1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Aggregate Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "CGObjCRuntime.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/StmtVisitor.h"
20 #include "llvm/Constants.h"
21 #include "llvm/Function.h"
22 #include "llvm/GlobalVariable.h"
23 #include "llvm/Intrinsics.h"
24 using namespace clang;
25 using namespace CodeGen;
26 
27 //===----------------------------------------------------------------------===//
28 //                        Aggregate Expression Emitter
29 //===----------------------------------------------------------------------===//
30 
31 namespace  {
32 class AggExprEmitter : public StmtVisitor<AggExprEmitter> {
33   CodeGenFunction &CGF;
34   CGBuilderTy &Builder;
35   AggValueSlot Dest;
36   bool IgnoreResult;
37 
38   ReturnValueSlot getReturnValueSlot() const {
39     // If the destination slot requires garbage collection, we can't
40     // use the real return value slot, because we have to use the GC
41     // API.
42     if (Dest.requiresGCollection()) return ReturnValueSlot();
43 
44     return ReturnValueSlot(Dest.getAddr(), Dest.isVolatile());
45   }
46 
47   AggValueSlot EnsureSlot(QualType T) {
48     if (!Dest.isIgnored()) return Dest;
49     return CGF.CreateAggTemp(T, "agg.tmp.ensured");
50   }
51 
52 public:
53   AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest,
54                  bool ignore)
55     : CGF(cgf), Builder(CGF.Builder), Dest(Dest),
56       IgnoreResult(ignore) {
57   }
58 
59   //===--------------------------------------------------------------------===//
60   //                               Utilities
61   //===--------------------------------------------------------------------===//
62 
63   /// EmitAggLoadOfLValue - Given an expression with aggregate type that
64   /// represents a value lvalue, this method emits the address of the lvalue,
65   /// then loads the result into DestPtr.
66   void EmitAggLoadOfLValue(const Expr *E);
67 
68   /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
69   void EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore = false);
70   void EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore = false);
71 
72   void EmitGCMove(const Expr *E, RValue Src);
73 
74   bool TypeRequiresGCollection(QualType T);
75 
76   //===--------------------------------------------------------------------===//
77   //                            Visitor Methods
78   //===--------------------------------------------------------------------===//
79 
80   void VisitStmt(Stmt *S) {
81     CGF.ErrorUnsupported(S, "aggregate expression");
82   }
83   void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
84   void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
85 
86   // l-values.
87   void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); }
88   void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
89   void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
90   void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
91   void VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
92     EmitAggLoadOfLValue(E);
93   }
94   void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
95     EmitAggLoadOfLValue(E);
96   }
97   void VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
98     EmitAggLoadOfLValue(E);
99   }
100   void VisitPredefinedExpr(const PredefinedExpr *E) {
101     EmitAggLoadOfLValue(E);
102   }
103 
104   // Operators.
105   void VisitCastExpr(CastExpr *E);
106   void VisitCallExpr(const CallExpr *E);
107   void VisitStmtExpr(const StmtExpr *E);
108   void VisitBinaryOperator(const BinaryOperator *BO);
109   void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO);
110   void VisitBinAssign(const BinaryOperator *E);
111   void VisitBinComma(const BinaryOperator *E);
112 
113   void VisitObjCMessageExpr(ObjCMessageExpr *E);
114   void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
115     EmitAggLoadOfLValue(E);
116   }
117   void VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E);
118 
119   void VisitConditionalOperator(const ConditionalOperator *CO);
120   void VisitChooseExpr(const ChooseExpr *CE);
121   void VisitInitListExpr(InitListExpr *E);
122   void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E);
123   void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
124     Visit(DAE->getExpr());
125   }
126   void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E);
127   void VisitCXXConstructExpr(const CXXConstructExpr *E);
128   void VisitExprWithCleanups(ExprWithCleanups *E);
129   void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E);
130   void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); }
131 
132   void VisitVAArgExpr(VAArgExpr *E);
133 
134   void EmitInitializationToLValue(Expr *E, LValue Address, QualType T);
135   void EmitNullInitializationToLValue(LValue Address, QualType T);
136   //  case Expr::ChooseExprClass:
137   void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); }
138 };
139 }  // end anonymous namespace.
