1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Aggregate Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "CGObjCRuntime.h" 17 #include "clang/AST/ASTContext.h" 18 #include "clang/AST/DeclCXX.h" 19 #include "clang/AST/StmtVisitor.h" 20 #include "llvm/Constants.h" 21 #include "llvm/Function.h" 22 #include "llvm/GlobalVariable.h" 23 #include "llvm/Intrinsics.h" 24 using namespace clang; 25 using namespace CodeGen; 26 27 //===----------------------------------------------------------------------===// 28 // Aggregate Expression Emitter 29 //===----------------------------------------------------------------------===// 30 31 namespace { 32 class AggExprEmitter : public StmtVisitor<AggExprEmitter> { 33 CodeGenFunction &CGF; 34 CGBuilderTy &Builder; 35 AggValueSlot Dest; 36 bool IgnoreResult; 37 38 ReturnValueSlot getReturnValueSlot() const { 39 // If the destination slot requires garbage collection, we can't 40 // use the real return value slot, because we have to use the GC 41 // API. 42 if (Dest.requiresGCollection()) return ReturnValueSlot(); 43 44 return ReturnValueSlot(Dest.getAddr(), Dest.isVolatile()); 45 } 46 47 AggValueSlot EnsureSlot(QualType T) { 48 if (!Dest.isIgnored()) return Dest; 49 return CGF.CreateAggTemp(T, "agg.tmp.ensured"); 50 } 51 52 public: 53 AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest, 54 bool ignore) 55 : CGF(cgf), Builder(CGF.Builder), Dest(Dest), 56 IgnoreResult(ignore) { 57 } 58 59 //===--------------------------------------------------------------------===// 60 // Utilities 61 //===--------------------------------------------------------------------===// 62 63 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 64 /// represents a value lvalue, this method emits the address of the lvalue, 65 /// then loads the result into DestPtr. 66 void EmitAggLoadOfLValue(const Expr *E); 67 68 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 69 void EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore = false); 70 void EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore = false); 71 72 void EmitGCMove(const Expr *E, RValue Src); 73 74 bool TypeRequiresGCollection(QualType T); 75 76 //===--------------------------------------------------------------------===// 77 // Visitor Methods 78 //===--------------------------------------------------------------------===// 79 80 void VisitStmt(Stmt *S) { 81 CGF.ErrorUnsupported(S, "aggregate expression"); 82 } 83 void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); } 84 void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); } 85 86 // l-values. 87 void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); } 88 void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); } 89 void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); } 90 void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); } 91 void VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 92 EmitAggLoadOfLValue(E); 93 } 94 void VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 95 EmitAggLoadOfLValue(E); 96 } 97 void VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) { 98 EmitAggLoadOfLValue(E); 99 } 100 void VisitPredefinedExpr(const PredefinedExpr *E) { 101 EmitAggLoadOfLValue(E); 102 } 103 104 // Operators. 105 void VisitCastExpr(CastExpr *E); 106 void VisitCallExpr(const CallExpr *E); 107 void VisitStmtExpr(const StmtExpr *E); 108 void VisitBinaryOperator(const BinaryOperator *BO); 109 void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO); 110 void VisitBinAssign(const BinaryOperator *E); 111 void VisitBinComma(const BinaryOperator *E); 112 113 void VisitObjCMessageExpr(ObjCMessageExpr *E); 114 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 115 EmitAggLoadOfLValue(E); 116 } 117 void VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E); 118 119 void VisitConditionalOperator(const ConditionalOperator *CO); 120 void VisitChooseExpr(const ChooseExpr *CE); 121 void VisitInitListExpr(InitListExpr *E); 122 void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E); 123 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 124 Visit(DAE->getExpr()); 125 } 126 void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E); 127 void VisitCXXConstructExpr(const CXXConstructExpr *E); 128 void VisitExprWithCleanups(ExprWithCleanups *E); 129 void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E); 130 void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); } 131 132 void VisitVAArgExpr(VAArgExpr *E); 133 134 void EmitInitializationToLValue(Expr *E, LValue Address, QualType T); 135 void EmitNullInitializationToLValue(LValue Address, QualType T); 136 // case Expr::ChooseExprClass: 137 void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); } 138 }; 139 } // end anonymous namespace. 