1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Aggregate Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGObjCRuntime.h"
16 #include "CodeGenModule.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/DeclTemplate.h"
20 #include "clang/AST/StmtVisitor.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/Function.h"
23 #include "llvm/IR/GlobalVariable.h"
24 #include "llvm/IR/Intrinsics.h"
25 using namespace clang;
26 using namespace CodeGen;
27 
28 //===----------------------------------------------------------------------===//
29 //                        Aggregate Expression Emitter
30 //===----------------------------------------------------------------------===//
31 
32 namespace  {
33 class AggExprEmitter : public StmtVisitor<AggExprEmitter> {
34   CodeGenFunction &CGF;
35   CGBuilderTy &Builder;
36   AggValueSlot Dest;
37   bool IsResultUnused;
38 
39   /// We want to use 'dest' as the return slot except under two
40   /// conditions:
41   ///   - The destination slot requires garbage collection, so we
42   ///     need to use the GC API.
43   ///   - The destination slot is potentially aliased.
44   bool shouldUseDestForReturnSlot() const {
45     return !(Dest.requiresGCollection() || Dest.isPotentiallyAliased());
46   }
47 
48   ReturnValueSlot getReturnValueSlot() const {
49     if (!shouldUseDestForReturnSlot())
50       return ReturnValueSlot();
51 
52     return ReturnValueSlot(Dest.getAddress(), Dest.isVolatile(),
53                            IsResultUnused);
54   }
55 
56   AggValueSlot EnsureSlot(QualType T) {
57     if (!Dest.isIgnored()) return Dest;
58     return CGF.CreateAggTemp(T, "agg.tmp.ensured");
59   }
60   void EnsureDest(QualType T) {
61     if (!Dest.isIgnored()) return;
62     Dest = CGF.CreateAggTemp(T, "agg.tmp.ensured");
63   }
64 
65 public:
66   AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest, bool IsResultUnused)
67     : CGF(cgf), Builder(CGF.Builder), Dest(Dest),
68     IsResultUnused(IsResultUnused) { }
69 
70   //===--------------------------------------------------------------------===//
71   //                               Utilities
72   //===--------------------------------------------------------------------===//
73 
74   /// EmitAggLoadOfLValue - Given an expression with aggregate type that
75   /// represents a value lvalue, this method emits the address of the lvalue,
76   /// then loads the result into DestPtr.
77   void EmitAggLoadOfLValue(const Expr *E);
78 
79   /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
80   void EmitFinalDestCopy(QualType type, const LValue &src);
81   void EmitFinalDestCopy(QualType type, RValue src);
82   void EmitCopy(QualType type, const AggValueSlot &dest,
83                 const AggValueSlot &src);
84 
85   void EmitMoveFromReturnSlot(const Expr *E, RValue Src);
86 
87   void EmitArrayInit(Address DestPtr, llvm::ArrayType *AType,
88                      QualType elementType, InitListExpr *E);
89 
90   AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) {
91     if (CGF.getLangOpts().getGC() && TypeRequiresGCollection(T))
92       return AggValueSlot::NeedsGCBarriers;
93     return AggValueSlot::DoesNotNeedGCBarriers;
94   }
95 
96   bool TypeRequiresGCollection(QualType T);
97 
98   //===--------------------------------------------------------------------===//
99   //                            Visitor Methods
100   //===--------------------------------------------------------------------===//
101 
102   void Visit(Expr *E) {
103     ApplyDebugLocation DL(CGF, E);
104     StmtVisitor<AggExprEmitter>::Visit(E);
105   }
106 
107   void VisitStmt(Stmt *S) {
108     CGF.ErrorUnsupported(S, "aggregate expression");
109   }
110   void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
111   void VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
112     Visit(GE->getResultExpr());
113   }
114   void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
115   void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
116     return Visit(E->getReplacement());
117   }
118 
119   // l-values.
120   void VisitDeclRefExpr(DeclRefExpr *E) {
121     // For aggregates, we should always be able to emit the variable
122     // as an l-value unless it's a reference.  This is due to the fact
123     // that we can't actually ever see a normal l2r conversion on an
124     // aggregate in C++, and in C there's no language standard
125     // actively preventing us from listing variables in the captures
126     // list of a block.
127     if (E->getDecl()->getType()->isReferenceType()) {
128       if (CodeGenFunction::ConstantEmission result
129             = CGF.tryEmitAsConstant(E)) {
130         EmitFinalDestCopy(E->getType(), result.getReferenceLValue(CGF, E));
131         return;
132       }
133     }
134 
135     EmitAggLoadOfLValue(E);
136   }
137 
138   void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
139   void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
140   void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
141   void VisitCompoundLiteralExpr(CompoundLiteralExpr *E);
142   void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
143     EmitAggLoadOfLValue(E);
144   }
145   void VisitPredefinedExpr(const PredefinedExpr *E) {
146     EmitAggLoadOfLValue(E);
147   }
148 
149   // Operators.
150   void VisitCastExpr(CastExpr *E);
151   void VisitCallExpr(const CallExpr *E);
152   void VisitStmtExpr(const StmtExpr *E);
153   void VisitBinaryOperator(const BinaryOperator *BO);
154   void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO);
155   void VisitBinAssign(const BinaryOperator *E);
156   void VisitBinComma(const BinaryOperator *E);
157 
158   void VisitObjCMessageExpr(ObjCMessageExpr *E);
159   void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
160     EmitAggLoadOfLValue(E);
161   }
162 
163   void VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E);
164   void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
165   void VisitChooseExpr(const ChooseExpr *CE);
166   void VisitInitListExpr(InitListExpr *E);
167   void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E);
168   void VisitNoInitExpr(NoInitExpr *E) { } // Do nothing.
169   void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
170     Visit(DAE->getExpr());
171   }
172   void VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
173     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF);
174     Visit(DIE->getExpr());
175   }
176   void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E);
177   void VisitCXXConstructExpr(const CXXConstructExpr *E);
178   void VisitLambdaExpr(LambdaExpr *E);
179   void VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E);
180   void VisitExprWithCleanups(ExprWithCleanups *E);
181   void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E);
182   void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); }
183   void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E);
184   void VisitOpaqueValueExpr(OpaqueValueExpr *E);
185 
186   void VisitPseudoObjectExpr(PseudoObjectExpr *E) {
187     if (E->isGLValue()) {
188       LValue LV = CGF.EmitPseudoObjectLValue(E);
189       return EmitFinalDestCopy(E->getType(), LV);
190     }
191 
192     CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType()));
193   }
194 
195   void VisitVAArgExpr(VAArgExpr *E);
196 
197   void EmitInitializationToLValue(Expr *E, LValue Address);
198   void EmitNullInitializationToLValue(LValue Address);
199   //  case Expr::ChooseExprClass:
200   void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); }
201   void VisitAtomicExpr(AtomicExpr *E) {
202     CGF.EmitAtomicExpr(E, EnsureSlot(E->getType()).getAddress());
203   }
204 };
205 }  // end anonymous namespace.
206 
207 //===----------------------------------------------------------------------===//
208 //                                Utilities
209 //===----------------------------------------------------------------------===//
210 
211 /// EmitAggLoadOfLValue - Given an expression with aggregate type that
212 /// represents a value lvalue, this method emits the address of the lvalue,
213 /// then loads the result into DestPtr.
214 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
215   LValue LV = CGF.EmitLValue(E);
216 
217   // If the type of the l-value is atomic, then do an atomic load.