140 
141 //===----------------------------------------------------------------------===//
142 //                                Utilities
143 //===----------------------------------------------------------------------===//
144 
145 /// EmitAggLoadOfLValue - Given an expression with aggregate type that
146 /// represents a value lvalue, this method emits the address of the lvalue,
147 /// then loads the result into DestPtr.
148 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
149   LValue LV = CGF.EmitLValue(E);
150   EmitFinalDestCopy(E, LV);
151 }
152 
153 /// \brief True if the given aggregate type requires special GC API calls.
154 bool AggExprEmitter::TypeRequiresGCollection(QualType T) {
155   // Only record types have members that might require garbage collection.
156   const RecordType *RecordTy = T->getAs<RecordType>();
157   if (!RecordTy) return false;
158 
159   // Don't mess with non-trivial C++ types.
160   RecordDecl *Record = RecordTy->getDecl();
161   if (isa<CXXRecordDecl>(Record) &&
162       (!cast<CXXRecordDecl>(Record)->hasTrivialCopyConstructor() ||
163        !cast<CXXRecordDecl>(Record)->hasTrivialDestructor()))
164     return false;
165 
166   // Check whether the type has an object member.
167   return Record->hasObjectMember();
168 }
169 
170 /// \brief Perform the final move to DestPtr if RequiresGCollection is set.
171 ///
172 /// The idea is that you do something like this:
173 ///   RValue Result = EmitSomething(..., getReturnValueSlot());
174 ///   EmitGCMove(E, Result);
175 /// If GC doesn't interfere, this will cause the result to be emitted
176 /// directly into the return value slot.  If GC does interfere, a final
177 /// move will be performed.
178 void AggExprEmitter::EmitGCMove(const Expr *E, RValue Src) {
179   if (Dest.requiresGCollection()) {
180     std::pair<uint64_t, unsigned> TypeInfo =
181       CGF.getContext().getTypeInfo(E->getType());
182     unsigned long size = TypeInfo.first/8;
183     const llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType());
184     llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size);
185     CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, Dest.getAddr(),
186                                                     Src.getAggregateAddr(),
187                                                     SizeVal);
188   }
189 }
190 
191 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
192 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore) {
193   assert(Src.isAggregate() && "value must be aggregate value!");
194 
195   // If Dest is ignored, then we're evaluating an aggregate expression
196   // in a context (like an expression statement) that doesn't care
197   // about the result.  C says that an lvalue-to-rvalue conversion is
198   // performed in these cases; C++ says that it is not.  In either
199   // case, we don't actually need to do anything unless the value is
200   // volatile.
201   if (Dest.isIgnored()) {
202     if (!Src.isVolatileQualified() ||
203         CGF.CGM.getLangOptions().CPlusPlus ||
204         (IgnoreResult && Ignore))
205       return;
206 
207     // If the source is volatile, we must read from it; to do that, we need
208     // some place to put it.
209     Dest = CGF.CreateAggTemp(E->getType(), "agg.tmp");
210   }
211 
212   if (Dest.requiresGCollection()) {
213     std::pair<uint64_t, unsigned> TypeInfo =
214     CGF.getContext().getTypeInfo(E->getType());
215     unsigned long size = TypeInfo.first/8;
216     const llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType());
217     llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size);
218     CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF,
219                                                       Dest.getAddr(),
220                                                       Src.getAggregateAddr(),
221                                                       SizeVal);
222     return;
223   }
224   // If the result of the assignment is used, copy the LHS there also.
225   // FIXME: Pass VolatileDest as well.  I think we also need to merge volatile
226   // from the source as well, as we can't eliminate it if either operand
227   // is volatile, unless copy has volatile for both source and destination..
228   CGF.EmitAggregateCopy(Dest.getAddr(), Src.getAggregateAddr(), E->getType(),
229                         Dest.isVolatile()|Src.isVolatileQualified());
230 }
231 
232 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
233 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore) {
234   assert(Src.isSimple() && "Can't have aggregate bitfield, vector, etc");
235 
236   EmitFinalDestCopy(E, RValue::getAggregate(Src.getAddress(),
237                                             Src.isVolatileQualified()),
238                     Ignore);
239 }
240 
241 //===----------------------------------------------------------------------===//
242 //                            Visitor Methods
243 //===----------------------------------------------------------------------===//
244 
245 void AggExprEmitter::VisitCastExpr(CastExpr *E) {
246   if (Dest.isIgnored() && E->getCastKind() != CK_Dynamic) {
247     Visit(E->getSubExpr());
248     return;
249   }
250 
251   switch (E->getCastKind()) {
252   case CK_Dynamic: {
253     assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?");
254     LValue LV = CGF.EmitCheckedLValue(E->getSubExpr());
255     // FIXME: Do we also need to handle property references here?