140 141 //===----------------------------------------------------------------------===// 142 // Utilities 143 //===----------------------------------------------------------------------===// 144 145 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 146 /// represents a value lvalue, this method emits the address of the lvalue, 147 /// then loads the result into DestPtr. 148 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) { 149 LValue LV = CGF.EmitLValue(E); 150 EmitFinalDestCopy(E, LV); 151 } 152 153 /// \brief True if the given aggregate type requires special GC API calls. 154 bool AggExprEmitter::TypeRequiresGCollection(QualType T) { 155 // Only record types have members that might require garbage collection. 156 const RecordType *RecordTy = T->getAs<RecordType>(); 157 if (!RecordTy) return false; 158 159 // Don't mess with non-trivial C++ types. 160 RecordDecl *Record = RecordTy->getDecl(); 161 if (isa<CXXRecordDecl>(Record) && 162 (!cast<CXXRecordDecl>(Record)->hasTrivialCopyConstructor() || 163 !cast<CXXRecordDecl>(Record)->hasTrivialDestructor())) 164 return false; 165 166 // Check whether the type has an object member. 167 return Record->hasObjectMember(); 168 } 169 170 /// \brief Perform the final move to DestPtr if RequiresGCollection is set. 171 /// 172 /// The idea is that you do something like this: 173 /// RValue Result = EmitSomething(..., getReturnValueSlot()); 174 /// EmitGCMove(E, Result); 175 /// If GC doesn't interfere, this will cause the result to be emitted 176 /// directly into the return value slot. If GC does interfere, a final 177 /// move will be performed. 178 void AggExprEmitter::EmitGCMove(const Expr *E, RValue Src) { 179 if (Dest.requiresGCollection()) { 180 std::pair<uint64_t, unsigned> TypeInfo = 181 CGF.getContext().getTypeInfo(E->getType()); 182 unsigned long size = TypeInfo.first/8; 183 const llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType()); 184 llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size); 185 CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, Dest.getAddr(), 186 Src.getAggregateAddr(), 187 SizeVal); 188 } 189 } 190 191 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 192 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore) { 193 assert(Src.isAggregate() && "value must be aggregate value!"); 194 195 // If Dest is ignored, then we're evaluating an aggregate expression 196 // in a context (like an expression statement) that doesn't care 197 // about the result. C says that an lvalue-to-rvalue conversion is 198 // performed in these cases; C++ says that it is not. In either 199 // case, we don't actually need to do anything unless the value is 200 // volatile. 201 if (Dest.isIgnored()) { 202 if (!Src.isVolatileQualified() || 203 CGF.CGM.getLangOptions().CPlusPlus || 204 (IgnoreResult && Ignore)) 205 return; 206 207 // If the source is volatile, we must read from it; to do that, we need 208 // some place to put it. 209 Dest = CGF.CreateAggTemp(E->getType(), "agg.tmp"); 210 } 211 212 if (Dest.requiresGCollection()) { 213 std::pair<uint64_t, unsigned> TypeInfo = 214 CGF.getContext().getTypeInfo(E->getType()); 215 unsigned long size = TypeInfo.first/8; 216 const llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType()); 217 llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size); 218 CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, 219 Dest.getAddr(), 220 Src.getAggregateAddr(), 221 SizeVal); 222 return; 223 } 224 // If the result of the assignment is used, copy the LHS there also. 225 // FIXME: Pass VolatileDest as well. I think we also need to merge volatile 226 // from the source as well, as we can't eliminate it if either operand 227 // is volatile, unless copy has volatile for both source and destination.. 