218   if (LV.getType()->isAtomicType() || CGF.LValueIsSuitableForInlineAtomic(LV)) {
219     CGF.EmitAtomicLoad(LV, E->getExprLoc(), Dest);
220     return;
221   }
222 
223   EmitFinalDestCopy(E->getType(), LV);
224 }
225 
226 /// \brief True if the given aggregate type requires special GC API calls.
227 bool AggExprEmitter::TypeRequiresGCollection(QualType T) {
228   // Only record types have members that might require garbage collection.
229   const RecordType *RecordTy = T->getAs<RecordType>();
230   if (!RecordTy) return false;
231 
232   // Don't mess with non-trivial C++ types.
233   RecordDecl *Record = RecordTy->getDecl();
234   if (isa<CXXRecordDecl>(Record) &&
235       (cast<CXXRecordDecl>(Record)->hasNonTrivialCopyConstructor() ||
236        !cast<CXXRecordDecl>(Record)->hasTrivialDestructor()))
237     return false;
238 
239   // Check whether the type has an object member.
240   return Record->hasObjectMember();
241 }
242 
243 /// \brief Perform the final move to DestPtr if for some reason
244 /// getReturnValueSlot() didn't use it directly.
245 ///
246 /// The idea is that you do something like this:
247 ///   RValue Result = EmitSomething(..., getReturnValueSlot());
248 ///   EmitMoveFromReturnSlot(E, Result);
249 ///
250 /// If nothing interferes, this will cause the result to be emitted
251 /// directly into the return value slot.  Otherwise, a final move
252 /// will be performed.
253 void AggExprEmitter::EmitMoveFromReturnSlot(const Expr *E, RValue src) {
254   if (shouldUseDestForReturnSlot()) {
255     // Logically, Dest.getAddr() should equal Src.getAggregateAddr().
256     // The possibility of undef rvalues complicates that a lot,
257     // though, so we can't really assert.
258     return;
259   }
260 
261   // Otherwise, copy from there to the destination.
262   assert(Dest.getPointer() != src.getAggregatePointer());
263   EmitFinalDestCopy(E->getType(), src);
264 }
265 
266 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
267 void AggExprEmitter::EmitFinalDestCopy(QualType type, RValue src) {
268   assert(src.isAggregate() && "value must be aggregate value!");
269   LValue srcLV = CGF.MakeAddrLValue(src.getAggregateAddress(), type);
270   EmitFinalDestCopy(type, srcLV);
271 }
272 
273 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
274 void AggExprEmitter::EmitFinalDestCopy(QualType type, const LValue &src) {
275   // If Dest is ignored, then we're evaluating an aggregate expression
276   // in a context that doesn't care about the result.  Note that loads
277   // from volatile l-values force the existence of a non-ignored
278   // destination.
279   if (Dest.isIgnored())
280     return;
281 
282   AggValueSlot srcAgg =
283     AggValueSlot::forLValue(src, AggValueSlot::IsDestructed,
284                             needsGC(type), AggValueSlot::IsAliased);
285   EmitCopy(type, Dest, srcAgg);
286 }
287 
288 /// Perform a copy from the source into the destination.
289 ///
290 /// \param type - the type of the aggregate being copied; qualifiers are
291 ///   ignored
292 void AggExprEmitter::EmitCopy(QualType type, const AggValueSlot &dest,
293                               const AggValueSlot &src) {
294   if (dest.requiresGCollection()) {
295     CharUnits sz = CGF.getContext().getTypeSizeInChars(type);
296     llvm::Value *size = llvm::ConstantInt::get(CGF.SizeTy, sz.getQuantity());
297     CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF,
298                                                       dest.getAddress(),
299                                                       src.getAddress(),
300                                                       size);
301     return;
302   }
303 
304   // If the result of the assignment is used, copy the LHS there also.
305   // It's volatile if either side is.  Use the minimum alignment of
306   // the two sides.
307   CGF.EmitAggregateCopy(dest.getAddress(), src.getAddress(), type,
308                         dest.isVolatile() || src.isVolatile());
309 }
310 
311 /// \brief Emit the initializer for a std::initializer_list initialized with a
312 /// real initializer list.
313 void
314 AggExprEmitter::VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E) {
315   // Emit an array containing the elements.  The array is externally destructed
316   // if the std::initializer_list object is.
317   ASTContext &Ctx = CGF.getContext();
318   LValue Array = CGF.EmitLValue(E->getSubExpr());
319   assert(Array.isSimple() && "initializer_list array not a simple lvalue");
320   Address ArrayPtr = Array.getAddress();
321 
322   const ConstantArrayType *ArrayType =
323       Ctx.getAsConstantArrayType(E->getSubExpr()->getType());
324   assert(ArrayType && "std::initializer_list constructed from non-array");
325 
326   // FIXME: Perform the checks on the field types in SemaInit.
327   RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl();
328   RecordDecl::field_iterator Field = Record->field_begin();
329   if (Field == Record->field_end()) {
330     CGF.ErrorUnsupported(E, "weird std::initializer_list");
331     return;
332   }
333 
334   // Start pointer.
335   if (!Field->getType()->isPointerType() ||
336       !Ctx.hasSameType(Field->getType()->getPointeeType(),
337                        ArrayType->getElementType())) {
338     CGF.ErrorUnsupported(E, "weird std::initializer_list");
339     return;
340   }
341 
342   AggValueSlot Dest = EnsureSlot(E->getType());
343   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
344   LValue Start = CGF.EmitLValueForFieldInitialization(DestLV, *Field);
345   llvm::Value *Zero = llvm::ConstantInt::get(CGF.PtrDiffTy, 0);
346   llvm::Value *IdxStart[] = { Zero, Zero };
347   llvm::Value *ArrayStart =
348       Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxStart, "arraystart");
349   CGF.EmitStoreThroughLValue(RValue::get(ArrayStart), Start);
350   ++Field;
351 
352   if (Field == Record->field_end()) {
353     CGF.ErrorUnsupported(E, "weird std::initializer_list");
354     return;
355   }
356 
357   llvm::Value *Size = Builder.getInt(ArrayType->getSize());
358   LValue EndOrLength = CGF.EmitLValueForFieldInitialization(DestLV, *Field);
359   if (Field->getType()->isPointerType() &&
360       Ctx.hasSameType(Field->getType()->getPointeeType(),
361                       ArrayType->getElementType())) {
362     // End pointer.
363     llvm::Value *IdxEnd[] = { Zero, Size };
364     llvm::Value *ArrayEnd =
365         Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxEnd, "arrayend");
366     CGF.EmitStoreThroughLValue(RValue::get(ArrayEnd), EndOrLength);
367   } else if (Ctx.hasSameType(Field->getType(), Ctx.getSizeType())) {
368     // Length.
369     CGF.EmitStoreThroughLValue(RValue::get(Size), EndOrLength);
370   } else {
371     CGF.ErrorUnsupported(E, "weird std::initializer_list");
372     return;
373   }
374 }
375 
376 /// \brief Determine if E is a trivial array filler, that is, one that is
377 /// equivalent to zero-initialization.
