1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Aggregate Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "CGObjCRuntime.h" 17 #include "clang/AST/ASTContext.h" 18 #include "clang/AST/DeclCXX.h" 19 #include "clang/AST/StmtVisitor.h" 20 #include "llvm/Constants.h" 21 #include "llvm/Function.h" 22 #include "llvm/GlobalVariable.h" 23 #include "llvm/Intrinsics.h" 24 using namespace clang; 25 using namespace CodeGen; 26 27 //===----------------------------------------------------------------------===// 28 // Aggregate Expression Emitter 29 //===----------------------------------------------------------------------===// 30 31 namespace { 32 class AggExprEmitter : public StmtVisitor<AggExprEmitter> { 33 CodeGenFunction &CGF; 34 CGBuilderTy &Builder; 35 AggValueSlot Dest; 36 bool IgnoreResult; 37 38 /// We want to use 'dest' as the return slot except under two 39 /// conditions: 40 /// - The destination slot requires garbage collection, so we 41 /// need to use the GC API. 42 /// - The destination slot is potentially aliased. 43 bool shouldUseDestForReturnSlot() const { 44 return !(Dest.requiresGCollection() || Dest.isPotentiallyAliased()); 45 } 46 47 ReturnValueSlot getReturnValueSlot() const { 48 if (!shouldUseDestForReturnSlot()) 49 return ReturnValueSlot(); 50 51 return ReturnValueSlot(Dest.getAddr(), Dest.isVolatile()); 52 } 53 54 AggValueSlot EnsureSlot(QualType T) { 55 if (!Dest.isIgnored()) return Dest; 56 return CGF.CreateAggTemp(T, "agg.tmp.ensured"); 57 } 58 59 public: 60 AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest, 61 bool ignore) 62 : CGF(cgf), Builder(CGF.Builder), Dest(Dest), 63 IgnoreResult(ignore) { 64 } 65 66 //===--------------------------------------------------------------------===// 67 // Utilities 68 //===--------------------------------------------------------------------===// 69 70 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 71 /// represents a value lvalue, this method emits the address of the lvalue, 72 /// then loads the result into DestPtr. 73 void EmitAggLoadOfLValue(const Expr *E); 74 75 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 76 void EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore = false); 77 void EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore = false); 78 79 void EmitMoveFromReturnSlot(const Expr *E, RValue Src); 80 81 AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) { 82 if (CGF.getLangOptions().getGCMode() && TypeRequiresGCollection(T)) 83 return AggValueSlot::NeedsGCBarriers; 84 return AggValueSlot::DoesNotNeedGCBarriers; 85 } 86 87 bool TypeRequiresGCollection(QualType T); 88 89 //===--------------------------------------------------------------------===// 90 // Visitor Methods 91 //===--------------------------------------------------------------------===// 92 93 void VisitStmt(Stmt *S) { 94 CGF.ErrorUnsupported(S, "aggregate expression"); 95 } 96 void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); } 97 void VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 98 Visit(GE->getResultExpr()); 99 } 100 void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); } 101 void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 102 return Visit(E->getReplacement()); 103 } 104 105 // l-values. 106 void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); } 107 void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); } 108 void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); } 109 void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); } 110 void VisitCompoundLiteralExpr(CompoundLiteralExpr *E); 111 void VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 112 EmitAggLoadOfLValue(E); 113 } 114 void VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) { 115 EmitAggLoadOfLValue(E); 116 } 117 void VisitPredefinedExpr(const PredefinedExpr *E) { 118 EmitAggLoadOfLValue(E); 119 } 120 121 // Operators. 122 void VisitCastExpr(CastExpr *E); 123 void VisitCallExpr(const CallExpr *E); 124 void VisitStmtExpr(const StmtExpr *E); 125 void VisitBinaryOperator(const BinaryOperator *BO); 126 void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO); 127 void VisitBinAssign(const BinaryOperator *E); 128 void VisitBinComma(const BinaryOperator *E); 129 130 void VisitObjCMessageExpr(ObjCMessageExpr *E); 131 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 132 EmitAggLoadOfLValue(E); 133 } 134 void VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E); 135 136 void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO); 137 void VisitChooseExpr(const ChooseExpr *CE); 138 void VisitInitListExpr(InitListExpr *E); 139 void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E); 140 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 141 Visit(DAE->getExpr()); 142 } 143 void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E); 144 void VisitCXXConstructExpr(const CXXConstructExpr *E); 145 void VisitExprWithCleanups(ExprWithCleanups *E); 146 void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E); 147 void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); } 148 void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E); 149 void VisitOpaqueValueExpr(OpaqueValueExpr *E); 150 151 void VisitVAArgExpr(VAArgExpr *E); 152 153 void EmitInitializationToLValue(Expr *E, LValue Address); 154 void EmitNullInitializationToLValue(LValue Address); 155 // case Expr::ChooseExprClass: 156 void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); } 157 }; 158 } // end anonymous namespace. 