->getType()); 659 CGF.EmitAggExpr(E->getInitializer(), Slot); 660 } 661 662 /// Attempt to look through various unimportant expressions to find a 663 /// cast of the given kind. 664 static Expr *findPeephole(Expr *op, CastKind kind) { 665 while (true) { 666 op = op->IgnoreParens(); 667 if (CastExpr *castE = dyn_cast<CastExpr>(op)) { 668 if (castE->getCastKind() == kind) 669 return castE->getSubExpr(); 670 if (castE->getCastKind() == CK_NoOp) 671 continue; 672 } 673 return nullptr; 674 } 675 } 676 677 void AggExprEmitter::VisitCastExpr(CastExpr *E) { 678 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E)) 679 CGF.CGM.EmitExplicitCastExprType(ECE, &CGF); 680 switch (E->getCastKind()) { 681 case CK_Dynamic: { 682 // FIXME: Can this actually happen? We have no test coverage for it. 683 assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?"); 684 LValue LV = CGF.EmitCheckedLValue(E->getSubExpr(), 685 CodeGenFunction::TCK_Load); 686 // FIXME: Do we also need to handle property references here? 687 if (LV.isSimple()) 688 CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E)); 689 else 690 CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast"); 691 692 if (!Dest.isIgnored()) 693 CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination"); 694 break; 695 } 696 697 case CK_ToUnion: { 698 // Evaluate even if the destination is ignored. 699 if (Dest.isIgnored()) { 700 CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(), 701 /*ignoreResult=*/true); 702 break; 703 } 704 705 // GCC union extension 706 QualType Ty = E->getSubExpr()->getType(); 707 Address CastPtr = 708 Builder.CreateElementBitCast(Dest.getAddress(), CGF.ConvertType(Ty)); 709 EmitInitializationToLValue(E->getSubExpr(), 710 CGF.MakeAddrLValue(CastPtr, Ty)); 711 break; 712 } 713 714 case CK_DerivedToBase: 715 case CK_BaseToDerived: 716 case CK_UncheckedDerivedToBase: { 717 llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: " 718 "should have been unpacked before we got here"); 719 } 720 721 case CK_NonAtomicToAtomic: 722 case CK_AtomicToNonAtomic: { 723 bool isToAtomic = (E->getCastKind() == CK_NonAtomicToAtomic); 724 725 // Determine the atomic and value types. 726 QualType atomicType = E->getSubExpr()->getType(); 727 QualType valueType = E->getType(); 728 if (isToAtomic) std::swap(atomicType, valueType); 729 730 assert(atomicType->isAtomicType()); 731 assert(CGF.getContext().hasSameUnqualifiedType(valueType, 732 atomicType->castAs<AtomicType>()->getValueType())); 733 734 // Just recurse normally if we're ignoring the result or the 735 // atomic type doesn't change representation. 736 if (Dest.isIgnored() || !CGF.CGM.isPaddedAtomicType(atomicType)) { 737 return Visit(E->getSubExpr()); 738 } 739 740 CastKind peepholeTarget = 741 (isToAtomic ? CK_AtomicToNonAtomic : CK_NonAtomicToAtomic); 742 743 // These two cases are reverses of each other; try to peephole them. 744 if (Expr *op = findPeephole(E->getSubExpr(), peepholeTarget)) { 745 assert(CGF.getContext().hasSameUnqualifiedType(op->getType(), 746 E->getType()) && 747 "peephole significantly changed types?"); 748 return Visit(op); 749 } 750 751 // If we're converting an r-value of non-atomic type to an r-value 752 // of atomic type, just emit directly into the relevant sub-object. 753 if (isToAtomic) { 754 AggValueSlot valueDest = Dest; 755 if (!valueDest.isIgnored() && CGF.CGM.isPaddedAtomicType(atomicType)) { 756 // Zero-initialize. (Strictly speaking, we only need to initialize 757 // the padding at the end, but this is simpler.) 758 if (!Dest.isZeroed()) 759 CGF.EmitNullInitialization(Dest.getAddress(), atomicType); 760 761 // Build a GEP to refer to the subobject. 762 Address valueAddr = 763 CGF.Builder.CreateStructGEP(valueDest.getAddress(), 0); 764 valueDest = AggValueSlot::forAddr(valueAddr, 765 valueDest.getQualifiers(), 766 valueDest.isExternallyDestructed(), 767 valueDest.requiresGCollection(), 768 valueDest.isPotentiallyAliased(), 769 AggValueSlot::DoesNotOverlap, 770 AggValueSlot::IsZeroed); 771 } 772 773 CGF.EmitAggExpr(E->getSubExpr(), valueDest); 774 return; 775 } 776 777 // Otherwise, we're converting an atomic type to a non-atomic type. 778 // Make an atomic temporary, emit into that, and then copy the value out. 779 AggValueSlot atomicSlot = 780 CGF.CreateAggTemp(atomicType, "atomic-to-nonatomic.temp"); 781 CGF.EmitAggExpr(E->getSubExpr(), atomicSlot); 782 783 Address valueAddr = Builder.CreateStructGEP(atomicSlot.getAddress(), 0); 784 RValue rvalue = RValue::getAggregate(valueAddr, atomicSlot.isVolatile()); 785 return EmitFinalDestCopy(valueType, rvalue); 786 } 787 case CK_AddressSpaceConversion: 788 return Visit(E->getSubExpr()); 789 790 case CK_LValueToRValue: 791 // If we're loading from a volatile type, force the destination 792 // into existence. 793 if (E->getSubExpr()->getType().isVolatileQualified()) { 794 EnsureDest(E->getType()); 795 return Visit(E->getSubExpr()); 796 } 797 798 LLVM_FALLTHROUGH; 799 800 801 case CK_NoOp: 802 case CK_UserDefinedConversion: 803 case CK_ConstructorConversion: 804 assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(), 805 E->getType()) && 806 "Implicit cast types must be compatible"); 807 Visit(E->getSubExpr()); 808 break; 809 810 case CK_LValueBitCast: 811 llvm_unreachable("should not be emitting lvalue bitcast as rvalue"); 812 813 case CK_Dependent: 814 case CK_BitCast: 815 case CK_ArrayToPointerDecay: 816 case CK_FunctionToPointerDecay: 817 case CK_NullToPointer: 818 case CK_NullToMemberPointer: 819 case CK_BaseToDerivedMemberPointer: 820 case CK_DerivedToBaseMemberPointer: 821 case CK_MemberPointerToBoolean: 822 case CK_ReinterpretMemberPointer: 823 case CK_IntegralToPointer: 824 case CK_PointerToIntegral: 825 case CK_PointerToBoolean: 826 case CK_ToVoid: 827 case CK_VectorSplat: 828 case CK_IntegralCast: 829 case CK_BooleanToSignedIntegral: 830 case CK_IntegralToBoolean: 831 case CK_IntegralToFloating: 832 case CK_FloatingToIntegral: 833 case CK_FloatingToBoolean: 834 case CK_FloatingCast: 835 case CK_CPointerToObjCPointerCast: 836 case CK_BlockPointerToObjCPointerCast: 837 case CK_AnyPointerToBlockPointerCast: 838 case CK_ObjCObjectLValueCast: 839 case CK_FloatingRealToComplex: 840 case CK_FloatingComplexToReal: 