1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Aggregate Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGObjCRuntime.h"
16 #include "CodeGenModule.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/DeclTemplate.h"
20 #include "clang/AST/StmtVisitor.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/Function.h"
23 #include "llvm/IR/GlobalVariable.h"
24 #include "llvm/IR/Intrinsics.h"
25 using namespace clang;
26 using namespace CodeGen;
27 
28 //===----------------------------------------------------------------------===//
29 //                        Aggregate Expression Emitter
30 //===----------------------------------------------------------------------===//
31 
32 namespace  {
33 class AggExprEmitter : public StmtVisitor<AggExprEmitter> {
34   CodeGenFunction &CGF;
35   CGBuilderTy &Builder;
36   AggValueSlot Dest;
37   bool IsResultUnused;
38 
39   /// We want to use 'dest' as the return slot except under two
40   /// conditions:
41   ///   - The destination slot requires garbage collection, so we
42   ///     need to use the GC API.
43   ///   - The destination slot is potentially aliased.
44   bool shouldUseDestForReturnSlot() const {
45     return !(Dest.requiresGCollection() || Dest.isPotentiallyAliased());
46   }
47 
48   ReturnValueSlot getReturnValueSlot() const {
49     if (!shouldUseDestForReturnSlot())
50       return ReturnValueSlot();
51 
52     return ReturnValueSlot(Dest.getAddress(), Dest.isVolatile(),
53                            IsResultUnused);
54   }
55 
56   AggValueSlot EnsureSlot(QualType T) {
57     if (!Dest.isIgnored()) return Dest;
58     return CGF.CreateAggTemp(T, "agg.tmp.ensured");
59   }
60   void EnsureDest(QualType T) {
61     if (!Dest.isIgnored()) return;
62     Dest = CGF.CreateAggTemp(T, "agg.tmp.ensured");
63   }
64 
65 public:
66   AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest, bool IsResultUnused)
67     : CGF(cgf), Builder(CGF.Builder), Dest(Dest),
68     IsResultUnused(IsResultUnused) { }
69 
70   //===--------------------------------------------------------------------===//
71   //                               Utilities
72   //===--------------------------------------------------------------------===//
73 
74   /// EmitAggLoadOfLValue - Given an expression with aggregate type that
75   /// represents a value lvalue, this method emits the address of the lvalue,
76   /// then loads the result into DestPtr.
77   void EmitAggLoadOfLValue(const Expr *E);
78 
79   /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
80   void EmitFinalDestCopy(QualType type, const LValue &src);
81   void EmitFinalDestCopy(QualType type, RValue src);
82   void EmitCopy(QualType type, const AggValueSlot &dest,
83                 const AggValueSlot &src);
84 
85   void EmitMoveFromReturnSlot(const Expr *E, RValue Src);
86 
87   void EmitArrayInit(Address DestPtr, llvm::ArrayType *AType,
88                      QualType elementType, InitListExpr *E);
89 
90   AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) {
91     if (CGF.getLangOpts().getGC() && TypeRequiresGCollection(T))
92       return AggValueSlot::NeedsGCBarriers;
93     return AggValueSlot::DoesNotNeedGCBarriers;
94   }
95 
96   bool TypeRequiresGCollection(QualType T);
97 
98   //===--------------------------------------------------------------------===//
99   //                            Visitor Methods
100   //===--------------------------------------------------------------------===//
101 
102   void Visit(Expr *E) {
103     ApplyDebugLocation DL(CGF, E);
104     StmtVisitor<AggExprEmitter>::Visit(E);
105   }
106 
107   void VisitStmt(Stmt *S) {
108     CGF.ErrorUnsupported(S, "aggregate expression");
109   }
110   void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
111   void VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
112     Visit(GE->getResultExpr());
113   }
114   void VisitCoawaitExpr(CoawaitExpr *E) {
115     CGF.EmitCoawaitExpr(*E, Dest, IsResultUnused);
116   }
117   void VisitCoyieldExpr(CoyieldExpr *E) {
118     CGF.EmitCoyieldExpr(*E, Dest, IsResultUnused);
119   }
120   void VisitUnaryCoawait(UnaryOperator *E) { Visit(E->getSubExpr()); }
121   void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
122   void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
123     return Visit(E->getReplacement());
124   }
125 
126   // l-values.
127   void VisitDeclRefExpr(DeclRefExpr *E) { EmitAggLoadOfLValue(E); }
128   void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
129   void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
130   void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
131   void VisitCompoundLiteralExpr(CompoundLiteralExpr *E);
132   void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
133     EmitAggLoadOfLValue(E);
134   }
135   void VisitPredefinedExpr(const PredefinedExpr *E) {
136     EmitAggLoadOfLValue(E);
137   }
138 
139   // Operators.
140   void VisitCastExpr(CastExpr *E);
141   void VisitCallExpr(const CallExpr *E);
142   void VisitStmtExpr(const StmtExpr *E);
143   void VisitBinaryOperator(const BinaryOperator *BO);
144   void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO);
145   void VisitBinAssign(const BinaryOperator *E);
146   void VisitBinComma(const BinaryOperator *E);
147 
148   void VisitObjCMessageExpr(ObjCMessageExpr *E);
149   void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
150     EmitAggLoadOfLValue(E);
151   }
152 
153   void VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E);
154   void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
155   void VisitChooseExpr(const ChooseExpr *CE);
156   void VisitInitListExpr(InitListExpr *E);
157   void VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E,
158                               llvm::Value *outerBegin = nullptr);
159   void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E);
160   void VisitNoInitExpr(NoInitExpr *E) { } // Do nothing.
161   void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
162     Visit(DAE->getExpr());
163   }
164   void VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
165     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF);
166     Visit(DIE->getExpr());
167   }
168   void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E);
169   void VisitCXXConstructExpr(const CXXConstructExpr *E);
170   void VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E);
171   void VisitLambdaExpr(LambdaExpr *E);
172   void VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E);
173   void VisitExprWithCleanups(ExprWithCleanups *E);
174   void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E);
175   void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); }
176   void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E);
177   void VisitOpaqueValueExpr(OpaqueValueExpr *E);
178 
179   void VisitPseudoObjectExpr(PseudoObjectExpr *E) {
180     if (E->isGLValue()) {
181       LValue LV = CGF.EmitPseudoObjectLValue(E);
182       return EmitFinalDestCopy(E->getType(), LV);
183     }
184 
185     CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType()));
186   }
187 
188   void VisitVAArgExpr(VAArgExpr *E);
189 
190   void EmitInitializationToLValue(Expr *E, LValue Address);
191   void EmitNullInitializationToLValue(LValue Address);
192   //  case Expr::ChooseExprClass:
193   void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); }
194   void VisitAtomicExpr(AtomicExpr *E) {
195     RValue Res = CGF.EmitAtomicExpr(E);
196     EmitFinalDestCopy(E->getType(), Res);
197   }
198 };
199 }  // end anonymous namespace.
200 
201 //===----------------------------------------------------------------------===//
202 //                                Utilities
203 //===----------------------------------------------------------------------===//
204 
205 /// EmitAggLoadOfLValue - Given an expression with aggregate type that
206 /// represents a value lvalue, this method emits the address of the lvalue,
207 /// then loads the result into DestPtr.
208 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
209   LValue LV = CGF.EmitLValue(E);
210 
211   // If the type of the l-value is atomic, then do an atomic load.
212   if (LV.getType()->isAtomicType() || CGF.LValueIsSuitableForInlineAtomic(LV)) {
213     CGF.EmitAtomicLoad(LV, E->getExprLoc(), Dest);
214     return;
215   }
216 
217   EmitFinalDestCopy(E->getType(), LV);
218 }
219 
220 /// \brief True if the given aggregate type requires special GC API calls.
221 bool AggExprEmitter::TypeRequiresGCollection(QualType T) {
222   // Only record types have members that might require garbage collection.
223   const RecordType *RecordTy = T->getAs<RecordType>();
224   if (!RecordTy) return false;
225 
226   // Don't mess with non-trivial C++ types.
227   RecordDecl *Record = RecordTy->getDecl();
228   if (isa<CXXRecordDecl>(Record) &&
229       (cast<CXXRecordDecl>(Record)->hasNonTrivialCopyConstructor() ||
230        !cast<CXXRecordDecl>(Record)->hasTrivialDestructor()))
231     return false;
232 
233   // Check whether the type has an object member.
