1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Aggregate Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCXXABI.h" 16 #include "CGObjCRuntime.h" 17 #include "CodeGenModule.h" 18 #include "ConstantEmitter.h" 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/DeclCXX.h" 21 #include "clang/AST/DeclTemplate.h" 22 #include "clang/AST/StmtVisitor.h" 23 #include "llvm/IR/Constants.h" 24 #include "llvm/IR/Function.h" 25 #include "llvm/IR/GlobalVariable.h" 26 #include "llvm/IR/Intrinsics.h" 27 #include "llvm/IR/IntrinsicInst.h" 28 using namespace clang; 29 using namespace CodeGen; 30 31 //===----------------------------------------------------------------------===// 32 // Aggregate Expression Emitter 33 //===----------------------------------------------------------------------===// 34 35 namespace { 36 class AggExprEmitter : public StmtVisitor<AggExprEmitter> { 37 CodeGenFunction &CGF; 38 CGBuilderTy &Builder; 39 AggValueSlot Dest; 40 bool IsResultUnused; 41 42 AggValueSlot EnsureSlot(QualType T) { 43 if (!Dest.isIgnored()) return Dest; 44 return CGF.CreateAggTemp(T, "agg.tmp.ensured"); 45 } 46 void EnsureDest(QualType T) { 47 if (!Dest.isIgnored()) return; 48 Dest = CGF.CreateAggTemp(T, "agg.tmp.ensured"); 49 } 50 51 // Calls `Fn` with a valid return value slot, potentially creating a temporary 52 // to do so. If a temporary is created, an appropriate copy into `Dest` will 53 // be emitted, as will lifetime markers. 54 // 55 // The given function should take a ReturnValueSlot, and return an RValue that 56 // points to said slot. 57 void withReturnValueSlot(const Expr *E, 58 llvm::function_ref<RValue(ReturnValueSlot)> Fn); 59 60 public: 61 AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest, bool IsResultUnused) 62 : CGF(cgf), Builder(CGF.Builder), Dest(Dest), 63 IsResultUnused(IsResultUnused) { } 64 65 //===--------------------------------------------------------------------===// 66 // Utilities 67 //===--------------------------------------------------------------------===// 68 69 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 70 /// represents a value lvalue, this method emits the address of the lvalue, 71 /// then loads the result into DestPtr. 72 void EmitAggLoadOfLValue(const Expr *E); 73 74 enum ExprValueKind { 75 EVK_RValue, 76 EVK_NonRValue 77 }; 78 79 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 80 /// SrcIsRValue is true if source comes from an RValue. 81 void EmitFinalDestCopy(QualType type, const LValue &src, 82 ExprValueKind SrcValueKind = EVK_NonRValue); 83 void EmitFinalDestCopy(QualType type, RValue src); 84 void EmitCopy(QualType type, const AggValueSlot &dest, 85 const AggValueSlot &src); 86 87 void EmitMoveFromReturnSlot(const Expr *E, RValue Src); 88 89 void EmitArrayInit(Address DestPtr, llvm::ArrayType *AType, 90 QualType ArrayQTy, InitListExpr *E); 91 92 AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) { 93 if (CGF.getLangOpts().getGC() && TypeRequiresGCollection(T)) 94 return AggValueSlot::NeedsGCBarriers; 95 return AggValueSlot::DoesNotNeedGCBarriers; 96 } 97 98 bool TypeRequiresGCollection(QualType T); 99 100 //===--------------------------------------------------------------------===// 101 // Visitor Methods 102 //===--------------------------------------------------------------------===// 103 104 void Visit(Expr *E) { 105 ApplyDebugLocation DL(CGF, E); 106 StmtVisitor<AggExprEmitter>::Visit(E); 107 } 108 109 void VisitStmt(Stmt *S) { 110 CGF.ErrorUnsupported(S, "aggregate expression"); 111 } 112 void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); } 113 void VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 114 Visit(GE->getResultExpr()); 115 } 116 void VisitCoawaitExpr(CoawaitExpr *E) { 117 CGF.EmitCoawaitExpr(*E, Dest, IsResultUnused); 118 } 119 void VisitCoyieldExpr(CoyieldExpr *E) { 120 CGF.EmitCoyieldExpr(*E, Dest, IsResultUnused); 121 } 122 void VisitUnaryCoawait(UnaryOperator *E) { Visit(E->getSubExpr()); } 123 void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); } 124 void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 125 return Visit(E->getReplacement()); 126 } 127 128 // l-values. 129 void VisitDeclRefExpr(DeclRefExpr *E) { EmitAggLoadOfLValue(E); } 130 void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); } 131 void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); } 132 void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); } 133 void VisitCompoundLiteralExpr(CompoundLiteralExpr *E); 134 void VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 135 EmitAggLoadOfLValue(E); 136 } 137 void VisitPredefinedExpr(const PredefinedExpr *E) { 138 EmitAggLoadOfLValue(E); 139 } 140 141 // Operators. 142 void VisitCastExpr(CastExpr *E); 143 void VisitCallExpr(const CallExpr *E); 144 void VisitStmtExpr(const StmtExpr *E); 145 void VisitBinaryOperator(const BinaryOperator *BO); 146 void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO); 147 void VisitBinAssign(const BinaryOperator *E); 148 void VisitBinComma(const BinaryOperator *E); 149 void VisitBinCmp(const BinaryOperator *E); 150 151 void VisitObjCMessageExpr(ObjCMessageExpr *E); 152 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 153 EmitAggLoadOfLValue(E); 154 } 155 156 void VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E); 157 void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO); 158 void VisitChooseExpr(const ChooseExpr *CE); 159 void VisitInitListExpr(InitListExpr *E); 160 void VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E, 161 llvm::Value *outerBegin = nullptr); 162 void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E); 163 void VisitNoInitExpr(NoInitExpr *E) { } // Do nothing. 