256     if (LV.isSimple())
257       CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E));
258     else
259       CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast");
260 
261     if (!Dest.isIgnored())
262       CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination");
263     break;
264   }
265 
266   case CK_ToUnion: {
267     // GCC union extension
268     QualType Ty = E->getSubExpr()->getType();
269     QualType PtrTy = CGF.getContext().getPointerType(Ty);
270     llvm::Value *CastPtr = Builder.CreateBitCast(Dest.getAddr(),
271                                                  CGF.ConvertType(PtrTy));
272     EmitInitializationToLValue(E->getSubExpr(), CGF.MakeAddrLValue(CastPtr, Ty),
273                                Ty);
274     break;
275   }
276 
277   case CK_DerivedToBase:
278   case CK_BaseToDerived:
279   case CK_UncheckedDerivedToBase: {
280     assert(0 && "cannot perform hierarchy conversion in EmitAggExpr: "
281                 "should have been unpacked before we got here");
282     break;
283   }
284 
285   case CK_GetObjCProperty: {
286     LValue LV = CGF.EmitLValue(E->getSubExpr());
287     assert(LV.isPropertyRef());
288     RValue RV = CGF.EmitLoadOfPropertyRefLValue(LV, getReturnValueSlot());
289     EmitGCMove(E, RV);
290     break;
291   }
292 
293   case CK_LValueToRValue: // hope for downstream optimization
294   case CK_NoOp:
295   case CK_UserDefinedConversion:
296   case CK_ConstructorConversion:
297     assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(),
298                                                    E->getType()) &&
299            "Implicit cast types must be compatible");
300     Visit(E->getSubExpr());
301     break;
302 
303   case CK_LValueBitCast:
304     llvm_unreachable("should not be emitting lvalue bitcast as rvalue");
305     break;
306 
307   case CK_Dependent:
308   case CK_BitCast:
309   case CK_ArrayToPointerDecay:
310   case CK_FunctionToPointerDecay:
311   case CK_NullToPointer:
312   case CK_NullToMemberPointer:
313   case CK_BaseToDerivedMemberPointer:
314   case CK_DerivedToBaseMemberPointer:
315   case CK_MemberPointerToBoolean:
316   case CK_IntegralToPointer:
317   case CK_PointerToIntegral:
318   case CK_PointerToBoolean:
319   case CK_ToVoid:
320   case CK_VectorSplat:
321   case CK_IntegralCast:
322   case CK_IntegralToBoolean:
323   case CK_IntegralToFloating:
324   case CK_FloatingToIntegral:
325   case CK_FloatingToBoolean:
326   case CK_FloatingCast:
327   case CK_AnyPointerToObjCPointerCast:
328   case CK_AnyPointerToBlockPointerCast:
329   case CK_ObjCObjectLValueCast:
330   case CK_FloatingRealToComplex:
331   case CK_FloatingComplexToReal:
332   case CK_FloatingComplexToBoolean:
333   case CK_FloatingComplexCast:
334   case CK_FloatingComplexToIntegralComplex:
335   case CK_IntegralRealToComplex:
336   case CK_IntegralComplexToReal:
337   case CK_IntegralComplexToBoolean:
338   case CK_IntegralComplexCast:
339   case CK_IntegralComplexToFloatingComplex:
340     llvm_unreachable("cast kind invalid for aggregate types");
341   }
342 }
343 
344 void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
345   if (E->getCallReturnType()->isReferenceType()) {
346     EmitAggLoadOfLValue(E);
347     return;
348   }
349 
350   RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot());
351   EmitGCMove(E, RV);
352 }
353 
354 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
355   RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot());
356   EmitGCMove(E, RV);
357 }
358 
359 void AggExprEmitter::VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
360   llvm_unreachable("direct property access not surrounded by "
361                    "lvalue-to-rvalue cast");
362 }
363 
364 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
365   CGF.EmitIgnoredExpr(E->getLHS());
366   Visit(E->getRHS());
367 }
368 
369 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
370   CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest);
371 }
372 
373 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
374   if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI)
375     VisitPointerToDataMemberBinaryOperator(E);
376   else
377     CGF.ErrorUnsupported(E, "aggregate binary expression");
378 }
379 
380 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator(
381                                                     const BinaryOperator *E) {
382   LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E);
383   EmitFinalDestCopy(E, LV);
384 }
385 
386 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
387   // For an assignment to work, the value on the right has
388   // to be compatible with the value on the left.