234   return Record->hasObjectMember();
235 }
236 
237 /// \brief Perform the final move to DestPtr if for some reason
238 /// getReturnValueSlot() didn't use it directly.
239 ///
240 /// The idea is that you do something like this:
241 ///   RValue Result = EmitSomething(..., getReturnValueSlot());
242 ///   EmitMoveFromReturnSlot(E, Result);
243 ///
244 /// If nothing interferes, this will cause the result to be emitted
245 /// directly into the return value slot.  Otherwise, a final move
246 /// will be performed.
247 void AggExprEmitter::EmitMoveFromReturnSlot(const Expr *E, RValue src) {
248   if (shouldUseDestForReturnSlot()) {
249     // Logically, Dest.getAddr() should equal Src.getAggregateAddr().
250     // The possibility of undef rvalues complicates that a lot,
251     // though, so we can't really assert.
252     return;
253   }
254 
255   // Otherwise, copy from there to the destination.
256   assert(Dest.getPointer() != src.getAggregatePointer());
257   EmitFinalDestCopy(E->getType(), src);
258 }
259 
260 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
261 void AggExprEmitter::EmitFinalDestCopy(QualType type, RValue src) {
262   assert(src.isAggregate() && "value must be aggregate value!");
263   LValue srcLV = CGF.MakeAddrLValue(src.getAggregateAddress(), type);
264   EmitFinalDestCopy(type, srcLV);
265 }
266 
267 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
268 void AggExprEmitter::EmitFinalDestCopy(QualType type, const LValue &src) {
269   // If Dest is ignored, then we're evaluating an aggregate expression
270   // in a context that doesn't care about the result.  Note that loads
271   // from volatile l-values force the existence of a non-ignored
272   // destination.
273   if (Dest.isIgnored())
274     return;
275 
276   AggValueSlot srcAgg =
277     AggValueSlot::forLValue(src, AggValueSlot::IsDestructed,
278                             needsGC(type), AggValueSlot::IsAliased);
279   EmitCopy(type, Dest, srcAgg);
280 }
281 
282 /// Perform a copy from the source into the destination.
283 ///
284 /// \param type - the type of the aggregate being copied; qualifiers are
285 ///   ignored
286 void AggExprEmitter::EmitCopy(QualType type, const AggValueSlot &dest,
287                               const AggValueSlot &src) {
288   if (dest.requiresGCollection()) {
289     CharUnits sz = CGF.getContext().getTypeSizeInChars(type);
290     llvm::Value *size = llvm::ConstantInt::get(CGF.SizeTy, sz.getQuantity());
291     CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF,
292                                                       dest.getAddress(),
293                                                       src.getAddress(),
294                                                       size);
295     return;
296   }
297 
298   // If the result of the assignment is used, copy the LHS there also.
299   // It's volatile if either side is.  Use the minimum alignment of
300   // the two sides.
301   LValue DestLV = CGF.MakeAddrLValue(dest.getAddress(), type);
302   LValue SrcLV = CGF.MakeAddrLValue(src.getAddress(), type);
303   CGF.EmitAggregateCopy(DestLV, SrcLV, type,
304                         dest.isVolatile() || src.isVolatile());
305 }
306 
307 /// \brief Emit the initializer for a std::initializer_list initialized with a
308 /// real initializer list.
309 void
310 AggExprEmitter::VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E) {
311   // Emit an array containing the elements.  The array is externally destructed
312   // if the std::initializer_list object is.
313   ASTContext &Ctx = CGF.getContext();
314   LValue Array = CGF.EmitLValue(E->getSubExpr());
315   assert(Array.isSimple() && "initializer_list array not a simple lvalue");
316   Address ArrayPtr = Array.getAddress();
317 
318   const ConstantArrayType *ArrayType =
319       Ctx.getAsConstantArrayType(E->getSubExpr()->getType());
320   assert(ArrayType && "std::initializer_list constructed from non-array");
321 
322   // FIXME: Perform the checks on the field types in SemaInit.
323   RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl();
324   RecordDecl::field_iterator Field = Record->field_begin();
325   if (Field == Record->field_end()) {
326     CGF.ErrorUnsupported(E, "weird std::initializer_list");
327     return;
328   }
329 
330   // Start pointer.
331   if (!Field->getType()->isPointerType() ||
332       !Ctx.hasSameType(Field->getType()->getPointeeType(),
333                        ArrayType->getElementType())) {
334     CGF.ErrorUnsupported(E, "weird std::initializer_list");
335     return;
336   }
337 
338   AggValueSlot Dest = EnsureSlot(E->getType());
339   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
340   LValue Start = CGF.EmitLValueForFieldInitialization(DestLV, *Field);
341   llvm::Value *Zero = llvm::ConstantInt::get(CGF.PtrDiffTy, 0);
342   llvm::Value *IdxStart[] = { Zero, Zero };
343   llvm::Value *ArrayStart =
344       Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxStart, "arraystart");
345   CGF.EmitStoreThroughLValue(RValue::get(ArrayStart), Start);
346   ++Field;
347 
348   if (Field == Record->field_end()) {
349     CGF.ErrorUnsupported(E, "weird std::initializer_list");
350     return;
351   }
352 
353   llvm::Value *Size = Builder.getInt(ArrayType->getSize());
354   LValue EndOrLength = CGF.EmitLValueForFieldInitialization(DestLV, *Field);
355   if (Field->getType()->isPointerType() &&
356       Ctx.hasSameType(Field->getType()->getPointeeType(),
357                       ArrayType->getElementType())) {
358     // End pointer.
359     llvm::Value *IdxEnd[] = { Zero, Size };
360     llvm::Value *ArrayEnd =
361         Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxEnd, "arrayend");
362     CGF.EmitStoreThroughLValue(RValue::get(ArrayEnd), EndOrLength);
363   } else if (Ctx.hasSameType(Field->getType(), Ctx.getSizeType())) {
364     // Length.
365     CGF.EmitStoreThroughLValue(RValue::get(Size), EndOrLength);
366   } else {
367     CGF.ErrorUnsupported(E, "weird std::initializer_list");
368     return;
369   }
370 }
371 
372 /// \brief Determine if E is a trivial array filler, that is, one that is
373 /// equivalent to zero-initialization.
374 static bool isTrivialFiller(Expr *E) {
375   if (!E)
376     return true;
377 
378   if (isa<ImplicitValueInitExpr>(E))
379     return true;
380 
381   if (auto *ILE = dyn_cast<InitListExpr>(E)) {
382     if (ILE->getNumInits())
383       return false;
384     return isTrivialFiller(ILE->getArrayFiller());
385   }
386 
387   if (auto *Cons = dyn_cast_or_null<CXXConstructExpr>(E))
388     return Cons->getConstructor()->isDefaultConstructor() &&
389            Cons->getConstructor()->isTrivial();
390 
391   // FIXME: Are there other cases where we can avoid emitting an initializer?
392   return false;
393 }
394 
395 /// \brief Emit initialization of an array from an initializer list.
396 void AggExprEmitter::EmitArrayInit(Address DestPtr, llvm::ArrayType *AType,
397                                    QualType elementType, InitListExpr *E) {
398   uint64_t NumInitElements = E->getNumInits();
399 
400   uint64_t NumArrayElements = AType->getNumElements();
401   assert(NumInitElements <= NumArrayElements);
402 
403   // DestPtr is an array*.  Construct an elementType* by drilling
404   // down a level.
405   llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
406   llvm::Value *indices[] = { zero, zero };
407   llvm::Value *begin =
408     Builder.CreateInBoundsGEP(DestPtr.getPointer(), indices, "arrayinit.begin");
409 
410   CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
411   CharUnits elementAlign =
412     DestPtr.getAlignment().alignmentOfArrayElement(elementSize);
413 
414   // Exception safety requires us to destroy all the
415   // already-constructed members if an initializer throws.
416   // For that, we'll need an EH cleanup.
