1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Aggregate Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "clang/AST/ASTContext.h" 17 #include "clang/AST/DeclCXX.h" 18 #include "clang/AST/StmtVisitor.h" 19 #include "llvm/Constants.h" 20 #include "llvm/Function.h" 21 #include "llvm/GlobalVariable.h" 22 #include "llvm/Support/Compiler.h" 23 #include "llvm/Intrinsics.h" 24 using namespace clang; 25 using namespace CodeGen; 26 27 //===----------------------------------------------------------------------===// 28 // Aggregate Expression Emitter 29 //===----------------------------------------------------------------------===// 30 31 namespace { 32 class VISIBILITY_HIDDEN AggExprEmitter : public StmtVisitor<AggExprEmitter> { 33 CodeGenFunction &CGF; 34 CGBuilderTy &Builder; 35 llvm::Value *DestPtr; 36 bool VolatileDest; 37 public: 38 AggExprEmitter(CodeGenFunction &cgf, llvm::Value *destPtr, bool volatileDest) 39 : CGF(cgf), Builder(CGF.Builder), 40 DestPtr(destPtr), VolatileDest(volatileDest) { 41 } 42 43 //===--------------------------------------------------------------------===// 44 // Utilities 45 //===--------------------------------------------------------------------===// 46 47 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 48 /// represents a value lvalue, this method emits the address of the lvalue, 49 /// then loads the result into DestPtr. 50 void EmitAggLoadOfLValue(const Expr *E); 51 52 //===--------------------------------------------------------------------===// 53 // Visitor Methods 54 //===--------------------------------------------------------------------===// 55 56 void VisitStmt(Stmt *S) { 57 CGF.ErrorUnsupported(S, "aggregate expression"); 58 } 59 void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); } 60 void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); } 61 62 // l-values. 63 void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); } 64 void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); } 65 void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); } 66 void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); } 67 void VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 68 EmitAggLoadOfLValue(E); 69 } 70 void VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 71 EmitAggLoadOfLValue(E); 72 } 73 void VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) { 74 EmitAggLoadOfLValue(E); 75 } 76 void VisitPredefinedExpr(const PredefinedExpr *E) { 77 EmitAggLoadOfLValue(E); 78 } 79 80 // Operators. 81 void VisitCStyleCastExpr(CStyleCastExpr *E); 82 void VisitImplicitCastExpr(ImplicitCastExpr *E); 83 void VisitCallExpr(const CallExpr *E); 84 void VisitStmtExpr(const StmtExpr *E); 85 void VisitBinaryOperator(const BinaryOperator *BO); 86 void VisitBinAssign(const BinaryOperator *E); 87 void VisitBinComma(const BinaryOperator *E); 88 89 void VisitObjCMessageExpr(ObjCMessageExpr *E); 90 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 91 EmitAggLoadOfLValue(E); 92 } 93 void VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E); 94 void VisitObjCKVCRefExpr(ObjCKVCRefExpr *E); 95 96 void VisitConditionalOperator(const ConditionalOperator *CO); 97 void VisitInitListExpr(InitListExpr *E); 98 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 99 Visit(DAE->getExpr()); 100 } 101 void VisitCXXTemporaryObjectExpr(const CXXTemporaryObjectExpr *E); 102 void VisitVAArgExpr(VAArgExpr *E); 103 104 void EmitInitializationToLValue(Expr *E, LValue Address); 105 void EmitNullInitializationToLValue(LValue Address, QualType T); 106 // case Expr::ChooseExprClass: 107 108 }; 109 } // end anonymous namespace. 