841 case CK_FloatingComplexToBoolean: 842 case CK_FloatingComplexCast: 843 case CK_FloatingComplexToIntegralComplex: 844 case CK_IntegralRealToComplex: 845 case CK_IntegralComplexToReal: 846 case CK_IntegralComplexToBoolean: 847 case CK_IntegralComplexCast: 848 case CK_IntegralComplexToFloatingComplex: 849 case CK_ARCProduceObject: 850 case CK_ARCConsumeObject: 851 case CK_ARCReclaimReturnedObject: 852 case CK_ARCExtendBlockObject: 853 case CK_CopyAndAutoreleaseBlockObject: 854 case CK_BuiltinFnToFnPtr: 855 case CK_ZeroToOCLOpaqueType: 856 857 case CK_IntToOCLSampler: 858 case CK_FixedPointCast: 859 case CK_FixedPointToBoolean: 860 case CK_FixedPointToIntegral: 861 case CK_IntegralToFixedPoint: 862 llvm_unreachable("cast kind invalid for aggregate types"); 863 } 864 } 865 866 void AggExprEmitter::VisitCallExpr(const CallExpr *E) { 867 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) { 868 EmitAggLoadOfLValue(E); 869 return; 870 } 871 872 withReturnValueSlot(E, [&](ReturnValueSlot Slot) { 873 return CGF.EmitCallExpr(E, Slot); 874 }); 875 } 876 877 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) { 878 withReturnValueSlot(E, [&](ReturnValueSlot Slot) { 879 return CGF.EmitObjCMessageExpr(E, Slot); 880 }); 881 } 882 883 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) { 884 CGF.EmitIgnoredExpr(E->getLHS()); 885 Visit(E->getRHS()); 886 } 887 888 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) { 889 CodeGenFunction::StmtExprEvaluation eval(CGF); 890 CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest); 891 } 892 893 enum CompareKind { 894 CK_Less, 895 CK_Greater, 896 CK_Equal, 897 }; 898 899 static llvm::Value *EmitCompare(CGBuilderTy &Builder, CodeGenFunction &CGF, 900 const BinaryOperator *E, llvm::Value *LHS, 901 llvm::Value *RHS, CompareKind Kind, 902 const char *NameSuffix = "") { 903 QualType ArgTy = E->getLHS()->getType(); 904 if (const ComplexType *CT = ArgTy->getAs<ComplexType>()) 905 ArgTy = CT->getElementType(); 906 907 if (const auto *MPT = ArgTy->getAs<MemberPointerType>()) { 908 assert(Kind == CK_Equal && 909 "member pointers may only be compared for equality"); 910 return CGF.CGM.getCXXABI().EmitMemberPointerComparison( 911 CGF, LHS, RHS, MPT, /*IsInequality*/ false); 912 } 913 914 // Compute the comparison instructions for the specified comparison kind. 915 struct CmpInstInfo { 916 const char *Name; 917 llvm::CmpInst::Predicate FCmp; 918 llvm::CmpInst::Predicate SCmp; 919 llvm::CmpInst::Predicate UCmp; 920 }; 921 CmpInstInfo InstInfo = [&]() -> CmpInstInfo { 922 using FI = llvm::FCmpInst; 923 using II = llvm::ICmpInst; 924 switch (Kind) { 925 case CK_Less: 926 return {"cmp.lt", FI::FCMP_OLT, II::ICMP_SLT, II::ICMP_ULT}; 927 case CK_Greater: 928 return {"cmp.gt", FI::FCMP_OGT, II::ICMP_SGT, II::ICMP_UGT}; 929 case CK_Equal: 930 return {"cmp.eq", FI::FCMP_OEQ, II::ICMP_EQ, II::ICMP_EQ}; 931 } 932 llvm_unreachable("Unrecognised CompareKind enum"); 933 }(); 934 935 if (ArgTy->hasFloatingRepresentation()) 936 return Builder.CreateFCmp(InstInfo.FCmp, LHS, RHS, 937 llvm::Twine(InstInfo.Name) + NameSuffix); 938 if (ArgTy->isIntegralOrEnumerationType() || ArgTy->isPointerType()) { 939 auto Inst = 940 ArgTy->hasSignedIntegerRepresentation() ? InstInfo.SCmp : InstInfo.UCmp; 941 return Builder.CreateICmp(Inst, LHS, RHS, 942 llvm::Twine(InstInfo.Name) + NameSuffix); 943 } 944 945 llvm_unreachable("unsupported aggregate binary expression should have " 946 "already been handled"); 947 } 948 949 void AggExprEmitter::VisitBinCmp(const BinaryOperator *E) { 950 using llvm::BasicBlock; 951 using llvm::PHINode; 952 using llvm::Value; 953 assert(CGF.getContext().hasSameType(E->getLHS()->getType(), 954 E->getRHS()->getType())); 955 const ComparisonCategoryInfo &CmpInfo = 956 CGF.getContext().CompCategories.getInfoForType(E->getType()); 957 assert(CmpInfo.Record->isTriviallyCopyable() && 958 "cannot copy non-trivially copyable aggregate"); 959 960 QualType ArgTy = E->getLHS()->getType(); 961 962 // TODO: Handle comparing these types. 963 if (ArgTy->isVectorType()) 964 return CGF.ErrorUnsupported( 965 E, "aggregate three-way comparison with vector arguments"); 966 if (!ArgTy->isIntegralOrEnumerationType() && !ArgTy->isRealFloatingType() && 967 !ArgTy->isNullPtrType() && !ArgTy->isPointerType() && 968 !ArgTy->isMemberPointerType() && !ArgTy->isAnyComplexType()) { 969 return CGF.ErrorUnsupported(E, "aggregate three-way comparison"); 970 } 971 bool IsComplex = ArgTy->isAnyComplexType(); 972 973 // Evaluate the operands to the expression and extract their values. 974 auto EmitOperand = [&](Expr *E) -> std::pair<Value *, Value *> { 975 RValue RV = CGF.EmitAnyExpr(E); 976 if (RV.isScalar()) 977 return {RV.getScalarVal(), nullptr}; 978 if (RV.isAggregate()) 979 return {RV.getAggregatePointer(), nullptr}; 980 assert(RV.isComplex()); 981 return RV.getComplexVal(); 982 }; 983 auto LHSValues = EmitOperand(E->getLHS()), 984 RHSValues = EmitOperand(E->getRHS()); 985 986 auto EmitCmp = [&](CompareKind K) { 987 Value *Cmp = EmitCompare(Builder, CGF, E, LHSValues.first, RHSValues.first, 988 K, IsComplex ? ".r" : ""); 989 if (!IsComplex) 990 return Cmp; 991 assert(K == CompareKind::CK_Equal); 992 Value *CmpImag = EmitCompare(Builder, CGF, E, LHSValues.second, 993 RHSValues.second, K, ".i"); 994 return Builder.CreateAnd(Cmp, CmpImag, "and.eq"); 995 }; 996 auto EmitCmpRes = [&](const ComparisonCategoryInfo::ValueInfo *VInfo) { 997 return Builder.getInt(VInfo->getIntValue()); 998 }; 999 1000 Value *Select; 1001 if (ArgTy->isNullPtrType()) { 1002 Select = EmitCmpRes(CmpInfo.getEqualOrEquiv()); 1003 } else if (CmpInfo.isEquality()) { 1004 Select = Builder.CreateSelect( 1005 EmitCmp(CK_Equal), EmitCmpRes(CmpInfo.getEqualOrEquiv()), 1006 EmitCmpRes(CmpInfo.getNonequalOrNonequiv()), "sel.eq"); 1007 } else if (!CmpInfo.isPartial()) { 1008 Value *SelectOne = 1009 Builder.CreateSelect(EmitCmp(CK_Less), EmitCmpRes(CmpInfo.getLess()), 1010 EmitCmpRes(CmpInfo.getGreater()), "sel.lt"); 1011 Select = Builder.CreateSelect(EmitCmp(CK_Equal), 1012 EmitCmpRes(CmpInfo.getEqualOrEquiv()), 1013 SelectOne, "sel.eq"); 1014 } else { 1015 Value *SelectEq = Builder.CreateSelect( 1016 EmitCmp(CK_Equal), EmitCmpRes(CmpInfo.getEqualOrEquiv()), 1017 EmitCmpRes(CmpInfo.getUnordered()), "sel.eq"); 1018 Value *SelectGT = Builder.CreateSelect(EmitCmp(CK_Greater), 1019 EmitCmpRes(CmpInfo.getGreater()), 1020 SelectEq, "sel.gt"); 1021 Select = Builder.CreateSelect( 1022 EmitCmp(CK_Less), EmitCmpRes(CmpInfo.getLess()), SelectGT, "sel.lt"); 1023 } 1024 // Create the return value in the destination slot. 1025 EnsureDest(E->getType()); 1026 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType()); 1027 1028 // Emit the address of the first (and only) field in the comparison category 1029 // type, and initialize it from the constant integer value selected above. 