1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Aggregate Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "clang/AST/ASTContext.h" 17 #include "clang/AST/StmtVisitor.h" 18 #include "llvm/Constants.h" 19 #include "llvm/Function.h" 20 #include "llvm/GlobalVariable.h" 21 #include "llvm/Support/Compiler.h" 22 #include "llvm/Intrinsics.h" 23 using namespace clang; 24 using namespace CodeGen; 25 26 //===----------------------------------------------------------------------===// 27 // Aggregate Expression Emitter 28 //===----------------------------------------------------------------------===// 29 30 namespace { 31 class VISIBILITY_HIDDEN AggExprEmitter : public StmtVisitor<AggExprEmitter> { 32 CodeGenFunction &CGF; 33 llvm::IRBuilder<> &Builder; 34 llvm::Value *DestPtr; 35 bool VolatileDest; 36 public: 37 AggExprEmitter(CodeGenFunction &cgf, llvm::Value *destPtr, bool volatileDest) 38 : CGF(cgf), Builder(CGF.Builder), 39 DestPtr(destPtr), VolatileDest(volatileDest) { 40 } 41 42 //===--------------------------------------------------------------------===// 43 // Utilities 44 //===--------------------------------------------------------------------===// 45 46 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 47 /// represents a value lvalue, this method emits the address of the lvalue, 48 /// then loads the result into DestPtr. 49 void EmitAggLoadOfLValue(const Expr *E); 50 51 void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr, 52 QualType EltTy); 53 54 void EmitAggregateClear(llvm::Value *DestPtr, QualType Ty); 55 56 void EmitNonConstInit(InitListExpr *E); 57 58 //===--------------------------------------------------------------------===// 59 // Visitor Methods 60 //===--------------------------------------------------------------------===// 61 62 void VisitStmt(Stmt *S) { 63 CGF.WarnUnsupported(S, "aggregate expression"); 64 } 65 void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); } 66 67 // l-values. 68 void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); } 69 void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); } 70 void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); } 71 void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); } 72 void VisitCompoundLiteralExpr(CompoundLiteralExpr *E) 73 { EmitAggLoadOfLValue(E); } 74 75 void VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 76 EmitAggLoadOfLValue(E); 77 } 78 79 // Operators. 80 // case Expr::UnaryOperatorClass: 81 // case Expr::CastExprClass: 82 void VisitImplicitCastExpr(ImplicitCastExpr *E); 83 void VisitCallExpr(const CallExpr *E); 84 void VisitStmtExpr(const StmtExpr *E); 85 void VisitBinaryOperator(const BinaryOperator *BO); 86 void VisitBinAssign(const BinaryOperator *E); 87 void VisitOverloadExpr(const OverloadExpr *E); 88 void VisitBinComma(const BinaryOperator *E); 89 90 void VisitObjCMessageExpr(ObjCMessageExpr *E); 91 92 93 void VisitConditionalOperator(const ConditionalOperator *CO); 94 void VisitInitListExpr(InitListExpr *E); 95 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 96 Visit(DAE->getExpr()); 97 } 98 void VisitVAArgExpr(VAArgExpr *E); 99 100 void EmitInitializationToLValue(Expr *E, LValue Address); 101 void EmitNullInitializationToLValue(LValue Address, QualType T); 102 // case Expr::ChooseExprClass: 103 104 }; 105 } // end anonymous namespace. 106 107 //===----------------------------------------------------------------------===// 108 // Utilities 109 //===----------------------------------------------------------------------===// 110 111 void AggExprEmitter::EmitAggregateClear(llvm::Value *DestPtr, QualType Ty) { 112 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 113 114 // Aggregate assignment turns into llvm.memset. 115 const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 116 if (DestPtr->getType() != BP) 117 DestPtr = Builder.CreateBitCast(DestPtr, BP, "tmp"); 118 119 // Get size and alignment info for this aggregate. 120 std::pair<uint64_t, unsigned> TypeInfo = CGF.getContext().getTypeInfo(Ty); 121 122 // FIXME: Handle variable sized types. 