378 static bool isTrivialFiller(Expr *E) {
379   if (!E)
380     return true;
381 
382   if (isa<ImplicitValueInitExpr>(E))
383     return true;
384 
385   if (auto *ILE = dyn_cast<InitListExpr>(E)) {
386     if (ILE->getNumInits())
387       return false;
388     return isTrivialFiller(ILE->getArrayFiller());
389   }
390 
391   if (auto *Cons = dyn_cast_or_null<CXXConstructExpr>(E))
392     return Cons->getConstructor()->isDefaultConstructor() &&
393            Cons->getConstructor()->isTrivial();
394 
395   // FIXME: Are there other cases where we can avoid emitting an initializer?
396   return false;
397 }
398 
399 /// \brief Emit initialization of an array from an initializer list.
400 void AggExprEmitter::EmitArrayInit(Address DestPtr, llvm::ArrayType *AType,
401                                    QualType elementType, InitListExpr *E) {
402   uint64_t NumInitElements = E->getNumInits();
403 
404   uint64_t NumArrayElements = AType->getNumElements();
405   assert(NumInitElements <= NumArrayElements);
406 
407   // DestPtr is an array*.  Construct an elementType* by drilling
408   // down a level.
409   llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
410   llvm::Value *indices[] = { zero, zero };
411   llvm::Value *begin =
412     Builder.CreateInBoundsGEP(DestPtr.getPointer(), indices, "arrayinit.begin");
413 
414   CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
415   CharUnits elementAlign =
416     DestPtr.getAlignment().alignmentOfArrayElement(elementSize);
417 
418   // Exception safety requires us to destroy all the
419   // already-constructed members if an initializer throws.
420   // For that, we'll need an EH cleanup.
421   QualType::DestructionKind dtorKind = elementType.isDestructedType();
422   Address endOfInit = Address::invalid();
423   EHScopeStack::stable_iterator cleanup;
424   llvm::Instruction *cleanupDominator = nullptr;
425   if (CGF.needsEHCleanup(dtorKind)) {
426     // In principle we could tell the cleanup where we are more
427     // directly, but the control flow can get so varied here that it
428     // would actually be quite complex.  Therefore we go through an
429     // alloca.
430     endOfInit = CGF.CreateTempAlloca(begin->getType(), CGF.getPointerAlign(),
431                                      "arrayinit.endOfInit");
432     cleanupDominator = Builder.CreateStore(begin, endOfInit);
433     CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType,
434                                          elementAlign,
435                                          CGF.getDestroyer(dtorKind));
436     cleanup = CGF.EHStack.stable_begin();
437 
438   // Otherwise, remember that we didn't need a cleanup.
439   } else {
440     dtorKind = QualType::DK_none;
441   }
442 
443   llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1);
444 
445   // The 'current element to initialize'.  The invariants on this
446   // variable are complicated.  Essentially, after each iteration of
447   // the loop, it points to the last initialized element, except
448   // that it points to the beginning of the array before any
449   // elements have been initialized.
450   llvm::Value *element = begin;
451 
452   // Emit the explicit initializers.
453   for (uint64_t i = 0; i != NumInitElements; ++i) {
454     // Advance to the next element.
455     if (i > 0) {
456       element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element");
457 
458       // Tell the cleanup that it needs to destroy up to this
459       // element.  TODO: some of these stores can be trivially
460       // observed to be unnecessary.
461       if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit);
462     }
463 
464     LValue elementLV =
465       CGF.MakeAddrLValue(Address(element, elementAlign), elementType);
466     EmitInitializationToLValue(E->getInit(i), elementLV);
467   }
468 
469   // Check whether there's a non-trivial array-fill expression.
470   Expr *filler = E->getArrayFiller();
471   bool hasTrivialFiller = isTrivialFiller(filler);
472 
473   // Any remaining elements need to be zero-initialized, possibly
474   // using the filler expression.  We can skip this if the we're
475   // emitting to zeroed memory.
476   if (NumInitElements != NumArrayElements &&
477       !(Dest.isZeroed() && hasTrivialFiller &&
478         CGF.getTypes().isZeroInitializable(elementType))) {
479 
480     // Use an actual loop.  This is basically
481     //   do { *array++ = filler; } while (array != end);
482 
483     // Advance to the start of the rest of the array.
484     if (NumInitElements) {
485       element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start");
486       if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit);
487     }
488 
489     // Compute the end of the array.
490     llvm::Value *end = Builder.CreateInBoundsGEP(begin,
491                       llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements),
492                                                  "arrayinit.end");
493 
494     llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
495     llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
496 
497     // Jump into the body.
498     CGF.EmitBlock(bodyBB);
499     llvm::PHINode *currentElement =
500       Builder.CreatePHI(element->getType(), 2, "arrayinit.cur");
501     currentElement->addIncoming(element, entryBB);
502 
503     // Emit the actual filler expression.
504     LValue elementLV =
505       CGF.MakeAddrLValue(Address(currentElement, elementAlign), elementType);
506     if (filler)
507       EmitInitializationToLValue(filler, elementLV);
508     else
509       EmitNullInitializationToLValue(elementLV);
510 
511     // Move on to the next element.
512     llvm::Value *nextElement =
513       Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next");
514 
515     // Tell the EH cleanup that we finished with the last element.
516     if (endOfInit.isValid()) Builder.CreateStore(nextElement, endOfInit);
517 
518     // Leave the loop if we're done.
519     llvm::Value *done = Builder.CreateICmpEQ(nextElement, end,
520                                              "arrayinit.done");
521     llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
522     Builder.CreateCondBr(done, endBB, bodyBB);
523     currentElement->addIncoming(nextElement, Builder.GetInsertBlock());
524 
525     CGF.EmitBlock(endBB);
526   }
527 
528   // Leave the partial-array cleanup if we entered one.
529   if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator);
530 }
531 
532 //===----------------------------------------------------------------------===//
533 //                            Visitor Methods
534 //===----------------------------------------------------------------------===//
535 
536 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){
537   Visit(E->GetTemporaryExpr());
538 }
539 
540 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) {
541   EmitFinalDestCopy(e->getType(), CGF.getOpaqueLValueMapping(e));
542 }
543 
544 void
545 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
546   if (Dest.isPotentiallyAliased() &&
547       E->getType().isPODType(CGF.getContext())) {
548     // For a POD type, just emit a load of the lvalue + a copy, because our
549     // compound literal might alias the destination.
550     EmitAggLoadOfLValue(E);
551     return;
552   }
553 
554   AggValueSlot Slot = EnsureSlot(E->getType());
555   CGF.EmitAggExpr(E->getInitializer(), Slot);
556 }
557 
558 /// Attempt to look through various unimportant expressions to find a
559 /// cast of the given kind.
560 static Expr *findPeephole(Expr *op, CastKind kind) {
561   while (true) {
562     op = op->IgnoreParens();
563     if (CastExpr *castE = dyn_cast<CastExpr>(op)) {
564       if (castE->getCastKind() == kind)
565         return castE->getSubExpr();
566       if (castE->getCastKind() == CK_NoOp)
567         continue;
568     }
569     return nullptr;
570   }
571 }
572 
573 void AggExprEmitter::VisitCastExpr(CastExpr *E) {
574   if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E))
575     CGF.CGM.EmitExplicitCastExprType(ECE, &CGF);
576   switch (E->getCastKind()) {
577   case CK_Dynamic: {
578     // FIXME: Can this actually happen? We have no test coverage for it.
579     assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?");
580     LValue LV = CGF.EmitCheckedLValue(E->getSubExpr(),
581                                       CodeGenFunction::TCK_Load);
582     // FIXME: Do we also need to handle property references here?