1030 LValue FieldLV = CGF.EmitLValueForFieldInitialization( 1031 DestLV, *CmpInfo.Record->field_begin()); 1032 CGF.EmitStoreThroughLValue(RValue::get(Select), FieldLV, /*IsInit*/ true); 1033 1034 // All done! The result is in the Dest slot. 1035 } 1036 1037 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) { 1038 if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI) 1039 VisitPointerToDataMemberBinaryOperator(E); 1040 else 1041 CGF.ErrorUnsupported(E, "aggregate binary expression"); 1042 } 1043 1044 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator( 1045 const BinaryOperator *E) { 1046 LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E); 1047 EmitFinalDestCopy(E->getType(), LV); 1048 } 1049 1050 /// Is the value of the given expression possibly a reference to or 1051 /// into a __block variable? 1052 static bool isBlockVarRef(const Expr *E) { 1053 // Make sure we look through parens. 1054 E = E->IgnoreParens(); 1055 1056 // Check for a direct reference to a __block variable. 1057 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { 1058 const VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl()); 1059 return (var && var->hasAttr<BlocksAttr>()); 1060 } 1061 1062 // More complicated stuff. 1063 1064 // Binary operators. 1065 if (const BinaryOperator *op = dyn_cast<BinaryOperator>(E)) { 1066 // For an assignment or pointer-to-member operation, just care 1067 // about the LHS. 1068 if (op->isAssignmentOp() || op->isPtrMemOp()) 1069 return isBlockVarRef(op->getLHS()); 1070 1071 // For a comma, just care about the RHS. 1072 if (op->getOpcode() == BO_Comma) 1073 return isBlockVarRef(op->getRHS()); 1074 1075 // FIXME: pointer arithmetic? 1076 return false; 1077 1078 // Check both sides of a conditional operator. 1079 } else if (const AbstractConditionalOperator *op 1080 = dyn_cast<AbstractConditionalOperator>(E)) { 1081 return isBlockVarRef(op->getTrueExpr()) 1082 || isBlockVarRef(op->getFalseExpr()); 1083 1084 // OVEs are required to support BinaryConditionalOperators. 1085 } else if (const OpaqueValueExpr *op 1086 = dyn_cast<OpaqueValueExpr>(E)) { 1087 if (const Expr *src = op->getSourceExpr()) 1088 return isBlockVarRef(src); 1089 1090 // Casts are necessary to get things like (*(int*)&var) = foo(). 1091 // We don't really care about the kind of cast here, except 1092 // we don't want to look through l2r casts, because it's okay 1093 // to get the *value* in a __block variable. 1094 } else if (const CastExpr *cast = dyn_cast<CastExpr>(E)) { 1095 if (cast->getCastKind() == CK_LValueToRValue) 1096 return false; 1097 return isBlockVarRef(cast->getSubExpr()); 1098 1099 // Handle unary operators. Again, just aggressively look through 1100 // it, ignoring the operation. 1101 } else if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E)) { 1102 return isBlockVarRef(uop->getSubExpr()); 1103 1104 // Look into the base of a field access. 1105 } else if (const MemberExpr *mem = dyn_cast<MemberExpr>(E)) { 1106 return isBlockVarRef(mem->getBase()); 1107 1108 // Look into the base of a subscript. 1109 } else if (const ArraySubscriptExpr *sub = dyn_cast<ArraySubscriptExpr>(E)) { 1110 return isBlockVarRef(sub->getBase()); 1111 } 1112 1113 return false; 1114 } 1115 1116 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) { 1117 // For an assignment to work, the value on the right has 1118 // to be compatible with the value on the left. 1119 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), 1120 E->getRHS()->getType()) 1121 && "Invalid assignment"); 1122 1123 // If the LHS might be a __block variable, and the RHS can 1124 // potentially cause a block copy, we need to evaluate the RHS first 1125 // so that the assignment goes the right place. 1126 // This is pretty semantically fragile. 1127 if (isBlockVarRef(E->getLHS()) && 1128 E->getRHS()->HasSideEffects(CGF.getContext())) { 1129 // Ensure that we have a destination, and evaluate the RHS into that. 1130 EnsureDest(E->getRHS()->getType()); 1131 Visit(E->getRHS()); 1132 1133 // Now emit the LHS and copy into it. 1134 LValue LHS = CGF.EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 1135 1136 // That copy is an atomic copy if the LHS is atomic. 1137 if (LHS.getType()->isAtomicType() || 1138 CGF.LValueIsSuitableForInlineAtomic(LHS)) { 1139 CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false); 1140 return; 1141 } 1142 1143 EmitCopy(E->getLHS()->getType(), 1144 AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed, 1145 needsGC(E->getLHS()->getType()), 1146 AggValueSlot::IsAliased, 1147 AggValueSlot::MayOverlap), 1148 Dest); 1149 return; 1150 } 1151 1152 LValue LHS = CGF.EmitLValue(E->getLHS()); 1153 1154 // If we have an atomic type, evaluate into the destination and then 1155 // do an atomic copy. 1156 if (LHS.getType()->isAtomicType() || 1157 CGF.LValueIsSuitableForInlineAtomic(LHS)) { 1158 EnsureDest(E->getRHS()->getType()); 1159 Visit(E->getRHS()); 1160 CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false); 1161 return; 1162 } 1163 1164 // Codegen the RHS so that it stores directly into the LHS. 1165 AggValueSlot LHSSlot = 1166 AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed, 1167 needsGC(E->getLHS()->getType()), 1168 AggValueSlot::IsAliased, 1169 AggValueSlot::MayOverlap); 1170 // A non-volatile aggregate destination might have volatile member. 1171 if (!LHSSlot.isVolatile() && 1172 CGF.hasVolatileMember(E->getLHS()->getType())) 1173 LHSSlot.setVolatile(true); 1174 1175 CGF.EmitAggExpr(E->getRHS(), LHSSlot); 1176 1177 // Copy into the destination if the assignment isn't ignored. 