123 const llvm::Type *IntPtr = llvm::IntegerType::get(CGF.LLVMPointerWidth); 124 125 llvm::Value *MemSetOps[4] = { 126 DestPtr, 127 llvm::ConstantInt::getNullValue(llvm::Type::Int8Ty), 128 // TypeInfo.first describes size in bits. 129 llvm::ConstantInt::get(IntPtr, TypeInfo.first/8), 130 llvm::ConstantInt::get(llvm::Type::Int32Ty, TypeInfo.second/8) 131 }; 132 133 Builder.CreateCall(CGF.CGM.getMemSetFn(), MemSetOps, MemSetOps+4); 134 } 135 136 void AggExprEmitter::EmitAggregateCopy(llvm::Value *DestPtr, 137 llvm::Value *SrcPtr, QualType Ty) { 138 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 139 140 // Aggregate assignment turns into llvm.memmove. 141 const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 142 if (DestPtr->getType() != BP) 143 DestPtr = Builder.CreateBitCast(DestPtr, BP, "tmp"); 144 if (SrcPtr->getType() != BP) 145 SrcPtr = Builder.CreateBitCast(SrcPtr, BP, "tmp"); 146 147 // Get size and alignment info for this aggregate. 148 std::pair<uint64_t, unsigned> TypeInfo = CGF.getContext().getTypeInfo(Ty); 149 150 // FIXME: Handle variable sized types. 151 const llvm::Type *IntPtr = llvm::IntegerType::get(CGF.LLVMPointerWidth); 152 153 llvm::Value *MemMoveOps[4] = { 154 DestPtr, SrcPtr, 155 // TypeInfo.first describes size in bits. 156 llvm::ConstantInt::get(IntPtr, TypeInfo.first/8), 157 llvm::ConstantInt::get(llvm::Type::Int32Ty, TypeInfo.second/8) 158 }; 159 160 Builder.CreateCall(CGF.CGM.getMemMoveFn(), MemMoveOps, MemMoveOps+4); 161 } 162 163 164 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 165 /// represents a value lvalue, this method emits the address of the lvalue, 166 /// then loads the result into DestPtr. 167 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) { 168 LValue LV = CGF.EmitLValue(E); 169 assert(LV.isSimple() && "Can't have aggregate bitfield, vector, etc"); 170 llvm::Value *SrcPtr = LV.getAddress(); 171 172 // If the result is ignored, don't copy from the value. 173 if (DestPtr == 0) 174 // FIXME: If the source is volatile, we must read from it. 175 return; 176 177 EmitAggregateCopy(DestPtr, SrcPtr, E->getType()); 178 } 179 180 //===----------------------------------------------------------------------===// 181 // Visitor Methods 182 //===----------------------------------------------------------------------===// 183 184 void AggExprEmitter::VisitImplicitCastExpr(ImplicitCastExpr *E) { 185 assert(CGF.getContext().typesAreCompatible( 186 E->getSubExpr()->getType().getUnqualifiedType(), 187 E->getType().getUnqualifiedType()) && 188 "Implicit cast types must be compatible"); 189 Visit(E->getSubExpr()); 190 } 191 192 void AggExprEmitter::VisitCallExpr(const CallExpr *E) { 193 RValue RV = CGF.EmitCallExpr(E); 194 assert(RV.isAggregate() && "Return value must be aggregate value!"); 195 196 // If the result is ignored, don't copy from the value. 197 if (DestPtr == 0) 198 // FIXME: If the source is volatile, we must read from it. 199 return; 200 201 EmitAggregateCopy(DestPtr, RV.getAggregateAddr(), E->getType()); 202 } 203 204 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) { 205 RValue RV = RValue::getAggregate(CGF.EmitObjCMessageExpr(E)); 206 207 // If the result is ignored, don't copy from the value. 208 if (DestPtr == 0) 209 return; 210 211 EmitAggregateCopy(DestPtr, RV.getAggregateAddr(), E->getType()); 212 } 213 214 void AggExprEmitter::VisitOverloadExpr(const OverloadExpr *E) { 215 RValue RV = CGF.EmitCallExpr(E->getFn(), E->arg_begin(), 216 E->arg_end(CGF.getContext())); 217 218 assert(RV.isAggregate() && "Return value must be aggregate value!"); 219 220 // If the result is ignored, don't copy from the value. 221 if (DestPtr == 0) 222 // FIXME: If the source is volatile, we must read from it. 223 return; 224 225 EmitAggregateCopy(DestPtr, RV.getAggregateAddr(), E->getType()); 226 } 227 228 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) { 229 CGF.EmitAnyExpr(E->getLHS()); 230 CGF.EmitAggExpr(E->getRHS(), DestPtr, false); 231 } 232 233 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) { 234 CGF.EmitCompoundStmt(*E->getSubStmt(), true, DestPtr, VolatileDest); 235 } 236 237 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) { 238 CGF.WarnUnsupported(E, "aggregate binary expression"); 239 } 240 241 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) { 242 // For an assignment to work, the value on the right has 243 // to be compatible with the value on the left. 244 assert(CGF.getContext().typesAreCompatible( 245 E->getLHS()->getType().getUnqualifiedType(), 246 E->getRHS()->getType().getUnqualifiedType()) 