228 CGF.EmitAggregateCopy(Dest.getAddr(), Src.getAggregateAddr(), E->getType(), 229 Dest.isVolatile()|Src.isVolatileQualified()); 230 } 231 232 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 233 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore) { 234 assert(Src.isSimple() && "Can't have aggregate bitfield, vector, etc"); 235 236 EmitFinalDestCopy(E, RValue::getAggregate(Src.getAddress(), 237 Src.isVolatileQualified()), 238 Ignore); 239 } 240 241 //===----------------------------------------------------------------------===// 242 // Visitor Methods 243 //===----------------------------------------------------------------------===// 244 245 void AggExprEmitter::VisitCastExpr(CastExpr *E) { 246 if (Dest.isIgnored() && E->getCastKind() != CK_Dynamic) { 247 Visit(E->getSubExpr()); 248 return; 249 } 250 251 switch (E->getCastKind()) { 252 case CK_Dynamic: { 253 assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?"); 254 LValue LV = CGF.EmitCheckedLValue(E->getSubExpr()); 255 // FIXME: Do we also need to handle property references here? 256 if (LV.isSimple()) 257 CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E)); 258 else 259 CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast"); 260 261 if (!Dest.isIgnored()) 262 CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination"); 263 break; 264 } 265 266 case CK_ToUnion: { 267 // GCC union extension 268 QualType Ty = E->getSubExpr()->getType(); 269 QualType PtrTy = CGF.getContext().getPointerType(Ty); 270 llvm::Value *CastPtr = Builder.CreateBitCast(Dest.getAddr(), 271 CGF.ConvertType(PtrTy)); 272 EmitInitializationToLValue(E->getSubExpr(), CGF.MakeAddrLValue(CastPtr, Ty), 273 Ty); 274 break; 275 } 276 277 case CK_DerivedToBase: 278 case CK_BaseToDerived: 279 case CK_UncheckedDerivedToBase: { 280 assert(0 && "cannot perform hierarchy conversion in EmitAggExpr: " 281 "should have been unpacked before we got here"); 282 break; 283 } 284 285 case CK_GetObjCProperty: { 286 LValue LV = CGF.EmitLValue(E->getSubExpr()); 287 assert(LV.isPropertyRef()); 288 RValue RV = CGF.EmitLoadOfPropertyRefLValue(LV, getReturnValueSlot()); 289 EmitGCMove(E, RV); 290 break; 291 } 292 293 case CK_LValueToRValue: // hope for downstream optimization 294 case CK_NoOp: 295 case CK_UserDefinedConversion: 296 case CK_ConstructorConversion: 297 assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(), 298 E->getType()) && 299 "Implicit cast types must be compatible"); 300 Visit(E->getSubExpr()); 301 break; 302 303 case CK_LValueBitCast: 304 llvm_unreachable("should not be emitting lvalue bitcast as rvalue"); 305 break; 306 307 case CK_Dependent: 308 case CK_BitCast: 309 case CK_ArrayToPointerDecay: 310 case CK_FunctionToPointerDecay: 311 case CK_NullToPointer: 312 case CK_NullToMemberPointer: 313 case CK_BaseToDerivedMemberPointer: 314 case CK_DerivedToBaseMemberPointer: 315 case CK_MemberPointerToBoolean: 316 case CK_IntegralToPointer: 317 case CK_PointerToIntegral: 318 case CK_PointerToBoolean: 319 case CK_ToVoid: 320 case CK_VectorSplat: 321 case CK_IntegralCast: 322 case CK_IntegralToBoolean: 323 case CK_IntegralToFloating: 324 case CK_FloatingToIntegral: 325 case CK_FloatingToBoolean: 326 case CK_FloatingCast: 327 case CK_AnyPointerToObjCPointerCast: 328 case CK_AnyPointerToBlockPointerCast: 329 case CK_ObjCObjectLValueCast: 330 case CK_FloatingRealToComplex: 331 case CK_FloatingComplexToReal: 332 case CK_FloatingComplexToBoolean: 333 case CK_FloatingComplexCast: 334 case CK_FloatingComplexToIntegralComplex: 335 case CK_IntegralRealToComplex: 336 case CK_IntegralComplexToReal: 337 case CK_IntegralComplexToBoolean: 338 case CK_IntegralComplexCast: 339 case CK_IntegralComplexToFloatingComplex: 340 llvm_unreachable("cast kind invalid for aggregate types"); 341 } 342 } 343 344 void AggExprEmitter::VisitCallExpr(const CallExpr *E) { 345 if (E->getCallReturnType()->isReferenceType()) { 346 EmitAggLoadOfLValue(E); 347 return; 348 } 349 350 RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot()); 351 EmitGCMove(E, RV); 352 } 353 354 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) { 355 RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot()); 356 EmitGCMove(E, RV); 357 } 358 359 void AggExprEmitter::VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) { 360 llvm_unreachable("direct property access not surrounded by " 361 "lvalue-to-rvalue cast"); 362 } 363 364 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) { 365 CGF.EmitIgnoredExpr(E->getLHS()); 