1178 EmitFinalDestCopy(E->getType(), LHS); 1179 } 1180 1181 void AggExprEmitter:: 1182 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 1183 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 1184 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 1185 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 1186 1187 // Bind the common expression if necessary. 1188 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 1189 1190 CodeGenFunction::ConditionalEvaluation eval(CGF); 1191 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock, 1192 CGF.getProfileCount(E)); 1193 1194 // Save whether the destination's lifetime is externally managed. 1195 bool isExternallyDestructed = Dest.isExternallyDestructed(); 1196 1197 eval.begin(CGF); 1198 CGF.EmitBlock(LHSBlock); 1199 CGF.incrementProfileCounter(E); 1200 Visit(E->getTrueExpr()); 1201 eval.end(CGF); 1202 1203 assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!"); 1204 CGF.Builder.CreateBr(ContBlock); 1205 1206 // If the result of an agg expression is unused, then the emission 1207 // of the LHS might need to create a destination slot. That's fine 1208 // with us, and we can safely emit the RHS into the same slot, but 1209 // we shouldn't claim that it's already being destructed. 1210 Dest.setExternallyDestructed(isExternallyDestructed); 1211 1212 eval.begin(CGF); 1213 CGF.EmitBlock(RHSBlock); 1214 Visit(E->getFalseExpr()); 1215 eval.end(CGF); 1216 1217 CGF.EmitBlock(ContBlock); 1218 } 1219 1220 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) { 1221 Visit(CE->getChosenSubExpr()); 1222 } 1223 1224 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 1225 Address ArgValue = Address::invalid(); 1226 Address ArgPtr = CGF.EmitVAArg(VE, ArgValue); 1227 1228 // If EmitVAArg fails, emit an error. 1229 if (!ArgPtr.isValid()) { 1230 CGF.ErrorUnsupported(VE, "aggregate va_arg expression"); 1231 return; 1232 } 1233 1234 EmitFinalDestCopy(VE->getType(), CGF.MakeAddrLValue(ArgPtr, VE->getType())); 1235 } 1236 1237 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 1238 // Ensure that we have a slot, but if we already do, remember 1239 // whether it was externally destructed. 1240 bool wasExternallyDestructed = Dest.isExternallyDestructed(); 1241 EnsureDest(E->getType()); 1242 1243 // We're going to push a destructor if there isn't already one. 1244 Dest.setExternallyDestructed(); 1245 1246 Visit(E->getSubExpr()); 1247 1248 // Push that destructor we promised. 1249 if (!wasExternallyDestructed) 1250 CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddress()); 1251 } 1252 1253 void 1254 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) { 1255 AggValueSlot Slot = EnsureSlot(E->getType()); 1256 CGF.EmitCXXConstructExpr(E, Slot); 1257 } 1258 1259 void AggExprEmitter::VisitCXXInheritedCtorInitExpr( 1260 const CXXInheritedCtorInitExpr *E) { 1261 AggValueSlot Slot = EnsureSlot(E->getType()); 1262 CGF.EmitInheritedCXXConstructorCall( 1263 E->getConstructor(), E->constructsVBase(), Slot.getAddress(), 1264 E->inheritedFromVBase(), E); 1265 } 1266 1267 void 1268 AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) { 1269 AggValueSlot Slot = EnsureSlot(E->getType()); 1270 LValue SlotLV = CGF.MakeAddrLValue(Slot.getAddress(), E->getType()); 1271 1272 // We'll need to enter cleanup scopes in case any of the element 1273 // initializers throws an exception. 1274 SmallVector<EHScopeStack::stable_iterator, 16> Cleanups; 1275 llvm::Instruction *CleanupDominator = nullptr; 1276 1277 CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin(); 1278 for (LambdaExpr::const_capture_init_iterator i = E->capture_init_begin(), 1279 e = E->capture_init_end(); 1280 i != e; ++i, ++CurField) { 1281 // Emit initialization 1282 LValue LV = CGF.EmitLValueForFieldInitialization(SlotLV, *CurField); 1283 if (CurField->hasCapturedVLAType()) { 1284 CGF.EmitLambdaVLACapture(CurField->getCapturedVLAType(), LV); 1285 continue; 1286 } 1287 1288 EmitInitializationToLValue(*i, LV); 1289 1290 // Push a destructor if necessary. 1291 if (QualType::DestructionKind DtorKind = 1292 CurField->getType().isDestructedType()) { 1293 assert(LV.isSimple()); 1294 if (CGF.needsEHCleanup(DtorKind)) { 1295 if (!CleanupDominator) 1296 CleanupDominator = CGF.Builder.CreateAlignedLoad( 1297 CGF.Int8Ty, 1298 llvm::Constant::getNullValue(CGF.Int8PtrTy), 1299 CharUnits::One()); // placeholder 1300 1301 CGF.pushDestroy(EHCleanup, LV.getAddress(), CurField->getType(), 1302 CGF.getDestroyer(DtorKind), false); 1303 Cleanups.push_back(CGF.EHStack.stable_begin()); 1304 } 1305 } 1306 } 1307 1308 // Deactivate all the partial cleanups in reverse order, which 1309 // generally means popping them. 1310 for (unsigned i = Cleanups.size(); i != 0; --i) 1311 CGF.DeactivateCleanupBlock(Cleanups[i-1], CleanupDominator); 1312 1313 // Destroy the placeholder if we made one. 1314 if (CleanupDominator) 1315 CleanupDominator->eraseFromParent(); 1316 } 1317 1318 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) { 1319 CGF.enterFullExpression(E); 1320 CodeGenFunction::RunCleanupsScope cleanups(CGF); 1321 Visit(E->getSubExpr()); 1322 } 1323 1324 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) { 1325 QualType T = E->getType(); 1326 AggValueSlot Slot = EnsureSlot(T); 1327 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T)); 1328 } 1329 1330 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) { 1331 QualType T = E->getType(); 1332 AggValueSlot Slot = EnsureSlot(T); 1333 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T)); 1334 } 1335 1336 /// isSimpleZero - If emitting this value will obviously just cause a store of 1337 /// zero to memory, return true. This can return false if uncertain, so it just 1338 /// handles simple cases. 1339 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) { 1340 E = E->IgnoreParens(); 1341 1342 // 0 1343 if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) 1344 return IL->getValue() == 0; 1345 // +0.0 1346 if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E)) 1347 return FL->getValue().isPosZero(); 1348 // int() 1349 if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) && 1350 CGF.getTypes().isZeroInitializable(E->getType())) 1351 return true; 1352 // (int*)0 - Null pointer expressions. 