247 && "Invalid assignment"); 248 LValue LHS = CGF.EmitLValue(E->getLHS()); 249 250 // Codegen the RHS so that it stores directly into the LHS. 251 CGF.EmitAggExpr(E->getRHS(), LHS.getAddress(), false /*FIXME: VOLATILE LHS*/); 252 253 if (DestPtr == 0) 254 return; 255 256 // If the result of the assignment is used, copy the RHS there also. 257 EmitAggregateCopy(DestPtr, LHS.getAddress(), E->getType()); 258 } 259 260 void AggExprEmitter::VisitConditionalOperator(const ConditionalOperator *E) { 261 llvm::BasicBlock *LHSBlock = llvm::BasicBlock::Create("cond.?"); 262 llvm::BasicBlock *RHSBlock = llvm::BasicBlock::Create("cond.:"); 263 llvm::BasicBlock *ContBlock = llvm::BasicBlock::Create("cond.cont"); 264 265 llvm::Value *Cond = CGF.EvaluateExprAsBool(E->getCond()); 266 Builder.CreateCondBr(Cond, LHSBlock, RHSBlock); 267 268 CGF.EmitBlock(LHSBlock); 269 270 // Handle the GNU extension for missing LHS. 271 assert(E->getLHS() && "Must have LHS for aggregate value"); 272 273 Visit(E->getLHS()); 274 Builder.CreateBr(ContBlock); 275 LHSBlock = Builder.GetInsertBlock(); 276 277 CGF.EmitBlock(RHSBlock); 278 279 Visit(E->getRHS()); 280 Builder.CreateBr(ContBlock); 281 RHSBlock = Builder.GetInsertBlock(); 282 283 CGF.EmitBlock(ContBlock); 284 } 285 286 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 287 llvm::Value *ArgValue = CGF.EmitLValue(VE->getSubExpr()).getAddress(); 288 llvm::Value *V = Builder.CreateVAArg(ArgValue, CGF.ConvertType(VE->getType())); 289 if (DestPtr) 290 // FIXME: volatility 291 Builder.CreateStore(V, DestPtr); 292 } 293 294 void AggExprEmitter::EmitNonConstInit(InitListExpr *E) { 295 296 const llvm::PointerType *APType = 297 cast<llvm::PointerType>(DestPtr->getType()); 298 const llvm::Type *DestType = APType->getElementType(); 299 300 if (const llvm::ArrayType *AType = dyn_cast<llvm::ArrayType>(DestType)) { 301 unsigned NumInitElements = E->getNumInits(); 302 303 unsigned i; 304 for (i = 0; i != NumInitElements; ++i) { 305 llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array"); 306 Expr *Init = E->getInit(i); 307 if (isa<InitListExpr>(Init)) 308 CGF.EmitAggExpr(Init, NextVal, VolatileDest); 309 else 310 // FIXME: volatility 311 Builder.CreateStore(CGF.EmitScalarExpr(Init), NextVal); 312 } 313 314 // Emit remaining default initializers 315 unsigned NumArrayElements = AType->getNumElements(); 316 QualType QType = E->getInit(0)->getType(); 317 const llvm::Type *EType = AType->getElementType(); 318 for (/*Do not initialize i*/; i < NumArrayElements; ++i) { 319 llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array"); 320 if (EType->isSingleValueType()) 321 // FIXME: volatility 322 Builder.CreateStore(llvm::Constant::getNullValue(EType), NextVal); 323 else 324 EmitAggregateClear(NextVal, QType); 325 } 326 } else 327 assert(false && "Invalid initializer"); 328 } 329 330 void AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV) { 331 // FIXME: Are initializers affected by volatile? 332 if (E->getType()->isComplexType()) { 333 CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false); 334 } else if (CGF.hasAggregateLLVMType(E->getType())) { 335 CGF.EmitAnyExpr(E, LV.getAddress(), false); 336 } else { 337 CGF.EmitStoreThroughLValue(CGF.EmitAnyExpr(E), LV, E->getType()); 338 } 339 } 340 341 void AggExprEmitter::EmitNullInitializationToLValue(LValue LV, QualType T) { 342 if (!CGF.hasAggregateLLVMType(T)) { 343 // For non-aggregates, we can store zero 344 llvm::Value *Null = llvm::Constant::getNullValue(CGF.ConvertType(T)); 345 CGF.EmitStoreThroughLValue(RValue::get(Null), LV, T); 346 } else { 347 // Otherwise, just memset the whole thing to zero. This is legal 348 // because in LLVM, all default initializers are guaranteed to have a 349 // bit pattern of all zeros. 350 // There's a potential optimization opportunity in combining 351 // memsets; that would be easy for arrays, but relatively 352 // difficult for structures with the current code. 353 llvm::Value *MemSet = CGF.CGM.getIntrinsic(llvm::Intrinsic::memset_i64); 354 uint64_t Size = CGF.getContext().getTypeSize(T); 355 356 const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 357 llvm::Value* DestPtr = Builder.CreateBitCast(LV.getAddress(), BP, "tmp"); 358 Builder.CreateCall4(MemSet, DestPtr, 359 llvm::ConstantInt::get(llvm::Type::Int8Ty, 0), 360 llvm::ConstantInt::get(llvm::Type::Int64Ty, Size/8), 361 llvm::ConstantInt::get(llvm::Type::Int32Ty, 0)); 362 } 363 } 364 365 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) { 366 if (E->isConstantExpr(CGF.getContext(), 0)) { 367 // FIXME: call into const expr emitter so that we can emit 368 // a memcpy instead of storing the individual members. 