389   assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
390                                                  E->getRHS()->getType())
391          && "Invalid assignment");
392 
393   // FIXME:  __block variables need the RHS evaluated first!
394   LValue LHS = CGF.EmitLValue(E->getLHS());
395 
396   // We have to special case property setters, otherwise we must have
397   // a simple lvalue (no aggregates inside vectors, bitfields).
398   if (LHS.isPropertyRef()) {
399     AggValueSlot Slot = EnsureSlot(E->getRHS()->getType());
400     CGF.EmitAggExpr(E->getRHS(), Slot);
401     CGF.EmitStoreThroughPropertyRefLValue(Slot.asRValue(), LHS);
402   } else {
403     bool GCollection = false;
404     if (CGF.getContext().getLangOptions().getGCMode())
405       GCollection = TypeRequiresGCollection(E->getLHS()->getType());
406 
407     // Codegen the RHS so that it stores directly into the LHS.
408     AggValueSlot LHSSlot = AggValueSlot::forLValue(LHS, true,
409                                                    GCollection);
410     CGF.EmitAggExpr(E->getRHS(), LHSSlot, false);
411     EmitFinalDestCopy(E, LHS, true);
412   }
413 }
414 
415 void AggExprEmitter::VisitConditionalOperator(const ConditionalOperator *E) {
416   if (!E->getLHS()) {
417     CGF.ErrorUnsupported(E, "conditional operator with missing LHS");
418     return;
419   }
420 
421   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
422   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
423   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
424 
425   CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock);
426 
427   CGF.BeginConditionalBranch();
428   CGF.EmitBlock(LHSBlock);
429 
430   // Save whether the destination's lifetime is externally managed.
431   bool DestLifetimeManaged = Dest.isLifetimeExternallyManaged();
432 
433   Visit(E->getLHS());
434   CGF.EndConditionalBranch();
435   CGF.EmitBranch(ContBlock);
436 
437   CGF.BeginConditionalBranch();
438   CGF.EmitBlock(RHSBlock);
439 
440   // If the result of an agg expression is unused, then the emission
441   // of the LHS might need to create a destination slot.  That's fine
442   // with us, and we can safely emit the RHS into the same slot, but
443   // we shouldn't claim that its lifetime is externally managed.
444   Dest.setLifetimeExternallyManaged(DestLifetimeManaged);
445 
446   Visit(E->getRHS());
447   CGF.EndConditionalBranch();
448   CGF.EmitBranch(ContBlock);
449 
450   CGF.EmitBlock(ContBlock);
451 }
452 
453 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) {
454   Visit(CE->getChosenSubExpr(CGF.getContext()));
455 }
456 
457 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
458   llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
459   llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
460 
461   if (!ArgPtr) {
462     CGF.ErrorUnsupported(VE, "aggregate va_arg expression");
463     return;
464   }
465 
466   EmitFinalDestCopy(VE, CGF.MakeAddrLValue(ArgPtr, VE->getType()));
467 }
468 
469 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
470   // Ensure that we have a slot, but if we already do, remember
471   // whether its lifetime was externally managed.
472   bool WasManaged = Dest.isLifetimeExternallyManaged();
473   Dest = EnsureSlot(E->getType());
474   Dest.setLifetimeExternallyManaged();
475 
476   Visit(E->getSubExpr());
477 
478   // Set up the temporary's destructor if its lifetime wasn't already
479   // being managed.