1353 if (const CastExpr *ICE = dyn_cast<CastExpr>(E)) 1354 return ICE->getCastKind() == CK_NullToPointer && 1355 CGF.getTypes().isPointerZeroInitializable(E->getType()); 1356 // '\0' 1357 if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) 1358 return CL->getValue() == 0; 1359 1360 // Otherwise, hard case: conservatively return false. 1361 return false; 1362 } 1363 1364 1365 void 1366 AggExprEmitter::EmitInitializationToLValue(Expr *E, LValue LV) { 1367 QualType type = LV.getType(); 1368 // FIXME: Ignore result? 1369 // FIXME: Are initializers affected by volatile? 1370 if (Dest.isZeroed() && isSimpleZero(E, CGF)) { 1371 // Storing "i32 0" to a zero'd memory location is a noop. 1372 return; 1373 } else if (isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) { 1374 return EmitNullInitializationToLValue(LV); 1375 } else if (isa<NoInitExpr>(E)) { 1376 // Do nothing. 1377 return; 1378 } else if (type->isReferenceType()) { 1379 RValue RV = CGF.EmitReferenceBindingToExpr(E); 1380 return CGF.EmitStoreThroughLValue(RV, LV); 1381 } 1382 1383 switch (CGF.getEvaluationKind(type)) { 1384 case TEK_Complex: 1385 CGF.EmitComplexExprIntoLValue(E, LV, /*isInit*/ true); 1386 return; 1387 case TEK_Aggregate: 1388 CGF.EmitAggExpr(E, AggValueSlot::forLValue(LV, 1389 AggValueSlot::IsDestructed, 1390 AggValueSlot::DoesNotNeedGCBarriers, 1391 AggValueSlot::IsNotAliased, 1392 AggValueSlot::MayOverlap, 1393 Dest.isZeroed())); 1394 return; 1395 case TEK_Scalar: 1396 if (LV.isSimple()) { 1397 CGF.EmitScalarInit(E, /*D=*/nullptr, LV, /*Captured=*/false); 1398 } else { 1399 CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV); 1400 } 1401 return; 1402 } 1403 llvm_unreachable("bad evaluation kind"); 1404 } 1405 1406 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) { 1407 QualType type = lv.getType(); 1408 1409 // If the destination slot is already zeroed out before the aggregate is 1410 // copied into it, we don't have to emit any zeros here. 1411 if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type)) 1412 return; 1413 1414 if (CGF.hasScalarEvaluationKind(type)) { 1415 // For non-aggregates, we can store the appropriate null constant. 1416 llvm::Value *null = CGF.CGM.EmitNullConstant(type); 1417 // Note that the following is not equivalent to 1418 // EmitStoreThroughBitfieldLValue for ARC types. 1419 if (lv.isBitField()) { 1420 CGF.EmitStoreThroughBitfieldLValue(RValue::get(null), lv); 1421 } else { 1422 assert(lv.isSimple()); 1423 CGF.EmitStoreOfScalar(null, lv, /* isInitialization */ true); 1424 } 1425 } else { 1426 // There's a potential optimization opportunity in combining 1427 // memsets; that would be easy for arrays, but relatively 1428 // difficult for structures with the current code. 1429 CGF.EmitNullInitialization(lv.getAddress(), lv.getType()); 1430 } 1431 } 1432 1433 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) { 1434 #if 0 1435 // FIXME: Assess perf here? Figure out what cases are worth optimizing here 1436 // (Length of globals? Chunks of zeroed-out space?). 1437 // 1438 // If we can, prefer a copy from a global; this is a lot less code for long 1439 // globals, and it's easier for the current optimizers to analyze. 1440 if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) { 1441 llvm::GlobalVariable* GV = 1442 new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true, 1443 llvm::GlobalValue::InternalLinkage, C, ""); 1444 EmitFinalDestCopy(E->getType(), CGF.MakeAddrLValue(GV, E->getType())); 1445 return; 1446 } 1447 #endif 1448 if (E->hadArrayRangeDesignator()) 1449 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 1450 1451 if (E->isTransparent()) 1452 return Visit(E->getInit(0)); 1453 1454 AggValueSlot Dest = EnsureSlot(E->getType()); 1455 1456 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType()); 1457 1458 // Handle initialization of an array. 1459 if (E->getType()->isArrayType()) { 1460 auto AType = cast<llvm::ArrayType>(Dest.getAddress().getElementType()); 1461 EmitArrayInit(Dest.getAddress(), AType, E->getType(), E); 1462 return; 1463 } 1464 1465 assert(E->getType()->isRecordType() && "Only support structs/unions here!"); 1466 1467 // Do struct initialization; this code just sets each individual member 1468 // to the approprate value. This makes bitfield support automatic; 1469 // the disadvantage is that the generated code is more difficult for 1470 // the optimizer, especially with bitfields. 1471 unsigned NumInitElements = E->getNumInits(); 1472 RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl(); 1473 1474 // We'll need to enter cleanup scopes in case any of the element 1475 // initializers throws an exception. 1476 SmallVector<EHScopeStack::stable_iterator, 16> cleanups; 1477 llvm::Instruction *cleanupDominator = nullptr; 1478 1479 unsigned curInitIndex = 0; 1480 1481 // Emit initialization of base classes. 1482 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(record)) { 1483 assert(E->getNumInits() >= CXXRD->getNumBases() && 1484 "missing initializer for base class"); 1485 for (auto &Base : CXXRD->bases()) { 1486 assert(!Base.isVirtual() && "should not see vbases here"); 1487 auto *BaseRD = Base.getType()->getAsCXXRecordDecl(); 1488 Address V = CGF.GetAddressOfDirectBaseInCompleteClass( 1489 Dest.getAddress(), CXXRD, BaseRD, 1490 /*isBaseVirtual*/ false); 1491 AggValueSlot AggSlot = AggValueSlot::forAddr( 1492 V, Qualifiers(), 1493 AggValueSlot::IsDestructed, 1494 AggValueSlot::DoesNotNeedGCBarriers, 1495 AggValueSlot::IsNotAliased, 1496 CGF.overlapForBaseInit(CXXRD, BaseRD, Base.isVirtual())); 1497 CGF.EmitAggExpr(E->getInit(curInitIndex++), AggSlot); 1498 1499 if (QualType::DestructionKind dtorKind = 1500 Base.getType().isDestructedType()) { 1501 CGF.pushDestroy(dtorKind, V, Base.getType()); 1502 cleanups.push_back(CGF.EHStack.stable_begin()); 1503 } 1504 } 1505 } 1506 1507 // Prepare a 'this' for CXXDefaultInitExprs. 1508 CodeGenFunction::FieldConstructionScope FCS(CGF, Dest.getAddress()); 1509 1510 if (record->isUnion()) { 1511 // Only initialize one field of a union. The field itself is 1512 // specified by the initializer list. 1513 if (!E->getInitializedFieldInUnion()) { 1514 // Empty union; we have nothing to do. 1515 1516 #ifndef NDEBUG 1517 // Make sure that it's really an empty and not a failure of 1518 // semantic analysis. 