1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Aggregate Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGObjCRuntime.h" 16 #include "CodeGenModule.h" 17 #include "clang/AST/ASTContext.h" 18 #include "clang/AST/DeclCXX.h" 19 #include "clang/AST/DeclTemplate.h" 20 #include "clang/AST/StmtVisitor.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/Function.h" 23 #include "llvm/IR/GlobalVariable.h" 24 #include "llvm/IR/Intrinsics.h" 25 using namespace clang; 26 using namespace CodeGen; 27 28 //===----------------------------------------------------------------------===// 29 // Aggregate Expression Emitter 30 //===----------------------------------------------------------------------===// 31 32 namespace { 33 class AggExprEmitter : public StmtVisitor<AggExprEmitter> { 34 CodeGenFunction &CGF; 35 CGBuilderTy &Builder; 36 AggValueSlot Dest; 37 bool IsResultUnused; 38 39 /// We want to use 'dest' as the return slot except under two 40 /// conditions: 41 /// - The destination slot requires garbage collection, so we 42 /// need to use the GC API. 43 /// - The destination slot is potentially aliased. 44 bool shouldUseDestForReturnSlot() const { 45 return !(Dest.requiresGCollection() || Dest.isPotentiallyAliased()); 46 } 47 48 ReturnValueSlot getReturnValueSlot() const { 49 if (!shouldUseDestForReturnSlot()) 50 return ReturnValueSlot(); 51 52 return ReturnValueSlot(Dest.getAddress(), Dest.isVolatile(), 53 IsResultUnused); 54 } 55 56 AggValueSlot EnsureSlot(QualType T) { 57 if (!Dest.isIgnored()) return Dest; 58 return CGF.CreateAggTemp(T, "agg.tmp.ensured"); 59 } 60 void EnsureDest(QualType T) { 61 if (!Dest.isIgnored()) return; 62 Dest = CGF.CreateAggTemp(T, "agg.tmp.ensured"); 63 } 64 65 public: 66 AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest, bool IsResultUnused) 67 : CGF(cgf), Builder(CGF.Builder), Dest(Dest), 68 IsResultUnused(IsResultUnused) { } 69 70 //===--------------------------------------------------------------------===// 71 // Utilities 72 //===--------------------------------------------------------------------===// 73 74 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 75 /// represents a value lvalue, this method emits the address of the lvalue, 76 /// then loads the result into DestPtr. 77 void EmitAggLoadOfLValue(const Expr *E); 78 79 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 80 void EmitFinalDestCopy(QualType type, const LValue &src); 81 void EmitFinalDestCopy(QualType type, RValue src); 82 void EmitCopy(QualType type, const AggValueSlot &dest, 83 const AggValueSlot &src); 84 85 void EmitMoveFromReturnSlot(const Expr *E, RValue Src); 86 87 void EmitArrayInit(Address DestPtr, llvm::ArrayType *AType, 88 QualType elementType, InitListExpr *E); 89 90 AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) { 91 if (CGF.getLangOpts().getGC() && TypeRequiresGCollection(T)) 92 return AggValueSlot::NeedsGCBarriers; 93 return AggValueSlot::DoesNotNeedGCBarriers; 94 } 95 96 bool TypeRequiresGCollection(QualType T); 97 98 //===--------------------------------------------------------------------===// 99 // Visitor Methods 100 //===--------------------------------------------------------------------===// 101 102 void Visit(Expr *E) { 103 ApplyDebugLocation DL(CGF, E); 104 StmtVisitor<AggExprEmitter>::Visit(E); 105 } 106 107 void VisitStmt(Stmt *S) { 108 CGF.ErrorUnsupported(S, "aggregate expression"); 109 } 110 void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); } 111 void VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 112 Visit(GE->getResultExpr()); 113 } 114 void VisitCoawaitExpr(CoawaitExpr *E) { 115 CGF.EmitCoawaitExpr(*E, Dest, IsResultUnused); 116 } 117 void VisitCoyieldExpr(CoyieldExpr *E) { 118 CGF.EmitCoyieldExpr(*E, Dest, IsResultUnused); 119 } 120 void VisitUnaryCoawait(UnaryOperator *E) { Visit(E->getSubExpr()); } 121 void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); } 122 void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 123 return Visit(E->getReplacement()); 124 } 125 126 // l-values. 127 void VisitDeclRefExpr(DeclRefExpr *E) { EmitAggLoadOfLValue(E); } 128 void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); } 129 void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); } 130 void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); } 131 void VisitCompoundLiteralExpr(CompoundLiteralExpr *E); 132 void VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 133 EmitAggLoadOfLValue(E); 134 } 135 void VisitPredefinedExpr(const PredefinedExpr *E) { 136 EmitAggLoadOfLValue(E); 137 } 138 139 // Operators. 140 void VisitCastExpr(CastExpr *E); 141 void VisitCallExpr(const CallExpr *E); 142 void VisitStmtExpr(const StmtExpr *E); 143 void VisitBinaryOperator(const BinaryOperator *BO); 144 void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO); 145 void VisitBinAssign(const BinaryOperator *E); 146 void VisitBinComma(const BinaryOperator *E); 147 148 void VisitObjCMessageExpr(ObjCMessageExpr *E); 149 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 150 EmitAggLoadOfLValue(E); 151 } 152 153 void VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E); 154 void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO); 155 void VisitChooseExpr(const ChooseExpr *CE); 156 void VisitInitListExpr(InitListExpr *E); 157 void VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E, 158 llvm::Value *outerBegin = nullptr); 159 void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E); 160 void VisitNoInitExpr(NoInitExpr *E) { } // Do nothing. 161 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 162 Visit(DAE->getExpr()); 163 } 164 void VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 165 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF); 166 Visit(DIE->getExpr()); 167 } 168 void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E); 169 void VisitCXXConstructExpr(const CXXConstructExpr *E); 170 void VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E); 171 void VisitLambdaExpr(LambdaExpr *E); 172 void VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E); 173 void VisitExprWithCleanups(ExprWithCleanups *E); 174 void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E); 175 void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); } 176 void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E); 177 void VisitOpaqueValueExpr(OpaqueValueExpr *E); 178 179 void VisitPseudoObjectExpr(PseudoObjectExpr *E) { 180 if (E->isGLValue()) { 181 LValue LV = CGF.EmitPseudoObjectLValue(E); 182 return EmitFinalDestCopy(E->getType(), LV); 183 } 184 185 CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType())); 186 } 187 188 void VisitVAArgExpr(VAArgExpr *E); 189 190 void EmitInitializationToLValue(Expr *E, LValue Address); 191 void EmitNullInitializationToLValue(LValue Address); 192 // case Expr::ChooseExprClass: 193 void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); } 194 void VisitAtomicExpr(AtomicExpr *E) { 195 RValue Res = CGF.EmitAtomicExpr(E); 196 EmitFinalDestCopy(E->getType(), Res); 197 } 198 }; 199 } // end anonymous namespace. 200 201 //===----------------------------------------------------------------------===// 202 // Utilities 203 //===----------------------------------------------------------------------===// 204 205 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 206 /// represents a value lvalue, this method emits the address of the lvalue, 207 /// then loads the result into DestPtr. 208 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) { 209 LValue LV = CGF.EmitLValue(E); 210 211 // If the type of the l-value is atomic, then do an atomic load. 212 if (LV.getType()->isAtomicType() || CGF.LValueIsSuitableForInlineAtomic(LV)) { 213 CGF.EmitAtomicLoad(LV, E->getExprLoc(), Dest); 214 return; 215 } 216 217 EmitFinalDestCopy(E->getType(), LV); 218 } 219 220 /// \brief True if the given aggregate type requires special GC API calls. 