480   if (!WasManaged)
481     CGF.EmitCXXTemporary(E->getTemporary(), Dest.getAddr());
482 }
483 
484 void
485 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) {
486   AggValueSlot Slot = EnsureSlot(E->getType());
487   CGF.EmitCXXConstructExpr(E, Slot);
488 }
489 
490 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
491   CGF.EmitExprWithCleanups(E, Dest);
492 }
493 
494 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
495   QualType T = E->getType();
496   AggValueSlot Slot = EnsureSlot(T);
497   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T), T);
498 }
499 
500 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
501   QualType T = E->getType();
502   AggValueSlot Slot = EnsureSlot(T);
503   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T), T);
504 }
505 
506 /// isSimpleZero - If emitting this value will obviously just cause a store of
507 /// zero to memory, return true.  This can return false if uncertain, so it just
508 /// handles simple cases.
509 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) {
510   // (0)
511   if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
512     return isSimpleZero(PE->getSubExpr(), CGF);
513   // 0
514   if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E))
515     return IL->getValue() == 0;
516   // +0.0
517   if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E))
518     return FL->getValue().isPosZero();
519   // int()
520   if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) &&
521       CGF.getTypes().isZeroInitializable(E->getType()))
522     return true;
523   // (int*)0 - Null pointer expressions.
524   if (const CastExpr *ICE = dyn_cast<CastExpr>(E))
525     return ICE->getCastKind() == CK_NullToPointer;
526   // '\0'
527   if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E))
528     return CL->getValue() == 0;
529 
530   // Otherwise, hard case: conservatively return false.
531   return false;
532 }
533 
534 
535 void
536 AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV, QualType T) {
537   // FIXME: Ignore result?
538   // FIXME: Are initializers affected by volatile?
539   if (Dest.isZeroed() && isSimpleZero(E, CGF)) {
540     // Storing "i32 0" to a zero'd memory location is a noop.
541   } else if (isa<ImplicitValueInitExpr>(E)) {
542     EmitNullInitializationToLValue(LV, T);
543   } else if (T->isReferenceType()) {
544     RValue RV = CGF.EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0);
545     CGF.EmitStoreThroughLValue(RV, LV, T);
546   } else if (T->isAnyComplexType()) {
547     CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false);
548   } else if (CGF.hasAggregateLLVMType(T)) {
549     CGF.EmitAggExpr(E, AggValueSlot::forAddr(LV.getAddress(), false, true,
550                                              false, Dest.isZeroed()));
551   } else {
552     CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV, T);
553   }
554 }
555 
556 void AggExprEmitter::EmitNullInitializationToLValue(LValue LV, QualType T) {
557   // If the destination slot is already zeroed out before the aggregate is
558   // copied into it, we don't have to emit any zeros here.
559   if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(T))
560     return;
561 
562   if (!CGF.hasAggregateLLVMType(T)) {
563     // For non-aggregates, we can store zero
564     llvm::Value *Null = llvm::Constant::getNullValue(CGF.ConvertType(T));
565     CGF.EmitStoreThroughLValue(RValue::get(Null), LV, T);
566   } else {
567     // There's a potential optimization opportunity in combining
568     // memsets; that would be easy for arrays, but relatively
569     // difficult for structures with the current code.
570     CGF.EmitNullInitialization(LV.getAddress(), T);
571   }
572 }
573 
574 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
575 #if 0
576   // FIXME: Assess perf here?  Figure out what cases are worth optimizing here
577   // (Length of globals? Chunks of zeroed-out space?).
578   //
579   // If we can, prefer a copy from a global; this is a lot less code for long
580   // globals, and it's easier for the current optimizers to analyze.
581   if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) {
582     llvm::GlobalVariable* GV =
583     new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true,
584                              llvm::GlobalValue::InternalLinkage, C, "");
585     EmitFinalDestCopy(E, CGF.MakeAddrLValue(GV, E->getType()));
586     return;
587   }
588 #endif
589   if (E->hadArrayRangeDesignator())
590     CGF.ErrorUnsupported(E, "GNU array range designator extension");
591 
592   llvm::Value *DestPtr = Dest.getAddr();
593 
594   // Handle initialization of an array.
595   if (E->getType()->isArrayType()) {
596     const llvm::PointerType *APType =
597       cast<llvm::PointerType>(DestPtr->getType());
598     const llvm::ArrayType *AType =
599       cast<llvm::ArrayType>(APType->getElementType());
600 
601     uint64_t NumInitElements = E->getNumInits();
602 
603     if (E->getNumInits() > 0) {
604       QualType T1 = E->getType();
605       QualType T2 = E->getInit(0)->getType();
606       if (CGF.getContext().hasSameUnqualifiedType(T1, T2)) {
607         EmitAggLoadOfLValue(E->getInit(0));
608         return;
609       }
610     }
611 
612     uint64_t NumArrayElements = AType->getNumElements();
613     QualType ElementType = CGF.getContext().getCanonicalType(E->getType());
614     ElementType = CGF.getContext().getAsArrayType(ElementType)->getElementType();
615 
616     // FIXME: were we intentionally ignoring address spaces and GC attributes?