1519 for (const auto *Field : record->fields()) 1520 assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed"); 1521 #endif 1522 return; 1523 } 1524 1525 // FIXME: volatility 1526 FieldDecl *Field = E->getInitializedFieldInUnion(); 1527 1528 LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestLV, Field); 1529 if (NumInitElements) { 1530 // Store the initializer into the field 1531 EmitInitializationToLValue(E->getInit(0), FieldLoc); 1532 } else { 1533 // Default-initialize to null. 1534 EmitNullInitializationToLValue(FieldLoc); 1535 } 1536 1537 return; 1538 } 1539 1540 // Here we iterate over the fields; this makes it simpler to both 1541 // default-initialize fields and skip over unnamed fields. 1542 for (const auto *field : record->fields()) { 1543 // We're done once we hit the flexible array member. 1544 if (field->getType()->isIncompleteArrayType()) 1545 break; 1546 1547 // Always skip anonymous bitfields. 1548 if (field->isUnnamedBitfield()) 1549 continue; 1550 1551 // We're done if we reach the end of the explicit initializers, we 1552 // have a zeroed object, and the rest of the fields are 1553 // zero-initializable. 1554 if (curInitIndex == NumInitElements && Dest.isZeroed() && 1555 CGF.getTypes().isZeroInitializable(E->getType())) 1556 break; 1557 1558 1559 LValue LV = CGF.EmitLValueForFieldInitialization(DestLV, field); 1560 // We never generate write-barries for initialized fields. 1561 LV.setNonGC(true); 1562 1563 if (curInitIndex < NumInitElements) { 1564 // Store the initializer into the field. 1565 EmitInitializationToLValue(E->getInit(curInitIndex++), LV); 1566 } else { 1567 // We're out of initializers; default-initialize to null 1568 EmitNullInitializationToLValue(LV); 1569 } 1570 1571 // Push a destructor if necessary. 1572 // FIXME: if we have an array of structures, all explicitly 1573 // initialized, we can end up pushing a linear number of cleanups. 1574 bool pushedCleanup = false; 1575 if (QualType::DestructionKind dtorKind 1576 = field->getType().isDestructedType()) { 1577 assert(LV.isSimple()); 1578 if (CGF.needsEHCleanup(dtorKind)) { 1579 if (!cleanupDominator) 1580 cleanupDominator = CGF.Builder.CreateAlignedLoad( 1581 CGF.Int8Ty, 1582 llvm::Constant::getNullValue(CGF.Int8PtrTy), 1583 CharUnits::One()); // placeholder 1584 1585 CGF.pushDestroy(EHCleanup, LV.getAddress(), field->getType(), 1586 CGF.getDestroyer(dtorKind), false); 1587 cleanups.push_back(CGF.EHStack.stable_begin()); 1588 pushedCleanup = true; 1589 } 1590 } 1591 1592 // If the GEP didn't get used because of a dead zero init or something 1593 // else, clean it up for -O0 builds and general tidiness. 1594 if (!pushedCleanup && LV.isSimple()) 1595 if (llvm::GetElementPtrInst *GEP = 1596 dyn_cast<llvm::GetElementPtrInst>(LV.getPointer())) 1597 if (GEP->use_empty()) 1598 GEP->eraseFromParent(); 1599 } 1600 1601 // Deactivate all the partial cleanups in reverse order, which 1602 // generally means popping them. 1603 for (unsigned i = cleanups.size(); i != 0; --i) 1604 CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator); 1605 1606 // Destroy the placeholder if we made one. 1607 if (cleanupDominator) 1608 cleanupDominator->eraseFromParent(); 1609 } 1610 1611 void AggExprEmitter::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E, 1612 llvm::Value *outerBegin) { 1613 // Emit the common subexpression. 1614 CodeGenFunction::OpaqueValueMapping binding(CGF, E->getCommonExpr()); 1615 1616 Address destPtr = EnsureSlot(E->getType()).getAddress(); 1617 uint64_t numElements = E->getArraySize().getZExtValue(); 1618 1619 if (!numElements) 1620 return; 1621 1622 // destPtr is an array*. Construct an elementType* by drilling down a level. 1623 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 1624 llvm::Value *indices[] = {zero, zero}; 1625 llvm::Value *begin = Builder.CreateInBoundsGEP(destPtr.getPointer(), indices, 1626 "arrayinit.begin"); 1627 1628 // Prepare to special-case multidimensional array initialization: we avoid 1629 // emitting multiple destructor loops in that case. 1630 if (!outerBegin) 1631 outerBegin = begin; 1632 ArrayInitLoopExpr *InnerLoop = dyn_cast<ArrayInitLoopExpr>(E->getSubExpr()); 1633 1634 QualType elementType = 1635 CGF.getContext().getAsArrayType(E->getType())->getElementType(); 1636 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType); 1637 CharUnits elementAlign = 1638 destPtr.getAlignment().alignmentOfArrayElement(elementSize); 1639 1640 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 1641 llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body"); 1642 1643 // Jump into the body. 1644 CGF.EmitBlock(bodyBB); 1645 llvm::PHINode *index = 1646 Builder.CreatePHI(zero->getType(), 2, "arrayinit.index"); 1647 index->addIncoming(zero, entryBB); 1648 llvm::Value *element = Builder.CreateInBoundsGEP(begin, index); 1649 1650 // Prepare for a cleanup. 1651 QualType::DestructionKind dtorKind = elementType.isDestructedType(); 1652 EHScopeStack::stable_iterator cleanup; 1653 if (CGF.needsEHCleanup(dtorKind) && !InnerLoop) { 1654 if (outerBegin->getType() != element->getType()) 1655 outerBegin = Builder.CreateBitCast(outerBegin, element->getType()); 1656 CGF.pushRegularPartialArrayCleanup(outerBegin, element, elementType, 1657 elementAlign, 1658 CGF.getDestroyer(dtorKind)); 1659 cleanup = CGF.EHStack.stable_begin(); 1660 } else { 1661 dtorKind = QualType::DK_none; 1662 } 1663 1664 // Emit the actual filler expression. 1665 { 1666 // Temporaries created in an array initialization loop are destroyed 1667 // at the end of each iteration. 1668 CodeGenFunction::RunCleanupsScope CleanupsScope(CGF); 1669 CodeGenFunction::ArrayInitLoopExprScope Scope(CGF, index); 1670 LValue elementLV = 1671 CGF.MakeAddrLValue(Address(element, elementAlign), elementType); 1672 1673 if (InnerLoop) { 1674 // If the subexpression is an ArrayInitLoopExpr, share its cleanup. 1675 auto elementSlot = AggValueSlot::forLValue( 1676 elementLV, AggValueSlot::IsDestructed, 1677 AggValueSlot::DoesNotNeedGCBarriers, 1678 AggValueSlot::IsNotAliased, 1679 AggValueSlot::DoesNotOverlap); 1680 AggExprEmitter(CGF, elementSlot, false) 1681 .VisitArrayInitLoopExpr(InnerLoop, outerBegin); 1682 } else 1683 EmitInitializationToLValue(E->getSubExpr(), elementLV); 1684 } 1685 1686 // Move on to the next element. 