417   QualType::DestructionKind dtorKind = elementType.isDestructedType();
418   Address endOfInit = Address::invalid();
419   EHScopeStack::stable_iterator cleanup;
420   llvm::Instruction *cleanupDominator = nullptr;
421   if (CGF.needsEHCleanup(dtorKind)) {
422     // In principle we could tell the cleanup where we are more
423     // directly, but the control flow can get so varied here that it
424     // would actually be quite complex.  Therefore we go through an
425     // alloca.
426     endOfInit = CGF.CreateTempAlloca(begin->getType(), CGF.getPointerAlign(),
427                                      "arrayinit.endOfInit");
428     cleanupDominator = Builder.CreateStore(begin, endOfInit);
429     CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType,
430                                          elementAlign,
431                                          CGF.getDestroyer(dtorKind));
432     cleanup = CGF.EHStack.stable_begin();
433 
434   // Otherwise, remember that we didn't need a cleanup.
435   } else {
436     dtorKind = QualType::DK_none;
437   }
438 
439   llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1);
440 
441   // The 'current element to initialize'.  The invariants on this
442   // variable are complicated.  Essentially, after each iteration of
443   // the loop, it points to the last initialized element, except
444   // that it points to the beginning of the array before any
445   // elements have been initialized.
446   llvm::Value *element = begin;
447 
448   // Emit the explicit initializers.
449   for (uint64_t i = 0; i != NumInitElements; ++i) {
450     // Advance to the next element.
451     if (i > 0) {
452       element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element");
453 
454       // Tell the cleanup that it needs to destroy up to this
455       // element.  TODO: some of these stores can be trivially
456       // observed to be unnecessary.
457       if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit);
458     }
459 
460     LValue elementLV =
461       CGF.MakeAddrLValue(Address(element, elementAlign), elementType);
462     EmitInitializationToLValue(E->getInit(i), elementLV);
463   }
464 
465   // Check whether there's a non-trivial array-fill expression.
466   Expr *filler = E->getArrayFiller();
467   bool hasTrivialFiller = isTrivialFiller(filler);
468 
469   // Any remaining elements need to be zero-initialized, possibly
470   // using the filler expression.  We can skip this if the we're
471   // emitting to zeroed memory.
472   if (NumInitElements != NumArrayElements &&
473       !(Dest.isZeroed() && hasTrivialFiller &&
474         CGF.getTypes().isZeroInitializable(elementType))) {
475 
476     // Use an actual loop.  This is basically
477     //   do { *array++ = filler; } while (array != end);
478 
479     // Advance to the start of the rest of the array.
480     if (NumInitElements) {
481       element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start");
482       if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit);
483     }
484 
485     // Compute the end of the array.
486     llvm::Value *end = Builder.CreateInBoundsGEP(begin,
487                       llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements),
488                                                  "arrayinit.end");
489 
490     llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
491     llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
492 
493     // Jump into the body.
494     CGF.EmitBlock(bodyBB);
495     llvm::PHINode *currentElement =
496       Builder.CreatePHI(element->getType(), 2, "arrayinit.cur");
497     currentElement->addIncoming(element, entryBB);
498 
499     // Emit the actual filler expression.
500     {
501       // C++1z [class.temporary]p5:
502       //   when a default constructor is called to initialize an element of
503       //   an array with no corresponding initializer [...] the destruction of
504       //   every temporary created in a default argument is sequenced before
505       //   the construction of the next array element, if any
506       CodeGenFunction::RunCleanupsScope CleanupsScope(CGF);
507       LValue elementLV =
508         CGF.MakeAddrLValue(Address(currentElement, elementAlign), elementType);
509       if (filler)
510         EmitInitializationToLValue(filler, elementLV);
511       else
512         EmitNullInitializationToLValue(elementLV);
513     }
514 
515     // Move on to the next element.
516     llvm::Value *nextElement =
517       Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next");
518 
519     // Tell the EH cleanup that we finished with the last element.
520     if (endOfInit.isValid()) Builder.CreateStore(nextElement, endOfInit);
521 
522     // Leave the loop if we're done.
523     llvm::Value *done = Builder.CreateICmpEQ(nextElement, end,
524                                              "arrayinit.done");
525     llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
526     Builder.CreateCondBr(done, endBB, bodyBB);
527     currentElement->addIncoming(nextElement, Builder.GetInsertBlock());
528 
529     CGF.EmitBlock(endBB);
530   }
531 
532   // Leave the partial-array cleanup if we entered one.
533   if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator);
534 }
535 
536 //===----------------------------------------------------------------------===//
537 //                            Visitor Methods
538 //===----------------------------------------------------------------------===//
539 
540 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){
541   Visit(E->GetTemporaryExpr());
542 }
543 
544 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) {
545   EmitFinalDestCopy(e->getType(), CGF.getOpaqueLValueMapping(e));
546 }
547 
548 void
549 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
550   if (Dest.isPotentiallyAliased() &&
551       E->getType().isPODType(CGF.getContext())) {
552     // For a POD type, just emit a load of the lvalue + a copy, because our
553     // compound literal might alias the destination.
554     EmitAggLoadOfLValue(E);
555     return;
556   }
557 
558   AggValueSlot Slot = EnsureSlot(E->getType());
559   CGF.EmitAggExpr(E->getInitializer(), Slot);
560 }
561 
562 /// Attempt to look through various unimportant expressions to find a
563 /// cast of the given kind.
564 static Expr *findPeephole(Expr *op, CastKind kind) {
565   while (true) {
566     op = op->IgnoreParens();
567     if (CastExpr *castE = dyn_cast<CastExpr>(op)) {
568       if (castE->getCastKind() == kind)
569         return castE->getSubExpr();
570       if (castE->getCastKind() == CK_NoOp)
571         continue;
572     }
573     return nullptr;
574   }
575 }
576 
577 void AggExprEmitter::VisitCastExpr(CastExpr *E) {
578   if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E))
579     CGF.CGM.EmitExplicitCastExprType(ECE, &CGF);
580   switch (E->getCastKind()) {
581   case CK_Dynamic: {
582     // FIXME: Can this actually happen? We have no test coverage for it.
583     assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?");
584     LValue LV = CGF.EmitCheckedLValue(E->getSubExpr(),
585                                       CodeGenFunction::TCK_Load);
586     // FIXME: Do we also need to handle property references here?
587     if (LV.isSimple())
588       CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E));
589     else
590       CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast");
591 
592     if (!Dest.isIgnored())
593       CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination");
594     break;
595   }
596 
597   case CK_ToUnion: {
598     // Evaluate even if the destination is ignored.
599     if (Dest.isIgnored()) {
600       CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(),
601                       /*ignoreResult=*/true);
602       break;
603     }
604 
605     // GCC union extension
606     QualType Ty = E->getSubExpr()->getType();
607     Address CastPtr =
608       Builder.CreateElementBitCast(Dest.getAddress(), CGF.ConvertType(Ty));
609     EmitInitializationToLValue(E->getSubExpr(),
610                                CGF.MakeAddrLValue(CastPtr, Ty));
611     break;
612   }
613 
614   case CK_DerivedToBase:
615   case CK_BaseToDerived:
616   case CK_UncheckedDerivedToBase: {
617     llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: "
618                 "should have been unpacked before we got here");
619   }
620 
621   case CK_NonAtomicToAtomic:
622   case CK_AtomicToNonAtomic: {
623     bool isToAtomic = (E->getCastKind() == CK_NonAtomicToAtomic);
624 
625     // Determine the atomic and value types.
626     QualType atomicType = E->getSubExpr()->getType();
627     QualType valueType = E->getType();
628     if (isToAtomic) std::swap(atomicType, valueType);
629 
630     assert(atomicType->isAtomicType());
631     assert(CGF.getContext().hasSameUnqualifiedType(valueType,
632                           atomicType->castAs<AtomicType>()->getValueType()));
633 
634     // Just recurse normally if we're ignoring the result or the
635     // atomic type doesn't change representation.
636     if (Dest.isIgnored() || !CGF.CGM.isPaddedAtomicType(atomicType)) {
637       return Visit(E->getSubExpr());
638     }
639 
640     CastKind peepholeTarget =
641       (isToAtomic ? CK_AtomicToNonAtomic : CK_NonAtomicToAtomic);
642 
643     // These two cases are reverses of each other; try to peephole them.