221 bool AggExprEmitter::TypeRequiresGCollection(QualType T) { 222 // Only record types have members that might require garbage collection. 223 const RecordType *RecordTy = T->getAs<RecordType>(); 224 if (!RecordTy) return false; 225 226 // Don't mess with non-trivial C++ types. 227 RecordDecl *Record = RecordTy->getDecl(); 228 if (isa<CXXRecordDecl>(Record) && 229 (cast<CXXRecordDecl>(Record)->hasNonTrivialCopyConstructor() || 230 !cast<CXXRecordDecl>(Record)->hasTrivialDestructor())) 231 return false; 232 233 // Check whether the type has an object member. 234 return Record->hasObjectMember(); 235 } 236 237 /// \brief Perform the final move to DestPtr if for some reason 238 /// getReturnValueSlot() didn't use it directly. 239 /// 240 /// The idea is that you do something like this: 241 /// RValue Result = EmitSomething(..., getReturnValueSlot()); 242 /// EmitMoveFromReturnSlot(E, Result); 243 /// 244 /// If nothing interferes, this will cause the result to be emitted 245 /// directly into the return value slot. Otherwise, a final move 246 /// will be performed. 247 void AggExprEmitter::EmitMoveFromReturnSlot(const Expr *E, RValue src) { 248 if (shouldUseDestForReturnSlot()) { 249 // Logically, Dest.getAddr() should equal Src.getAggregateAddr(). 250 // The possibility of undef rvalues complicates that a lot, 251 // though, so we can't really assert. 252 return; 253 } 254 255 // Otherwise, copy from there to the destination. 256 assert(Dest.getPointer() != src.getAggregatePointer()); 257 EmitFinalDestCopy(E->getType(), src); 258 } 259 260 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 261 void AggExprEmitter::EmitFinalDestCopy(QualType type, RValue src) { 262 assert(src.isAggregate() && "value must be aggregate value!"); 263 LValue srcLV = CGF.MakeAddrLValue(src.getAggregateAddress(), type); 264 EmitFinalDestCopy(type, srcLV); 265 } 266 267 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 268 void AggExprEmitter::EmitFinalDestCopy(QualType type, const LValue &src) { 269 // If Dest is ignored, then we're evaluating an aggregate expression 270 // in a context that doesn't care about the result. Note that loads 271 // from volatile l-values force the existence of a non-ignored 272 // destination. 273 if (Dest.isIgnored()) 274 return; 275 276 AggValueSlot srcAgg = 277 AggValueSlot::forLValue(src, AggValueSlot::IsDestructed, 278 needsGC(type), AggValueSlot::IsAliased); 279 EmitCopy(type, Dest, srcAgg); 280 } 281 282 /// Perform a copy from the source into the destination. 283 /// 284 /// \param type - the type of the aggregate being copied; qualifiers are 285 /// ignored 286 void AggExprEmitter::EmitCopy(QualType type, const AggValueSlot &dest, 287 const AggValueSlot &src) { 288 if (dest.requiresGCollection()) { 289 CharUnits sz = CGF.getContext().getTypeSizeInChars(type); 290 llvm::Value *size = llvm::ConstantInt::get(CGF.SizeTy, sz.getQuantity()); 291 CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, 292 dest.getAddress(), 293 src.getAddress(), 294 size); 295 return; 296 } 297 298 // If the result of the assignment is used, copy the LHS there also. 299 // It's volatile if either side is. Use the minimum alignment of 300 // the two sides. 301 LValue DestLV = CGF.MakeAddrLValue(dest.getAddress(), type); 302 LValue SrcLV = CGF.MakeAddrLValue(src.getAddress(), type); 303 CGF.EmitAggregateCopy(DestLV, SrcLV, type, 304 dest.isVolatile() || src.isVolatile()); 305 } 306 307 /// \brief Emit the initializer for a std::initializer_list initialized with a 308 /// real initializer list. 309 void 310 AggExprEmitter::VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E) { 311 // Emit an array containing the elements. The array is externally destructed 312 // if the std::initializer_list object is. 313 ASTContext &Ctx = CGF.getContext(); 314 LValue Array = CGF.EmitLValue(E->getSubExpr()); 315 assert(Array.isSimple() && "initializer_list array not a simple lvalue"); 316 Address ArrayPtr = Array.getAddress(); 317 318 const ConstantArrayType *ArrayType = 319 Ctx.getAsConstantArrayType(E->getSubExpr()->getType()); 320 assert(ArrayType && "std::initializer_list constructed from non-array"); 321 322 // FIXME: Perform the checks on the field types in SemaInit. 323 RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl(); 324 RecordDecl::field_iterator Field = Record->field_begin(); 325 if (Field == Record->field_end()) { 326 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 327 return; 328 } 329 330 // Start pointer. 331 if (!Field->getType()->isPointerType() || 332 !Ctx.hasSameType(Field->getType()->getPointeeType(), 333 ArrayType->getElementType())) { 334 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 335 return; 336 } 337 338 AggValueSlot Dest = EnsureSlot(E->getType()); 339 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType()); 340 LValue Start = CGF.EmitLValueForFieldInitialization(DestLV, *Field); 341 llvm::Value *Zero = llvm::ConstantInt::get(CGF.PtrDiffTy, 0); 342 llvm::Value *IdxStart[] = { Zero, Zero }; 343 llvm::Value *ArrayStart = 344 Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxStart, "arraystart"); 345 CGF.EmitStoreThroughLValue(RValue::get(ArrayStart), Start); 346 ++Field; 347 348 if (Field == Record->field_end()) { 349 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 350 return; 351 } 352 353 llvm::Value *Size = Builder.getInt(ArrayType->getSize()); 354 LValue EndOrLength = CGF.EmitLValueForFieldInitialization(DestLV, *Field); 355 if (Field->getType()->isPointerType() && 356 Ctx.hasSameType(Field->getType()->getPointeeType(), 357 ArrayType->getElementType())) { 358 // End pointer. 359 llvm::Value *IdxEnd[] = { Zero, Size }; 360 llvm::Value *ArrayEnd = 361 Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxEnd, "arrayend"); 362 CGF.EmitStoreThroughLValue(RValue::get(ArrayEnd), EndOrLength); 363 } else if (Ctx.hasSameType(Field->getType(), Ctx.getSizeType())) { 364 // Length. 365 CGF.EmitStoreThroughLValue(RValue::get(Size), EndOrLength); 366 } else { 367 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 368 return; 369 } 370 } 371 372 /// \brief Determine if E is a trivial array filler, that is, one that is 373 /// equivalent to zero-initialization. 374 static bool isTrivialFiller(Expr *E) { 375 if (!E) 376 return true; 377 378 if (isa<ImplicitValueInitExpr>(E)) 379 return true; 380 381 if (auto *ILE = dyn_cast<InitListExpr>(E)) { 382 if (ILE->getNumInits()) 383 return false; 384 return isTrivialFiller(ILE->getArrayFiller()); 385 } 386 387 if (auto *Cons = dyn_cast_or_null<CXXConstructExpr>(E)) 388 return Cons->getConstructor()->isDefaultConstructor() && 389 Cons->getConstructor()->isTrivial(); 390 391 // FIXME: Are there other cases where we can avoid emitting an initializer? 392 return false; 393 } 394 395 /// \brief Emit initialization of an array from an initializer list. 396 void AggExprEmitter::EmitArrayInit(Address DestPtr, llvm::ArrayType *AType, 397 QualType elementType, InitListExpr *E) { 398 uint64_t NumInitElements = E->getNumInits(); 399 400 uint64_t NumArrayElements = AType->getNumElements(); 401 assert(NumInitElements <= NumArrayElements); 402 403 // DestPtr is an array*. Construct an elementType* by drilling 404 // down a level. 405 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 406 llvm::Value *indices[] = { zero, zero }; 407 llvm::Value *begin = 408 Builder.CreateInBoundsGEP(DestPtr.getPointer(), indices, "arrayinit.begin"); 409 410 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType); 411 CharUnits elementAlign = 412 DestPtr.getAlignment().alignmentOfArrayElement(elementSize); 413 414 // Exception safety requires us to destroy all the 415 // already-constructed members if an initializer throws. 