583     if (LV.isSimple())
584       CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E));
585     else
586       CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast");
587 
588     if (!Dest.isIgnored())
589       CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination");
590     break;
591   }
592 
593   case CK_ToUnion: {
594     // Evaluate even if the destination is ignored.
595     if (Dest.isIgnored()) {
596       CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(),
597                       /*ignoreResult=*/true);
598       break;
599     }
600 
601     // GCC union extension
602     QualType Ty = E->getSubExpr()->getType();
603     Address CastPtr =
604       Builder.CreateElementBitCast(Dest.getAddress(), CGF.ConvertType(Ty));
605     EmitInitializationToLValue(E->getSubExpr(),
606                                CGF.MakeAddrLValue(CastPtr, Ty));
607     break;
608   }
609 
610   case CK_DerivedToBase:
611   case CK_BaseToDerived:
612   case CK_UncheckedDerivedToBase: {
613     llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: "
614                 "should have been unpacked before we got here");
615   }
616 
617   case CK_NonAtomicToAtomic:
618   case CK_AtomicToNonAtomic: {
619     bool isToAtomic = (E->getCastKind() == CK_NonAtomicToAtomic);
620 
621     // Determine the atomic and value types.
622     QualType atomicType = E->getSubExpr()->getType();
623     QualType valueType = E->getType();
624     if (isToAtomic) std::swap(atomicType, valueType);
625 
626     assert(atomicType->isAtomicType());
627     assert(CGF.getContext().hasSameUnqualifiedType(valueType,
628                           atomicType->castAs<AtomicType>()->getValueType()));
629 
630     // Just recurse normally if we're ignoring the result or the
631     // atomic type doesn't change representation.
632     if (Dest.isIgnored() || !CGF.CGM.isPaddedAtomicType(atomicType)) {
633       return Visit(E->getSubExpr());
634     }
635 
636     CastKind peepholeTarget =
637       (isToAtomic ? CK_AtomicToNonAtomic : CK_NonAtomicToAtomic);
638 
639     // These two cases are reverses of each other; try to peephole them.
640     if (Expr *op = findPeephole(E->getSubExpr(), peepholeTarget)) {
641       assert(CGF.getContext().hasSameUnqualifiedType(op->getType(),
642                                                      E->getType()) &&
643            "peephole significantly changed types?");
644       return Visit(op);
645     }
646 
647     // If we're converting an r-value of non-atomic type to an r-value
648     // of atomic type, just emit directly into the relevant sub-object.
649     if (isToAtomic) {
650       AggValueSlot valueDest = Dest;
651       if (!valueDest.isIgnored() && CGF.CGM.isPaddedAtomicType(atomicType)) {
652         // Zero-initialize.  (Strictly speaking, we only need to intialize
653         // the padding at the end, but this is simpler.)
654         if (!Dest.isZeroed())
655           CGF.EmitNullInitialization(Dest.getAddress(), atomicType);
656 
657         // Build a GEP to refer to the subobject.
658         Address valueAddr =
659             CGF.Builder.CreateStructGEP(valueDest.getAddress(), 0,
660                                         CharUnits());
661         valueDest = AggValueSlot::forAddr(valueAddr,
662                                           valueDest.getQualifiers(),
663                                           valueDest.isExternallyDestructed(),
664                                           valueDest.requiresGCollection(),
665                                           valueDest.isPotentiallyAliased(),
666                                           AggValueSlot::IsZeroed);
667       }
668 
669       CGF.EmitAggExpr(E->getSubExpr(), valueDest);
670       return;
671     }
672 
673     // Otherwise, we're converting an atomic type to a non-atomic type.
674     // Make an atomic temporary, emit into that, and then copy the value out.
675     AggValueSlot atomicSlot =
676       CGF.CreateAggTemp(atomicType, "atomic-to-nonatomic.temp");
677     CGF.EmitAggExpr(E->getSubExpr(), atomicSlot);
678 
679     Address valueAddr =
680       Builder.CreateStructGEP(atomicSlot.getAddress(), 0, CharUnits());
681     RValue rvalue = RValue::getAggregate(valueAddr, atomicSlot.isVolatile());
682     return EmitFinalDestCopy(valueType, rvalue);
683   }
684 
685   case CK_LValueToRValue:
686     // If we're loading from a volatile type, force the destination
687     // into existence.
688     if (E->getSubExpr()->getType().isVolatileQualified()) {
689       EnsureDest(E->getType());
690       return Visit(E->getSubExpr());
691     }
692 
693     // fallthrough
694 
695   case CK_NoOp:
696   case CK_UserDefinedConversion:
697   case CK_ConstructorConversion:
698     assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(),
699                                                    E->getType()) &&
700            "Implicit cast types must be compatible");
701     Visit(E->getSubExpr());
702     break;
703 
704   case CK_LValueBitCast:
705     llvm_unreachable("should not be emitting lvalue bitcast as rvalue");
706 
707   case CK_Dependent:
708   case CK_BitCast:
709   case CK_ArrayToPointerDecay:
710   case CK_FunctionToPointerDecay:
711   case CK_NullToPointer:
712   case CK_NullToMemberPointer:
713   case CK_BaseToDerivedMemberPointer:
714   case CK_DerivedToBaseMemberPointer:
715   case CK_MemberPointerToBoolean:
716   case CK_ReinterpretMemberPointer:
717   case CK_IntegralToPointer:
718   case CK_PointerToIntegral:
719   case CK_PointerToBoolean:
720   case CK_ToVoid:
721   case CK_VectorSplat:
722   case CK_IntegralCast:
723   case CK_IntegralToBoolean:
724   case CK_IntegralToFloating:
725   case CK_FloatingToIntegral:
726   case CK_FloatingToBoolean:
727   case CK_FloatingCast:
728   case CK_CPointerToObjCPointerCast:
729   case CK_BlockPointerToObjCPointerCast:
730   case CK_AnyPointerToBlockPointerCast:
731   case CK_ObjCObjectLValueCast:
732   case CK_FloatingRealToComplex:
733   case CK_FloatingComplexToReal:
734   case CK_FloatingComplexToBoolean:
735   case CK_FloatingComplexCast:
736   case CK_FloatingComplexToIntegralComplex:
737   case CK_IntegralRealToComplex:
738   case CK_IntegralComplexToReal:
739   case CK_IntegralComplexToBoolean:
740   case CK_IntegralComplexCast:
741   case CK_IntegralComplexToFloatingComplex:
742   case CK_ARCProduceObject:
743   case CK_ARCConsumeObject:
744   case CK_ARCReclaimReturnedObject:
745   case CK_ARCExtendBlockObject:
746   case CK_CopyAndAutoreleaseBlockObject:
747   case CK_BuiltinFnToFnPtr:
748   case CK_ZeroToOCLEvent:
749   case CK_AddressSpaceConversion:
750     llvm_unreachable("cast kind invalid for aggregate types");
751   }
752 }
753 
754 void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
755   if (E->getCallReturnType(CGF.getContext())->isReferenceType()) {
756     EmitAggLoadOfLValue(E);
757     return;
758   }
759 
760   RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot());
761   EmitMoveFromReturnSlot(E, RV);
762 }
763 
764 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
765   RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot());
766   EmitMoveFromReturnSlot(E, RV);
767 }
768 
769 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
770   CGF.EmitIgnoredExpr(E->getLHS());
771   Visit(E->getRHS());
772 }
773 
774 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
775   CodeGenFunction::StmtExprEvaluation eval(CGF);
776   CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest);
777 }
778 
779 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
780   if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI)
781     VisitPointerToDataMemberBinaryOperator(E);
782   else
783     CGF.ErrorUnsupported(E, "aggregate binary expression");
784 }
785 
786 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator(
787                                                     const BinaryOperator *E) {
788   LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E);
789   EmitFinalDestCopy(E->getType(), LV);
790 }
791 
792 /// Is the value of the given expression possibly a reference to or
793 /// into a __block variable?