617 
618     for (uint64_t i = 0; i != NumArrayElements; ++i) {
619       // If we're done emitting initializers and the destination is known-zeroed
620       // then we're done.
621       if (i == NumInitElements &&
622           Dest.isZeroed() &&
623           CGF.getTypes().isZeroInitializable(ElementType))
624         break;
625 
626       llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array");
627       LValue LV = CGF.MakeAddrLValue(NextVal, ElementType);
628 
629       if (i < NumInitElements)
630         EmitInitializationToLValue(E->getInit(i), LV, ElementType);
631       else
632         EmitNullInitializationToLValue(LV, ElementType);
633 
634       // If the GEP didn't get used because of a dead zero init or something
635       // else, clean it up for -O0 builds and general tidiness.
636       if (llvm::GetElementPtrInst *GEP =
637             dyn_cast<llvm::GetElementPtrInst>(NextVal))
638         if (GEP->use_empty())
639           GEP->eraseFromParent();
640     }
641     return;
642   }
643 
644   assert(E->getType()->isRecordType() && "Only support structs/unions here!");
645 
646   // Do struct initialization; this code just sets each individual member
647   // to the approprate value.  This makes bitfield support automatic;
648   // the disadvantage is that the generated code is more difficult for
649   // the optimizer, especially with bitfields.
650   unsigned NumInitElements = E->getNumInits();
651   RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl();
652 
653   if (E->getType()->isUnionType()) {
654     // Only initialize one field of a union. The field itself is
655     // specified by the initializer list.
656     if (!E->getInitializedFieldInUnion()) {
657       // Empty union; we have nothing to do.
658 
659 #ifndef NDEBUG
660       // Make sure that it's really an empty and not a failure of
661       // semantic analysis.
662       for (RecordDecl::field_iterator Field = SD->field_begin(),
663                                    FieldEnd = SD->field_end();
664            Field != FieldEnd; ++Field)
665         assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed");
666 #endif
667       return;
668     }
669 
670     // FIXME: volatility
671     FieldDecl *Field = E->getInitializedFieldInUnion();
672 
673     LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestPtr, Field, 0);
674     if (NumInitElements) {
675       // Store the initializer into the field
676       EmitInitializationToLValue(E->getInit(0), FieldLoc, Field->getType());
677     } else {
678       // Default-initialize to null.
679       EmitNullInitializationToLValue(FieldLoc, Field->getType());
680     }
681 
682     return;
683   }
684 
685   // Here we iterate over the fields; this makes it simpler to both
686   // default-initialize fields and skip over unnamed fields.
687   unsigned CurInitVal = 0;
688   for (RecordDecl::field_iterator Field = SD->field_begin(),
689                                FieldEnd = SD->field_end();
690        Field != FieldEnd; ++Field) {
691     // We're done once we hit the flexible array member
692     if (Field->getType()->isIncompleteArrayType())
693       break;
694 
695     if (Field->isUnnamedBitfield())
696       continue;
697 
698     // Don't emit GEP before a noop store of zero.
699     if (CurInitVal == NumInitElements && Dest.isZeroed() &&
700         CGF.getTypes().isZeroInitializable(E->getType()))
701       break;
702 
703     // FIXME: volatility
704     LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestPtr, *Field, 0);
705     // We never generate write-barries for initialized fields.
706     FieldLoc.setNonGC(true);
707 
708     if (CurInitVal < NumInitElements) {
709       // Store the initializer into the field.
710       EmitInitializationToLValue(E->getInit(CurInitVal++), FieldLoc,
711                                  Field->getType());
712     } else {
713       // We're out of initalizers; default-initialize to null
714       EmitNullInitializationToLValue(FieldLoc, Field->getType());
715     }
716 
717     // If the GEP didn't get used because of a dead zero init or something
718     // else, clean it up for -O0 builds and general tidiness.