416 // For that, we'll need an EH cleanup. 417 QualType::DestructionKind dtorKind = elementType.isDestructedType(); 418 Address endOfInit = Address::invalid(); 419 EHScopeStack::stable_iterator cleanup; 420 llvm::Instruction *cleanupDominator = nullptr; 421 if (CGF.needsEHCleanup(dtorKind)) { 422 // In principle we could tell the cleanup where we are more 423 // directly, but the control flow can get so varied here that it 424 // would actually be quite complex. Therefore we go through an 425 // alloca. 426 endOfInit = CGF.CreateTempAlloca(begin->getType(), CGF.getPointerAlign(), 427 "arrayinit.endOfInit"); 428 cleanupDominator = Builder.CreateStore(begin, endOfInit); 429 CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType, 430 elementAlign, 431 CGF.getDestroyer(dtorKind)); 432 cleanup = CGF.EHStack.stable_begin(); 433 434 // Otherwise, remember that we didn't need a cleanup. 435 } else { 436 dtorKind = QualType::DK_none; 437 } 438 439 llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1); 440 441 // The 'current element to initialize'. The invariants on this 442 // variable are complicated. Essentially, after each iteration of 443 // the loop, it points to the last initialized element, except 444 // that it points to the beginning of the array before any 445 // elements have been initialized. 446 llvm::Value *element = begin; 447 448 // Emit the explicit initializers. 449 for (uint64_t i = 0; i != NumInitElements; ++i) { 450 // Advance to the next element. 451 if (i > 0) { 452 element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element"); 453 454 // Tell the cleanup that it needs to destroy up to this 455 // element. TODO: some of these stores can be trivially 456 // observed to be unnecessary. 457 if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit); 458 } 459 460 LValue elementLV = 461 CGF.MakeAddrLValue(Address(element, elementAlign), elementType); 462 EmitInitializationToLValue(E->getInit(i), elementLV); 463 } 464 465 // Check whether there's a non-trivial array-fill expression. 466 Expr *filler = E->getArrayFiller(); 467 bool hasTrivialFiller = isTrivialFiller(filler); 468 469 // Any remaining elements need to be zero-initialized, possibly 470 // using the filler expression. We can skip this if the we're 471 // emitting to zeroed memory. 472 if (NumInitElements != NumArrayElements && 473 !(Dest.isZeroed() && hasTrivialFiller && 474 CGF.getTypes().isZeroInitializable(elementType))) { 475 476 // Use an actual loop. This is basically 477 // do { *array++ = filler; } while (array != end); 478 479 // Advance to the start of the rest of the array. 480 if (NumInitElements) { 481 element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start"); 482 if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit); 483 } 484 485 // Compute the end of the array. 486 llvm::Value *end = Builder.CreateInBoundsGEP(begin, 487 llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements), 488 "arrayinit.end"); 489 490 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 491 llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body"); 492 493 // Jump into the body. 494 CGF.EmitBlock(bodyBB); 495 llvm::PHINode *currentElement = 496 Builder.CreatePHI(element->getType(), 2, "arrayinit.cur"); 497 currentElement->addIncoming(element, entryBB); 498 499 // Emit the actual filler expression. 500 { 501 // C++1z [class.temporary]p5: 502 // when a default constructor is called to initialize an element of 503 // an array with no corresponding initializer [...] the destruction of 504 // every temporary created in a default argument is sequenced before 505 // the construction of the next array element, if any 506 CodeGenFunction::RunCleanupsScope CleanupsScope(CGF); 507 LValue elementLV = 508 CGF.MakeAddrLValue(Address(currentElement, elementAlign), elementType); 509 if (filler) 510 EmitInitializationToLValue(filler, elementLV); 511 else 512 EmitNullInitializationToLValue(elementLV); 513 } 514 515 // Move on to the next element. 516 llvm::Value *nextElement = 517 Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next"); 518 519 // Tell the EH cleanup that we finished with the last element. 520 if (endOfInit.isValid()) Builder.CreateStore(nextElement, endOfInit); 521 522 // Leave the loop if we're done. 523 llvm::Value *done = Builder.CreateICmpEQ(nextElement, end, 524 "arrayinit.done"); 525 llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end"); 526 Builder.CreateCondBr(done, endBB, bodyBB); 527 currentElement->addIncoming(nextElement, Builder.GetInsertBlock()); 528 529 CGF.EmitBlock(endBB); 530 } 531 532 // Leave the partial-array cleanup if we entered one. 533 if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator); 534 } 535 536 //===----------------------------------------------------------------------===// 537 // Visitor Methods 538 //===----------------------------------------------------------------------===// 539 540 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){ 541 Visit(E->GetTemporaryExpr()); 542 } 543 544 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) { 545 EmitFinalDestCopy(e->getType(), CGF.getOpaqueLValueMapping(e)); 546 } 547 548 void 549 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 550 if (Dest.isPotentiallyAliased() && 551 E->getType().isPODType(CGF.getContext())) { 552 // For a POD type, just emit a load of the lvalue + a copy, because our 553 // compound literal might alias the destination. 554 EmitAggLoadOfLValue(E); 555 return; 556 } 557 558 AggValueSlot Slot = EnsureSlot(E->getType()); 559 CGF.EmitAggExpr(E->getInitializer(), Slot); 560 } 561 562 /// Attempt to look through various unimportant expressions to find a 563 /// cast of the given kind. 564 static Expr *findPeephole(Expr *op, CastKind kind) { 565 while (true) { 566 op = op->IgnoreParens(); 567 if (CastExpr *castE = dyn_cast<CastExpr>(op)) { 568 if (castE->getCastKind() == kind) 569 return castE->getSubExpr(); 570 if (castE->getCastKind() == CK_NoOp) 571 continue; 572 } 573 return nullptr; 574 } 575 } 576 577 void AggExprEmitter::VisitCastExpr(CastExpr *E) { 578 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E)) 579 CGF.CGM.EmitExplicitCastExprType(ECE, &CGF); 580 switch (E->getCastKind()) { 581 case CK_Dynamic: { 582 // FIXME: Can this actually happen? We have no test coverage for it. 583 assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?"); 584 LValue LV = CGF.EmitCheckedLValue(E->getSubExpr(), 585 CodeGenFunction::TCK_Load); 586 // FIXME: Do we also need to handle property references here? 587 if (LV.isSimple()) 588 CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E)); 589 else 590 CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast"); 591 592 if (!Dest.isIgnored()) 593 CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination"); 594 break; 595 } 596 597 case CK_ToUnion: { 598 // Evaluate even if the destination is ignored. 599 if (Dest.isIgnored()) { 600 CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(), 601 /*ignoreResult=*/true); 602 break; 603 } 604 605 // GCC union extension 606 QualType Ty = E->getSubExpr()->getType(); 607 Address CastPtr = 608 Builder.CreateElementBitCast(Dest.getAddress(), CGF.ConvertType(Ty)); 609 EmitInitializationToLValue(E->getSubExpr(), 610 CGF.MakeAddrLValue(CastPtr, Ty)); 611 break; 612 } 613 614 case CK_DerivedToBase: 615 case CK_BaseToDerived: 616 case CK_UncheckedDerivedToBase: { 617 llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: " 618 "should have been unpacked before we got here"); 619 } 620 621 case CK_NonAtomicToAtomic: 622 case CK_AtomicToNonAtomic: { 623 bool isToAtomic = (E->getCastKind() == CK_NonAtomicToAtomic); 624 625 // Determine the atomic and value types. 