366 Visit(E->getRHS()); 367 } 368 369 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) { 370 CodeGenFunction::StmtExprEvaluation eval(CGF); 371 CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest); 372 } 373 374 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) { 375 if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI) 376 VisitPointerToDataMemberBinaryOperator(E); 377 else 378 CGF.ErrorUnsupported(E, "aggregate binary expression"); 379 } 380 381 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator( 382 const BinaryOperator *E) { 383 LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E); 384 EmitFinalDestCopy(E, LV); 385 } 386 387 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) { 388 // For an assignment to work, the value on the right has 389 // to be compatible with the value on the left. 390 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), 391 E->getRHS()->getType()) 392 && "Invalid assignment"); 393 394 // FIXME: __block variables need the RHS evaluated first! 395 LValue LHS = CGF.EmitLValue(E->getLHS()); 396 397 // We have to special case property setters, otherwise we must have 398 // a simple lvalue (no aggregates inside vectors, bitfields). 399 if (LHS.isPropertyRef()) { 400 AggValueSlot Slot = EnsureSlot(E->getRHS()->getType()); 401 CGF.EmitAggExpr(E->getRHS(), Slot); 402 CGF.EmitStoreThroughPropertyRefLValue(Slot.asRValue(), LHS); 403 } else { 404 bool GCollection = false; 405 if (CGF.getContext().getLangOptions().getGCMode()) 406 GCollection = TypeRequiresGCollection(E->getLHS()->getType()); 407 408 // Codegen the RHS so that it stores directly into the LHS. 409 AggValueSlot LHSSlot = AggValueSlot::forLValue(LHS, true, 410 GCollection); 411 CGF.EmitAggExpr(E->getRHS(), LHSSlot, false); 412 EmitFinalDestCopy(E, LHS, true); 413 } 414 } 415 416 void AggExprEmitter::VisitConditionalOperator(const ConditionalOperator *E) { 417 if (!E->getLHS()) { 418 CGF.ErrorUnsupported(E, "conditional operator with missing LHS"); 419 return; 420 } 421 422 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 423 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 424 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 425 426 CodeGenFunction::ConditionalEvaluation eval(CGF); 427 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock); 428 429 // Save whether the destination's lifetime is externally managed. 430 bool DestLifetimeManaged = Dest.isLifetimeExternallyManaged(); 431 432 eval.begin(CGF); 433 CGF.EmitBlock(LHSBlock); 434 Visit(E->getLHS()); 435 eval.end(CGF); 436 437 assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!"); 438 CGF.Builder.CreateBr(ContBlock); 439 440 // If the result of an agg expression is unused, then the emission 441 // of the LHS might need to create a destination slot. That's fine 442 // with us, and we can safely emit the RHS into the same slot, but 443 // we shouldn't claim that its lifetime is externally managed. 444 Dest.setLifetimeExternallyManaged(DestLifetimeManaged); 445 446 eval.begin(CGF); 447 CGF.EmitBlock(RHSBlock); 448 Visit(E->getRHS()); 449 eval.end(CGF); 450 451 CGF.EmitBlock(ContBlock); 452 } 453 454 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) { 455 Visit(CE->getChosenSubExpr(CGF.getContext())); 456 } 457 458 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 459 llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr()); 460 llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType()); 461 462 if (!ArgPtr) { 463 CGF.ErrorUnsupported(VE, "aggregate va_arg expression"); 464 return; 465 } 466 467 EmitFinalDestCopy(VE, CGF.MakeAddrLValue(ArgPtr, VE->getType())); 468 } 469 470 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 471 // Ensure that we have a slot, but if we already do, remember 472 // whether its lifetime was externally managed. 473 bool WasManaged = Dest.isLifetimeExternallyManaged(); 474 Dest = EnsureSlot(E->getType()); 475 Dest.setLifetimeExternallyManaged(); 476 477 Visit(E->getSubExpr()); 478 479 // Set up the temporary's destructor if its lifetime wasn't already 480 // being managed. 