110 111 //===----------------------------------------------------------------------===// 112 // Utilities 113 //===----------------------------------------------------------------------===// 114 115 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 116 /// represents a value lvalue, this method emits the address of the lvalue, 117 /// then loads the result into DestPtr. 118 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) { 119 LValue LV = CGF.EmitLValue(E); 120 assert(LV.isSimple() && "Can't have aggregate bitfield, vector, etc"); 121 llvm::Value *SrcPtr = LV.getAddress(); 122 123 // If the result is ignored, don't copy from the value. 124 if (DestPtr == 0) 125 // FIXME: If the source is volatile, we must read from it. 126 return; 127 128 CGF.EmitAggregateCopy(DestPtr, SrcPtr, E->getType()); 129 } 130 131 //===----------------------------------------------------------------------===// 132 // Visitor Methods 133 //===----------------------------------------------------------------------===// 134 135 void AggExprEmitter::VisitCStyleCastExpr(CStyleCastExpr *E) { 136 // GCC union extension 137 if (E->getType()->isUnionType()) { 138 RecordDecl *SD = E->getType()->getAsRecordType()->getDecl(); 139 LValue FieldLoc = CGF.EmitLValueForField(DestPtr, 140 *SD->field_begin(CGF.getContext()), 141 true, 0); 142 EmitInitializationToLValue(E->getSubExpr(), FieldLoc); 143 return; 144 } 145 146 Visit(E->getSubExpr()); 147 } 148 149 void AggExprEmitter::VisitImplicitCastExpr(ImplicitCastExpr *E) { 150 assert(CGF.getContext().typesAreCompatible( 151 E->getSubExpr()->getType().getUnqualifiedType(), 152 E->getType().getUnqualifiedType()) && 153 "Implicit cast types must be compatible"); 154 Visit(E->getSubExpr()); 155 } 156 157 void AggExprEmitter::VisitCallExpr(const CallExpr *E) { 158 RValue RV = CGF.EmitCallExpr(E); 159 assert(RV.isAggregate() && "Return value must be aggregate value!"); 160 161 // If the result is ignored, don't copy from the value. 162 if (DestPtr == 0) 163 // FIXME: If the source is volatile, we must read from it. 164 return; 165 166 CGF.EmitAggregateCopy(DestPtr, RV.getAggregateAddr(), E->getType()); 167 } 168 169 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) { 170 RValue RV = CGF.EmitObjCMessageExpr(E); 171 assert(RV.isAggregate() && "Return value must be aggregate value!"); 172 173 // If the result is ignored, don't copy from the value. 174 if (DestPtr == 0) 175 // FIXME: If the source is volatile, we must read from it. 176 return; 177 178 CGF.EmitAggregateCopy(DestPtr, RV.getAggregateAddr(), E->getType()); 179 } 180 181 void AggExprEmitter::VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) { 182 RValue RV = CGF.EmitObjCPropertyGet(E); 183 assert(RV.isAggregate() && "Return value must be aggregate value!"); 184 185 // If the result is ignored, don't copy from the value. 186 if (DestPtr == 0) 187 // FIXME: If the source is volatile, we must read from it. 188 return; 189 190 CGF.EmitAggregateCopy(DestPtr, RV.getAggregateAddr(), E->getType()); 191 } 192 193 void AggExprEmitter::VisitObjCKVCRefExpr(ObjCKVCRefExpr *E) { 194 RValue RV = CGF.EmitObjCPropertyGet(E); 195 assert(RV.isAggregate() && "Return value must be aggregate value!"); 196 197 // If the result is ignored, don't copy from the value. 198 if (DestPtr == 0) 199 // FIXME: If the source is volatile, we must read from it. 200 return; 201 202 CGF.EmitAggregateCopy(DestPtr, RV.getAggregateAddr(), E->getType()); 203 } 204 205 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) { 206 CGF.EmitAnyExpr(E->getLHS()); 207 CGF.EmitAggExpr(E->getRHS(), DestPtr, false); 208 } 209 210 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) { 211 CGF.EmitCompoundStmt(*E->getSubStmt(), true, DestPtr, VolatileDest); 212 } 213 214 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) { 215 CGF.ErrorUnsupported(E, "aggregate binary expression"); 216 } 217 218 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) { 219 // For an assignment to work, the value on the right has 220 // to be compatible with the value on the left. 221 assert(CGF.getContext().typesAreCompatible( 222 E->getLHS()->getType().getUnqualifiedType(), 223 E->getRHS()->getType().getUnqualifiedType()) 224 && "Invalid assignment"); 225 LValue LHS = CGF.EmitLValue(E->getLHS()); 226 227 // We have to special case property setters, otherwise we must have 228 // a simple lvalue (no aggregates inside vectors, bitfields). 