626 QualType atomicType = E->getSubExpr()->getType(); 627 QualType valueType = E->getType(); 628 if (isToAtomic) std::swap(atomicType, valueType); 629 630 assert(atomicType->isAtomicType()); 631 assert(CGF.getContext().hasSameUnqualifiedType(valueType, 632 atomicType->castAs<AtomicType>()->getValueType())); 633 634 // Just recurse normally if we're ignoring the result or the 635 // atomic type doesn't change representation. 636 if (Dest.isIgnored() || !CGF.CGM.isPaddedAtomicType(atomicType)) { 637 return Visit(E->getSubExpr()); 638 } 639 640 CastKind peepholeTarget = 641 (isToAtomic ? CK_AtomicToNonAtomic : CK_NonAtomicToAtomic); 642 643 // These two cases are reverses of each other; try to peephole them. 644 if (Expr *op = findPeephole(E->getSubExpr(), peepholeTarget)) { 645 assert(CGF.getContext().hasSameUnqualifiedType(op->getType(), 646 E->getType()) && 647 "peephole significantly changed types?"); 648 return Visit(op); 649 } 650 651 // If we're converting an r-value of non-atomic type to an r-value 652 // of atomic type, just emit directly into the relevant sub-object. 653 if (isToAtomic) { 654 AggValueSlot valueDest = Dest; 655 if (!valueDest.isIgnored() && CGF.CGM.isPaddedAtomicType(atomicType)) { 656 // Zero-initialize. (Strictly speaking, we only need to intialize 657 // the padding at the end, but this is simpler.) 658 if (!Dest.isZeroed()) 659 CGF.EmitNullInitialization(Dest.getAddress(), atomicType); 660 661 // Build a GEP to refer to the subobject. 662 Address valueAddr = 663 CGF.Builder.CreateStructGEP(valueDest.getAddress(), 0, 664 CharUnits()); 665 valueDest = AggValueSlot::forAddr(valueAddr, 666 valueDest.getQualifiers(), 667 valueDest.isExternallyDestructed(), 668 valueDest.requiresGCollection(), 669 valueDest.isPotentiallyAliased(), 670 AggValueSlot::IsZeroed); 671 } 672 673 CGF.EmitAggExpr(E->getSubExpr(), valueDest); 674 return; 675 } 676 677 // Otherwise, we're converting an atomic type to a non-atomic type. 678 // Make an atomic temporary, emit into that, and then copy the value out. 679 AggValueSlot atomicSlot = 680 CGF.CreateAggTemp(atomicType, "atomic-to-nonatomic.temp"); 681 CGF.EmitAggExpr(E->getSubExpr(), atomicSlot); 682 683 Address valueAddr = 684 Builder.CreateStructGEP(atomicSlot.getAddress(), 0, CharUnits()); 685 RValue rvalue = RValue::getAggregate(valueAddr, atomicSlot.isVolatile()); 686 return EmitFinalDestCopy(valueType, rvalue); 687 } 688 689 case CK_LValueToRValue: 690 // If we're loading from a volatile type, force the destination 691 // into existence. 692 if (E->getSubExpr()->getType().isVolatileQualified()) { 693 EnsureDest(E->getType()); 694 return Visit(E->getSubExpr()); 695 } 696 697 LLVM_FALLTHROUGH; 698 699 case CK_NoOp: 700 case CK_UserDefinedConversion: 701 case CK_ConstructorConversion: 702 assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(), 703 E->getType()) && 704 "Implicit cast types must be compatible"); 705 Visit(E->getSubExpr()); 706 break; 707 708 case CK_LValueBitCast: 709 llvm_unreachable("should not be emitting lvalue bitcast as rvalue"); 710 711 case CK_Dependent: 712 case CK_BitCast: 713 case CK_ArrayToPointerDecay: 714 case CK_FunctionToPointerDecay: 715 case CK_NullToPointer: 716 case CK_NullToMemberPointer: 717 case CK_BaseToDerivedMemberPointer: 718 case CK_DerivedToBaseMemberPointer: 719 case CK_MemberPointerToBoolean: 720 case CK_ReinterpretMemberPointer: 721 case CK_IntegralToPointer: 722 case CK_PointerToIntegral: 723 case CK_PointerToBoolean: 724 case CK_ToVoid: 725 case CK_VectorSplat: 726 case CK_IntegralCast: 727 case CK_BooleanToSignedIntegral: 728 case CK_IntegralToBoolean: 729 case CK_IntegralToFloating: 730 case CK_FloatingToIntegral: 731 case CK_FloatingToBoolean: 732 case CK_FloatingCast: 733 case CK_CPointerToObjCPointerCast: 734 case CK_BlockPointerToObjCPointerCast: 735 case CK_AnyPointerToBlockPointerCast: 736 case CK_ObjCObjectLValueCast: 737 case CK_FloatingRealToComplex: 738 case CK_FloatingComplexToReal: 739 case CK_FloatingComplexToBoolean: 740 case CK_FloatingComplexCast: 741 case CK_FloatingComplexToIntegralComplex: 742 case CK_IntegralRealToComplex: 743 case CK_IntegralComplexToReal: 744 case CK_IntegralComplexToBoolean: 745 case CK_IntegralComplexCast: 746 case CK_IntegralComplexToFloatingComplex: 747 case CK_ARCProduceObject: 748 case CK_ARCConsumeObject: 749 case CK_ARCReclaimReturnedObject: 750 case CK_ARCExtendBlockObject: 751 case CK_CopyAndAutoreleaseBlockObject: 752 case CK_BuiltinFnToFnPtr: 753 case CK_ZeroToOCLEvent: 754 case CK_ZeroToOCLQueue: 755 case CK_AddressSpaceConversion: 756 case CK_IntToOCLSampler: 757 llvm_unreachable("cast kind invalid for aggregate types"); 758 } 759 } 760 761 void AggExprEmitter::VisitCallExpr(const CallExpr *E) { 762 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) { 763 EmitAggLoadOfLValue(E); 764 return; 765 } 766 767 RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot()); 768 EmitMoveFromReturnSlot(E, RV); 769 } 770 771 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) { 772 RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot()); 773 EmitMoveFromReturnSlot(E, RV); 774 } 775 776 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) { 777 CGF.EmitIgnoredExpr(E->getLHS()); 778 Visit(E->getRHS()); 779 } 780 781 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) { 782 CodeGenFunction::StmtExprEvaluation eval(CGF); 783 CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest); 784 } 785 786 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) { 787 if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI) 788 VisitPointerToDataMemberBinaryOperator(E); 789 else 790 CGF.ErrorUnsupported(E, "aggregate binary expression"); 791 } 792 793 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator( 794 const BinaryOperator *E) { 795 LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E); 796 EmitFinalDestCopy(E->getType(), LV); 797 } 798 799 /// Is the value of the given expression possibly a reference to or 800 /// into a __block variable? 801 static bool isBlockVarRef(const Expr *E) { 802 // Make sure we look through parens. 803 E = E->IgnoreParens(); 804 805 // Check for a direct reference to a __block variable. 806 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { 807 const VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl()); 808 return (var && var->hasAttr<BlocksAttr>()); 809 } 810 811 // More complicated stuff. 812 813 // Binary operators. 814 if (const BinaryOperator *op = dyn_cast<BinaryOperator>(E)) { 815 // For an assignment or pointer-to-member operation, just care 816 // about the LHS. 817 if (op->isAssignmentOp() || op->isPtrMemOp()) 818 return isBlockVarRef(op->getLHS()); 819 820 // For a comma, just care about the RHS. 821 if (op->getOpcode() == BO_Comma) 822 return isBlockVarRef(op->getRHS()); 823 824 // FIXME: pointer arithmetic? 825 return false; 826 827 // Check both sides of a conditional operator. 828 } else if (const AbstractConditionalOperator *op 829 = dyn_cast<AbstractConditionalOperator>(E)) { 830 return isBlockVarRef(op->getTrueExpr()) 831 || isBlockVarRef(op->getFalseExpr()); 832 833 // OVEs are required to support BinaryConditionalOperators. 834 } else if (const OpaqueValueExpr *op 835 = dyn_cast<OpaqueValueExpr>(E)) { 836 if (const Expr *src = op->getSourceExpr()) 837 return isBlockVarRef(src); 838 839 // Casts are necessary to get things like (*(int*)&var) = foo(). 840 // We don't really care about the kind of cast here, except 841 // we don't want to look through l2r casts, because it's okay 842 // to get the *value* in a __block variable. 843 } else if (const CastExpr *cast = dyn_cast<CastExpr>(E)) { 844 if (cast->getCastKind() == CK_LValueToRValue) 845 return false; 846 return isBlockVarRef(cast->getSubExpr()); 847 848 // Handle unary operators. Again, just aggressively look through 849 // it, ignoring the operation. 