481 if (!WasManaged) 482 CGF.EmitCXXTemporary(E->getTemporary(), Dest.getAddr()); 483 } 484 485 void 486 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) { 487 AggValueSlot Slot = EnsureSlot(E->getType()); 488 CGF.EmitCXXConstructExpr(E, Slot); 489 } 490 491 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) { 492 CGF.EmitExprWithCleanups(E, Dest); 493 } 494 495 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) { 496 QualType T = E->getType(); 497 AggValueSlot Slot = EnsureSlot(T); 498 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T), T); 499 } 500 501 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) { 502 QualType T = E->getType(); 503 AggValueSlot Slot = EnsureSlot(T); 504 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T), T); 505 } 506 507 /// isSimpleZero - If emitting this value will obviously just cause a store of 508 /// zero to memory, return true. This can return false if uncertain, so it just 509 /// handles simple cases. 510 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) { 511 // (0) 512 if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) 513 return isSimpleZero(PE->getSubExpr(), CGF); 514 // 0 515 if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) 516 return IL->getValue() == 0; 517 // +0.0 518 if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E)) 519 return FL->getValue().isPosZero(); 520 // int() 521 if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) && 522 CGF.getTypes().isZeroInitializable(E->getType())) 523 return true; 524 // (int*)0 - Null pointer expressions. 525 if (const CastExpr *ICE = dyn_cast<CastExpr>(E)) 526 return ICE->getCastKind() == CK_NullToPointer; 527 // '\0' 528 if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) 529 return CL->getValue() == 0; 530 531 // Otherwise, hard case: conservatively return false. 532 return false; 533 } 534 535 536 void 537 AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV, QualType T) { 538 // FIXME: Ignore result? 539 // FIXME: Are initializers affected by volatile? 540 if (Dest.isZeroed() && isSimpleZero(E, CGF)) { 541 // Storing "i32 0" to a zero'd memory location is a noop. 542 } else if (isa<ImplicitValueInitExpr>(E)) { 543 EmitNullInitializationToLValue(LV, T); 544 } else if (T->isReferenceType()) { 545 RValue RV = CGF.EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0); 546 CGF.EmitStoreThroughLValue(RV, LV, T); 547 } else if (T->isAnyComplexType()) { 548 CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false); 549 } else if (CGF.hasAggregateLLVMType(T)) { 550 CGF.EmitAggExpr(E, AggValueSlot::forAddr(LV.getAddress(), false, true, 551 false, Dest.isZeroed())); 552 } else { 553 CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV, T); 554 } 555 } 556 557 void AggExprEmitter::EmitNullInitializationToLValue(LValue LV, QualType T) { 558 // If the destination slot is already zeroed out before the aggregate is 559 // copied into it, we don't have to emit any zeros here. 560 if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(T)) 561 return; 562 563 if (!CGF.hasAggregateLLVMType(T)) { 564 // For non-aggregates, we can store zero 565 llvm::Value *Null = llvm::Constant::getNullValue(CGF.ConvertType(T)); 566 CGF.EmitStoreThroughLValue(RValue::get(Null), LV, T); 567 } else { 568 // There's a potential optimization opportunity in combining 569 // memsets; that would be easy for arrays, but relatively 570 // difficult for structures with the current code. 571 CGF.EmitNullInitialization(LV.getAddress(), T); 572 } 573 } 574 575 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) { 576 #if 0 577 // FIXME: Assess perf here? Figure out what cases are worth optimizing here 578 // (Length of globals? Chunks of zeroed-out space?). 579 // 580 // If we can, prefer a copy from a global; this is a lot less code for long 581 // globals, and it's easier for the current optimizers to analyze. 582 if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) { 583 llvm::GlobalVariable* GV = 584 new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true, 585 llvm::GlobalValue::InternalLinkage, C, ""); 586 EmitFinalDestCopy(E, CGF.MakeAddrLValue(GV, E->getType())); 587 return; 588 } 589 #endif 590 if (E->hadArrayRangeDesignator()) 591 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 592 593 llvm::Value *DestPtr = Dest.getAddr(); 594 595 // Handle initialization of an array. 