644     if (Expr *op = findPeephole(E->getSubExpr(), peepholeTarget)) {
645       assert(CGF.getContext().hasSameUnqualifiedType(op->getType(),
646                                                      E->getType()) &&
647            "peephole significantly changed types?");
648       return Visit(op);
649     }
650 
651     // If we're converting an r-value of non-atomic type to an r-value
652     // of atomic type, just emit directly into the relevant sub-object.
653     if (isToAtomic) {
654       AggValueSlot valueDest = Dest;
655       if (!valueDest.isIgnored() && CGF.CGM.isPaddedAtomicType(atomicType)) {
656         // Zero-initialize.  (Strictly speaking, we only need to intialize
657         // the padding at the end, but this is simpler.)
658         if (!Dest.isZeroed())
659           CGF.EmitNullInitialization(Dest.getAddress(), atomicType);
660 
661         // Build a GEP to refer to the subobject.
662         Address valueAddr =
663             CGF.Builder.CreateStructGEP(valueDest.getAddress(), 0,
664                                         CharUnits());
665         valueDest = AggValueSlot::forAddr(valueAddr,
666                                           valueDest.getQualifiers(),
667                                           valueDest.isExternallyDestructed(),
668                                           valueDest.requiresGCollection(),
669                                           valueDest.isPotentiallyAliased(),
670                                           AggValueSlot::IsZeroed);
671       }
672 
673       CGF.EmitAggExpr(E->getSubExpr(), valueDest);
674       return;
675     }
676 
677     // Otherwise, we're converting an atomic type to a non-atomic type.
678     // Make an atomic temporary, emit into that, and then copy the value out.
679     AggValueSlot atomicSlot =
680       CGF.CreateAggTemp(atomicType, "atomic-to-nonatomic.temp");
681     CGF.EmitAggExpr(E->getSubExpr(), atomicSlot);
682 
683     Address valueAddr =
684       Builder.CreateStructGEP(atomicSlot.getAddress(), 0, CharUnits());
685     RValue rvalue = RValue::getAggregate(valueAddr, atomicSlot.isVolatile());
686     return EmitFinalDestCopy(valueType, rvalue);
687   }
688 
689   case CK_LValueToRValue:
690     // If we're loading from a volatile type, force the destination
691     // into existence.
692     if (E->getSubExpr()->getType().isVolatileQualified()) {
693       EnsureDest(E->getType());
694       return Visit(E->getSubExpr());
695     }
696 
697     LLVM_FALLTHROUGH;
698 
699   case CK_NoOp:
700   case CK_UserDefinedConversion:
701   case CK_ConstructorConversion:
702     assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(),
703                                                    E->getType()) &&
704            "Implicit cast types must be compatible");
705     Visit(E->getSubExpr());
706     break;
707 
708   case CK_LValueBitCast:
709     llvm_unreachable("should not be emitting lvalue bitcast as rvalue");
710 
711   case CK_Dependent:
712   case CK_BitCast:
713   case CK_ArrayToPointerDecay:
714   case CK_FunctionToPointerDecay:
715   case CK_NullToPointer:
716   case CK_NullToMemberPointer:
717   case CK_BaseToDerivedMemberPointer:
718   case CK_DerivedToBaseMemberPointer:
719   case CK_MemberPointerToBoolean:
720   case CK_ReinterpretMemberPointer:
721   case CK_IntegralToPointer:
722   case CK_PointerToIntegral:
723   case CK_PointerToBoolean:
724   case CK_ToVoid:
725   case CK_VectorSplat:
726   case CK_IntegralCast:
727   case CK_BooleanToSignedIntegral:
728   case CK_IntegralToBoolean:
729   case CK_IntegralToFloating:
730   case CK_FloatingToIntegral:
731   case CK_FloatingToBoolean:
732   case CK_FloatingCast:
733   case CK_CPointerToObjCPointerCast:
734   case CK_BlockPointerToObjCPointerCast:
735   case CK_AnyPointerToBlockPointerCast:
736   case CK_ObjCObjectLValueCast:
737   case CK_FloatingRealToComplex:
738   case CK_FloatingComplexToReal:
739   case CK_FloatingComplexToBoolean:
740   case CK_FloatingComplexCast:
741   case CK_FloatingComplexToIntegralComplex:
742   case CK_IntegralRealToComplex:
743   case CK_IntegralComplexToReal:
744   case CK_IntegralComplexToBoolean:
745   case CK_IntegralComplexCast:
746   case CK_IntegralComplexToFloatingComplex:
747   case CK_ARCProduceObject:
748   case CK_ARCConsumeObject:
749   case CK_ARCReclaimReturnedObject:
750   case CK_ARCExtendBlockObject:
751   case CK_CopyAndAutoreleaseBlockObject:
752   case CK_BuiltinFnToFnPtr:
753   case CK_ZeroToOCLEvent:
754   case CK_ZeroToOCLQueue:
755   case CK_AddressSpaceConversion:
756   case CK_IntToOCLSampler:
757     llvm_unreachable("cast kind invalid for aggregate types");
758   }
759 }
760 
761 void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
762   if (E->getCallReturnType(CGF.getContext())->isReferenceType()) {
763     EmitAggLoadOfLValue(E);
764     return;
765   }
766 
767   RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot());
768   EmitMoveFromReturnSlot(E, RV);
769 }
770 
771 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
772   RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot());
773   EmitMoveFromReturnSlot(E, RV);
774 }
775 
776 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
777   CGF.EmitIgnoredExpr(E->getLHS());
778   Visit(E->getRHS());
779 }
780 
781 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
782   CodeGenFunction::StmtExprEvaluation eval(CGF);
783   CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest);
784 }
785 
786 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
787   if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI)
788     VisitPointerToDataMemberBinaryOperator(E);
789   else
790     CGF.ErrorUnsupported(E, "aggregate binary expression");
791 }
792 
793 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator(
794                                                     const BinaryOperator *E) {
795   LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E);
796   EmitFinalDestCopy(E->getType(), LV);
797 }
798 
799 /// Is the value of the given expression possibly a reference to or
800 /// into a __block variable?
801 static bool isBlockVarRef(const Expr *E) {
802   // Make sure we look through parens.
803   E = E->IgnoreParens();
804 
805   // Check for a direct reference to a __block variable.
806   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
807     const VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
808     return (var && var->hasAttr<BlocksAttr>());
809   }
810 
811   // More complicated stuff.
812 
813   // Binary operators.
814   if (const BinaryOperator *op = dyn_cast<BinaryOperator>(E)) {
815     // For an assignment or pointer-to-member operation, just care
816     // about the LHS.
817     if (op->isAssignmentOp() || op->isPtrMemOp())
818       return isBlockVarRef(op->getLHS());
819 
820     // For a comma, just care about the RHS.
821     if (op->getOpcode() == BO_Comma)
822       return isBlockVarRef(op->getRHS());
823 
824     // FIXME: pointer arithmetic?
825     return false;
826 
827   // Check both sides of a conditional operator.
828   } else if (const AbstractConditionalOperator *op
829                = dyn_cast<AbstractConditionalOperator>(E)) {
830     return isBlockVarRef(op->getTrueExpr())
831         || isBlockVarRef(op->getFalseExpr());
832 
833   // OVEs are required to support BinaryConditionalOperators.
834   } else if (const OpaqueValueExpr *op
835                = dyn_cast<OpaqueValueExpr>(E)) {
836     if (const Expr *src = op->getSourceExpr())
837       return isBlockVarRef(src);
838 
839   // Casts are necessary to get things like (*(int*)&var) = foo().
840   // We don't really care about the kind of cast here, except
841   // we don't want to look through l2r casts, because it's okay
842   // to get the *value* in a __block variable.
843   } else if (const CastExpr *cast = dyn_cast<CastExpr>(E)) {
844     if (cast->getCastKind() == CK_LValueToRValue)
845       return false;
846     return isBlockVarRef(cast->getSubExpr());
847 
848   // Handle unary operators.  Again, just aggressively look through
849   // it, ignoring the operation.
850   } else if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E)) {
851     return isBlockVarRef(uop->getSubExpr());
852 
853   // Look into the base of a field access.
854   } else if (const MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
855     return isBlockVarRef(mem->getBase());
856 
857   // Look into the base of a subscript.