719     if (FieldLoc.isSimple())
720       if (llvm::GetElementPtrInst *GEP =
721             dyn_cast<llvm::GetElementPtrInst>(FieldLoc.getAddress()))
722         if (GEP->use_empty())
723           GEP->eraseFromParent();
724   }
725 }
726 
727 //===----------------------------------------------------------------------===//
728 //                        Entry Points into this File
729 //===----------------------------------------------------------------------===//
730 
731 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of
732 /// non-zero bytes that will be stored when outputting the initializer for the
733 /// specified initializer expression.
734 static uint64_t GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) {
735   if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
736     return GetNumNonZeroBytesInInit(PE->getSubExpr(), CGF);
737 
738   // 0 and 0.0 won't require any non-zero stores!
739   if (isSimpleZero(E, CGF)) return 0;
740 
741   // If this is an initlist expr, sum up the size of sizes of the (present)
742   // elements.  If this is something weird, assume the whole thing is non-zero.
743   const InitListExpr *ILE = dyn_cast<InitListExpr>(E);
744   if (ILE == 0 || !CGF.getTypes().isZeroInitializable(ILE->getType()))
745     return CGF.getContext().getTypeSize(E->getType())/8;
746 
747   // InitListExprs for structs have to be handled carefully.  If there are
748   // reference members, we need to consider the size of the reference, not the
749   // referencee.  InitListExprs for unions and arrays can't have references.
750   if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
751     if (!RT->isUnionType()) {
752       RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl();
753       uint64_t NumNonZeroBytes = 0;
754 
755       unsigned ILEElement = 0;
756       for (RecordDecl::field_iterator Field = SD->field_begin(),
757            FieldEnd = SD->field_end(); Field != FieldEnd; ++Field) {
758         // We're done once we hit the flexible array member or run out of
759         // InitListExpr elements.
760         if (Field->getType()->isIncompleteArrayType() ||
761             ILEElement == ILE->getNumInits())
762           break;
763         if (Field->isUnnamedBitfield())
764           continue;
765 
766         const Expr *E = ILE->getInit(ILEElement++);
767 
768         // Reference values are always non-null and have the width of a pointer.
769         if (Field->getType()->isReferenceType())
770           NumNonZeroBytes += CGF.getContext().Target.getPointerWidth(0);
771         else
772           NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF);
773       }
774 
775       return NumNonZeroBytes;
776     }
777   }
778 
779 
780   uint64_t NumNonZeroBytes = 0;
781   for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
782     NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF);
783   return NumNonZeroBytes;
784 }
785 
786 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of
787 /// zeros in it, emit a memset and avoid storing the individual zeros.
788 ///
789 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E,
790                                      CodeGenFunction &CGF) {
791   // If the slot is already known to be zeroed, nothing to do.  Don't mess with
792   // volatile stores.
793   if (Slot.isZeroed() || Slot.isVolatile() || Slot.getAddr() == 0) return;
794 
795   // If the type is 16-bytes or smaller, prefer individual stores over memset.
796   std::pair<uint64_t, unsigned> TypeInfo =
797     CGF.getContext().getTypeInfo(E->getType());
798   if (TypeInfo.first/8 <= 16)
799     return;
800 
801   // Check to see if over 3/4 of the initializer are known to be zero.  If so,
802   // we prefer to emit memset + individual stores for the rest.
803   uint64_t NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF);
804   if (NumNonZeroBytes*4 > TypeInfo.first/8)
805     return;
806 
807   // Okay, it seems like a good idea to use an initial memset, emit the call.
808   llvm::Constant *SizeVal = CGF.Builder.getInt64(TypeInfo.first/8);
809   unsigned Align = TypeInfo.second/8;
810 
811   llvm::Value *Loc = Slot.getAddr();
812   const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
813 
814   Loc = CGF.Builder.CreateBitCast(Loc, BP);
815   CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, Align, false);
816 
817   // Tell the AggExprEmitter that the slot is known zero.
818   Slot.setZeroed();
819 }
820 
821 
822 
823 
824 /// EmitAggExpr - Emit the computation of the specified expression of aggregate
825 /// type.  The result is computed into DestPtr.  Note that if DestPtr is null,
826 /// the value of the aggregate expression is not needed.  If VolatileDest is
827 /// true, DestPtr cannot be 0.