159 160 //===----------------------------------------------------------------------===// 161 // Utilities 162 //===----------------------------------------------------------------------===// 163 164 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 165 /// represents a value lvalue, this method emits the address of the lvalue, 166 /// then loads the result into DestPtr. 167 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) { 168 LValue LV = CGF.EmitLValue(E); 169 EmitFinalDestCopy(E, LV); 170 } 171 172 /// \brief True if the given aggregate type requires special GC API calls. 173 bool AggExprEmitter::TypeRequiresGCollection(QualType T) { 174 // Only record types have members that might require garbage collection. 175 const RecordType *RecordTy = T->getAs<RecordType>(); 176 if (!RecordTy) return false; 177 178 // Don't mess with non-trivial C++ types. 179 RecordDecl *Record = RecordTy->getDecl(); 180 if (isa<CXXRecordDecl>(Record) && 181 (!cast<CXXRecordDecl>(Record)->hasTrivialCopyConstructor() || 182 !cast<CXXRecordDecl>(Record)->hasTrivialDestructor())) 183 return false; 184 185 // Check whether the type has an object member. 186 return Record->hasObjectMember(); 187 } 188 189 /// \brief Perform the final move to DestPtr if for some reason 190 /// getReturnValueSlot() didn't use it directly. 191 /// 192 /// The idea is that you do something like this: 193 /// RValue Result = EmitSomething(..., getReturnValueSlot()); 194 /// EmitMoveFromReturnSlot(E, Result); 195 /// 196 /// If nothing interferes, this will cause the result to be emitted 197 /// directly into the return value slot. Otherwise, a final move 198 /// will be performed. 199 void AggExprEmitter::EmitMoveFromReturnSlot(const Expr *E, RValue Src) { 200 if (shouldUseDestForReturnSlot()) { 201 // Logically, Dest.getAddr() should equal Src.getAggregateAddr(). 202 // The possibility of undef rvalues complicates that a lot, 203 // though, so we can't really assert. 204 return; 205 } 206 207 // Otherwise, do a final copy, 208 assert(Dest.getAddr() != Src.getAggregateAddr()); 209 EmitFinalDestCopy(E, Src, /*Ignore*/ true); 210 } 211 212 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 213 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore) { 214 assert(Src.isAggregate() && "value must be aggregate value!"); 215 216 // If Dest is ignored, then we're evaluating an aggregate expression 217 // in a context (like an expression statement) that doesn't care 218 // about the result. C says that an lvalue-to-rvalue conversion is 219 // performed in these cases; C++ says that it is not. In either 220 // case, we don't actually need to do anything unless the value is 221 // volatile. 222 if (Dest.isIgnored()) { 223 if (!Src.isVolatileQualified() || 224 CGF.CGM.getLangOptions().CPlusPlus || 225 (IgnoreResult && Ignore)) 226 return; 227 228 // If the source is volatile, we must read from it; to do that, we need 229 // some place to put it. 230 Dest = CGF.CreateAggTemp(E->getType(), "agg.tmp"); 231 } 232 233 if (Dest.requiresGCollection()) { 234 CharUnits size = CGF.getContext().getTypeSizeInChars(E->getType()); 235 llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType()); 236 llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity()); 237 CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, 238 Dest.getAddr(), 239 Src.getAggregateAddr(), 240 SizeVal); 241 return; 242 } 243 // If the result of the assignment is used, copy the LHS there also. 244 // FIXME: Pass VolatileDest as well. I think we also need to merge volatile 245 // from the source as well, as we can't eliminate it if either operand 246 // is volatile, unless copy has volatile for both source and destination.. 247 CGF.EmitAggregateCopy(Dest.getAddr(), Src.getAggregateAddr(), E->getType(), 248 Dest.isVolatile()|Src.isVolatileQualified()); 249 } 250 251 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 252 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore) { 253 assert(Src.isSimple() && "Can't have aggregate bitfield, vector, etc"); 254 255 EmitFinalDestCopy(E, RValue::getAggregate(Src.getAddress(), 256 Src.isVolatileQualified()), 257 Ignore); 258 } 259 260 //===----------------------------------------------------------------------===// 261 // Visitor Methods 262 //===----------------------------------------------------------------------===// 263 264 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){ 265 Visit(E->GetTemporaryExpr()); 266 } 267 268 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) { 269 EmitFinalDestCopy(e, CGF.getOpaqueLValueMapping(e)); 270 } 271 272 void 273 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 274 if (E->getType().isPODType(CGF.getContext())) { 275 // For a POD type, just emit a load of the lvalue + a copy, because our 276 // compound literal might alias the destination. 277 // FIXME: This is a band-aid; the real problem appears to be in our handling 278 // of assignments, where we store directly into the LHS without checking 279 // whether anything in the RHS aliases. 