858   } else if (const ArraySubscriptExpr *sub = dyn_cast<ArraySubscriptExpr>(E)) {
859     return isBlockVarRef(sub->getBase());
860   }
861 
862   return false;
863 }
864 
865 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
866   // For an assignment to work, the value on the right has
867   // to be compatible with the value on the left.
868   assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
869                                                  E->getRHS()->getType())
870          && "Invalid assignment");
871 
872   // If the LHS might be a __block variable, and the RHS can
873   // potentially cause a block copy, we need to evaluate the RHS first
874   // so that the assignment goes the right place.
875   // This is pretty semantically fragile.
876   if (isBlockVarRef(E->getLHS()) &&
877       E->getRHS()->HasSideEffects(CGF.getContext())) {
878     // Ensure that we have a destination, and evaluate the RHS into that.
879     EnsureDest(E->getRHS()->getType());
880     Visit(E->getRHS());
881 
882     // Now emit the LHS and copy into it.
883     LValue LHS = CGF.EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
884 
885     // That copy is an atomic copy if the LHS is atomic.
886     if (LHS.getType()->isAtomicType() ||
887         CGF.LValueIsSuitableForInlineAtomic(LHS)) {
888       CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false);
889       return;
890     }
891 
892     EmitCopy(E->getLHS()->getType(),
893              AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed,
894                                      needsGC(E->getLHS()->getType()),
895                                      AggValueSlot::IsAliased),
896              Dest);
897     return;
898   }
899 
900   LValue LHS = CGF.EmitLValue(E->getLHS());
901 
902   // If we have an atomic type, evaluate into the destination and then
903   // do an atomic copy.
904   if (LHS.getType()->isAtomicType() ||
905       CGF.LValueIsSuitableForInlineAtomic(LHS)) {
906     EnsureDest(E->getRHS()->getType());
907     Visit(E->getRHS());
908     CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false);
909     return;
910   }
911 
912   // Codegen the RHS so that it stores directly into the LHS.
913   AggValueSlot LHSSlot =
914     AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed,
915                             needsGC(E->getLHS()->getType()),
916                             AggValueSlot::IsAliased);
917   // A non-volatile aggregate destination might have volatile member.
918   if (!LHSSlot.isVolatile() &&
919       CGF.hasVolatileMember(E->getLHS()->getType()))
920     LHSSlot.setVolatile(true);
921 
922   CGF.EmitAggExpr(E->getRHS(), LHSSlot);
923 
924   // Copy into the destination if the assignment isn't ignored.
925   EmitFinalDestCopy(E->getType(), LHS);
926 }
927 
928 void AggExprEmitter::
929 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
930   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
931   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
932   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
933 
934   // Bind the common expression if necessary.
935   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
936 
937   CodeGenFunction::ConditionalEvaluation eval(CGF);
938   CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock,
939                            CGF.getProfileCount(E));
940 
941   // Save whether the destination's lifetime is externally managed.
942   bool isExternallyDestructed = Dest.isExternallyDestructed();
943 
944   eval.begin(CGF);
945   CGF.EmitBlock(LHSBlock);
946   CGF.incrementProfileCounter(E);
947   Visit(E->getTrueExpr());
948   eval.end(CGF);
949 
950   assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!");
951   CGF.Builder.CreateBr(ContBlock);
952 
953   // If the result of an agg expression is unused, then the emission
954   // of the LHS might need to create a destination slot.  That's fine
955   // with us, and we can safely emit the RHS into the same slot, but
956   // we shouldn't claim that it's already being destructed.
957   Dest.setExternallyDestructed(isExternallyDestructed);
958 
959   eval.begin(CGF);
960   CGF.EmitBlock(RHSBlock);
961   Visit(E->getFalseExpr());
962   eval.end(CGF);
963 
964   CGF.EmitBlock(ContBlock);
965 }
966 
967 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) {
968   Visit(CE->getChosenSubExpr());
969 }
970 
971 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
972   Address ArgValue = Address::invalid();
973   Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
974 
975   // If EmitVAArg fails, emit an error.
976   if (!ArgPtr.isValid()) {
977     CGF.ErrorUnsupported(VE, "aggregate va_arg expression");
978     return;
979   }
980 
981   EmitFinalDestCopy(VE->getType(), CGF.MakeAddrLValue(ArgPtr, VE->getType()));
982 }
983 
984 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
985   // Ensure that we have a slot, but if we already do, remember
986   // whether it was externally destructed.
987   bool wasExternallyDestructed = Dest.isExternallyDestructed();
988   EnsureDest(E->getType());
989 
990   // We're going to push a destructor if there isn't already one.
991   Dest.setExternallyDestructed();
992 
993   Visit(E->getSubExpr());
994 
995   // Push that destructor we promised.
996   if (!wasExternallyDestructed)
997     CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddress());
998 }
999 
1000 void
1001 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) {
1002   AggValueSlot Slot = EnsureSlot(E->getType());
1003   CGF.EmitCXXConstructExpr(E, Slot);
1004 }
1005 
1006 void AggExprEmitter::VisitCXXInheritedCtorInitExpr(
1007     const CXXInheritedCtorInitExpr *E) {
1008   AggValueSlot Slot = EnsureSlot(E->getType());
1009   CGF.EmitInheritedCXXConstructorCall(
1010       E->getConstructor(), E->constructsVBase(), Slot.getAddress(),
1011       E->inheritedFromVBase(), E);
1012 }
1013 
1014 void
1015 AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) {
1016   AggValueSlot Slot = EnsureSlot(E->getType());
1017   CGF.EmitLambdaExpr(E, Slot);
1018 }
1019 
1020 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
1021   CGF.enterFullExpression(E);
1022   CodeGenFunction::RunCleanupsScope cleanups(CGF);
1023   Visit(E->getSubExpr());
1024 }
1025 
1026 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
1027   QualType T = E->getType();
1028   AggValueSlot Slot = EnsureSlot(T);
1029   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T));
1030 }
1031 
1032 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
1033   QualType T = E->getType();
1034   AggValueSlot Slot = EnsureSlot(T);
1035   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T));
1036 }
1037 
1038 /// isSimpleZero - If emitting this value will obviously just cause a store of
1039 /// zero to memory, return true.  This can return false if uncertain, so it just
1040 /// handles simple cases.
1041 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) {
1042   E = E->IgnoreParens();
1043 
1044   // 0
1045   if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E))
1046     return IL->getValue() == 0;
1047   // +0.0
1048   if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E))
1049     return FL->getValue().isPosZero();
1050   // int()
1051   if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) &&
1052       CGF.getTypes().isZeroInitializable(E->getType()))
1053     return true;
1054   // (int*)0 - Null pointer expressions.
1055   if (const CastExpr *ICE = dyn_cast<CastExpr>(E))
1056     return ICE->getCastKind() == CK_NullToPointer &&
1057         CGF.getTypes().isPointerZeroInitializable(E->getType());
1058   // '\0'
1059   if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E))
1060     return CL->getValue() == 0;
1061 
1062   // Otherwise, hard case: conservatively return false.
1063   return false;
1064 }
1065 
1066 
1067 void
1068 AggExprEmitter::EmitInitializationToLValue(Expr *E, LValue LV) {
1069   QualType type = LV.getType();
1070   // FIXME: Ignore result?
1071   // FIXME: Are initializers affected by volatile?
1072   if (Dest.isZeroed() && isSimpleZero(E, CGF)) {
1073     // Storing "i32 0" to a zero'd memory location is a noop.
1074     return;
1075   } else if (isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) {
1076     return EmitNullInitializationToLValue(LV);
1077   } else if (isa<NoInitExpr>(E)) {
1078     // Do nothing.