596 if (E->getType()->isArrayType()) { 597 const llvm::PointerType *APType = 598 cast<llvm::PointerType>(DestPtr->getType()); 599 const llvm::ArrayType *AType = 600 cast<llvm::ArrayType>(APType->getElementType()); 601 602 uint64_t NumInitElements = E->getNumInits(); 603 604 if (E->getNumInits() > 0) { 605 QualType T1 = E->getType(); 606 QualType T2 = E->getInit(0)->getType(); 607 if (CGF.getContext().hasSameUnqualifiedType(T1, T2)) { 608 EmitAggLoadOfLValue(E->getInit(0)); 609 return; 610 } 611 } 612 613 uint64_t NumArrayElements = AType->getNumElements(); 614 QualType ElementType = CGF.getContext().getCanonicalType(E->getType()); 615 ElementType = CGF.getContext().getAsArrayType(ElementType)->getElementType(); 616 617 // FIXME: were we intentionally ignoring address spaces and GC attributes? 618 619 for (uint64_t i = 0; i != NumArrayElements; ++i) { 620 // If we're done emitting initializers and the destination is known-zeroed 621 // then we're done. 622 if (i == NumInitElements && 623 Dest.isZeroed() && 624 CGF.getTypes().isZeroInitializable(ElementType)) 625 break; 626 627 llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array"); 628 LValue LV = CGF.MakeAddrLValue(NextVal, ElementType); 629 630 if (i < NumInitElements) 631 EmitInitializationToLValue(E->getInit(i), LV, ElementType); 632 else 633 EmitNullInitializationToLValue(LV, ElementType); 634 635 // If the GEP didn't get used because of a dead zero init or something 636 // else, clean it up for -O0 builds and general tidiness. 637 if (llvm::GetElementPtrInst *GEP = 638 dyn_cast<llvm::GetElementPtrInst>(NextVal)) 639 if (GEP->use_empty()) 640 GEP->eraseFromParent(); 641 } 642 return; 643 } 644 645 assert(E->getType()->isRecordType() && "Only support structs/unions here!"); 646 647 // Do struct initialization; this code just sets each individual member 648 // to the approprate value. This makes bitfield support automatic; 649 // the disadvantage is that the generated code is more difficult for 650 // the optimizer, especially with bitfields. 651 unsigned NumInitElements = E->getNumInits(); 652 RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl(); 653 654 if (E->getType()->isUnionType()) { 655 // Only initialize one field of a union. The field itself is 656 // specified by the initializer list. 657 if (!E->getInitializedFieldInUnion()) { 658 // Empty union; we have nothing to do. 659 660 #ifndef NDEBUG 661 // Make sure that it's really an empty and not a failure of 662 // semantic analysis. 663 for (RecordDecl::field_iterator Field = SD->field_begin(), 664 FieldEnd = SD->field_end(); 665 Field != FieldEnd; ++Field) 666 assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed"); 667 #endif 668 return; 669 } 670 671 // FIXME: volatility 672 FieldDecl *Field = E->getInitializedFieldInUnion(); 673 674 LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestPtr, Field, 0); 675 if (NumInitElements) { 676 // Store the initializer into the field 677 EmitInitializationToLValue(E->getInit(0), FieldLoc, Field->getType()); 678 } else { 679 // Default-initialize to null. 680 EmitNullInitializationToLValue(FieldLoc, Field->getType()); 681 } 682 683 return; 684 } 685 686 // Here we iterate over the fields; this makes it simpler to both 687 // default-initialize fields and skip over unnamed fields. 688 unsigned CurInitVal = 0; 689 for (RecordDecl::field_iterator Field = SD->field_begin(), 690 FieldEnd = SD->field_end(); 691 Field != FieldEnd; ++Field) { 692 // We're done once we hit the flexible array member 693 if (Field->getType()->isIncompleteArrayType()) 694 break; 695 696 if (Field->isUnnamedBitfield()) 697 continue; 698 699 // Don't emit GEP before a noop store of zero. 700 if (CurInitVal == NumInitElements && Dest.isZeroed() && 701 CGF.getTypes().isZeroInitializable(E->getType())) 702 break; 703 704 // FIXME: volatility 705 LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestPtr, *Field, 0); 706 // We never generate write-barries for initialized fields. 707 FieldLoc.setNonGC(true); 708 709 if (CurInitVal < NumInitElements) { 710 // Store the initializer into the field. 711 EmitInitializationToLValue(E->getInit(CurInitVal++), FieldLoc, 712 Field->getType()); 713 } else { 714 // We're out of initalizers; default-initialize to null 715 EmitNullInitializationToLValue(FieldLoc, Field->getType()); 716 } 717 718 // If the GEP didn't get used because of a dead zero init or something 719 // else, clean it up for -O0 builds and general tidiness. 