794 static bool isBlockVarRef(const Expr *E) {
795   // Make sure we look through parens.
796   E = E->IgnoreParens();
797 
798   // Check for a direct reference to a __block variable.
799   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
800     const VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
801     return (var && var->hasAttr<BlocksAttr>());
802   }
803 
804   // More complicated stuff.
805 
806   // Binary operators.
807   if (const BinaryOperator *op = dyn_cast<BinaryOperator>(E)) {
808     // For an assignment or pointer-to-member operation, just care
809     // about the LHS.
810     if (op->isAssignmentOp() || op->isPtrMemOp())
811       return isBlockVarRef(op->getLHS());
812 
813     // For a comma, just care about the RHS.
814     if (op->getOpcode() == BO_Comma)
815       return isBlockVarRef(op->getRHS());
816 
817     // FIXME: pointer arithmetic?
818     return false;
819 
820   // Check both sides of a conditional operator.
821   } else if (const AbstractConditionalOperator *op
822                = dyn_cast<AbstractConditionalOperator>(E)) {
823     return isBlockVarRef(op->getTrueExpr())
824         || isBlockVarRef(op->getFalseExpr());
825 
826   // OVEs are required to support BinaryConditionalOperators.
827   } else if (const OpaqueValueExpr *op
828                = dyn_cast<OpaqueValueExpr>(E)) {
829     if (const Expr *src = op->getSourceExpr())
830       return isBlockVarRef(src);
831 
832   // Casts are necessary to get things like (*(int*)&var) = foo().
833   // We don't really care about the kind of cast here, except
834   // we don't want to look through l2r casts, because it's okay
835   // to get the *value* in a __block variable.
836   } else if (const CastExpr *cast = dyn_cast<CastExpr>(E)) {
837     if (cast->getCastKind() == CK_LValueToRValue)
838       return false;
839     return isBlockVarRef(cast->getSubExpr());
840 
841   // Handle unary operators.  Again, just aggressively look through
842   // it, ignoring the operation.
843   } else if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E)) {
844     return isBlockVarRef(uop->getSubExpr());
845 
846   // Look into the base of a field access.
847   } else if (const MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
848     return isBlockVarRef(mem->getBase());
849 
850   // Look into the base of a subscript.
851   } else if (const ArraySubscriptExpr *sub = dyn_cast<ArraySubscriptExpr>(E)) {
852     return isBlockVarRef(sub->getBase());
853   }
854 
855   return false;
856 }
857 
858 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
859   // For an assignment to work, the value on the right has
860   // to be compatible with the value on the left.
861   assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
862                                                  E->getRHS()->getType())
863          && "Invalid assignment");
864 
865   // If the LHS might be a __block variable, and the RHS can
866   // potentially cause a block copy, we need to evaluate the RHS first
867   // so that the assignment goes the right place.
868   // This is pretty semantically fragile.
869   if (isBlockVarRef(E->getLHS()) &&
870       E->getRHS()->HasSideEffects(CGF.getContext())) {
871     // Ensure that we have a destination, and evaluate the RHS into that.
872     EnsureDest(E->getRHS()->getType());
873     Visit(E->getRHS());
874 
875     // Now emit the LHS and copy into it.
876     LValue LHS = CGF.EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
877 
878     // That copy is an atomic copy if the LHS is atomic.
879     if (LHS.getType()->isAtomicType() ||
880         CGF.LValueIsSuitableForInlineAtomic(LHS)) {
881       CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false);
882       return;
883     }
884 
885     EmitCopy(E->getLHS()->getType(),
886              AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed,
887                                      needsGC(E->getLHS()->getType()),
888                                      AggValueSlot::IsAliased),
889              Dest);
890     return;
891   }
892 
893   LValue LHS = CGF.EmitLValue(E->getLHS());
894 
895   // If we have an atomic type, evaluate into the destination and then
896   // do an atomic copy.
897   if (LHS.getType()->isAtomicType() ||
898       CGF.LValueIsSuitableForInlineAtomic(LHS)) {
899     EnsureDest(E->getRHS()->getType());
900     Visit(E->getRHS());
901     CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false);
902     return;
903   }
904 
905   // Codegen the RHS so that it stores directly into the LHS.
906   AggValueSlot LHSSlot =
907     AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed,
908                             needsGC(E->getLHS()->getType()),
909                             AggValueSlot::IsAliased);
910   // A non-volatile aggregate destination might have volatile member.
911   if (!LHSSlot.isVolatile() &&
912       CGF.hasVolatileMember(E->getLHS()->getType()))
913     LHSSlot.setVolatile(true);
914 
915   CGF.EmitAggExpr(E->getRHS(), LHSSlot);
916 
917   // Copy into the destination if the assignment isn't ignored.
918   EmitFinalDestCopy(E->getType(), LHS);
919 }
920 
921 void AggExprEmitter::
922 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
923   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
924   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
925   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
926 
927   // Bind the common expression if necessary.
928   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
929 
930   CodeGenFunction::ConditionalEvaluation eval(CGF);
931   CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock,
932                            CGF.getProfileCount(E));
933 
934   // Save whether the destination's lifetime is externally managed.
935   bool isExternallyDestructed = Dest.isExternallyDestructed();
936 
937   eval.begin(CGF);
938   CGF.EmitBlock(LHSBlock);
939   CGF.incrementProfileCounter(E);
940   Visit(E->getTrueExpr());
941   eval.end(CGF);
942 
943   assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!");
944   CGF.Builder.CreateBr(ContBlock);
945 
946   // If the result of an agg expression is unused, then the emission
947   // of the LHS might need to create a destination slot.  That's fine
948   // with us, and we can safely emit the RHS into the same slot, but
949   // we shouldn't claim that it's already being destructed.
950   Dest.setExternallyDestructed(isExternallyDestructed);
951 
952   eval.begin(CGF);
953   CGF.EmitBlock(RHSBlock);
954   Visit(E->getFalseExpr());
955   eval.end(CGF);
956 
957   CGF.EmitBlock(ContBlock);
958 }
959 
960 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) {
961   Visit(CE->getChosenSubExpr());
962 }
963 
964 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
965   Address ArgValue = Address::invalid();
966   Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
967 
968   if (!ArgPtr.isValid()) {
969     // If EmitVAArg fails, we fall back to the LLVM instruction.
970     llvm::Value *Val = Builder.CreateVAArg(ArgValue.getPointer(),
971                                            CGF.ConvertType(VE->getType()));
972     if (!Dest.isIgnored())
973       Builder.CreateStore(Val, Dest.getAddress());
974     return;
975   }
976 
977   EmitFinalDestCopy(VE->getType(), CGF.MakeAddrLValue(ArgPtr, VE->getType()));
978 }
979 
980 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
981   // Ensure that we have a slot, but if we already do, remember
982   // whether it was externally destructed.
983   bool wasExternallyDestructed = Dest.isExternallyDestructed();
984   EnsureDest(E->getType());
985 
986   // We're going to push a destructor if there isn't already one.