1079     return;
1080   } else if (type->isReferenceType()) {
1081     RValue RV = CGF.EmitReferenceBindingToExpr(E);
1082     return CGF.EmitStoreThroughLValue(RV, LV);
1083   }
1084 
1085   switch (CGF.getEvaluationKind(type)) {
1086   case TEK_Complex:
1087     CGF.EmitComplexExprIntoLValue(E, LV, /*isInit*/ true);
1088     return;
1089   case TEK_Aggregate:
1090     CGF.EmitAggExpr(E, AggValueSlot::forLValue(LV,
1091                                                AggValueSlot::IsDestructed,
1092                                       AggValueSlot::DoesNotNeedGCBarriers,
1093                                                AggValueSlot::IsNotAliased,
1094                                                Dest.isZeroed()));
1095     return;
1096   case TEK_Scalar:
1097     if (LV.isSimple()) {
1098       CGF.EmitScalarInit(E, /*D=*/nullptr, LV, /*Captured=*/false);
1099     } else {
1100       CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV);
1101     }
1102     return;
1103   }
1104   llvm_unreachable("bad evaluation kind");
1105 }
1106 
1107 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) {
1108   QualType type = lv.getType();
1109 
1110   // If the destination slot is already zeroed out before the aggregate is
1111   // copied into it, we don't have to emit any zeros here.
1112   if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type))
1113     return;
1114 
1115   if (CGF.hasScalarEvaluationKind(type)) {
1116     // For non-aggregates, we can store the appropriate null constant.
1117     llvm::Value *null = CGF.CGM.EmitNullConstant(type);
1118     // Note that the following is not equivalent to
1119     // EmitStoreThroughBitfieldLValue for ARC types.
1120     if (lv.isBitField()) {
1121       CGF.EmitStoreThroughBitfieldLValue(RValue::get(null), lv);
1122     } else {
1123       assert(lv.isSimple());
1124       CGF.EmitStoreOfScalar(null, lv, /* isInitialization */ true);
1125     }
1126   } else {
1127     // There's a potential optimization opportunity in combining
1128     // memsets; that would be easy for arrays, but relatively
1129     // difficult for structures with the current code.
1130     CGF.EmitNullInitialization(lv.getAddress(), lv.getType());
1131   }
1132 }
1133 
1134 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
1135 #if 0
1136   // FIXME: Assess perf here?  Figure out what cases are worth optimizing here
1137   // (Length of globals? Chunks of zeroed-out space?).
1138   //
1139   // If we can, prefer a copy from a global; this is a lot less code for long
1140   // globals, and it's easier for the current optimizers to analyze.
1141   if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) {
1142     llvm::GlobalVariable* GV =
1143     new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true,
1144                              llvm::GlobalValue::InternalLinkage, C, "");
1145     EmitFinalDestCopy(E->getType(), CGF.MakeAddrLValue(GV, E->getType()));
1146     return;
1147   }
1148 #endif
1149   if (E->hadArrayRangeDesignator())
1150     CGF.ErrorUnsupported(E, "GNU array range designator extension");
1151 
1152   if (E->isTransparent())
1153     return Visit(E->getInit(0));
1154 
1155   AggValueSlot Dest = EnsureSlot(E->getType());
1156 
1157   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
1158 
1159   // Handle initialization of an array.
1160   if (E->getType()->isArrayType()) {
1161     QualType elementType =
1162         CGF.getContext().getAsArrayType(E->getType())->getElementType();
1163 
1164     auto AType = cast<llvm::ArrayType>(Dest.getAddress().getElementType());
1165     EmitArrayInit(Dest.getAddress(), AType, elementType, E);
1166     return;
1167   }
1168 
1169   assert(E->getType()->isRecordType() && "Only support structs/unions here!");
1170 
1171   // Do struct initialization; this code just sets each individual member
1172   // to the approprate value.  This makes bitfield support automatic;
1173   // the disadvantage is that the generated code is more difficult for
1174   // the optimizer, especially with bitfields.
1175   unsigned NumInitElements = E->getNumInits();
1176   RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl();
1177 
1178   // We'll need to enter cleanup scopes in case any of the element
1179   // initializers throws an exception.
1180   SmallVector<EHScopeStack::stable_iterator, 16> cleanups;
1181   llvm::Instruction *cleanupDominator = nullptr;
1182 
1183   unsigned curInitIndex = 0;
1184 
1185   // Emit initialization of base classes.
1186   if (auto *CXXRD = dyn_cast<CXXRecordDecl>(record)) {
1187     assert(E->getNumInits() >= CXXRD->getNumBases() &&
1188            "missing initializer for base class");
1189     for (auto &Base : CXXRD->bases()) {
1190       assert(!Base.isVirtual() && "should not see vbases here");
1191       auto *BaseRD = Base.getType()->getAsCXXRecordDecl();
1192       Address V = CGF.GetAddressOfDirectBaseInCompleteClass(
1193           Dest.getAddress(), CXXRD, BaseRD,
1194           /*isBaseVirtual*/ false);
1195       AggValueSlot AggSlot =
1196         AggValueSlot::forAddr(V, Qualifiers(),
1197                               AggValueSlot::IsDestructed,
1198                               AggValueSlot::DoesNotNeedGCBarriers,
1199                               AggValueSlot::IsNotAliased);
1200       CGF.EmitAggExpr(E->getInit(curInitIndex++), AggSlot);
1201 
1202       if (QualType::DestructionKind dtorKind =
1203               Base.getType().isDestructedType()) {
1204         CGF.pushDestroy(dtorKind, V, Base.getType());
1205         cleanups.push_back(CGF.EHStack.stable_begin());
1206       }
1207     }
1208   }
1209 
1210   // Prepare a 'this' for CXXDefaultInitExprs.
1211   CodeGenFunction::FieldConstructionScope FCS(CGF, Dest.getAddress());
1212 
1213   if (record->isUnion()) {
1214     // Only initialize one field of a union. The field itself is
1215     // specified by the initializer list.
1216     if (!E->getInitializedFieldInUnion()) {
1217       // Empty union; we have nothing to do.
1218 
1219 #ifndef NDEBUG
1220       // Make sure that it's really an empty and not a failure of
1221       // semantic analysis.
1222       for (const auto *Field : record->fields())
1223         assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed");
1224 #endif
1225       return;
1226     }
1227 
1228     // FIXME: volatility
1229     FieldDecl *Field = E->getInitializedFieldInUnion();
1230 
1231     LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestLV, Field);
1232     if (NumInitElements) {
1233       // Store the initializer into the field
1234       EmitInitializationToLValue(E->getInit(0), FieldLoc);
1235     } else {
1236       // Default-initialize to null.
1237       EmitNullInitializationToLValue(FieldLoc);
1238     }
1239 
1240     return;
1241   }
1242 
1243   // Here we iterate over the fields; this makes it simpler to both
1244   // default-initialize fields and skip over unnamed fields.
1245   for (const auto *field : record->fields()) {
1246     // We're done once we hit the flexible array member.
1247     if (field->getType()->isIncompleteArrayType())
1248       break;
1249 
1250     // Always skip anonymous bitfields.
1251     if (field->isUnnamedBitfield())
1252       continue;
1253 
1254     // We're done if we reach the end of the explicit initializers, we
1255     // have a zeroed object, and the rest of the fields are
1256     // zero-initializable.
1257     if (curInitIndex == NumInitElements && Dest.isZeroed() &&
1258         CGF.getTypes().isZeroInitializable(E->getType()))
1259       break;
1260 
1261 
1262     LValue LV = CGF.EmitLValueForFieldInitialization(DestLV, field);
1263     // We never generate write-barries for initialized fields.
1264     LV.setNonGC(true);
1265 
1266     if (curInitIndex < NumInitElements) {
1267       // Store the initializer into the field.
1268       EmitInitializationToLValue(E->getInit(curInitIndex++), LV);
1269     } else {
1270       // We're out of initializers; default-initialize to null
1271       EmitNullInitializationToLValue(LV);
1272     }
1273 
1274     // Push a destructor if necessary.
1275     // FIXME: if we have an array of structures, all explicitly
1276     // initialized, we can end up pushing a linear number of cleanups.
1277     bool pushedCleanup = false;
1278     if (QualType::DestructionKind dtorKind
1279           = field->getType().isDestructedType()) {
1280       assert(LV.isSimple());
1281       if (CGF.needsEHCleanup(dtorKind)) {
1282         if (!cleanupDominator)
1283           cleanupDominator = CGF.Builder.CreateAlignedLoad(
1284               CGF.Int8Ty,
1285               llvm::Constant::getNullValue(CGF.Int8PtrTy),
1286               CharUnits::One()); // placeholder
1287 
1288         CGF.pushDestroy(EHCleanup, LV.getAddress(), field->getType(),
1289                         CGF.getDestroyer(dtorKind), false);
1290         cleanups.push_back(CGF.EHStack.stable_begin());
1291         pushedCleanup = true;
1292       }
1293     }
1294 
1295     // If the GEP didn't get used because of a dead zero init or something
1296     // else, clean it up for -O0 builds and general tidiness.