720 if (FieldLoc.isSimple()) 721 if (llvm::GetElementPtrInst *GEP = 722 dyn_cast<llvm::GetElementPtrInst>(FieldLoc.getAddress())) 723 if (GEP->use_empty()) 724 GEP->eraseFromParent(); 725 } 726 } 727 728 //===----------------------------------------------------------------------===// 729 // Entry Points into this File 730 //===----------------------------------------------------------------------===// 731 732 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of 733 /// non-zero bytes that will be stored when outputting the initializer for the 734 /// specified initializer expression. 735 static uint64_t GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) { 736 if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) 737 return GetNumNonZeroBytesInInit(PE->getSubExpr(), CGF); 738 739 // 0 and 0.0 won't require any non-zero stores! 740 if (isSimpleZero(E, CGF)) return 0; 741 742 // If this is an initlist expr, sum up the size of sizes of the (present) 743 // elements. If this is something weird, assume the whole thing is non-zero. 744 const InitListExpr *ILE = dyn_cast<InitListExpr>(E); 745 if (ILE == 0 || !CGF.getTypes().isZeroInitializable(ILE->getType())) 746 return CGF.getContext().getTypeSize(E->getType())/8; 747 748 // InitListExprs for structs have to be handled carefully. If there are 749 // reference members, we need to consider the size of the reference, not the 750 // referencee. InitListExprs for unions and arrays can't have references. 751 if (const RecordType *RT = E->getType()->getAs<RecordType>()) { 752 if (!RT->isUnionType()) { 753 RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl(); 754 uint64_t NumNonZeroBytes = 0; 755 756 unsigned ILEElement = 0; 757 for (RecordDecl::field_iterator Field = SD->field_begin(), 758 FieldEnd = SD->field_end(); Field != FieldEnd; ++Field) { 759 // We're done once we hit the flexible array member or run out of 760 // InitListExpr elements. 761 if (Field->getType()->isIncompleteArrayType() || 762 ILEElement == ILE->getNumInits()) 763 break; 764 if (Field->isUnnamedBitfield()) 765 continue; 766 767 const Expr *E = ILE->getInit(ILEElement++); 768 769 // Reference values are always non-null and have the width of a pointer. 770 if (Field->getType()->isReferenceType()) 771 NumNonZeroBytes += CGF.getContext().Target.getPointerWidth(0); 772 else 773 NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF); 774 } 775 776 return NumNonZeroBytes; 777 } 778 } 779 780 781 uint64_t NumNonZeroBytes = 0; 782 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) 783 NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF); 784 return NumNonZeroBytes; 785 } 786 787 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of 788 /// zeros in it, emit a memset and avoid storing the individual zeros. 789 /// 790 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E, 791 CodeGenFunction &CGF) { 792 // If the slot is already known to be zeroed, nothing to do. Don't mess with 793 // volatile stores. 794 if (Slot.isZeroed() || Slot.isVolatile() || Slot.getAddr() == 0) return; 795 796 // If the type is 16-bytes or smaller, prefer individual stores over memset. 797 std::pair<uint64_t, unsigned> TypeInfo = 798 CGF.getContext().getTypeInfo(E->getType()); 799 if (TypeInfo.first/8 <= 16) 800 return; 801 802 // Check to see if over 3/4 of the initializer are known to be zero. If so, 803 // we prefer to emit memset + individual stores for the rest. 804 uint64_t NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF); 805 if (NumNonZeroBytes*4 > TypeInfo.first/8) 806 return; 807 808 // Okay, it seems like a good idea to use an initial memset, emit the call. 809 llvm::Constant *SizeVal = CGF.Builder.getInt64(TypeInfo.first/8); 810 unsigned Align = TypeInfo.second/8; 811 812 llvm::Value *Loc = Slot.getAddr(); 813 const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext()); 814 815 Loc = CGF.Builder.CreateBitCast(Loc, BP); 816 CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, Align, false); 817 818 // Tell the AggExprEmitter that the slot is known zero. 819 Slot.setZeroed(); 820 } 821 822 823 824 825 /// EmitAggExpr - Emit the computation of the specified expression of aggregate 826 /// type. The result is computed into DestPtr. Note that if DestPtr is null, 827 /// the value of the aggregate expression is not needed. If VolatileDest is 828 /// true, DestPtr cannot be 0. 