280 EmitAggLoadOfLValue(E); 281 return; 282 } 283 284 AggValueSlot Slot = EnsureSlot(E->getType()); 285 CGF.EmitAggExpr(E->getInitializer(), Slot); 286 } 287 288 289 void AggExprEmitter::VisitCastExpr(CastExpr *E) { 290 switch (E->getCastKind()) { 291 case CK_Dynamic: { 292 assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?"); 293 LValue LV = CGF.EmitCheckedLValue(E->getSubExpr()); 294 // FIXME: Do we also need to handle property references here? 295 if (LV.isSimple()) 296 CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E)); 297 else 298 CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast"); 299 300 if (!Dest.isIgnored()) 301 CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination"); 302 break; 303 } 304 305 case CK_ToUnion: { 306 if (Dest.isIgnored()) break; 307 308 // GCC union extension 309 QualType Ty = E->getSubExpr()->getType(); 310 QualType PtrTy = CGF.getContext().getPointerType(Ty); 311 llvm::Value *CastPtr = Builder.CreateBitCast(Dest.getAddr(), 312 CGF.ConvertType(PtrTy)); 313 EmitInitializationToLValue(E->getSubExpr(), 314 CGF.MakeAddrLValue(CastPtr, Ty)); 315 break; 316 } 317 318 case CK_DerivedToBase: 319 case CK_BaseToDerived: 320 case CK_UncheckedDerivedToBase: { 321 assert(0 && "cannot perform hierarchy conversion in EmitAggExpr: " 322 "should have been unpacked before we got here"); 323 break; 324 } 325 326 case CK_GetObjCProperty: { 327 LValue LV = CGF.EmitLValue(E->getSubExpr()); 328 assert(LV.isPropertyRef()); 329 RValue RV = CGF.EmitLoadOfPropertyRefLValue(LV, getReturnValueSlot()); 330 EmitMoveFromReturnSlot(E, RV); 331 break; 332 } 333 334 case CK_LValueToRValue: // hope for downstream optimization 335 case CK_NoOp: 336 case CK_UserDefinedConversion: 337 case CK_ConstructorConversion: 338 assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(), 339 E->getType()) && 340 "Implicit cast types must be compatible"); 341 Visit(E->getSubExpr()); 342 break; 343 344 case CK_LValueBitCast: 345 llvm_unreachable("should not be emitting lvalue bitcast as rvalue"); 346 break; 347 348 case CK_Dependent: 349 case CK_BitCast: 350 case CK_ArrayToPointerDecay: 351 case CK_FunctionToPointerDecay: 352 case CK_NullToPointer: 353 case CK_NullToMemberPointer: 354 case CK_BaseToDerivedMemberPointer: 355 case CK_DerivedToBaseMemberPointer: 356 case CK_MemberPointerToBoolean: 357 case CK_IntegralToPointer: 358 case CK_PointerToIntegral: 359 case CK_PointerToBoolean: 360 case CK_ToVoid: 361 case CK_VectorSplat: 362 case CK_IntegralCast: 363 case CK_IntegralToBoolean: 364 case CK_IntegralToFloating: 365 case CK_FloatingToIntegral: 366 case CK_FloatingToBoolean: 367 case CK_FloatingCast: 368 case CK_AnyPointerToObjCPointerCast: 369 case CK_AnyPointerToBlockPointerCast: 370 case CK_ObjCObjectLValueCast: 371 case CK_FloatingRealToComplex: 372 case CK_FloatingComplexToReal: 373 case CK_FloatingComplexToBoolean: 374 case CK_FloatingComplexCast: 375 case CK_FloatingComplexToIntegralComplex: 376 case CK_IntegralRealToComplex: 377 case CK_IntegralComplexToReal: 378 case CK_IntegralComplexToBoolean: 379 case CK_IntegralComplexCast: 380 case CK_IntegralComplexToFloatingComplex: 381 case CK_ObjCProduceObject: 382 case CK_ObjCConsumeObject: 383 case CK_ObjCReclaimReturnedObject: 384 llvm_unreachable("cast kind invalid for aggregate types"); 385 } 386 } 387 388 void AggExprEmitter::VisitCallExpr(const CallExpr *E) { 389 if (E->getCallReturnType()->isReferenceType()) { 390 EmitAggLoadOfLValue(E); 391 return; 392 } 393 394 RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot()); 395 EmitMoveFromReturnSlot(E, RV); 396 } 397 398 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) { 399 RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot()); 400 EmitMoveFromReturnSlot(E, RV); 401 } 402 403 void AggExprEmitter::VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) { 404 llvm_unreachable("direct property access not surrounded by " 405 "lvalue-to-rvalue cast"); 406 } 407 408 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) { 409 CGF.EmitIgnoredExpr(E->getLHS()); 410 Visit(E->getRHS()); 411 } 412 413 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) { 414 CodeGenFunction::StmtExprEvaluation eval(CGF); 415 CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest); 416 } 417 418 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) { 419 if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI) 420 VisitPointerToDataMemberBinaryOperator(E); 421 else 422 CGF.ErrorUnsupported(E, "aggregate binary expression"); 423 } 424 425 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator( 426 const BinaryOperator *E) { 427 LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E); 428 EmitFinalDestCopy(E, LV); 429 } 430 431 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) { 432 // For an assignment to work, the value on the right has 433 // to be compatible with the value on the left. 434 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), 435 E->getRHS()->getType()) 436 && "Invalid assignment"); 437 438 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->getLHS())) 439 if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) 440 if (VD->hasAttr<BlocksAttr>() && 441 E->getRHS()->HasSideEffects(CGF.getContext())) { 442 // When __block variable on LHS, the RHS must be evaluated first 443 // as it may change the 'forwarding' field via call to Block_copy. 444 LValue RHS = CGF.EmitLValue(E->getRHS()); 445 LValue LHS = CGF.EmitLValue(E->getLHS()); 446 Dest = AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed, 447 needsGC(E->getLHS()->getType())); 448 EmitFinalDestCopy(E, RHS, true); 449 return; 450 } 451 452 LValue LHS = CGF.EmitLValue(E->getLHS()); 453 454 // We have to special case property setters, otherwise we must have 455 // a simple lvalue (no aggregates inside vectors, bitfields). 