850 } else if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E)) { 851 return isBlockVarRef(uop->getSubExpr()); 852 853 // Look into the base of a field access. 854 } else if (const MemberExpr *mem = dyn_cast<MemberExpr>(E)) { 855 return isBlockVarRef(mem->getBase()); 856 857 // Look into the base of a subscript. 858 } else if (const ArraySubscriptExpr *sub = dyn_cast<ArraySubscriptExpr>(E)) { 859 return isBlockVarRef(sub->getBase()); 860 } 861 862 return false; 863 } 864 865 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) { 866 // For an assignment to work, the value on the right has 867 // to be compatible with the value on the left. 868 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), 869 E->getRHS()->getType()) 870 && "Invalid assignment"); 871 872 // If the LHS might be a __block variable, and the RHS can 873 // potentially cause a block copy, we need to evaluate the RHS first 874 // so that the assignment goes the right place. 875 // This is pretty semantically fragile. 876 if (isBlockVarRef(E->getLHS()) && 877 E->getRHS()->HasSideEffects(CGF.getContext())) { 878 // Ensure that we have a destination, and evaluate the RHS into that. 879 EnsureDest(E->getRHS()->getType()); 880 Visit(E->getRHS()); 881 882 // Now emit the LHS and copy into it. 883 LValue LHS = CGF.EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 884 885 // That copy is an atomic copy if the LHS is atomic. 886 if (LHS.getType()->isAtomicType() || 887 CGF.LValueIsSuitableForInlineAtomic(LHS)) { 888 CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false); 889 return; 890 } 891 892 EmitCopy(E->getLHS()->getType(), 893 AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed, 894 needsGC(E->getLHS()->getType()), 895 AggValueSlot::IsAliased), 896 Dest); 897 return; 898 } 899 900 LValue LHS = CGF.EmitLValue(E->getLHS()); 901 902 // If we have an atomic type, evaluate into the destination and then 903 // do an atomic copy. 904 if (LHS.getType()->isAtomicType() || 905 CGF.LValueIsSuitableForInlineAtomic(LHS)) { 906 EnsureDest(E->getRHS()->getType()); 907 Visit(E->getRHS()); 908 CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false); 909 return; 910 } 911 912 // Codegen the RHS so that it stores directly into the LHS. 913 AggValueSlot LHSSlot = 914 AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed, 915 needsGC(E->getLHS()->getType()), 916 AggValueSlot::IsAliased); 917 // A non-volatile aggregate destination might have volatile member. 918 if (!LHSSlot.isVolatile() && 919 CGF.hasVolatileMember(E->getLHS()->getType())) 920 LHSSlot.setVolatile(true); 921 922 CGF.EmitAggExpr(E->getRHS(), LHSSlot); 923 924 // Copy into the destination if the assignment isn't ignored. 925 EmitFinalDestCopy(E->getType(), LHS); 926 } 927 928 void AggExprEmitter:: 929 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 930 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 931 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 932 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 933 934 // Bind the common expression if necessary. 935 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 936 937 CodeGenFunction::ConditionalEvaluation eval(CGF); 938 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock, 939 CGF.getProfileCount(E)); 940 941 // Save whether the destination's lifetime is externally managed. 942 bool isExternallyDestructed = Dest.isExternallyDestructed(); 943 944 eval.begin(CGF); 945 CGF.EmitBlock(LHSBlock); 946 CGF.incrementProfileCounter(E); 947 Visit(E->getTrueExpr()); 948 eval.end(CGF); 949 950 assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!"); 951 CGF.Builder.CreateBr(ContBlock); 952 953 // If the result of an agg expression is unused, then the emission 954 // of the LHS might need to create a destination slot. That's fine 955 // with us, and we can safely emit the RHS into the same slot, but 956 // we shouldn't claim that it's already being destructed. 957 Dest.setExternallyDestructed(isExternallyDestructed); 958 959 eval.begin(CGF); 960 CGF.EmitBlock(RHSBlock); 961 Visit(E->getFalseExpr()); 962 eval.end(CGF); 963 964 CGF.EmitBlock(ContBlock); 965 } 966 967 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) { 968 Visit(CE->getChosenSubExpr()); 969 } 970 971 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 972 Address ArgValue = Address::invalid(); 973 Address ArgPtr = CGF.EmitVAArg(VE, ArgValue); 974 975 // If EmitVAArg fails, emit an error. 976 if (!ArgPtr.isValid()) { 977 CGF.ErrorUnsupported(VE, "aggregate va_arg expression"); 978 return; 979 } 980 981 EmitFinalDestCopy(VE->getType(), CGF.MakeAddrLValue(ArgPtr, VE->getType())); 982 } 983 984 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 985 // Ensure that we have a slot, but if we already do, remember 986 // whether it was externally destructed. 987 bool wasExternallyDestructed = Dest.isExternallyDestructed(); 988 EnsureDest(E->getType()); 989 990 // We're going to push a destructor if there isn't already one. 991 Dest.setExternallyDestructed(); 992 993 Visit(E->getSubExpr()); 994 995 // Push that destructor we promised. 996 if (!wasExternallyDestructed) 997 CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddress()); 998 } 999 1000 void 1001 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) { 1002 AggValueSlot Slot = EnsureSlot(E->getType()); 1003 CGF.EmitCXXConstructExpr(E, Slot); 1004 } 1005 1006 void AggExprEmitter::VisitCXXInheritedCtorInitExpr( 1007 const CXXInheritedCtorInitExpr *E) { 1008 AggValueSlot Slot = EnsureSlot(E->getType()); 1009 CGF.EmitInheritedCXXConstructorCall( 1010 E->getConstructor(), E->constructsVBase(), Slot.getAddress(), 1011 E->inheritedFromVBase(), E); 1012 } 1013 1014 void 1015 AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) { 1016 AggValueSlot Slot = EnsureSlot(E->getType()); 1017 CGF.EmitLambdaExpr(E, Slot); 1018 } 1019 1020 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) { 1021 CGF.enterFullExpression(E); 1022 CodeGenFunction::RunCleanupsScope cleanups(CGF); 1023 Visit(E->getSubExpr()); 1024 } 1025 1026 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) { 1027 QualType T = E->getType(); 1028 AggValueSlot Slot = EnsureSlot(T); 1029 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T)); 1030 } 1031 1032 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) { 1033 QualType T = E->getType(); 1034 AggValueSlot Slot = EnsureSlot(T); 1035 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T)); 1036 } 1037 1038 /// isSimpleZero - If emitting this value will obviously just cause a store of 1039 /// zero to memory, return true. This can return false if uncertain, so it just 1040 /// handles simple cases. 1041 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) { 1042 E = E->IgnoreParens(); 1043 1044 // 0 1045 if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) 1046 return IL->getValue() == 0; 1047 // +0.0 1048 if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E)) 1049 return FL->getValue().isPosZero(); 1050 // int() 1051 if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) && 1052 CGF.getTypes().isZeroInitializable(E->getType())) 1053 return true; 1054 // (int*)0 - Null pointer expressions. 1055 if (const CastExpr *ICE = dyn_cast<CastExpr>(E)) 1056 return ICE->getCastKind() == CK_NullToPointer && 1057 CGF.getTypes().isPointerZeroInitializable(E->getType()); 1058 // '\0' 1059 if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) 1060 return CL->getValue() == 0; 1061 1062 // Otherwise, hard case: conservatively return false. 1063 return false; 1064 } 1065 1066 1067 void 1068 AggExprEmitter::EmitInitializationToLValue(Expr *E, LValue LV) { 1069 QualType type = LV.getType(); 1070 // FIXME: Ignore result? 1071 // FIXME: Are initializers affected by volatile? 