229 if (LHS.isPropertyRef()) { 230 // FIXME: Volatility? 231 llvm::Value *AggLoc = DestPtr; 232 if (!AggLoc) 233 AggLoc = CGF.CreateTempAlloca(CGF.ConvertType(E->getRHS()->getType())); 234 CGF.EmitAggExpr(E->getRHS(), AggLoc, false); 235 CGF.EmitObjCPropertySet(LHS.getPropertyRefExpr(), 236 RValue::getAggregate(AggLoc)); 237 } 238 else if (LHS.isKVCRef()) { 239 // FIXME: Volatility? 240 llvm::Value *AggLoc = DestPtr; 241 if (!AggLoc) 242 AggLoc = CGF.CreateTempAlloca(CGF.ConvertType(E->getRHS()->getType())); 243 CGF.EmitAggExpr(E->getRHS(), AggLoc, false); 244 CGF.EmitObjCPropertySet(LHS.getKVCRefExpr(), 245 RValue::getAggregate(AggLoc)); 246 } else { 247 // Codegen the RHS so that it stores directly into the LHS. 248 CGF.EmitAggExpr(E->getRHS(), LHS.getAddress(), false /*FIXME: VOLATILE LHS*/); 249 250 if (DestPtr == 0) 251 return; 252 253 // If the result of the assignment is used, copy the RHS there also. 254 CGF.EmitAggregateCopy(DestPtr, LHS.getAddress(), E->getType()); 255 } 256 } 257 258 void AggExprEmitter::VisitConditionalOperator(const ConditionalOperator *E) { 259 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 260 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 261 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 262 263 llvm::Value *Cond = CGF.EvaluateExprAsBool(E->getCond()); 264 Builder.CreateCondBr(Cond, LHSBlock, RHSBlock); 265 266 CGF.EmitBlock(LHSBlock); 267 268 // Handle the GNU extension for missing LHS. 269 assert(E->getLHS() && "Must have LHS for aggregate value"); 270 271 Visit(E->getLHS()); 272 CGF.EmitBranch(ContBlock); 273 274 CGF.EmitBlock(RHSBlock); 275 276 Visit(E->getRHS()); 277 CGF.EmitBranch(ContBlock); 278 279 CGF.EmitBlock(ContBlock); 280 } 281 282 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 283 llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr()); 284 llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType()); 285 286 if (!ArgPtr) { 287 CGF.ErrorUnsupported(VE, "aggregate va_arg expression"); 288 return; 289 } 290 291 if (DestPtr) 292 // FIXME: volatility 293 CGF.EmitAggregateCopy(DestPtr, ArgPtr, VE->getType()); 294 } 295 296 void 297 AggExprEmitter::VisitCXXTemporaryObjectExpr(const CXXTemporaryObjectExpr *E) { 298 llvm::Value *This = 0; 299 300 if (DestPtr) 301 This = DestPtr; 302 else 303 This = CGF.CreateTempAlloca(CGF.ConvertType(E->getType()), "tmp"); 304 305 CGF.EmitCXXTemporaryObjectExpr(This, E); 306 } 307 308 void AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV) { 309 // FIXME: Are initializers affected by volatile? 310 if (isa<ImplicitValueInitExpr>(E)) { 311 EmitNullInitializationToLValue(LV, E->getType()); 312 } else if (E->getType()->isComplexType()) { 313 CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false); 314 } else if (CGF.hasAggregateLLVMType(E->getType())) { 315 CGF.EmitAnyExpr(E, LV.getAddress(), false); 316 } else { 317 CGF.EmitStoreThroughLValue(CGF.EmitAnyExpr(E), LV, E->getType()); 318 } 319 } 320 321 void AggExprEmitter::EmitNullInitializationToLValue(LValue LV, QualType T) { 322 if (!CGF.hasAggregateLLVMType(T)) { 323 // For non-aggregates, we can store zero 324 llvm::Value *Null = llvm::Constant::getNullValue(CGF.ConvertType(T)); 325 CGF.EmitStoreThroughLValue(RValue::get(Null), LV, T); 326 } else { 327 // Otherwise, just memset the whole thing to zero. This is legal 328 // because in LLVM, all default initializers are guaranteed to have a 329 // bit pattern of all zeros. 