456 if (LHS.isPropertyRef()) { 457 const ObjCPropertyRefExpr *RE = LHS.getPropertyRefExpr(); 458 QualType ArgType = RE->getSetterArgType(); 459 RValue Src; 460 if (ArgType->isReferenceType()) 461 Src = CGF.EmitReferenceBindingToExpr(E->getRHS(), 0); 462 else { 463 AggValueSlot Slot = EnsureSlot(E->getRHS()->getType()); 464 CGF.EmitAggExpr(E->getRHS(), Slot); 465 Src = Slot.asRValue(); 466 } 467 CGF.EmitStoreThroughPropertyRefLValue(Src, LHS); 468 } else { 469 // Codegen the RHS so that it stores directly into the LHS. 470 AggValueSlot LHSSlot = 471 AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed, 472 needsGC(E->getLHS()->getType())); 473 CGF.EmitAggExpr(E->getRHS(), LHSSlot, false); 474 EmitFinalDestCopy(E, LHS, true); 475 } 476 } 477 478 void AggExprEmitter:: 479 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 480 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 481 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 482 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 483 484 // Bind the common expression if necessary. 485 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 486 487 CodeGenFunction::ConditionalEvaluation eval(CGF); 488 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock); 489 490 // Save whether the destination's lifetime is externally managed. 491 bool DestLifetimeManaged = Dest.isLifetimeExternallyManaged(); 492 493 eval.begin(CGF); 494 CGF.EmitBlock(LHSBlock); 495 Visit(E->getTrueExpr()); 496 eval.end(CGF); 497 498 assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!"); 499 CGF.Builder.CreateBr(ContBlock); 500 501 // If the result of an agg expression is unused, then the emission 502 // of the LHS might need to create a destination slot. That's fine 503 // with us, and we can safely emit the RHS into the same slot, but 504 // we shouldn't claim that its lifetime is externally managed. 505 Dest.setLifetimeExternallyManaged(DestLifetimeManaged); 506 507 eval.begin(CGF); 508 CGF.EmitBlock(RHSBlock); 509 Visit(E->getFalseExpr()); 510 eval.end(CGF); 511 512 CGF.EmitBlock(ContBlock); 513 } 514 515 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) { 516 Visit(CE->getChosenSubExpr(CGF.getContext())); 517 } 518 519 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 520 llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr()); 521 llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType()); 522 523 if (!ArgPtr) { 524 CGF.ErrorUnsupported(VE, "aggregate va_arg expression"); 525 return; 526 } 527 528 EmitFinalDestCopy(VE, CGF.MakeAddrLValue(ArgPtr, VE->getType())); 529 } 530 531 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 532 // Ensure that we have a slot, but if we already do, remember 533 // whether its lifetime was externally managed. 534 bool WasManaged = Dest.isLifetimeExternallyManaged(); 535 Dest = EnsureSlot(E->getType()); 536 Dest.setLifetimeExternallyManaged(); 537 538 Visit(E->getSubExpr()); 539 540 // Set up the temporary's destructor if its lifetime wasn't already 541 // being managed. 542 if (!WasManaged) 543 CGF.EmitCXXTemporary(E->getTemporary(), Dest.getAddr()); 544 } 545 546 void 547 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) { 548 AggValueSlot Slot = EnsureSlot(E->getType()); 549 CGF.EmitCXXConstructExpr(E, Slot); 550 } 551 552 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) { 553 CGF.EmitExprWithCleanups(E, Dest); 554 } 555 556 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) { 557 QualType T = E->getType(); 558 AggValueSlot Slot = EnsureSlot(T); 559 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T)); 560 } 561 562 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) { 563 QualType T = E->getType(); 564 AggValueSlot Slot = EnsureSlot(T); 565 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T)); 566 } 567 568 /// isSimpleZero - If emitting this value will obviously just cause a store of 569 /// zero to memory, return true. This can return false if uncertain, so it just 570 /// handles simple cases. 571 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) { 572 E = E->IgnoreParens(); 573 574 // 0 575 if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) 576 return IL->getValue() == 0; 577 // +0.0 578 if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E)) 579 return FL->getValue().isPosZero(); 580 // int() 581 if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) && 582 CGF.getTypes().isZeroInitializable(E->getType())) 583 return true; 584 // (int*)0 - Null pointer expressions. 585 if (const CastExpr *ICE = dyn_cast<CastExpr>(E)) 586 return ICE->getCastKind() == CK_NullToPointer; 587 // '\0' 588 if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) 589 return CL->getValue() == 0; 590 591 // Otherwise, hard case: conservatively return false. 592 return false; 593 } 594 595 596 void 597 AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV) { 598 QualType type = LV.getType(); 599 // FIXME: Ignore result? 600 // FIXME: Are initializers affected by volatile? 