1297     if (!pushedCleanup && LV.isSimple())
1298       if (llvm::GetElementPtrInst *GEP =
1299             dyn_cast<llvm::GetElementPtrInst>(LV.getPointer()))
1300         if (GEP->use_empty())
1301           GEP->eraseFromParent();
1302   }
1303 
1304   // Deactivate all the partial cleanups in reverse order, which
1305   // generally means popping them.
1306   for (unsigned i = cleanups.size(); i != 0; --i)
1307     CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator);
1308 
1309   // Destroy the placeholder if we made one.
1310   if (cleanupDominator)
1311     cleanupDominator->eraseFromParent();
1312 }
1313 
1314 void AggExprEmitter::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E,
1315                                             llvm::Value *outerBegin) {
1316   // Emit the common subexpression.
1317   CodeGenFunction::OpaqueValueMapping binding(CGF, E->getCommonExpr());
1318 
1319   Address destPtr = EnsureSlot(E->getType()).getAddress();
1320   uint64_t numElements = E->getArraySize().getZExtValue();
1321 
1322   if (!numElements)
1323     return;
1324 
1325   // destPtr is an array*. Construct an elementType* by drilling down a level.
1326   llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
1327   llvm::Value *indices[] = {zero, zero};
1328   llvm::Value *begin = Builder.CreateInBoundsGEP(destPtr.getPointer(), indices,
1329                                                  "arrayinit.begin");
1330 
1331   // Prepare to special-case multidimensional array initialization: we avoid
1332   // emitting multiple destructor loops in that case.
1333   if (!outerBegin)
1334     outerBegin = begin;
1335   ArrayInitLoopExpr *InnerLoop = dyn_cast<ArrayInitLoopExpr>(E->getSubExpr());
1336 
1337   QualType elementType =
1338       CGF.getContext().getAsArrayType(E->getType())->getElementType();
1339   CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
1340   CharUnits elementAlign =
1341       destPtr.getAlignment().alignmentOfArrayElement(elementSize);
1342 
1343   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1344   llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
1345 
1346   // Jump into the body.
1347   CGF.EmitBlock(bodyBB);
1348   llvm::PHINode *index =
1349       Builder.CreatePHI(zero->getType(), 2, "arrayinit.index");
1350   index->addIncoming(zero, entryBB);
1351   llvm::Value *element = Builder.CreateInBoundsGEP(begin, index);
1352 
1353   // Prepare for a cleanup.
1354   QualType::DestructionKind dtorKind = elementType.isDestructedType();
1355   EHScopeStack::stable_iterator cleanup;
1356   if (CGF.needsEHCleanup(dtorKind) && !InnerLoop) {
1357     if (outerBegin->getType() != element->getType())
1358       outerBegin = Builder.CreateBitCast(outerBegin, element->getType());
1359     CGF.pushRegularPartialArrayCleanup(outerBegin, element, elementType,
1360                                        elementAlign,
1361                                        CGF.getDestroyer(dtorKind));
1362     cleanup = CGF.EHStack.stable_begin();
1363   } else {
1364     dtorKind = QualType::DK_none;
1365   }
1366 
1367   // Emit the actual filler expression.
1368   {
1369     // Temporaries created in an array initialization loop are destroyed
1370     // at the end of each iteration.
1371     CodeGenFunction::RunCleanupsScope CleanupsScope(CGF);
1372     CodeGenFunction::ArrayInitLoopExprScope Scope(CGF, index);
1373     LValue elementLV =
1374         CGF.MakeAddrLValue(Address(element, elementAlign), elementType);
1375 
1376     if (InnerLoop) {
1377       // If the subexpression is an ArrayInitLoopExpr, share its cleanup.
1378       auto elementSlot = AggValueSlot::forLValue(
1379           elementLV, AggValueSlot::IsDestructed,
1380           AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased);
1381       AggExprEmitter(CGF, elementSlot, false)
1382           .VisitArrayInitLoopExpr(InnerLoop, outerBegin);
1383     } else
1384       EmitInitializationToLValue(E->getSubExpr(), elementLV);
1385   }
1386 
1387   // Move on to the next element.
1388   llvm::Value *nextIndex = Builder.CreateNUWAdd(
1389       index, llvm::ConstantInt::get(CGF.SizeTy, 1), "arrayinit.next");
1390   index->addIncoming(nextIndex, Builder.GetInsertBlock());
1391 
1392   // Leave the loop if we're done.
1393   llvm::Value *done = Builder.CreateICmpEQ(
1394       nextIndex, llvm::ConstantInt::get(CGF.SizeTy, numElements),
1395       "arrayinit.done");
1396   llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
1397   Builder.CreateCondBr(done, endBB, bodyBB);
1398 
1399   CGF.EmitBlock(endBB);
1400 
1401   // Leave the partial-array cleanup if we entered one.
1402   if (dtorKind)
1403     CGF.DeactivateCleanupBlock(cleanup, index);
1404 }
1405 
1406 void AggExprEmitter::VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E) {
1407   AggValueSlot Dest = EnsureSlot(E->getType());
1408 
1409   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
1410   EmitInitializationToLValue(E->getBase(), DestLV);
1411   VisitInitListExpr(E->getUpdater());
1412 }
1413 
1414 //===----------------------------------------------------------------------===//
1415 //                        Entry Points into this File
1416 //===----------------------------------------------------------------------===//
1417 
1418 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of
1419 /// non-zero bytes that will be stored when outputting the initializer for the
1420 /// specified initializer expression.
1421 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) {
1422   E = E->IgnoreParens();
1423 
1424   // 0 and 0.0 won't require any non-zero stores!
1425   if (isSimpleZero(E, CGF)) return CharUnits::Zero();
1426 
1427   // If this is an initlist expr, sum up the size of sizes of the (present)
1428   // elements.  If this is something weird, assume the whole thing is non-zero.
1429   const InitListExpr *ILE = dyn_cast<InitListExpr>(E);
1430   if (!ILE || !CGF.getTypes().isZeroInitializable(ILE->getType()))
1431     return CGF.getContext().getTypeSizeInChars(E->getType());
1432 
1433   // InitListExprs for structs have to be handled carefully.  If there are
1434   // reference members, we need to consider the size of the reference, not the
1435   // referencee.  InitListExprs for unions and arrays can't have references.
1436   if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
1437     if (!RT->isUnionType()) {
1438       RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl();
1439       CharUnits NumNonZeroBytes = CharUnits::Zero();
1440 
1441       unsigned ILEElement = 0;
1442       if (auto *CXXRD = dyn_cast<CXXRecordDecl>(SD))
1443         while (ILEElement != CXXRD->getNumBases())
1444           NumNonZeroBytes +=
1445               GetNumNonZeroBytesInInit(ILE->getInit(ILEElement++), CGF);
1446       for (const auto *Field : SD->fields()) {
1447         // We're done once we hit the flexible array member or run out of
1448         // InitListExpr elements.
1449         if (Field->getType()->isIncompleteArrayType() ||
1450             ILEElement == ILE->getNumInits())
1451           break;
1452         if (Field->isUnnamedBitfield())
1453           continue;
1454 
1455         const Expr *E = ILE->getInit(ILEElement++);
1456 
1457         // Reference values are always non-null and have the width of a pointer.
1458         if (Field->getType()->isReferenceType())
1459           NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits(
1460               CGF.getTarget().getPointerWidth(0));
1461         else
1462           NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF);
1463       }
1464 
1465       return NumNonZeroBytes;
1466     }
1467   }
1468 
1469 
1470   CharUnits NumNonZeroBytes = CharUnits::Zero();
1471   for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1472     NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF);
1473   return NumNonZeroBytes;
1474 }
1475 
1476 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of
1477 /// zeros in it, emit a memset and avoid storing the individual zeros.
1478 ///
1479 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E,
1480                                      CodeGenFunction &CGF) {
1481   // If the slot is already known to be zeroed, nothing to do.  Don't mess with
1482   // volatile stores.