330 // FIXME: That isn't true for member pointers! 331 // There's a potential optimization opportunity in combining 332 // memsets; that would be easy for arrays, but relatively 333 // difficult for structures with the current code. 334 CGF.EmitMemSetToZero(LV.getAddress(), T); 335 } 336 } 337 338 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) { 339 #if 0 340 // FIXME: Disabled while we figure out what to do about 341 // test/CodeGen/bitfield.c 342 // 343 // If we can, prefer a copy from a global; this is a lot less 344 // code for long globals, and it's easier for the current optimizers 345 // to analyze. 346 // FIXME: Should we really be doing this? Should we try to avoid 347 // cases where we emit a global with a lot of zeros? Should 348 // we try to avoid short globals? 349 if (E->isConstantInitializer(CGF.getContext(), 0)) { 350 llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, &CGF); 351 llvm::GlobalVariable* GV = 352 new llvm::GlobalVariable(C->getType(), true, 353 llvm::GlobalValue::InternalLinkage, 354 C, "", &CGF.CGM.getModule(), 0); 355 CGF.EmitAggregateCopy(DestPtr, GV, E->getType()); 356 return; 357 } 358 #endif 359 if (E->hadArrayRangeDesignator()) { 360 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 361 } 362 363 // Handle initialization of an array. 364 if (E->getType()->isArrayType()) { 365 const llvm::PointerType *APType = 366 cast<llvm::PointerType>(DestPtr->getType()); 367 const llvm::ArrayType *AType = 368 cast<llvm::ArrayType>(APType->getElementType()); 369 370 uint64_t NumInitElements = E->getNumInits(); 371 372 if (E->getNumInits() > 0) { 373 QualType T1 = E->getType(); 374 QualType T2 = E->getInit(0)->getType(); 375 if (CGF.getContext().getCanonicalType(T1).getUnqualifiedType() == 376 CGF.getContext().getCanonicalType(T2).getUnqualifiedType()) { 377 EmitAggLoadOfLValue(E->getInit(0)); 378 return; 379 } 380 } 381 382 uint64_t NumArrayElements = AType->getNumElements(); 383 QualType ElementType = CGF.getContext().getCanonicalType(E->getType()); 384 ElementType = CGF.getContext().getAsArrayType(ElementType)->getElementType(); 385 386 unsigned CVRqualifier = ElementType.getCVRQualifiers(); 387 388 for (uint64_t i = 0; i != NumArrayElements; ++i) { 389 llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array"); 390 if (i < NumInitElements) 391 EmitInitializationToLValue(E->getInit(i), 392 LValue::MakeAddr(NextVal, CVRqualifier)); 393 else 394 EmitNullInitializationToLValue(LValue::MakeAddr(NextVal, CVRqualifier), 395 ElementType); 396 } 397 return; 398 } 399 400 assert(E->getType()->isRecordType() && "Only support structs/unions here!"); 401 402 // Do struct initialization; this code just sets each individual member 403 // to the approprate value. This makes bitfield support automatic; 404 // the disadvantage is that the generated code is more difficult for 405 // the optimizer, especially with bitfields. 406 unsigned NumInitElements = E->getNumInits(); 407 RecordDecl *SD = E->getType()->getAsRecordType()->getDecl(); 408 unsigned CurInitVal = 0; 409 410 if (E->getType()->isUnionType()) { 411 // Only initialize one field of a union. The field itself is 412 // specified by the initializer list. 413 if (!E->getInitializedFieldInUnion()) { 414 // Empty union; we have nothing to do. 415 416 #ifndef NDEBUG 417 // Make sure that it's really an empty and not a failure of 418 // semantic analysis. 