601 if (Dest.isZeroed() && isSimpleZero(E, CGF)) { 602 // Storing "i32 0" to a zero'd memory location is a noop. 603 } else if (isa<ImplicitValueInitExpr>(E)) { 604 EmitNullInitializationToLValue(LV); 605 } else if (type->isReferenceType()) { 606 RValue RV = CGF.EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0); 607 CGF.EmitStoreThroughLValue(RV, LV); 608 } else if (type->isAnyComplexType()) { 609 CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false); 610 } else if (CGF.hasAggregateLLVMType(type)) { 611 CGF.EmitAggExpr(E, AggValueSlot::forLValue(LV, 612 AggValueSlot::IsDestructed, 613 AggValueSlot::DoesNotNeedGCBarriers, 614 AggValueSlot::IsNotAliased, 615 Dest.isZeroed())); 616 } else if (LV.isSimple()) { 617 CGF.EmitScalarInit(E, /*D=*/0, LV, /*Captured=*/false); 618 } else { 619 CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV); 620 } 621 } 622 623 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) { 624 QualType type = lv.getType(); 625 626 // If the destination slot is already zeroed out before the aggregate is 627 // copied into it, we don't have to emit any zeros here. 628 if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type)) 629 return; 630 631 if (!CGF.hasAggregateLLVMType(type)) { 632 // For non-aggregates, we can store zero 633 llvm::Value *null = llvm::Constant::getNullValue(CGF.ConvertType(type)); 634 CGF.EmitStoreThroughLValue(RValue::get(null), lv); 635 } else { 636 // There's a potential optimization opportunity in combining 637 // memsets; that would be easy for arrays, but relatively 638 // difficult for structures with the current code. 639 CGF.EmitNullInitialization(lv.getAddress(), lv.getType()); 640 } 641 } 642 643 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) { 644 #if 0 645 // FIXME: Assess perf here? Figure out what cases are worth optimizing here 646 // (Length of globals? Chunks of zeroed-out space?). 647 // 648 // If we can, prefer a copy from a global; this is a lot less code for long 649 // globals, and it's easier for the current optimizers to analyze. 650 if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) { 651 llvm::GlobalVariable* GV = 652 new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true, 653 llvm::GlobalValue::InternalLinkage, C, ""); 654 EmitFinalDestCopy(E, CGF.MakeAddrLValue(GV, E->getType())); 655 return; 656 } 657 #endif 658 if (E->hadArrayRangeDesignator()) 659 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 660 661 llvm::Value *DestPtr = Dest.getAddr(); 662 663 // Handle initialization of an array. 664 if (E->getType()->isArrayType()) { 665 llvm::PointerType *APType = 666 cast<llvm::PointerType>(DestPtr->getType()); 667 llvm::ArrayType *AType = 668 cast<llvm::ArrayType>(APType->getElementType()); 669 670 uint64_t NumInitElements = E->getNumInits(); 671 672 if (E->getNumInits() > 0) { 673 QualType T1 = E->getType(); 674 QualType T2 = E->getInit(0)->getType(); 675 if (CGF.getContext().hasSameUnqualifiedType(T1, T2)) { 676 EmitAggLoadOfLValue(E->getInit(0)); 677 return; 678 } 679 } 680 681 uint64_t NumArrayElements = AType->getNumElements(); 682 assert(NumInitElements <= NumArrayElements); 683 684 QualType elementType = E->getType().getCanonicalType(); 685 elementType = CGF.getContext().getQualifiedType( 686 cast<ArrayType>(elementType)->getElementType(), 687 elementType.getQualifiers() + Dest.getQualifiers()); 688 689 // DestPtr is an array*. Construct an elementType* by drilling 690 // down a level. 691 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 692 llvm::Value *indices[] = { zero, zero }; 693 llvm::Value *begin = 694 Builder.CreateInBoundsGEP(DestPtr, indices, "arrayinit.begin"); 695 696 // Exception safety requires us to destroy all the 697 // already-constructed members if an initializer throws. 698 // For that, we'll need an EH cleanup. 699 QualType::DestructionKind dtorKind = elementType.isDestructedType(); 700 llvm::AllocaInst *endOfInit = 0; 701 EHScopeStack::stable_iterator cleanup; 702 if (CGF.needsEHCleanup(dtorKind)) { 703 // In principle we could tell the cleanup where we are more 704 // directly, but the control flow can get so varied here that it 705 // would actually be quite complex. Therefore we go through an 706 // alloca. 707 endOfInit = CGF.CreateTempAlloca(begin->getType(), 708 "arrayinit.endOfInit"); 709 Builder.CreateStore(begin, endOfInit); 710 CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType, 711 CGF.getDestroyer(dtorKind)); 712 cleanup = CGF.EHStack.stable_begin(); 713 714 // Otherwise, remember that we didn't need a cleanup. 715 } else { 716 dtorKind = QualType::DK_none; 717 } 718 719 llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1); 720 721 // The 'current element to initialize'. The invariants on this 722 // variable are complicated. Essentially, after each iteration of 723 // the loop, it points to the last initialized element, except 724 // that it points to the beginning of the array before any 725 // elements have been initialized. 726 llvm::Value *element = begin; 727 728 // Emit the explicit initializers. 729 for (uint64_t i = 0; i != NumInitElements; ++i) { 730 // Advance to the next element. 731 if (i > 0) { 732 element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element"); 733 734 // Tell the cleanup that it needs to destroy up to this 735 // element. TODO: some of these stores can be trivially 736 // observed to be unnecessary. 