1687 llvm::Value *nextIndex = Builder.CreateNUWAdd( 1688 index, llvm::ConstantInt::get(CGF.SizeTy, 1), "arrayinit.next"); 1689 index->addIncoming(nextIndex, Builder.GetInsertBlock()); 1690 1691 // Leave the loop if we're done. 1692 llvm::Value *done = Builder.CreateICmpEQ( 1693 nextIndex, llvm::ConstantInt::get(CGF.SizeTy, numElements), 1694 "arrayinit.done"); 1695 llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end"); 1696 Builder.CreateCondBr(done, endBB, bodyBB); 1697 1698 CGF.EmitBlock(endBB); 1699 1700 // Leave the partial-array cleanup if we entered one. 1701 if (dtorKind) 1702 CGF.DeactivateCleanupBlock(cleanup, index); 1703 } 1704 1705 void AggExprEmitter::VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E) { 1706 AggValueSlot Dest = EnsureSlot(E->getType()); 1707 1708 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType()); 1709 EmitInitializationToLValue(E->getBase(), DestLV); 1710 VisitInitListExpr(E->getUpdater()); 1711 } 1712 1713 //===----------------------------------------------------------------------===// 1714 // Entry Points into this File 1715 //===----------------------------------------------------------------------===// 1716 1717 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of 1718 /// non-zero bytes that will be stored when outputting the initializer for the 1719 /// specified initializer expression. 1720 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) { 1721 E = E->IgnoreParens(); 1722 1723 // 0 and 0.0 won't require any non-zero stores! 1724 if (isSimpleZero(E, CGF)) return CharUnits::Zero(); 1725 1726 // If this is an initlist expr, sum up the size of sizes of the (present) 1727 // elements. If this is something weird, assume the whole thing is non-zero. 1728 const InitListExpr *ILE = dyn_cast<InitListExpr>(E); 1729 while (ILE && ILE->isTransparent()) 1730 ILE = dyn_cast<InitListExpr>(ILE->getInit(0)); 1731 if (!ILE || !CGF.getTypes().isZeroInitializable(ILE->getType())) 1732 return CGF.getContext().getTypeSizeInChars(E->getType()); 1733 1734 // InitListExprs for structs have to be handled carefully. If there are 1735 // reference members, we need to consider the size of the reference, not the 1736 // referencee. InitListExprs for unions and arrays can't have references. 1737 if (const RecordType *RT = E->getType()->getAs<RecordType>()) { 1738 if (!RT->isUnionType()) { 1739 RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl(); 1740 CharUnits NumNonZeroBytes = CharUnits::Zero(); 1741 1742 unsigned ILEElement = 0; 1743 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(SD)) 1744 while (ILEElement != CXXRD->getNumBases()) 1745 NumNonZeroBytes += 1746 GetNumNonZeroBytesInInit(ILE->getInit(ILEElement++), CGF); 1747 for (const auto *Field : SD->fields()) { 1748 // We're done once we hit the flexible array member or run out of 1749 // InitListExpr elements. 1750 if (Field->getType()->isIncompleteArrayType() || 1751 ILEElement == ILE->getNumInits()) 1752 break; 1753 if (Field->isUnnamedBitfield()) 1754 continue; 1755 1756 const Expr *E = ILE->getInit(ILEElement++); 1757 1758 // Reference values are always non-null and have the width of a pointer. 1759 if (Field->getType()->isReferenceType()) 1760 NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits( 1761 CGF.getTarget().getPointerWidth(0)); 1762 else 1763 NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF); 1764 } 1765 1766 return NumNonZeroBytes; 1767 } 1768 } 1769 1770 1771 CharUnits NumNonZeroBytes = CharUnits::Zero(); 1772 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) 1773 NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF); 1774 return NumNonZeroBytes; 1775 } 1776 1777 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of 1778 /// zeros in it, emit a memset and avoid storing the individual zeros. 1779 /// 1780 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E, 1781 CodeGenFunction &CGF) { 1782 // If the slot is already known to be zeroed, nothing to do. Don't mess with 1783 // volatile stores. 1784 if (Slot.isZeroed() || Slot.isVolatile() || !Slot.getAddress().isValid()) 1785 return; 1786 1787 // C++ objects with a user-declared constructor don't need zero'ing. 1788 if (CGF.getLangOpts().CPlusPlus) 1789 if (const RecordType *RT = CGF.getContext() 1790 .getBaseElementType(E->getType())->getAs<RecordType>()) { 1791 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1792 if (RD->hasUserDeclaredConstructor()) 1793 return; 1794 } 1795 1796 // If the type is 16-bytes or smaller, prefer individual stores over memset. 1797 CharUnits Size = Slot.getPreferredSize(CGF.getContext(), E->getType()); 1798 if (Size <= CharUnits::fromQuantity(16)) 1799 return; 1800 1801 // Check to see if over 3/4 of the initializer are known to be zero. If so, 1802 // we prefer to emit memset + individual stores for the rest. 1803 CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF); 1804 if (NumNonZeroBytes*4 > Size) 1805 return; 1806 1807 // Okay, it seems like a good idea to use an initial memset, emit the call. 1808 llvm::Constant *SizeVal = CGF.Builder.getInt64(Size.getQuantity()); 1809 1810 Address Loc = Slot.getAddress(); 1811 Loc = CGF.Builder.CreateElementBitCast(Loc, CGF.Int8Ty); 1812 CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, false); 1813 1814 // Tell the AggExprEmitter that the slot is known zero. 1815 Slot.setZeroed(); 1816 } 1817 1818 1819 1820 1821 /// EmitAggExpr - Emit the computation of the specified expression of aggregate 1822 /// type. The result is computed into DestPtr. Note that if DestPtr is null, 1823 /// the value of the aggregate expression is not needed. If VolatileDest is 1824 /// true, DestPtr cannot be 0. 1825 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot) { 1826 assert(E && hasAggregateEvaluationKind(E->getType()) && 1827 "Invalid aggregate expression to emit"); 1828 assert((Slot.getAddress().isValid() || Slot.isIgnored()) && 1829 "slot has bits but no address"); 1830 1831 // Optimize the slot if possible. 