369 // This is purely for perf; both codepaths lead to equivalent 370 // (although not necessarily identical) code. 371 // It's worth noting that LLVM keeps on getting smarter, though, 372 // so it might not be worth bothering. 373 } 374 375 // Handle initialization of an array. 376 if (E->getType()->isArrayType()) { 377 const llvm::PointerType *APType = 378 cast<llvm::PointerType>(DestPtr->getType()); 379 const llvm::ArrayType *AType = 380 cast<llvm::ArrayType>(APType->getElementType()); 381 382 uint64_t NumInitElements = E->getNumInits(); 383 384 if (E->getNumInits() > 0) { 385 QualType T1 = E->getType(); 386 QualType T2 = E->getInit(0)->getType(); 387 if (CGF.getContext().getCanonicalType(T1).getUnqualifiedType() == 388 CGF.getContext().getCanonicalType(T2).getUnqualifiedType()) { 389 EmitAggLoadOfLValue(E->getInit(0)); 390 return; 391 } 392 } 393 394 uint64_t NumArrayElements = AType->getNumElements(); 395 QualType ElementType = CGF.getContext().getCanonicalType(E->getType()); 396 ElementType =CGF.getContext().getAsArrayType(ElementType)->getElementType(); 397 398 unsigned CVRqualifier = ElementType.getCVRQualifiers(); 399 400 for (uint64_t i = 0; i != NumArrayElements; ++i) { 401 llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array"); 402 if (i < NumInitElements) 403 EmitInitializationToLValue(E->getInit(i), 404 LValue::MakeAddr(NextVal, CVRqualifier)); 405 else 406 EmitNullInitializationToLValue(LValue::MakeAddr(NextVal, CVRqualifier), 407 ElementType); 408 } 409 return; 410 } 411 412 assert(E->getType()->isRecordType() && "Only support structs/unions here!"); 413 414 // Do struct initialization; this code just sets each individual member 415 // to the approprate value. This makes bitfield support automatic; 416 // the disadvantage is that the generated code is more difficult for 417 // the optimizer, especially with bitfields. 418 unsigned NumInitElements = E->getNumInits(); 419 RecordDecl *SD = E->getType()->getAsRecordType()->getDecl(); 420 unsigned NumMembers = SD->getNumMembers() - SD->hasFlexibleArrayMember(); 421 unsigned CurInitVal = 0; 422 bool isUnion = E->getType()->isUnionType(); 423 424 // Here we iterate over the fields; this makes it simpler to both 425 // default-initialize fields and skip over unnamed fields. 426 for (unsigned CurFieldNo = 0; CurFieldNo != NumMembers; ++CurFieldNo) { 427 FieldDecl *CurField = SD->getMember(CurFieldNo); 428 if (CurField->getIdentifier() == 0) { 429 // Initializers can't initialize unnamed fields, e.g. "int : 20;" 430 continue; 431 } 432 // FIXME: volatility 433 LValue FieldLoc = CGF.EmitLValueForField(DestPtr, CurField, isUnion,0); 434 if (CurInitVal < NumInitElements) { 435 // Store the initializer into the field 436 // This will probably have to get a bit smarter when we support 437 // designators in initializers 438 EmitInitializationToLValue(E->getInit(CurInitVal++), FieldLoc); 439 } else { 440 // We're out of initalizers; default-initialize to null 441 EmitNullInitializationToLValue(FieldLoc, CurField->getType()); 442 } 443 444 // Unions only initialize one field. 445 // (things can get weird with designators, but they aren't 446 // supported yet.) 447 if (E->getType()->isUnionType()) 448 break; 449 } 450 } 451 452 //===----------------------------------------------------------------------===// 453 // Entry Points into this File 454 //===----------------------------------------------------------------------===// 455 456 /// EmitAggExpr - Emit the computation of the specified expression of 457 /// aggregate type. The result is computed into DestPtr. Note that if 458 /// DestPtr is null, the value of the aggregate expression is not needed. 459 void CodeGenFunction::EmitAggExpr(const Expr *E, llvm::Value *DestPtr, 460 bool VolatileDest) { 461 assert(E && hasAggregateLLVMType(E->getType()) && 462 "Invalid aggregate expression to emit"); 463 464 AggExprEmitter(*this, DestPtr, VolatileDest).Visit(const_cast<Expr*>(E)); 465 } 466