737 if (endOfInit) Builder.CreateStore(element, endOfInit); 738 } 739 740 LValue elementLV = CGF.MakeAddrLValue(element, elementType); 741 EmitInitializationToLValue(E->getInit(i), elementLV); 742 } 743 744 // Check whether there's a non-trivial array-fill expression. 745 // Note that this will be a CXXConstructExpr even if the element 746 // type is an array (or array of array, etc.) of class type. 747 Expr *filler = E->getArrayFiller(); 748 bool hasTrivialFiller = true; 749 if (CXXConstructExpr *cons = dyn_cast_or_null<CXXConstructExpr>(filler)) { 750 assert(cons->getConstructor()->isDefaultConstructor()); 751 hasTrivialFiller = cons->getConstructor()->isTrivial(); 752 } 753 754 // Any remaining elements need to be zero-initialized, possibly 755 // using the filler expression. We can skip this if the we're 756 // emitting to zeroed memory. 757 if (NumInitElements != NumArrayElements && 758 !(Dest.isZeroed() && hasTrivialFiller && 759 CGF.getTypes().isZeroInitializable(elementType))) { 760 761 // Use an actual loop. This is basically 762 // do { *array++ = filler; } while (array != end); 763 764 // Advance to the start of the rest of the array. 765 if (NumInitElements) { 766 element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start"); 767 if (endOfInit) Builder.CreateStore(element, endOfInit); 768 } 769 770 // Compute the end of the array. 771 llvm::Value *end = Builder.CreateInBoundsGEP(begin, 772 llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements), 773 "arrayinit.end"); 774 775 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 776 llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body"); 777 778 // Jump into the body. 779 CGF.EmitBlock(bodyBB); 780 llvm::PHINode *currentElement = 781 Builder.CreatePHI(element->getType(), 2, "arrayinit.cur"); 782 currentElement->addIncoming(element, entryBB); 783 784 // Emit the actual filler expression. 785 LValue elementLV = CGF.MakeAddrLValue(currentElement, elementType); 786 if (filler) 787 EmitInitializationToLValue(filler, elementLV); 788 else 789 EmitNullInitializationToLValue(elementLV); 790 791 // Move on to the next element. 792 llvm::Value *nextElement = 793 Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next"); 794 795 // Tell the EH cleanup that we finished with the last element. 796 if (endOfInit) Builder.CreateStore(nextElement, endOfInit); 797 798 // Leave the loop if we're done. 799 llvm::Value *done = Builder.CreateICmpEQ(nextElement, end, 800 "arrayinit.done"); 801 llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end"); 802 Builder.CreateCondBr(done, endBB, bodyBB); 803 currentElement->addIncoming(nextElement, Builder.GetInsertBlock()); 804 805 CGF.EmitBlock(endBB); 806 } 807 808 // Leave the partial-array cleanup if we entered one. 809 if (dtorKind) CGF.DeactivateCleanupBlock(cleanup); 810 811 return; 812 } 813 814 assert(E->getType()->isRecordType() && "Only support structs/unions here!"); 815 816 // Do struct initialization; this code just sets each individual member 817 // to the approprate value. This makes bitfield support automatic; 818 // the disadvantage is that the generated code is more difficult for 819 // the optimizer, especially with bitfields. 820 unsigned NumInitElements = E->getNumInits(); 821 RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl(); 822 823 if (record->isUnion()) { 824 // Only initialize one field of a union. The field itself is 825 // specified by the initializer list. 826 if (!E->getInitializedFieldInUnion()) { 827 // Empty union; we have nothing to do. 828 829 #ifndef NDEBUG 830 // Make sure that it's really an empty and not a failure of 831 // semantic analysis. 832 for (RecordDecl::field_iterator Field = record->field_begin(), 833 FieldEnd = record->field_end(); 834 Field != FieldEnd; ++Field) 835 assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed"); 836 #endif 837 return; 838 } 839 840 // FIXME: volatility 841 FieldDecl *Field = E->getInitializedFieldInUnion(); 842 843 LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestPtr, Field, 0); 844 if (NumInitElements) { 845 // Store the initializer into the field 846 EmitInitializationToLValue(E->getInit(0), FieldLoc); 847 } else { 848 // Default-initialize to null. 849 EmitNullInitializationToLValue(FieldLoc); 850 } 851 852 return; 853 } 854 855 // We'll need to enter cleanup scopes in case any of the member 856 // initializers throw an exception. 857 SmallVector<EHScopeStack::stable_iterator, 16> cleanups; 858 859 // Here we iterate over the fields; this makes it simpler to both 860 // default-initialize fields and skip over unnamed fields. 861 unsigned curInitIndex = 0; 862 for (RecordDecl::field_iterator field = record->field_begin(), 863 fieldEnd = record->field_end(); 864 field != fieldEnd; ++field) { 865 // We're done once we hit the flexible array member. 866 if (field->getType()->isIncompleteArrayType()) 867 break; 868 869 // Always skip anonymous bitfields. 870 if (field->isUnnamedBitfield()) 871 continue; 872 873 // We're done if we reach the end of the explicit initializers, we 874 // have a zeroed object, and the rest of the fields are 875 // zero-initializable. 876 if (curInitIndex == NumInitElements && Dest.isZeroed() && 877 CGF.getTypes().isZeroInitializable(E->getType())) 878 break; 879 880 // FIXME: volatility 881 LValue LV = CGF.EmitLValueForFieldInitialization(DestPtr, *field, 0); 882 // We never generate write-barries for initialized fields. 