987   Dest.setExternallyDestructed();
988 
989   Visit(E->getSubExpr());
990 
991   // Push that destructor we promised.
992   if (!wasExternallyDestructed)
993     CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddress());
994 }
995 
996 void
997 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) {
998   AggValueSlot Slot = EnsureSlot(E->getType());
999   CGF.EmitCXXConstructExpr(E, Slot);
1000 }
1001 
1002 void
1003 AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) {
1004   AggValueSlot Slot = EnsureSlot(E->getType());
1005   CGF.EmitLambdaExpr(E, Slot);
1006 }
1007 
1008 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
1009   CGF.enterFullExpression(E);
1010   CodeGenFunction::RunCleanupsScope cleanups(CGF);
1011   Visit(E->getSubExpr());
1012 }
1013 
1014 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
1015   QualType T = E->getType();
1016   AggValueSlot Slot = EnsureSlot(T);
1017   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T));
1018 }
1019 
1020 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
1021   QualType T = E->getType();
1022   AggValueSlot Slot = EnsureSlot(T);
1023   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T));
1024 }
1025 
1026 /// isSimpleZero - If emitting this value will obviously just cause a store of
1027 /// zero to memory, return true.  This can return false if uncertain, so it just
1028 /// handles simple cases.
1029 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) {
1030   E = E->IgnoreParens();
1031 
1032   // 0
1033   if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E))
1034     return IL->getValue() == 0;
1035   // +0.0
1036   if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E))
1037     return FL->getValue().isPosZero();
1038   // int()
1039   if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) &&
1040       CGF.getTypes().isZeroInitializable(E->getType()))
1041     return true;
1042   // (int*)0 - Null pointer expressions.
1043   if (const CastExpr *ICE = dyn_cast<CastExpr>(E))
1044     return ICE->getCastKind() == CK_NullToPointer;
1045   // '\0'
1046   if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E))
1047     return CL->getValue() == 0;
1048 
1049   // Otherwise, hard case: conservatively return false.
1050   return false;
1051 }
1052 
1053 
1054 void
1055 AggExprEmitter::EmitInitializationToLValue(Expr *E, LValue LV) {
1056   QualType type = LV.getType();
1057   // FIXME: Ignore result?
1058   // FIXME: Are initializers affected by volatile?
1059   if (Dest.isZeroed() && isSimpleZero(E, CGF)) {
1060     // Storing "i32 0" to a zero'd memory location is a noop.
1061     return;
1062   } else if (isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) {
1063     return EmitNullInitializationToLValue(LV);
1064   } else if (isa<NoInitExpr>(E)) {
1065     // Do nothing.
1066     return;
1067   } else if (type->isReferenceType()) {
1068     RValue RV = CGF.EmitReferenceBindingToExpr(E);
1069     return CGF.EmitStoreThroughLValue(RV, LV);
1070   }
1071 
1072   switch (CGF.getEvaluationKind(type)) {
1073   case TEK_Complex:
1074     CGF.EmitComplexExprIntoLValue(E, LV, /*isInit*/ true);
1075     return;
1076   case TEK_Aggregate:
1077     CGF.EmitAggExpr(E, AggValueSlot::forLValue(LV,
1078                                                AggValueSlot::IsDestructed,
1079                                       AggValueSlot::DoesNotNeedGCBarriers,
1080                                                AggValueSlot::IsNotAliased,
1081                                                Dest.isZeroed()));
1082     return;
1083   case TEK_Scalar:
1084     if (LV.isSimple()) {
1085       CGF.EmitScalarInit(E, /*D=*/nullptr, LV, /*Captured=*/false);
1086     } else {
1087       CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV);
1088     }
1089     return;
1090   }
1091   llvm_unreachable("bad evaluation kind");
1092 }
1093 
1094 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) {
1095   QualType type = lv.getType();
1096 
1097   // If the destination slot is already zeroed out before the aggregate is
1098   // copied into it, we don't have to emit any zeros here.
1099   if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type))
1100     return;
1101 
1102   if (CGF.hasScalarEvaluationKind(type)) {
1103     // For non-aggregates, we can store the appropriate null constant.
1104     llvm::Value *null = CGF.CGM.EmitNullConstant(type);
1105     // Note that the following is not equivalent to
1106     // EmitStoreThroughBitfieldLValue for ARC types.
1107     if (lv.isBitField()) {
1108       CGF.EmitStoreThroughBitfieldLValue(RValue::get(null), lv);
1109     } else {
1110       assert(lv.isSimple());
1111       CGF.EmitStoreOfScalar(null, lv, /* isInitialization */ true);
1112     }
1113   } else {
1114     // There's a potential optimization opportunity in combining
1115     // memsets; that would be easy for arrays, but relatively
1116     // difficult for structures with the current code.
1117     CGF.EmitNullInitialization(lv.getAddress(), lv.getType());
1118   }
1119 }
1120 
1121 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
1122 #if 0
1123   // FIXME: Assess perf here?  Figure out what cases are worth optimizing here
1124   // (Length of globals? Chunks of zeroed-out space?).
1125   //
1126   // If we can, prefer a copy from a global; this is a lot less code for long
1127   // globals, and it's easier for the current optimizers to analyze.
1128   if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) {
1129     llvm::GlobalVariable* GV =
1130     new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true,
1131                              llvm::GlobalValue::InternalLinkage, C, "");
1132     EmitFinalDestCopy(E->getType(), CGF.MakeAddrLValue(GV, E->getType()));
1133     return;
1134   }
1135 #endif
1136   if (E->hadArrayRangeDesignator())
1137     CGF.ErrorUnsupported(E, "GNU array range designator extension");
1138 
1139   AggValueSlot Dest = EnsureSlot(E->getType());
1140 
1141   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
1142 
1143   // Handle initialization of an array.
1144   if (E->getType()->isArrayType()) {
1145     if (E->isStringLiteralInit())
1146       return Visit(E->getInit(0));
1147 
1148     QualType elementType =
1149         CGF.getContext().getAsArrayType(E->getType())->getElementType();
1150 
1151     auto AType = cast<llvm::ArrayType>(Dest.getAddress().getElementType());
1152     EmitArrayInit(Dest.getAddress(), AType, elementType, E);
1153     return;
1154   }
1155 
1156   if (E->getType()->isAtomicType()) {
1157     // An _Atomic(T) object can be list-initialized from an expression
1158     // of the same type.
1159     assert(E->getNumInits() == 1 &&
1160            CGF.getContext().hasSameUnqualifiedType(E->getInit(0)->getType(),
1161                                                    E->getType()) &&
1162            "unexpected list initialization for atomic object");
1163     return Visit(E->getInit(0));
1164   }
1165 
1166   assert(E->getType()->isRecordType() && "Only support structs/unions here!");
1167 
1168   // Do struct initialization; this code just sets each individual member
1169   // to the approprate value.  This makes bitfield support automatic;
1170   // the disadvantage is that the generated code is more difficult for
1171   // the optimizer, especially with bitfields.
1172   unsigned NumInitElements = E->getNumInits();
1173   RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl();
1174 
1175   // Prepare a 'this' for CXXDefaultInitExprs.
1176   CodeGenFunction::FieldConstructionScope FCS(CGF, Dest.getAddress());
1177 
1178   if (record->isUnion()) {
1179     // Only initialize one field of a union. The field itself is
1180     // specified by the initializer list.