1832 CheckAggExprForMemSetUse(Slot, E, *this); 1833 1834 AggExprEmitter(*this, Slot, Slot.isIgnored()).Visit(const_cast<Expr*>(E)); 1835 } 1836 1837 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) { 1838 assert(hasAggregateEvaluationKind(E->getType()) && "Invalid argument!"); 1839 Address Temp = CreateMemTemp(E->getType()); 1840 LValue LV = MakeAddrLValue(Temp, E->getType()); 1841 EmitAggExpr(E, AggValueSlot::forLValue(LV, AggValueSlot::IsNotDestructed, 1842 AggValueSlot::DoesNotNeedGCBarriers, 1843 AggValueSlot::IsNotAliased, 1844 AggValueSlot::DoesNotOverlap)); 1845 return LV; 1846 } 1847 1848 AggValueSlot::Overlap_t CodeGenFunction::overlapForBaseInit( 1849 const CXXRecordDecl *RD, const CXXRecordDecl *BaseRD, bool IsVirtual) { 1850 // Virtual bases are initialized first, in address order, so there's never 1851 // any overlap during their initialization. 1852 // 1853 // FIXME: Under P0840, this is no longer true: the tail padding of a vbase 1854 // of a field could be reused by a vbase of a containing class. 1855 if (IsVirtual) 1856 return AggValueSlot::DoesNotOverlap; 1857 1858 // If the base class is laid out entirely within the nvsize of the derived 1859 // class, its tail padding cannot yet be initialized, so we can issue 1860 // stores at the full width of the base class. 1861 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 1862 if (Layout.getBaseClassOffset(BaseRD) + 1863 getContext().getASTRecordLayout(BaseRD).getSize() <= 1864 Layout.getNonVirtualSize()) 1865 return AggValueSlot::DoesNotOverlap; 1866 1867 // The tail padding may contain values we need to preserve. 1868 return AggValueSlot::MayOverlap; 1869 } 1870 1871 void CodeGenFunction::EmitAggregateCopy(LValue Dest, LValue Src, QualType Ty, 1872 AggValueSlot::Overlap_t MayOverlap, 1873 bool isVolatile) { 1874 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 1875 1876 Address DestPtr = Dest.getAddress(); 1877 Address SrcPtr = Src.getAddress(); 1878 1879 if (getLangOpts().CPlusPlus) { 1880 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1881 CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl()); 1882 assert((Record->hasTrivialCopyConstructor() || 1883 Record->hasTrivialCopyAssignment() || 1884 Record->hasTrivialMoveConstructor() || 1885 Record->hasTrivialMoveAssignment() || 1886 Record->isUnion()) && 1887 "Trying to aggregate-copy a type without a trivial copy/move " 1888 "constructor or assignment operator"); 1889 // Ignore empty classes in C++. 1890 if (Record->isEmpty()) 1891 return; 1892 } 1893 } 1894 1895 // Aggregate assignment turns into llvm.memcpy. This is almost valid per 1896 // C99 6.5.16.1p3, which states "If the value being stored in an object is 1897 // read from another object that overlaps in anyway the storage of the first 1898 // object, then the overlap shall be exact and the two objects shall have 1899 // qualified or unqualified versions of a compatible type." 1900 // 1901 // memcpy is not defined if the source and destination pointers are exactly 1902 // equal, but other compilers do this optimization, and almost every memcpy 1903 // implementation handles this case safely. If there is a libc that does not 1904 // safely handle this, we can add a target hook. 1905 1906 // Get data size info for this aggregate. Don't copy the tail padding if this 1907 // might be a potentially-overlapping subobject, since the tail padding might 1908 // be occupied by a different object. Otherwise, copying it is fine. 1909 std::pair<CharUnits, CharUnits> TypeInfo; 1910 if (MayOverlap) 1911 TypeInfo = getContext().getTypeInfoDataSizeInChars(Ty); 1912 else 1913 TypeInfo = getContext().getTypeInfoInChars(Ty); 1914 1915 llvm::Value *SizeVal = nullptr; 1916 if (TypeInfo.first.isZero()) { 1917 // But note that getTypeInfo returns 0 for a VLA. 1918 if (auto *VAT = dyn_cast_or_null<VariableArrayType>( 1919 getContext().getAsArrayType(Ty))) { 1920 QualType BaseEltTy; 1921 SizeVal = emitArrayLength(VAT, BaseEltTy, DestPtr); 1922 TypeInfo = getContext().getTypeInfoInChars(BaseEltTy); 1923 assert(!TypeInfo.first.isZero()); 1924 SizeVal = Builder.CreateNUWMul( 1925 SizeVal, 1926 llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity())); 1927 } 1928 } 1929 if (!SizeVal) { 1930 SizeVal = llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity()); 1931 } 1932 1933 // FIXME: If we have a volatile struct, the optimizer can remove what might 1934 // appear to be `extra' memory ops: 1935 // 1936 // volatile struct { int i; } a, b; 1937 // 1938 // int main() { 1939 // a = b; 1940 // a = b; 1941 // } 1942 // 1943 // we need to use a different call here. We use isVolatile to indicate when 1944 // either the source or the destination is volatile. 1945 1946 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1947 SrcPtr = Builder.CreateElementBitCast(SrcPtr, Int8Ty); 1948 1949 // Don't do any of the memmove_collectable tests if GC isn't set. 1950 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) { 1951 // fall through 1952 } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 1953 RecordDecl *Record = RecordTy->getDecl(); 1954 if (Record->hasObjectMember()) { 1955 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 1956 SizeVal); 1957 return; 1958 } 1959 } else if (Ty->isArrayType()) { 1960 QualType BaseType = getContext().getBaseElementType(Ty); 1961 if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) { 1962 if (RecordTy->getDecl()->hasObjectMember()) { 1963 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 1964 SizeVal); 1965 return; 1966 } 1967 } 1968 } 1969 1970 auto Inst = Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, isVolatile); 1971 1972 // Determine the metadata to describe the position of any padding in this 1973 // memcpy, as well as the TBAA tags for the members of the struct, in case 1974 // the optimizer wishes to expand it in to scalar memory operations. 1975 if (llvm::MDNode *TBAAStructTag = CGM.getTBAAStructInfo(Ty)) 1976 Inst->setMetadata(llvm::LLVMContext::MD_tbaa_struct, TBAAStructTag); 1977 1978 if (CGM.getCodeGenOpts().NewStructPathTBAA) { 1979 TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForMemoryTransfer( 1980 Dest.getTBAAInfo(), Src.getTBAAInfo()); 1981 CGM.DecorateInstructionWithTBAA(Inst, TBAAInfo); 1982 } 1983 } 1984