1483   if (Slot.isZeroed() || Slot.isVolatile() || !Slot.getAddress().isValid())
1484     return;
1485 
1486   // C++ objects with a user-declared constructor don't need zero'ing.
1487   if (CGF.getLangOpts().CPlusPlus)
1488     if (const RecordType *RT = CGF.getContext()
1489                        .getBaseElementType(E->getType())->getAs<RecordType>()) {
1490       const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1491       if (RD->hasUserDeclaredConstructor())
1492         return;
1493     }
1494 
1495   // If the type is 16-bytes or smaller, prefer individual stores over memset.
1496   CharUnits Size = CGF.getContext().getTypeSizeInChars(E->getType());
1497   if (Size <= CharUnits::fromQuantity(16))
1498     return;
1499 
1500   // Check to see if over 3/4 of the initializer are known to be zero.  If so,
1501   // we prefer to emit memset + individual stores for the rest.
1502   CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF);
1503   if (NumNonZeroBytes*4 > Size)
1504     return;
1505 
1506   // Okay, it seems like a good idea to use an initial memset, emit the call.
1507   llvm::Constant *SizeVal = CGF.Builder.getInt64(Size.getQuantity());
1508 
1509   Address Loc = Slot.getAddress();
1510   Loc = CGF.Builder.CreateElementBitCast(Loc, CGF.Int8Ty);
1511   CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, false);
1512 
1513   // Tell the AggExprEmitter that the slot is known zero.
1514   Slot.setZeroed();
1515 }
1516 
1517 
1518 
1519 
1520 /// EmitAggExpr - Emit the computation of the specified expression of aggregate
1521 /// type.  The result is computed into DestPtr.  Note that if DestPtr is null,
1522 /// the value of the aggregate expression is not needed.  If VolatileDest is
1523 /// true, DestPtr cannot be 0.
1524 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot) {
1525   assert(E && hasAggregateEvaluationKind(E->getType()) &&
1526          "Invalid aggregate expression to emit");
1527   assert((Slot.getAddress().isValid() || Slot.isIgnored()) &&
1528          "slot has bits but no address");
1529 
1530   // Optimize the slot if possible.
1531   CheckAggExprForMemSetUse(Slot, E, *this);
1532 
1533   AggExprEmitter(*this, Slot, Slot.isIgnored()).Visit(const_cast<Expr*>(E));
1534 }
1535 
1536 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) {
1537   assert(hasAggregateEvaluationKind(E->getType()) && "Invalid argument!");
1538   Address Temp = CreateMemTemp(E->getType());
1539   LValue LV = MakeAddrLValue(Temp, E->getType());
1540   EmitAggExpr(E, AggValueSlot::forLValue(LV, AggValueSlot::IsNotDestructed,
1541                                          AggValueSlot::DoesNotNeedGCBarriers,
1542                                          AggValueSlot::IsNotAliased));
1543   return LV;
1544 }
1545 
1546 void CodeGenFunction::EmitAggregateCopy(LValue Dest, LValue Src,
1547                                         QualType Ty, bool isVolatile,
1548                                         bool isAssignment) {
1549   assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
1550 
1551   Address DestPtr = Dest.getAddress();
1552   Address SrcPtr = Src.getAddress();
1553 
1554   if (getLangOpts().CPlusPlus) {
1555     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1556       CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
1557       assert((Record->hasTrivialCopyConstructor() ||
1558               Record->hasTrivialCopyAssignment() ||
1559               Record->hasTrivialMoveConstructor() ||
1560               Record->hasTrivialMoveAssignment() ||
1561               Record->isUnion()) &&
1562              "Trying to aggregate-copy a type without a trivial copy/move "
1563              "constructor or assignment operator");
1564       // Ignore empty classes in C++.
1565       if (Record->isEmpty())
1566         return;
1567     }
1568   }
1569 
1570   // Aggregate assignment turns into llvm.memcpy.  This is almost valid per
1571   // C99 6.5.16.1p3, which states "If the value being stored in an object is
1572   // read from another object that overlaps in anyway the storage of the first
1573   // object, then the overlap shall be exact and the two objects shall have
1574   // qualified or unqualified versions of a compatible type."
1575   //
1576   // memcpy is not defined if the source and destination pointers are exactly
1577   // equal, but other compilers do this optimization, and almost every memcpy
1578   // implementation handles this case safely.  If there is a libc that does not
1579   // safely handle this, we can add a target hook.
1580 
1581   // Get data size info for this aggregate. If this is an assignment,
1582   // don't copy the tail padding, because we might be assigning into a
1583   // base subobject where the tail padding is claimed.  Otherwise,
1584   // copying it is fine.
1585   std::pair<CharUnits, CharUnits> TypeInfo;
1586   if (isAssignment)
1587     TypeInfo = getContext().getTypeInfoDataSizeInChars(Ty);
1588   else
1589     TypeInfo = getContext().getTypeInfoInChars(Ty);
1590 
1591   llvm::Value *SizeVal = nullptr;
1592   if (TypeInfo.first.isZero()) {
1593     // But note that getTypeInfo returns 0 for a VLA.
1594     if (auto *VAT = dyn_cast_or_null<VariableArrayType>(
1595             getContext().getAsArrayType(Ty))) {
1596       QualType BaseEltTy;
1597       SizeVal = emitArrayLength(VAT, BaseEltTy, DestPtr);
1598       TypeInfo = getContext().getTypeInfoDataSizeInChars(BaseEltTy);
1599       std::pair<CharUnits, CharUnits> LastElementTypeInfo;
1600       if (!isAssignment)
1601         LastElementTypeInfo = getContext().getTypeInfoInChars(BaseEltTy);
1602       assert(!TypeInfo.first.isZero());
1603       SizeVal = Builder.CreateNUWMul(
1604           SizeVal,
1605           llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity()));
1606       if (!isAssignment) {
1607         SizeVal = Builder.CreateNUWSub(
1608             SizeVal,
1609             llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity()));
1610         SizeVal = Builder.CreateNUWAdd(
1611             SizeVal, llvm::ConstantInt::get(
1612                          SizeTy, LastElementTypeInfo.first.getQuantity()));
1613       }
1614     }
1615   }
1616   if (!SizeVal) {
1617     SizeVal = llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity());
1618   }
1619 
1620   // FIXME: If we have a volatile struct, the optimizer can remove what might
1621   // appear to be `extra' memory ops:
1622   //
1623   // volatile struct { int i; } a, b;
1624   //
1625   // int main() {
1626   //   a = b;
1627   //   a = b;
1628   // }
1629   //
1630   // we need to use a different call here.  We use isVolatile to indicate when
1631   // either the source or the destination is volatile.
1632 
1633   DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1634   SrcPtr = Builder.CreateElementBitCast(SrcPtr, Int8Ty);
1635 
1636   // Don't do any of the memmove_collectable tests if GC isn't set.
1637   if (CGM.getLangOpts().getGC() == LangOptions::NonGC) {
1638     // fall through
1639   } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
1640     RecordDecl *Record = RecordTy->getDecl();
1641     if (Record->hasObjectMember()) {
1642       CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
1643                                                     SizeVal);
1644       return;
1645     }
1646   } else if (Ty->isArrayType()) {
1647     QualType BaseType = getContext().getBaseElementType(Ty);
1648     if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
1649       if (RecordTy->getDecl()->hasObjectMember()) {
1650         CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
1651                                                       SizeVal);
1652         return;
1653       }
1654     }
1655   }
1656 
1657   auto Inst = Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, isVolatile);
1658 
1659   // Determine the metadata to describe the position of any padding in this
1660   // memcpy, as well as the TBAA tags for the members of the struct, in case
1661   // the optimizer wishes to expand it in to scalar memory operations.
1662   if (llvm::MDNode *TBAAStructTag = CGM.getTBAAStructInfo(Ty))
1663     Inst->setMetadata(llvm::LLVMContext::MD_tbaa_struct, TBAAStructTag);
1664 
1665   if (CGM.getCodeGenOpts().NewStructPathTBAA) {
1666     TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForMemoryTransfer(
1667         Dest.getTBAAInfo(), Src.getTBAAInfo());
1668     CGM.DecorateInstructionWithTBAA(Inst, TBAAInfo);
1669   }
1670 }
1671