1072 if (Dest.isZeroed() && isSimpleZero(E, CGF)) { 1073 // Storing "i32 0" to a zero'd memory location is a noop. 1074 return; 1075 } else if (isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) { 1076 return EmitNullInitializationToLValue(LV); 1077 } else if (isa<NoInitExpr>(E)) { 1078 // Do nothing. 1079 return; 1080 } else if (type->isReferenceType()) { 1081 RValue RV = CGF.EmitReferenceBindingToExpr(E); 1082 return CGF.EmitStoreThroughLValue(RV, LV); 1083 } 1084 1085 switch (CGF.getEvaluationKind(type)) { 1086 case TEK_Complex: 1087 CGF.EmitComplexExprIntoLValue(E, LV, /*isInit*/ true); 1088 return; 1089 case TEK_Aggregate: 1090 CGF.EmitAggExpr(E, AggValueSlot::forLValue(LV, 1091 AggValueSlot::IsDestructed, 1092 AggValueSlot::DoesNotNeedGCBarriers, 1093 AggValueSlot::IsNotAliased, 1094 Dest.isZeroed())); 1095 return; 1096 case TEK_Scalar: 1097 if (LV.isSimple()) { 1098 CGF.EmitScalarInit(E, /*D=*/nullptr, LV, /*Captured=*/false); 1099 } else { 1100 CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV); 1101 } 1102 return; 1103 } 1104 llvm_unreachable("bad evaluation kind"); 1105 } 1106 1107 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) { 1108 QualType type = lv.getType(); 1109 1110 // If the destination slot is already zeroed out before the aggregate is 1111 // copied into it, we don't have to emit any zeros here. 1112 if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type)) 1113 return; 1114 1115 if (CGF.hasScalarEvaluationKind(type)) { 1116 // For non-aggregates, we can store the appropriate null constant. 1117 llvm::Value *null = CGF.CGM.EmitNullConstant(type); 1118 // Note that the following is not equivalent to 1119 // EmitStoreThroughBitfieldLValue for ARC types. 1120 if (lv.isBitField()) { 1121 CGF.EmitStoreThroughBitfieldLValue(RValue::get(null), lv); 1122 } else { 1123 assert(lv.isSimple()); 1124 CGF.EmitStoreOfScalar(null, lv, /* isInitialization */ true); 1125 } 1126 } else { 1127 // There's a potential optimization opportunity in combining 1128 // memsets; that would be easy for arrays, but relatively 1129 // difficult for structures with the current code. 1130 CGF.EmitNullInitialization(lv.getAddress(), lv.getType()); 1131 } 1132 } 1133 1134 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) { 1135 #if 0 1136 // FIXME: Assess perf here? Figure out what cases are worth optimizing here 1137 // (Length of globals? Chunks of zeroed-out space?). 1138 // 1139 // If we can, prefer a copy from a global; this is a lot less code for long 1140 // globals, and it's easier for the current optimizers to analyze. 1141 if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) { 1142 llvm::GlobalVariable* GV = 1143 new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true, 1144 llvm::GlobalValue::InternalLinkage, C, ""); 1145 EmitFinalDestCopy(E->getType(), CGF.MakeAddrLValue(GV, E->getType())); 1146 return; 1147 } 1148 #endif 1149 if (E->hadArrayRangeDesignator()) 1150 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 1151 1152 if (E->isTransparent()) 1153 return Visit(E->getInit(0)); 1154 1155 AggValueSlot Dest = EnsureSlot(E->getType()); 1156 1157 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType()); 1158 1159 // Handle initialization of an array. 1160 if (E->getType()->isArrayType()) { 1161 QualType elementType = 1162 CGF.getContext().getAsArrayType(E->getType())->getElementType(); 1163 1164 auto AType = cast<llvm::ArrayType>(Dest.getAddress().getElementType()); 1165 EmitArrayInit(Dest.getAddress(), AType, elementType, E); 1166 return; 1167 } 1168 1169 assert(E->getType()->isRecordType() && "Only support structs/unions here!"); 1170 1171 // Do struct initialization; this code just sets each individual member 1172 // to the approprate value. This makes bitfield support automatic; 1173 // the disadvantage is that the generated code is more difficult for 1174 // the optimizer, especially with bitfields. 1175 unsigned NumInitElements = E->getNumInits(); 1176 RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl(); 1177 1178 // We'll need to enter cleanup scopes in case any of the element 1179 // initializers throws an exception. 1180 SmallVector<EHScopeStack::stable_iterator, 16> cleanups; 1181 llvm::Instruction *cleanupDominator = nullptr; 1182 1183 unsigned curInitIndex = 0; 1184 1185 // Emit initialization of base classes. 1186 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(record)) { 1187 assert(E->getNumInits() >= CXXRD->getNumBases() && 1188 "missing initializer for base class"); 1189 for (auto &Base : CXXRD->bases()) { 1190 assert(!Base.isVirtual() && "should not see vbases here"); 1191 auto *BaseRD = Base.getType()->getAsCXXRecordDecl(); 1192 Address V = CGF.GetAddressOfDirectBaseInCompleteClass( 1193 Dest.getAddress(), CXXRD, BaseRD, 1194 /*isBaseVirtual*/ false); 1195 AggValueSlot AggSlot = 1196 AggValueSlot::forAddr(V, Qualifiers(), 1197 AggValueSlot::IsDestructed, 1198 AggValueSlot::DoesNotNeedGCBarriers, 1199 AggValueSlot::IsNotAliased); 1200 CGF.EmitAggExpr(E->getInit(curInitIndex++), AggSlot); 1201 1202 if (QualType::DestructionKind dtorKind = 1203 Base.getType().isDestructedType()) { 1204 CGF.pushDestroy(dtorKind, V, Base.getType()); 1205 cleanups.push_back(CGF.EHStack.stable_begin()); 1206 } 1207 } 1208 } 1209 1210 // Prepare a 'this' for CXXDefaultInitExprs. 1211 CodeGenFunction::FieldConstructionScope FCS(CGF, Dest.getAddress()); 1212 1213 if (record->isUnion()) { 1214 // Only initialize one field of a union. The field itself is 1215 // specified by the initializer list. 1216 if (!E->getInitializedFieldInUnion()) { 1217 // Empty union; we have nothing to do. 1218 1219 #ifndef NDEBUG 1220 // Make sure that it's really an empty and not a failure of 1221 // semantic analysis. 1222 for (const auto *Field : record->fields()) 1223 assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed"); 1224 #endif 1225 return; 1226 } 1227 1228 // FIXME: volatility 1229 FieldDecl *Field = E->getInitializedFieldInUnion(); 1230 1231 LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestLV, Field); 1232 if (NumInitElements) { 1233 // Store the initializer into the field 1234 EmitInitializationToLValue(E->getInit(0), FieldLoc); 1235 } else { 1236 // Default-initialize to null. 1237 EmitNullInitializationToLValue(FieldLoc); 1238 } 1239 1240 return; 1241 } 1242 1243 // Here we iterate over the fields; this makes it simpler to both 1244 // default-initialize fields and skip over unnamed fields. 1245 for (const auto *field : record->fields()) { 1246 // We're done once we hit the flexible array member. 1247 if (field->getType()->isIncompleteArrayType()) 1248 break; 1249 1250 // Always skip anonymous bitfields. 1251 if (field->isUnnamedBitfield()) 1252 continue; 1253 1254 // We're done if we reach the end of the explicit initializers, we 1255 // have a zeroed object, and the rest of the fields are 1256 // zero-initializable. 1257 if (curInitIndex == NumInitElements && Dest.isZeroed() && 1258 CGF.getTypes().isZeroInitializable(E->getType())) 1259 break; 1260 1261 1262 LValue LV = CGF.EmitLValueForFieldInitialization(DestLV, field); 1263 // We never generate write-barries for initialized fields. 1264 LV.setNonGC(true); 1265 1266 if (curInitIndex < NumInitElements) { 1267 // Store the initializer into the field. 1268 EmitInitializationToLValue(E->getInit(curInitIndex++), LV); 1269 } else { 1270 // We're out of initializers; default-initialize to null 1271 EmitNullInitializationToLValue(LV); 1272 } 1273 1274 // Push a destructor if necessary. 1275 // FIXME: if we have an array of structures, all explicitly 1276 // initialized, we can end up pushing a linear number of cleanups. 