419 for (RecordDecl::field_iterator Field = SD->field_begin(CGF.getContext()), 420 FieldEnd = SD->field_end(CGF.getContext()); 421 Field != FieldEnd; ++Field) 422 assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed"); 423 #endif 424 return; 425 } 426 427 // FIXME: volatility 428 FieldDecl *Field = E->getInitializedFieldInUnion(); 429 LValue FieldLoc = CGF.EmitLValueForField(DestPtr, Field, true, 0); 430 431 if (NumInitElements) { 432 // Store the initializer into the field 433 EmitInitializationToLValue(E->getInit(0), FieldLoc); 434 } else { 435 // Default-initialize to null 436 EmitNullInitializationToLValue(FieldLoc, Field->getType()); 437 } 438 439 return; 440 } 441 442 // Here we iterate over the fields; this makes it simpler to both 443 // default-initialize fields and skip over unnamed fields. 444 for (RecordDecl::field_iterator Field = SD->field_begin(CGF.getContext()), 445 FieldEnd = SD->field_end(CGF.getContext()); 446 Field != FieldEnd; ++Field) { 447 // We're done once we hit the flexible array member 448 if (Field->getType()->isIncompleteArrayType()) 449 break; 450 451 if (Field->isUnnamedBitfield()) 452 continue; 453 454 // FIXME: volatility 455 LValue FieldLoc = CGF.EmitLValueForField(DestPtr, *Field, false, 0); 456 if (CurInitVal < NumInitElements) { 457 // Store the initializer into the field 458 EmitInitializationToLValue(E->getInit(CurInitVal++), FieldLoc); 459 } else { 460 // We're out of initalizers; default-initialize to null 461 EmitNullInitializationToLValue(FieldLoc, Field->getType()); 462 } 463 } 464 } 465 466 //===----------------------------------------------------------------------===// 467 // Entry Points into this File 468 //===----------------------------------------------------------------------===// 469 470 /// EmitAggExpr - Emit the computation of the specified expression of 471 /// aggregate type. The result is computed into DestPtr. Note that if 472 /// DestPtr is null, the value of the aggregate expression is not needed. 473 void CodeGenFunction::EmitAggExpr(const Expr *E, llvm::Value *DestPtr, 474 bool VolatileDest) { 475 assert(E && hasAggregateLLVMType(E->getType()) && 476 "Invalid aggregate expression to emit"); 477 478 AggExprEmitter(*this, DestPtr, VolatileDest).Visit(const_cast<Expr*>(E)); 479 } 480 481 void CodeGenFunction::EmitAggregateClear(llvm::Value *DestPtr, QualType Ty) { 482 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 483 484 EmitMemSetToZero(DestPtr, Ty); 485 } 486 487 void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr, 488 llvm::Value *SrcPtr, QualType Ty) { 489 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 490 491 // Aggregate assignment turns into llvm.memcpy. This is almost valid per 492 // C99 6.5.16.1p3, which states "If the value being stored in an object is 493 // read from another object that overlaps in anyway the storage of the first 494 // object, then the overlap shall be exact and the two objects shall have 495 // qualified or unqualified versions of a compatible type." 496 // 497 // memcpy is not defined if the source and destination pointers are exactly 498 // equal, but other compilers do this optimization, and almost every memcpy 499 // implementation handles this case safely. If there is a libc that does not 500 // safely handle this, we can add a target hook. 501 const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 502 if (DestPtr->getType() != BP) 503 DestPtr = Builder.CreateBitCast(DestPtr, BP, "tmp"); 504 if (SrcPtr->getType() != BP) 505 SrcPtr = Builder.CreateBitCast(SrcPtr, BP, "tmp"); 506 507 // Get size and alignment info for this aggregate. 508 std::pair<uint64_t, unsigned> TypeInfo = getContext().getTypeInfo(Ty); 509 510 // FIXME: Handle variable sized types. 511 const llvm::Type *IntPtr = llvm::IntegerType::get(LLVMPointerWidth); 512 513 Builder.CreateCall4(CGM.getMemCpyFn(), 514 DestPtr, SrcPtr, 515 // TypeInfo.first describes size in bits. 516 llvm::ConstantInt::get(IntPtr, TypeInfo.first/8), 517 llvm::ConstantInt::get(llvm::Type::Int32Ty, 518 TypeInfo.second/8)); 519 } 520