829 /// 830 /// \param IsInitializer - true if this evaluation is initializing an 831 /// object whose lifetime is already being managed. 832 // 833 // FIXME: Take Qualifiers object. 834 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot, 835 bool IgnoreResult) { 836 assert(E && hasAggregateLLVMType(E->getType()) && 837 "Invalid aggregate expression to emit"); 838 assert((Slot.getAddr() != 0 || Slot.isIgnored()) && 839 "slot has bits but no address"); 840 841 // Optimize the slot if possible. 842 CheckAggExprForMemSetUse(Slot, E, *this); 843 844 AggExprEmitter(*this, Slot, IgnoreResult).Visit(const_cast<Expr*>(E)); 845 } 846 847 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) { 848 assert(hasAggregateLLVMType(E->getType()) && "Invalid argument!"); 849 llvm::Value *Temp = CreateMemTemp(E->getType()); 850 LValue LV = MakeAddrLValue(Temp, E->getType()); 851 EmitAggExpr(E, AggValueSlot::forAddr(Temp, LV.isVolatileQualified(), false)); 852 return LV; 853 } 854 855 void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr, 856 llvm::Value *SrcPtr, QualType Ty, 857 bool isVolatile) { 858 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 859 860 if (getContext().getLangOptions().CPlusPlus) { 861 if (const RecordType *RT = Ty->getAs<RecordType>()) { 862 CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl()); 863 assert((Record->hasTrivialCopyConstructor() || 864 Record->hasTrivialCopyAssignment()) && 865 "Trying to aggregate-copy a type without a trivial copy " 866 "constructor or assignment operator"); 867 // Ignore empty classes in C++. 868 if (Record->isEmpty()) 869 return; 870 } 871 } 872 873 // Aggregate assignment turns into llvm.memcpy. This is almost valid per 874 // C99 6.5.16.1p3, which states "If the value being stored in an object is 875 // read from another object that overlaps in anyway the storage of the first 876 // object, then the overlap shall be exact and the two objects shall have 877 // qualified or unqualified versions of a compatible type." 878 // 879 // memcpy is not defined if the source and destination pointers are exactly 880 // equal, but other compilers do this optimization, and almost every memcpy 881 // implementation handles this case safely. If there is a libc that does not 882 // safely handle this, we can add a target hook. 883 884 // Get size and alignment info for this aggregate. 885 std::pair<uint64_t, unsigned> TypeInfo = getContext().getTypeInfo(Ty); 886 887 // FIXME: Handle variable sized types. 888 889 // FIXME: If we have a volatile struct, the optimizer can remove what might 890 // appear to be `extra' memory ops: 891 // 892 // volatile struct { int i; } a, b; 893 // 894 // int main() { 895 // a = b; 896 // a = b; 897 // } 898 // 899 // we need to use a different call here. We use isVolatile to indicate when 900 // either the source or the destination is volatile. 901 902 const llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType()); 903 const llvm::Type *DBP = 904 llvm::Type::getInt8PtrTy(VMContext, DPT->getAddressSpace()); 905 DestPtr = Builder.CreateBitCast(DestPtr, DBP, "tmp"); 906 907 const llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType()); 908 const llvm::Type *SBP = 909 llvm::Type::getInt8PtrTy(VMContext, SPT->getAddressSpace()); 910 SrcPtr = Builder.CreateBitCast(SrcPtr, SBP, "tmp"); 911 912 if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 913 RecordDecl *Record = RecordTy->getDecl(); 914 if (Record->hasObjectMember()) { 915 unsigned long size = TypeInfo.first/8; 916 const llvm::Type *SizeTy = ConvertType(getContext().getSizeType()); 917 llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size); 918 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 919 SizeVal); 920 return; 921 } 922 } else if (getContext().getAsArrayType(Ty)) { 923 QualType BaseType = getContext().getBaseElementType(Ty); 924 if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) { 925 if (RecordTy->getDecl()->hasObjectMember()) { 926 unsigned long size = TypeInfo.first/8; 927 const llvm::Type *SizeTy = ConvertType(getContext().getSizeType()); 928 llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size); 929 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 930 SizeVal); 931 return; 932 } 933 } 934 } 935 936 Builder.CreateMemCpy(DestPtr, SrcPtr, 937 llvm::ConstantInt::get(IntPtrTy, TypeInfo.first/8), 938 TypeInfo.second/8, isVolatile); 939 } 940