1277 bool pushedCleanup = false; 1278 if (QualType::DestructionKind dtorKind 1279 = field->getType().isDestructedType()) { 1280 assert(LV.isSimple()); 1281 if (CGF.needsEHCleanup(dtorKind)) { 1282 if (!cleanupDominator) 1283 cleanupDominator = CGF.Builder.CreateAlignedLoad( 1284 CGF.Int8Ty, 1285 llvm::Constant::getNullValue(CGF.Int8PtrTy), 1286 CharUnits::One()); // placeholder 1287 1288 CGF.pushDestroy(EHCleanup, LV.getAddress(), field->getType(), 1289 CGF.getDestroyer(dtorKind), false); 1290 cleanups.push_back(CGF.EHStack.stable_begin()); 1291 pushedCleanup = true; 1292 } 1293 } 1294 1295 // If the GEP didn't get used because of a dead zero init or something 1296 // else, clean it up for -O0 builds and general tidiness. 1297 if (!pushedCleanup && LV.isSimple()) 1298 if (llvm::GetElementPtrInst *GEP = 1299 dyn_cast<llvm::GetElementPtrInst>(LV.getPointer())) 1300 if (GEP->use_empty()) 1301 GEP->eraseFromParent(); 1302 } 1303 1304 // Deactivate all the partial cleanups in reverse order, which 1305 // generally means popping them. 1306 for (unsigned i = cleanups.size(); i != 0; --i) 1307 CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator); 1308 1309 // Destroy the placeholder if we made one. 1310 if (cleanupDominator) 1311 cleanupDominator->eraseFromParent(); 1312 } 1313 1314 void AggExprEmitter::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E, 1315 llvm::Value *outerBegin) { 1316 // Emit the common subexpression. 1317 CodeGenFunction::OpaqueValueMapping binding(CGF, E->getCommonExpr()); 1318 1319 Address destPtr = EnsureSlot(E->getType()).getAddress(); 1320 uint64_t numElements = E->getArraySize().getZExtValue(); 1321 1322 if (!numElements) 1323 return; 1324 1325 // destPtr is an array*. Construct an elementType* by drilling down a level. 1326 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 1327 llvm::Value *indices[] = {zero, zero}; 1328 llvm::Value *begin = Builder.CreateInBoundsGEP(destPtr.getPointer(), indices, 1329 "arrayinit.begin"); 1330 1331 // Prepare to special-case multidimensional array initialization: we avoid 1332 // emitting multiple destructor loops in that case. 1333 if (!outerBegin) 1334 outerBegin = begin; 1335 ArrayInitLoopExpr *InnerLoop = dyn_cast<ArrayInitLoopExpr>(E->getSubExpr()); 1336 1337 QualType elementType = 1338 CGF.getContext().getAsArrayType(E->getType())->getElementType(); 1339 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType); 1340 CharUnits elementAlign = 1341 destPtr.getAlignment().alignmentOfArrayElement(elementSize); 1342 1343 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 1344 llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body"); 1345 1346 // Jump into the body. 1347 CGF.EmitBlock(bodyBB); 1348 llvm::PHINode *index = 1349 Builder.CreatePHI(zero->getType(), 2, "arrayinit.index"); 1350 index->addIncoming(zero, entryBB); 1351 llvm::Value *element = Builder.CreateInBoundsGEP(begin, index); 1352 1353 // Prepare for a cleanup. 1354 QualType::DestructionKind dtorKind = elementType.isDestructedType(); 1355 EHScopeStack::stable_iterator cleanup; 1356 if (CGF.needsEHCleanup(dtorKind) && !InnerLoop) { 1357 if (outerBegin->getType() != element->getType()) 1358 outerBegin = Builder.CreateBitCast(outerBegin, element->getType()); 1359 CGF.pushRegularPartialArrayCleanup(outerBegin, element, elementType, 1360 elementAlign, 1361 CGF.getDestroyer(dtorKind)); 1362 cleanup = CGF.EHStack.stable_begin(); 1363 } else { 1364 dtorKind = QualType::DK_none; 1365 } 1366 1367 // Emit the actual filler expression. 1368 { 1369 // Temporaries created in an array initialization loop are destroyed 1370 // at the end of each iteration. 1371 CodeGenFunction::RunCleanupsScope CleanupsScope(CGF); 1372 CodeGenFunction::ArrayInitLoopExprScope Scope(CGF, index); 1373 LValue elementLV = 1374 CGF.MakeAddrLValue(Address(element, elementAlign), elementType); 1375 1376 if (InnerLoop) { 1377 // If the subexpression is an ArrayInitLoopExpr, share its cleanup. 1378 auto elementSlot = AggValueSlot::forLValue( 1379 elementLV, AggValueSlot::IsDestructed, 1380 AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased); 1381 AggExprEmitter(CGF, elementSlot, false) 1382 .VisitArrayInitLoopExpr(InnerLoop, outerBegin); 1383 } else 1384 EmitInitializationToLValue(E->getSubExpr(), elementLV); 1385 } 1386 1387 // Move on to the next element. 1388 llvm::Value *nextIndex = Builder.CreateNUWAdd( 1389 index, llvm::ConstantInt::get(CGF.SizeTy, 1), "arrayinit.next"); 1390 index->addIncoming(nextIndex, Builder.GetInsertBlock()); 1391 1392 // Leave the loop if we're done. 1393 llvm::Value *done = Builder.CreateICmpEQ( 1394 nextIndex, llvm::ConstantInt::get(CGF.SizeTy, numElements), 1395 "arrayinit.done"); 1396 llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end"); 1397 Builder.CreateCondBr(done, endBB, bodyBB); 1398 1399 CGF.EmitBlock(endBB); 1400 1401 // Leave the partial-array cleanup if we entered one. 1402 if (dtorKind) 1403 CGF.DeactivateCleanupBlock(cleanup, index); 1404 } 1405 1406 void AggExprEmitter::VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E) { 1407 AggValueSlot Dest = EnsureSlot(E->getType()); 1408 1409 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType()); 1410 EmitInitializationToLValue(E->getBase(), DestLV); 1411 VisitInitListExpr(E->getUpdater()); 1412 } 1413 1414 //===----------------------------------------------------------------------===// 1415 // Entry Points into this File 1416 //===----------------------------------------------------------------------===// 1417 1418 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of 1419 /// non-zero bytes that will be stored when outputting the initializer for the 1420 /// specified initializer expression. 1421 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) { 1422 E = E->IgnoreParens(); 1423 1424 // 0 and 0.0 won't require any non-zero stores! 1425 if (isSimpleZero(E, CGF)) return CharUnits::Zero(); 1426 1427 // If this is an initlist expr, sum up the size of sizes of the (present) 1428 // elements. If this is something weird, assume the whole thing is non-zero. 1429 const InitListExpr *ILE = dyn_cast<InitListExpr>(E); 1430 if (!ILE || !CGF.getTypes().isZeroInitializable(ILE->getType())) 1431 return CGF.getContext().getTypeSizeInChars(E->getType()); 1432 1433 // InitListExprs for structs have to be handled carefully. If there are 1434 // reference members, we need to consider the size of the reference, not the 1435 // referencee. InitListExprs for unions and arrays can't have references. 1436 if (const RecordType *RT = E->getType()->getAs<RecordType>()) { 1437 if (!RT->isUnionType()) { 1438 RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl(); 1439 CharUnits NumNonZeroBytes = CharUnits::Zero(); 1440 1441 unsigned ILEElement = 0; 1442 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(SD)) 1443 while (ILEElement != CXXRD->getNumBases()) 1444 NumNonZeroBytes += 1445 GetNumNonZeroBytesInInit(ILE->getInit(ILEElement++), CGF); 1446 for (const auto *Field : SD->fields()) { 1447 // We're done once we hit the flexible array member or run out of 1448 // InitListExpr elements. 1449 if (Field->getType()->isIncompleteArrayType() || 1450 ILEElement == ILE->getNumInits()) 1451 break; 1452 if (Field->isUnnamedBitfield()) 1453 continue; 1454 1455 const Expr *E = ILE->getInit(ILEElement++); 1456 1457 // Reference values are always non-null and have the width of a pointer. 1458 if (Field->getType()->isReferenceType()) 1459 NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits( 1460 CGF.getTarget().getPointerWidth(0)); 1461 else 1462 NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF); 1463 } 1464 1465 return NumNonZeroBytes; 1466 } 1467 } 1468 1469 1470 CharUnits NumNonZeroBytes = CharUnits::Zero(); 1471 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) 1472 NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF); 1473 return NumNonZeroBytes; 1474 } 1475 1476 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of 1477 /// zeros in it, emit a memset and avoid storing the individual zeros. 