883 LV.setNonGC(true); 884 885 if (curInitIndex < NumInitElements) { 886 // Store the initializer into the field. 887 EmitInitializationToLValue(E->getInit(curInitIndex++), LV); 888 } else { 889 // We're out of initalizers; default-initialize to null 890 EmitNullInitializationToLValue(LV); 891 } 892 893 // Push a destructor if necessary. 894 // FIXME: if we have an array of structures, all explicitly 895 // initialized, we can end up pushing a linear number of cleanups. 896 bool pushedCleanup = false; 897 if (QualType::DestructionKind dtorKind 898 = field->getType().isDestructedType()) { 899 assert(LV.isSimple()); 900 if (CGF.needsEHCleanup(dtorKind)) { 901 CGF.pushDestroy(EHCleanup, LV.getAddress(), field->getType(), 902 CGF.getDestroyer(dtorKind), false); 903 cleanups.push_back(CGF.EHStack.stable_begin()); 904 pushedCleanup = true; 905 } 906 } 907 908 // If the GEP didn't get used because of a dead zero init or something 909 // else, clean it up for -O0 builds and general tidiness. 910 if (!pushedCleanup && LV.isSimple()) 911 if (llvm::GetElementPtrInst *GEP = 912 dyn_cast<llvm::GetElementPtrInst>(LV.getAddress())) 913 if (GEP->use_empty()) 914 GEP->eraseFromParent(); 915 } 916 917 // Deactivate all the partial cleanups in reverse order, which 918 // generally means popping them. 919 for (unsigned i = cleanups.size(); i != 0; --i) 920 CGF.DeactivateCleanupBlock(cleanups[i-1]); 921 } 922 923 //===----------------------------------------------------------------------===// 924 // Entry Points into this File 925 //===----------------------------------------------------------------------===// 926 927 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of 928 /// non-zero bytes that will be stored when outputting the initializer for the 929 /// specified initializer expression. 930 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) { 931 E = E->IgnoreParens(); 932 933 // 0 and 0.0 won't require any non-zero stores! 934 if (isSimpleZero(E, CGF)) return CharUnits::Zero(); 935 936 // If this is an initlist expr, sum up the size of sizes of the (present) 937 // elements. If this is something weird, assume the whole thing is non-zero. 938 const InitListExpr *ILE = dyn_cast<InitListExpr>(E); 939 if (ILE == 0 || !CGF.getTypes().isZeroInitializable(ILE->getType())) 940 return CGF.getContext().getTypeSizeInChars(E->getType()); 941 942 // InitListExprs for structs have to be handled carefully. If there are 943 // reference members, we need to consider the size of the reference, not the 944 // referencee. InitListExprs for unions and arrays can't have references. 945 if (const RecordType *RT = E->getType()->getAs<RecordType>()) { 946 if (!RT->isUnionType()) { 947 RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl(); 948 CharUnits NumNonZeroBytes = CharUnits::Zero(); 949 950 unsigned ILEElement = 0; 951 for (RecordDecl::field_iterator Field = SD->field_begin(), 952 FieldEnd = SD->field_end(); Field != FieldEnd; ++Field) { 953 // We're done once we hit the flexible array member or run out of 954 // InitListExpr elements. 955 if (Field->getType()->isIncompleteArrayType() || 956 ILEElement == ILE->getNumInits()) 957 break; 958 if (Field->isUnnamedBitfield()) 959 continue; 960 961 const Expr *E = ILE->getInit(ILEElement++); 962 963 // Reference values are always non-null and have the width of a pointer. 964 if (Field->getType()->isReferenceType()) 965 NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits( 966 CGF.getContext().Target.getPointerWidth(0)); 967 else 968 NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF); 969 } 970 971 return NumNonZeroBytes; 972 } 973 } 974 975 976 CharUnits NumNonZeroBytes = CharUnits::Zero(); 977 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) 978 NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF); 979 return NumNonZeroBytes; 980 } 981 982 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of 983 /// zeros in it, emit a memset and avoid storing the individual zeros. 984 /// 985 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E, 986 CodeGenFunction &CGF) { 987 // If the slot is already known to be zeroed, nothing to do. Don't mess with 988 // volatile stores. 989 if (Slot.isZeroed() || Slot.isVolatile() || Slot.getAddr() == 0) return; 990 991 // C++ objects with a user-declared constructor don't need zero'ing. 992 if (CGF.getContext().getLangOptions().CPlusPlus) 993 if (const RecordType *RT = CGF.getContext() 994 .getBaseElementType(E->getType())->getAs<RecordType>()) { 995 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 996 if (RD->hasUserDeclaredConstructor()) 997 return; 998 } 999 1000 // If the type is 16-bytes or smaller, prefer individual stores over memset. 