1181     if (!E->getInitializedFieldInUnion()) {
1182       // Empty union; we have nothing to do.
1183 
1184 #ifndef NDEBUG
1185       // Make sure that it's really an empty and not a failure of
1186       // semantic analysis.
1187       for (const auto *Field : record->fields())
1188         assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed");
1189 #endif
1190       return;
1191     }
1192 
1193     // FIXME: volatility
1194     FieldDecl *Field = E->getInitializedFieldInUnion();
1195 
1196     LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestLV, Field);
1197     if (NumInitElements) {
1198       // Store the initializer into the field
1199       EmitInitializationToLValue(E->getInit(0), FieldLoc);
1200     } else {
1201       // Default-initialize to null.
1202       EmitNullInitializationToLValue(FieldLoc);
1203     }
1204 
1205     return;
1206   }
1207 
1208   // We'll need to enter cleanup scopes in case any of the member
1209   // initializers throw an exception.
1210   SmallVector<EHScopeStack::stable_iterator, 16> cleanups;
1211   llvm::Instruction *cleanupDominator = nullptr;
1212 
1213   // Here we iterate over the fields; this makes it simpler to both
1214   // default-initialize fields and skip over unnamed fields.
1215   unsigned curInitIndex = 0;
1216   for (const auto *field : record->fields()) {
1217     // We're done once we hit the flexible array member.
1218     if (field->getType()->isIncompleteArrayType())
1219       break;
1220 
1221     // Always skip anonymous bitfields.
1222     if (field->isUnnamedBitfield())
1223       continue;
1224 
1225     // We're done if we reach the end of the explicit initializers, we
1226     // have a zeroed object, and the rest of the fields are
1227     // zero-initializable.
1228     if (curInitIndex == NumInitElements && Dest.isZeroed() &&
1229         CGF.getTypes().isZeroInitializable(E->getType()))
1230       break;
1231 
1232 
1233     LValue LV = CGF.EmitLValueForFieldInitialization(DestLV, field);
1234     // We never generate write-barries for initialized fields.
1235     LV.setNonGC(true);
1236 
1237     if (curInitIndex < NumInitElements) {
1238       // Store the initializer into the field.
1239       EmitInitializationToLValue(E->getInit(curInitIndex++), LV);
1240     } else {
1241       // We're out of initalizers; default-initialize to null
1242       EmitNullInitializationToLValue(LV);
1243     }
1244 
1245     // Push a destructor if necessary.
1246     // FIXME: if we have an array of structures, all explicitly
1247     // initialized, we can end up pushing a linear number of cleanups.
1248     bool pushedCleanup = false;
1249     if (QualType::DestructionKind dtorKind
1250           = field->getType().isDestructedType()) {
1251       assert(LV.isSimple());
1252       if (CGF.needsEHCleanup(dtorKind)) {
1253         if (!cleanupDominator)
1254           cleanupDominator = CGF.Builder.CreateAlignedLoad(
1255               CGF.Int8Ty,
1256               llvm::Constant::getNullValue(CGF.Int8PtrTy),
1257               CharUnits::One()); // placeholder
1258 
1259         CGF.pushDestroy(EHCleanup, LV.getAddress(), field->getType(),
1260                         CGF.getDestroyer(dtorKind), false);
1261         cleanups.push_back(CGF.EHStack.stable_begin());
1262         pushedCleanup = true;
1263       }
1264     }
1265 
1266     // If the GEP didn't get used because of a dead zero init or something
1267     // else, clean it up for -O0 builds and general tidiness.
1268     if (!pushedCleanup && LV.isSimple())
1269       if (llvm::GetElementPtrInst *GEP =
1270             dyn_cast<llvm::GetElementPtrInst>(LV.getPointer()))
1271         if (GEP->use_empty())
1272           GEP->eraseFromParent();
1273   }
1274 
1275   // Deactivate all the partial cleanups in reverse order, which
1276   // generally means popping them.
1277   for (unsigned i = cleanups.size(); i != 0; --i)
1278     CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator);
1279 
1280   // Destroy the placeholder if we made one.
1281   if (cleanupDominator)
1282     cleanupDominator->eraseFromParent();
1283 }
1284 
1285 void AggExprEmitter::VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E) {
1286   AggValueSlot Dest = EnsureSlot(E->getType());
1287 
1288   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
1289   EmitInitializationToLValue(E->getBase(), DestLV);
1290   VisitInitListExpr(E->getUpdater());
1291 }
1292 
1293 //===----------------------------------------------------------------------===//
1294 //                        Entry Points into this File
1295 //===----------------------------------------------------------------------===//
1296 
1297 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of
1298 /// non-zero bytes that will be stored when outputting the initializer for the
1299 /// specified initializer expression.
1300 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) {
1301   E = E->IgnoreParens();
1302 
1303   // 0 and 0.0 won't require any non-zero stores!
1304   if (isSimpleZero(E, CGF)) return CharUnits::Zero();
1305 
1306   // If this is an initlist expr, sum up the size of sizes of the (present)
1307   // elements.  If this is something weird, assume the whole thing is non-zero.
1308   const InitListExpr *ILE = dyn_cast<InitListExpr>(E);
1309   if (!ILE || !CGF.getTypes().isZeroInitializable(ILE->getType()))
1310     return CGF.getContext().getTypeSizeInChars(E->getType());
1311 
1312   // InitListExprs for structs have to be handled carefully.  If there are
1313   // reference members, we need to consider the size of the reference, not the
1314   // referencee.  InitListExprs for unions and arrays can't have references.
1315   if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
1316     if (!RT->isUnionType()) {
1317       RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl();
1318       CharUnits NumNonZeroBytes = CharUnits::Zero();
1319 
1320       unsigned ILEElement = 0;
1321       for (const auto *Field : SD->fields()) {
1322         // We're done once we hit the flexible array member or run out of
1323         // InitListExpr elements.
1324         if (Field->getType()->isIncompleteArrayType() ||
1325             ILEElement == ILE->getNumInits())
1326           break;
1327         if (Field->isUnnamedBitfield())
1328           continue;
1329 
1330         const Expr *E = ILE->getInit(ILEElement++);
1331 
1332         // Reference values are always non-null and have the width of a pointer.
1333         if (Field->getType()->isReferenceType())
1334           NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits(
1335               CGF.getTarget().getPointerWidth(0));
1336         else
1337           NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF);
1338       }
1339 
1340       return NumNonZeroBytes;
1341     }
1342   }
1343 
1344 
1345   CharUnits NumNonZeroBytes = CharUnits::Zero();
1346   for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1347     NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF);
1348   return NumNonZeroBytes;
1349 }
1350 
1351 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of
1352 /// zeros in it, emit a memset and avoid storing the individual zeros.
1353 ///
1354 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E,
1355                                      CodeGenFunction &CGF) {
1356   // If the slot is already known to be zeroed, nothing to do.  Don't mess with
1357   // volatile stores.
1358   if (Slot.isZeroed() || Slot.isVolatile() || !Slot.getAddress().isValid())
1359     return;
1360 
1361   // C++ objects with a user-declared constructor don't need zero'ing.
1362   if (CGF.getLangOpts().CPlusPlus)
1363     if (const RecordType *RT = CGF.getContext()
1364                        .getBaseElementType(E->getType())->getAs<RecordType>()) {
1365       const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1366       if (RD->hasUserDeclaredConstructor())
1367         return;
1368     }
1369 
1370   // If the type is 16-bytes or smaller, prefer individual stores over memset.