1478 /// 1479 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E, 1480 CodeGenFunction &CGF) { 1481 // If the slot is already known to be zeroed, nothing to do. Don't mess with 1482 // volatile stores. 1483 if (Slot.isZeroed() || Slot.isVolatile() || !Slot.getAddress().isValid()) 1484 return; 1485 1486 // C++ objects with a user-declared constructor don't need zero'ing. 1487 if (CGF.getLangOpts().CPlusPlus) 1488 if (const RecordType *RT = CGF.getContext() 1489 .getBaseElementType(E->getType())->getAs<RecordType>()) { 1490 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1491 if (RD->hasUserDeclaredConstructor()) 1492 return; 1493 } 1494 1495 // If the type is 16-bytes or smaller, prefer individual stores over memset. 1496 CharUnits Size = CGF.getContext().getTypeSizeInChars(E->getType()); 1497 if (Size <= CharUnits::fromQuantity(16)) 1498 return; 1499 1500 // Check to see if over 3/4 of the initializer are known to be zero. If so, 1501 // we prefer to emit memset + individual stores for the rest. 1502 CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF); 1503 if (NumNonZeroBytes*4 > Size) 1504 return; 1505 1506 // Okay, it seems like a good idea to use an initial memset, emit the call. 1507 llvm::Constant *SizeVal = CGF.Builder.getInt64(Size.getQuantity()); 1508 1509 Address Loc = Slot.getAddress(); 1510 Loc = CGF.Builder.CreateElementBitCast(Loc, CGF.Int8Ty); 1511 CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, false); 1512 1513 // Tell the AggExprEmitter that the slot is known zero. 1514 Slot.setZeroed(); 1515 } 1516 1517 1518 1519 1520 /// EmitAggExpr - Emit the computation of the specified expression of aggregate 1521 /// type. The result is computed into DestPtr. Note that if DestPtr is null, 1522 /// the value of the aggregate expression is not needed. If VolatileDest is 1523 /// true, DestPtr cannot be 0. 1524 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot) { 1525 assert(E && hasAggregateEvaluationKind(E->getType()) && 1526 "Invalid aggregate expression to emit"); 1527 assert((Slot.getAddress().isValid() || Slot.isIgnored()) && 1528 "slot has bits but no address"); 1529 1530 // Optimize the slot if possible. 1531 CheckAggExprForMemSetUse(Slot, E, *this); 1532 1533 AggExprEmitter(*this, Slot, Slot.isIgnored()).Visit(const_cast<Expr*>(E)); 1534 } 1535 1536 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) { 1537 assert(hasAggregateEvaluationKind(E->getType()) && "Invalid argument!"); 1538 Address Temp = CreateMemTemp(E->getType()); 1539 LValue LV = MakeAddrLValue(Temp, E->getType()); 1540 EmitAggExpr(E, AggValueSlot::forLValue(LV, AggValueSlot::IsNotDestructed, 1541 AggValueSlot::DoesNotNeedGCBarriers, 1542 AggValueSlot::IsNotAliased)); 1543 return LV; 1544 } 1545 1546 void CodeGenFunction::EmitAggregateCopy(LValue Dest, LValue Src, 1547 QualType Ty, bool isVolatile, 1548 bool isAssignment) { 1549 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 1550 1551 Address DestPtr = Dest.getAddress(); 1552 Address SrcPtr = Src.getAddress(); 1553 1554 if (getLangOpts().CPlusPlus) { 1555 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1556 CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl()); 1557 assert((Record->hasTrivialCopyConstructor() || 1558 Record->hasTrivialCopyAssignment() || 1559 Record->hasTrivialMoveConstructor() || 1560 Record->hasTrivialMoveAssignment() || 1561 Record->isUnion()) && 1562 "Trying to aggregate-copy a type without a trivial copy/move " 1563 "constructor or assignment operator"); 1564 // Ignore empty classes in C++. 1565 if (Record->isEmpty()) 1566 return; 1567 } 1568 } 1569 1570 // Aggregate assignment turns into llvm.memcpy. This is almost valid per 1571 // C99 6.5.16.1p3, which states "If the value being stored in an object is 1572 // read from another object that overlaps in anyway the storage of the first 1573 // object, then the overlap shall be exact and the two objects shall have 1574 // qualified or unqualified versions of a compatible type." 1575 // 1576 // memcpy is not defined if the source and destination pointers are exactly 1577 // equal, but other compilers do this optimization, and almost every memcpy 1578 // implementation handles this case safely. If there is a libc that does not 1579 // safely handle this, we can add a target hook. 1580 1581 // Get data size info for this aggregate. If this is an assignment, 1582 // don't copy the tail padding, because we might be assigning into a 1583 // base subobject where the tail padding is claimed. Otherwise, 1584 // copying it is fine. 1585 std::pair<CharUnits, CharUnits> TypeInfo; 1586 if (isAssignment) 1587 TypeInfo = getContext().getTypeInfoDataSizeInChars(Ty); 1588 else 1589 TypeInfo = getContext().getTypeInfoInChars(Ty); 1590 1591 llvm::Value *SizeVal = nullptr; 1592 if (TypeInfo.first.isZero()) { 1593 // But note that getTypeInfo returns 0 for a VLA. 1594 if (auto *VAT = dyn_cast_or_null<VariableArrayType>( 1595 getContext().getAsArrayType(Ty))) { 1596 QualType BaseEltTy; 1597 SizeVal = emitArrayLength(VAT, BaseEltTy, DestPtr); 1598 TypeInfo = getContext().getTypeInfoDataSizeInChars(BaseEltTy); 1599 std::pair<CharUnits, CharUnits> LastElementTypeInfo; 1600 if (!isAssignment) 1601 LastElementTypeInfo = getContext().getTypeInfoInChars(BaseEltTy); 1602 assert(!TypeInfo.first.isZero()); 1603 SizeVal = Builder.CreateNUWMul( 1604 SizeVal, 1605 llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity())); 1606 if (!isAssignment) { 1607 SizeVal = Builder.CreateNUWSub( 1608 SizeVal, 1609 llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity())); 1610 SizeVal = Builder.CreateNUWAdd( 1611 SizeVal, llvm::ConstantInt::get( 1612 SizeTy, LastElementTypeInfo.first.getQuantity())); 1613 } 1614 } 1615 } 1616 if (!SizeVal) { 1617 SizeVal = llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity()); 1618 } 1619 1620 // FIXME: If we have a volatile struct, the optimizer can remove what might 1621 // appear to be `extra' memory ops: 1622 // 1623 // volatile struct { int i; } a, b; 1624 // 1625 // int main() { 1626 // a = b; 1627 // a = b; 1628 // } 1629 // 1630 // we need to use a different call here. We use isVolatile to indicate when 1631 // either the source or the destination is volatile. 1632 1633 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1634 SrcPtr = Builder.CreateElementBitCast(SrcPtr, Int8Ty); 1635 1636 // Don't do any of the memmove_collectable tests if GC isn't set. 1637 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) { 1638 // fall through 1639 } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 1640 RecordDecl *Record = RecordTy->getDecl(); 1641 if (Record->hasObjectMember()) { 1642 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 1643 SizeVal); 1644 return; 1645 } 1646 } else if (Ty->isArrayType()) { 1647 QualType BaseType = getContext().getBaseElementType(Ty); 1648 if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) { 1649 if (RecordTy->getDecl()->hasObjectMember()) { 1650 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 1651 SizeVal); 1652 return; 1653 } 1654 } 1655 } 1656 1657 auto Inst = Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, isVolatile); 1658 1659 // Determine the metadata to describe the position of any padding in this 1660 // memcpy, as well as the TBAA tags for the members of the struct, in case 1661 // the optimizer wishes to expand it in to scalar memory operations. 1662 if (llvm::MDNode *TBAAStructTag = CGM.getTBAAStructInfo(Ty)) 1663 Inst->setMetadata(llvm::LLVMContext::MD_tbaa_struct, TBAAStructTag); 1664 1665 if (CGM.getCodeGenOpts().NewStructPathTBAA) { 1666 TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForMemoryTransfer( 1667 Dest.getTBAAInfo(), Src.getTBAAInfo()); 1668 CGM.DecorateInstructionWithTBAA(Inst, TBAAInfo); 1669 } 1670 } 1671