1001 std::pair<CharUnits, CharUnits> TypeInfo = 1002 CGF.getContext().getTypeInfoInChars(E->getType()); 1003 if (TypeInfo.first <= CharUnits::fromQuantity(16)) 1004 return; 1005 1006 // Check to see if over 3/4 of the initializer are known to be zero. If so, 1007 // we prefer to emit memset + individual stores for the rest. 1008 CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF); 1009 if (NumNonZeroBytes*4 > TypeInfo.first) 1010 return; 1011 1012 // Okay, it seems like a good idea to use an initial memset, emit the call. 1013 llvm::Constant *SizeVal = CGF.Builder.getInt64(TypeInfo.first.getQuantity()); 1014 CharUnits Align = TypeInfo.second; 1015 1016 llvm::Value *Loc = Slot.getAddr(); 1017 llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext()); 1018 1019 Loc = CGF.Builder.CreateBitCast(Loc, BP); 1020 CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, 1021 Align.getQuantity(), false); 1022 1023 // Tell the AggExprEmitter that the slot is known zero. 1024 Slot.setZeroed(); 1025 } 1026 1027 1028 1029 1030 /// EmitAggExpr - Emit the computation of the specified expression of aggregate 1031 /// type. The result is computed into DestPtr. Note that if DestPtr is null, 1032 /// the value of the aggregate expression is not needed. If VolatileDest is 1033 /// true, DestPtr cannot be 0. 1034 /// 1035 /// \param IsInitializer - true if this evaluation is initializing an 1036 /// object whose lifetime is already being managed. 1037 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot, 1038 bool IgnoreResult) { 1039 assert(E && hasAggregateLLVMType(E->getType()) && 1040 "Invalid aggregate expression to emit"); 1041 assert((Slot.getAddr() != 0 || Slot.isIgnored()) && 1042 "slot has bits but no address"); 1043 1044 // Optimize the slot if possible. 1045 CheckAggExprForMemSetUse(Slot, E, *this); 1046 1047 AggExprEmitter(*this, Slot, IgnoreResult).Visit(const_cast<Expr*>(E)); 1048 } 1049 1050 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) { 1051 assert(hasAggregateLLVMType(E->getType()) && "Invalid argument!"); 1052 llvm::Value *Temp = CreateMemTemp(E->getType()); 1053 LValue LV = MakeAddrLValue(Temp, E->getType()); 1054 EmitAggExpr(E, AggValueSlot::forLValue(LV, AggValueSlot::IsNotDestructed, 1055 AggValueSlot::DoesNotNeedGCBarriers)); 1056 return LV; 1057 } 1058 1059 void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr, 1060 llvm::Value *SrcPtr, QualType Ty, 1061 bool isVolatile) { 1062 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 1063 1064 if (getContext().getLangOptions().CPlusPlus) { 1065 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1066 CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl()); 1067 assert((Record->hasTrivialCopyConstructor() || 1068 Record->hasTrivialCopyAssignment()) && 1069 "Trying to aggregate-copy a type without a trivial copy " 1070 "constructor or assignment operator"); 1071 // Ignore empty classes in C++. 1072 if (Record->isEmpty()) 1073 return; 1074 } 1075 } 1076 1077 // Aggregate assignment turns into llvm.memcpy. This is almost valid per 1078 // C99 6.5.16.1p3, which states "If the value being stored in an object is 1079 // read from another object that overlaps in anyway the storage of the first 1080 // object, then the overlap shall be exact and the two objects shall have 1081 // qualified or unqualified versions of a compatible type." 1082 // 1083 // memcpy is not defined if the source and destination pointers are exactly 1084 // equal, but other compilers do this optimization, and almost every memcpy 1085 // implementation handles this case safely. If there is a libc that does not 1086 // safely handle this, we can add a target hook. 1087 1088 // Get size and alignment info for this aggregate. 1089 std::pair<CharUnits, CharUnits> TypeInfo = 1090 getContext().getTypeInfoInChars(Ty); 1091 1092 // FIXME: Handle variable sized types. 1093 1094 // FIXME: If we have a volatile struct, the optimizer can remove what might 1095 // appear to be `extra' memory ops: 1096 // 1097 // volatile struct { int i; } a, b; 1098 // 1099 // int main() { 1100 // a = b; 1101 // a = b; 1102 // } 1103 // 1104 // we need to use a different call here. We use isVolatile to indicate when 1105 // either the source or the destination is volatile. 1106 1107 llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType()); 1108 llvm::Type *DBP = 1109 llvm::Type::getInt8PtrTy(getLLVMContext(), DPT->getAddressSpace()); 1110 DestPtr = Builder.CreateBitCast(DestPtr, DBP, "tmp"); 1111 1112 llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType()); 1113 llvm::Type *SBP = 1114 llvm::Type::getInt8PtrTy(getLLVMContext(), SPT->getAddressSpace()); 1115 SrcPtr = Builder.CreateBitCast(SrcPtr, SBP, "tmp"); 1116 1117 // Don't do any of the memmove_collectable tests if GC isn't set. 1118 if (CGM.getLangOptions().getGCMode() == LangOptions::NonGC) { 1119 // fall through 1120 } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 1121 RecordDecl *Record = RecordTy->getDecl(); 1122 if (Record->hasObjectMember()) { 1123 CharUnits size = TypeInfo.first; 1124 llvm::Type *SizeTy = ConvertType(getContext().getSizeType()); 1125 llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity()); 1126 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 1127 SizeVal); 1128 return; 1129 } 1130 } else if (Ty->isArrayType()) { 1131 QualType BaseType = getContext().getBaseElementType(Ty); 1132 if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) { 1133 if (RecordTy->getDecl()->hasObjectMember()) { 1134 CharUnits size = TypeInfo.first; 1135 llvm::Type *SizeTy = ConvertType(getContext().getSizeType()); 1136 llvm::Value *SizeVal = 1137 llvm::ConstantInt::get(SizeTy, size.getQuantity()); 1138 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 1139 SizeVal); 1140 return; 1141 } 1142 } 1143 } 1144 1145 Builder.CreateMemCpy(DestPtr, SrcPtr, 1146 llvm::ConstantInt::get(IntPtrTy, 1147 TypeInfo.first.getQuantity()), 1148 TypeInfo.second.getQuantity(), isVolatile); 1149 } 1150