1371   CharUnits Size = CGF.getContext().getTypeSizeInChars(E->getType());
1372   if (Size <= CharUnits::fromQuantity(16))
1373     return;
1374 
1375   // Check to see if over 3/4 of the initializer are known to be zero.  If so,
1376   // we prefer to emit memset + individual stores for the rest.
1377   CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF);
1378   if (NumNonZeroBytes*4 > Size)
1379     return;
1380 
1381   // Okay, it seems like a good idea to use an initial memset, emit the call.
1382   llvm::Constant *SizeVal = CGF.Builder.getInt64(Size.getQuantity());
1383 
1384   Address Loc = Slot.getAddress();
1385   Loc = CGF.Builder.CreateElementBitCast(Loc, CGF.Int8Ty);
1386   CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, false);
1387 
1388   // Tell the AggExprEmitter that the slot is known zero.
1389   Slot.setZeroed();
1390 }
1391 
1392 
1393 
1394 
1395 /// EmitAggExpr - Emit the computation of the specified expression of aggregate
1396 /// type.  The result is computed into DestPtr.  Note that if DestPtr is null,
1397 /// the value of the aggregate expression is not needed.  If VolatileDest is
1398 /// true, DestPtr cannot be 0.
1399 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot) {
1400   assert(E && hasAggregateEvaluationKind(E->getType()) &&
1401          "Invalid aggregate expression to emit");
1402   assert((Slot.getAddress().isValid() || Slot.isIgnored()) &&
1403          "slot has bits but no address");
1404 
1405   // Optimize the slot if possible.
1406   CheckAggExprForMemSetUse(Slot, E, *this);
1407 
1408   AggExprEmitter(*this, Slot, Slot.isIgnored()).Visit(const_cast<Expr*>(E));
1409 }
1410 
1411 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) {
1412   assert(hasAggregateEvaluationKind(E->getType()) && "Invalid argument!");
1413   Address Temp = CreateMemTemp(E->getType());
1414   LValue LV = MakeAddrLValue(Temp, E->getType());
1415   EmitAggExpr(E, AggValueSlot::forLValue(LV, AggValueSlot::IsNotDestructed,
1416                                          AggValueSlot::DoesNotNeedGCBarriers,
1417                                          AggValueSlot::IsNotAliased));
1418   return LV;
1419 }
1420 
1421 void CodeGenFunction::EmitAggregateCopy(Address DestPtr,
1422                                         Address SrcPtr, QualType Ty,
1423                                         bool isVolatile,
1424                                         bool isAssignment) {
1425   assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
1426 
1427   if (getLangOpts().CPlusPlus) {
1428     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1429       CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
1430       assert((Record->hasTrivialCopyConstructor() ||
1431               Record->hasTrivialCopyAssignment() ||
1432               Record->hasTrivialMoveConstructor() ||
1433               Record->hasTrivialMoveAssignment() ||
1434               Record->isUnion()) &&
1435              "Trying to aggregate-copy a type without a trivial copy/move "
1436              "constructor or assignment operator");
1437       // Ignore empty classes in C++.
1438       if (Record->isEmpty())
1439         return;
1440     }
1441   }
1442 
1443   // Aggregate assignment turns into llvm.memcpy.  This is almost valid per
1444   // C99 6.5.16.1p3, which states "If the value being stored in an object is
1445   // read from another object that overlaps in anyway the storage of the first
1446   // object, then the overlap shall be exact and the two objects shall have
1447   // qualified or unqualified versions of a compatible type."
1448   //
1449   // memcpy is not defined if the source and destination pointers are exactly
1450   // equal, but other compilers do this optimization, and almost every memcpy
1451   // implementation handles this case safely.  If there is a libc that does not
1452   // safely handle this, we can add a target hook.
1453 
1454   // Get data size info for this aggregate. If this is an assignment,
1455   // don't copy the tail padding, because we might be assigning into a
1456   // base subobject where the tail padding is claimed.  Otherwise,
1457   // copying it is fine.
1458   std::pair<CharUnits, CharUnits> TypeInfo;
1459   if (isAssignment)
1460     TypeInfo = getContext().getTypeInfoDataSizeInChars(Ty);
1461   else
1462     TypeInfo = getContext().getTypeInfoInChars(Ty);
1463 
1464   llvm::Value *SizeVal = nullptr;
1465   if (TypeInfo.first.isZero()) {
1466     // But note that getTypeInfo returns 0 for a VLA.
1467     if (auto *VAT = dyn_cast_or_null<VariableArrayType>(
1468             getContext().getAsArrayType(Ty))) {
1469       QualType BaseEltTy;
1470       SizeVal = emitArrayLength(VAT, BaseEltTy, DestPtr);
1471       TypeInfo = getContext().getTypeInfoDataSizeInChars(BaseEltTy);
1472       std::pair<CharUnits, CharUnits> LastElementTypeInfo;
1473       if (!isAssignment)
1474         LastElementTypeInfo = getContext().getTypeInfoInChars(BaseEltTy);
1475       assert(!TypeInfo.first.isZero());
1476       SizeVal = Builder.CreateNUWMul(
1477           SizeVal,
1478           llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity()));
1479       if (!isAssignment) {
1480         SizeVal = Builder.CreateNUWSub(
1481             SizeVal,
1482             llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity()));
1483         SizeVal = Builder.CreateNUWAdd(
1484             SizeVal, llvm::ConstantInt::get(
1485                          SizeTy, LastElementTypeInfo.first.getQuantity()));
1486       }
1487     }
1488   }
1489   if (!SizeVal) {
1490     SizeVal = llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity());
1491   }
1492 
1493   // FIXME: If we have a volatile struct, the optimizer can remove what might
1494   // appear to be `extra' memory ops:
1495   //
1496   // volatile struct { int i; } a, b;
1497   //
1498   // int main() {
1499   //   a = b;
1500   //   a = b;
1501   // }
1502   //
1503   // we need to use a different call here.  We use isVolatile to indicate when
1504   // either the source or the destination is volatile.
1505 
1506   DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1507   SrcPtr = Builder.CreateElementBitCast(SrcPtr, Int8Ty);
1508 
1509   // Don't do any of the memmove_collectable tests if GC isn't set.
1510   if (CGM.getLangOpts().getGC() == LangOptions::NonGC) {
1511     // fall through
1512   } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
1513     RecordDecl *Record = RecordTy->getDecl();
1514     if (Record->hasObjectMember()) {
1515       CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
1516                                                     SizeVal);
1517       return;
1518     }
1519   } else if (Ty->isArrayType()) {
1520     QualType BaseType = getContext().getBaseElementType(Ty);
1521     if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
1522       if (RecordTy->getDecl()->hasObjectMember()) {
1523         CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
1524                                                       SizeVal);
1525         return;
1526       }
1527     }
1528   }
1529 
1530   auto Inst = Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, isVolatile);
1531 
1532   // Determine the metadata to describe the position of any padding in this
1533   // memcpy, as well as the TBAA tags for the members of the struct, in case
1534   // the optimizer wishes to expand it in to scalar memory operations.
1535   if (llvm::MDNode *TBAAStructTag = CGM.getTBAAStructInfo(Ty))
1536     Inst->setMetadata(llvm::LLVMContext::MD_tbaa_struct, TBAAStructTag);
1537 }
1538