828 ///
829 /// \param IsInitializer - true if this evaluation is initializing an
830 /// object whose lifetime is already being managed.
831 //
832 // FIXME: Take Qualifiers object.
833 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot,
834                                   bool IgnoreResult) {
835   assert(E && hasAggregateLLVMType(E->getType()) &&
836          "Invalid aggregate expression to emit");
837   assert((Slot.getAddr() != 0 || Slot.isIgnored()) &&
838          "slot has bits but no address");
839 
840   // Optimize the slot if possible.
841   CheckAggExprForMemSetUse(Slot, E, *this);
842 
843   AggExprEmitter(*this, Slot, IgnoreResult).Visit(const_cast<Expr*>(E));
844 }
845 
846 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) {
847   assert(hasAggregateLLVMType(E->getType()) && "Invalid argument!");
848   llvm::Value *Temp = CreateMemTemp(E->getType());
849   LValue LV = MakeAddrLValue(Temp, E->getType());
850   EmitAggExpr(E, AggValueSlot::forAddr(Temp, LV.isVolatileQualified(), false));
851   return LV;
852 }
853 
854 void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr,
855                                         llvm::Value *SrcPtr, QualType Ty,
856                                         bool isVolatile) {
857   assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
858 
859   if (getContext().getLangOptions().CPlusPlus) {
860     if (const RecordType *RT = Ty->getAs<RecordType>()) {
861       CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
862       assert((Record->hasTrivialCopyConstructor() ||
863               Record->hasTrivialCopyAssignment()) &&
864              "Trying to aggregate-copy a type without a trivial copy "
865              "constructor or assignment operator");
866       // Ignore empty classes in C++.
867       if (Record->isEmpty())
868         return;
869     }
870   }
871 
872   // Aggregate assignment turns into llvm.memcpy.  This is almost valid per
873   // C99 6.5.16.1p3, which states "If the value being stored in an object is
874   // read from another object that overlaps in anyway the storage of the first
875   // object, then the overlap shall be exact and the two objects shall have
876   // qualified or unqualified versions of a compatible type."
877   //
878   // memcpy is not defined if the source and destination pointers are exactly
879   // equal, but other compilers do this optimization, and almost every memcpy
880   // implementation handles this case safely.  If there is a libc that does not
881   // safely handle this, we can add a target hook.
882 
883   // Get size and alignment info for this aggregate.
884   std::pair<uint64_t, unsigned> TypeInfo = getContext().getTypeInfo(Ty);
885 
886   // FIXME: Handle variable sized types.
887 
888   // FIXME: If we have a volatile struct, the optimizer can remove what might
889   // appear to be `extra' memory ops:
890   //
891   // volatile struct { int i; } a, b;
892   //
893   // int main() {
894   //   a = b;
895   //   a = b;
896   // }
897   //
898   // we need to use a different call here.  We use isVolatile to indicate when
899   // either the source or the destination is volatile.
900 
901   const llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType());
902   const llvm::Type *DBP =
903     llvm::Type::getInt8PtrTy(VMContext, DPT->getAddressSpace());
904   DestPtr = Builder.CreateBitCast(DestPtr, DBP, "tmp");
905 
906   const llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType());
907   const llvm::Type *SBP =
908     llvm::Type::getInt8PtrTy(VMContext, SPT->getAddressSpace());
909   SrcPtr = Builder.CreateBitCast(SrcPtr, SBP, "tmp");
910 
911   if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
912     RecordDecl *Record = RecordTy->getDecl();
913     if (Record->hasObjectMember()) {
914       unsigned long size = TypeInfo.first/8;
915       const llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
916       llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size);
917       CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
918                                                     SizeVal);
919       return;
920     }
921   } else if (getContext().getAsArrayType(Ty)) {
922     QualType BaseType = getContext().getBaseElementType(Ty);
923     if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
924       if (RecordTy->getDecl()->hasObjectMember()) {
925         unsigned long size = TypeInfo.first/8;
926         const llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
927         llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size);
928         CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
929                                                       SizeVal);
930         return;
931       }
932     }
933   }
934 
935   Builder.CreateMemCpy(DestPtr, SrcPtr,
936                        llvm::ConstantInt::get(IntPtrTy, TypeInfo.first/8),
937                        TypeInfo.second/8, isVolatile);
938 }
939