164 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 165 Visit(DAE->getExpr()); 166 } 167 void VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 168 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF); 169 Visit(DIE->getExpr()); 170 } 171 void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E); 172 void VisitCXXConstructExpr(const CXXConstructExpr *E); 173 void VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E); 174 void VisitLambdaExpr(LambdaExpr *E); 175 void VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E); 176 void VisitExprWithCleanups(ExprWithCleanups *E); 177 void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E); 178 void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); } 179 void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E); 180 void VisitOpaqueValueExpr(OpaqueValueExpr *E); 181 182 void VisitPseudoObjectExpr(PseudoObjectExpr *E) { 183 if (E->isGLValue()) { 184 LValue LV = CGF.EmitPseudoObjectLValue(E); 185 return EmitFinalDestCopy(E->getType(), LV); 186 } 187 188 CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType())); 189 } 190 191 void VisitVAArgExpr(VAArgExpr *E); 192 193 void EmitInitializationToLValue(Expr *E, LValue Address); 194 void EmitNullInitializationToLValue(LValue Address); 195 // case Expr::ChooseExprClass: 196 void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); } 197 void VisitAtomicExpr(AtomicExpr *E) { 198 RValue Res = CGF.EmitAtomicExpr(E); 199 EmitFinalDestCopy(E->getType(), Res); 200 } 201 }; 202 } // end anonymous namespace. 203 204 //===----------------------------------------------------------------------===// 205 // Utilities 206 //===----------------------------------------------------------------------===// 207 208 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 209 /// represents a value lvalue, this method emits the address of the lvalue, 210 /// then loads the result into DestPtr. 211 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) { 212 LValue LV = CGF.EmitLValue(E); 213 214 // If the type of the l-value is atomic, then do an atomic load. 215 if (LV.getType()->isAtomicType() || CGF.LValueIsSuitableForInlineAtomic(LV)) { 216 CGF.EmitAtomicLoad(LV, E->getExprLoc(), Dest); 217 return; 218 } 219 220 EmitFinalDestCopy(E->getType(), LV); 221 } 222 223 /// True if the given aggregate type requires special GC API calls. 224 bool AggExprEmitter::TypeRequiresGCollection(QualType T) { 225 // Only record types have members that might require garbage collection. 226 const RecordType *RecordTy = T->getAs<RecordType>(); 227 if (!RecordTy) return false; 228 229 // Don't mess with non-trivial C++ types. 230 RecordDecl *Record = RecordTy->getDecl(); 231 if (isa<CXXRecordDecl>(Record) && 232 (cast<CXXRecordDecl>(Record)->hasNonTrivialCopyConstructor() || 233 !cast<CXXRecordDecl>(Record)->hasTrivialDestructor())) 234 return false; 235 236 // Check whether the type has an object member. 237 return Record->hasObjectMember(); 238 } 239 240 void AggExprEmitter::withReturnValueSlot( 241 const Expr *E, llvm::function_ref<RValue(ReturnValueSlot)> EmitCall) { 242 QualType RetTy = E->getType(); 243 bool RequiresDestruction = 244 Dest.isIgnored() && 245 RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct; 246 247 // If it makes no observable difference, save a memcpy + temporary. 248 // 249 // We need to always provide our own temporary if destruction is required. 250 // Otherwise, EmitCall will emit its own, notice that it's "unused", and end 251 // its lifetime before we have the chance to emit a proper destructor call. 252 bool UseTemp = Dest.isPotentiallyAliased() || Dest.requiresGCollection() || 253 (RequiresDestruction && !Dest.getAddress().isValid()); 254 255 Address RetAddr = Address::invalid(); 256 257 EHScopeStack::stable_iterator LifetimeEndBlock; 258 llvm::Value *LifetimeSizePtr = nullptr; 259 llvm::IntrinsicInst *LifetimeStartInst = nullptr; 260 if (!UseTemp) { 261 RetAddr = Dest.getAddress(); 262 } else { 263 RetAddr = CGF.CreateMemTemp(RetTy); 264 uint64_t Size = 265 CGF.CGM.getDataLayout().getTypeAllocSize(CGF.ConvertTypeForMem(RetTy)); 266 LifetimeSizePtr = CGF.EmitLifetimeStart(Size, RetAddr.getPointer()); 267 if (LifetimeSizePtr) { 268 LifetimeStartInst = 269 cast<llvm::IntrinsicInst>(std::prev(Builder.GetInsertPoint())); 270 assert(LifetimeStartInst->getIntrinsicID() == 271 llvm::Intrinsic::lifetime_start && 272 "Last insertion wasn't a lifetime.start?"); 273 274 CGF.pushFullExprCleanup<CodeGenFunction::CallLifetimeEnd>( 275 NormalEHLifetimeMarker, RetAddr, LifetimeSizePtr); 276 LifetimeEndBlock = CGF.EHStack.stable_begin(); 277 } 278 } 279 280 RValue Src = 281 EmitCall(ReturnValueSlot(RetAddr, Dest.isVolatile(), IsResultUnused)); 282 283 if (RequiresDestruction) 284 CGF.pushDestroy(RetTy.isDestructedType(), Src.getAggregateAddress(), RetTy); 285 286 if (!UseTemp) 287 return; 288 289 assert(Dest.getPointer() != Src.getAggregatePointer()); 290 EmitFinalDestCopy(E->getType(), Src); 291 292 if (!RequiresDestruction && LifetimeStartInst) { 293 // If there's no dtor to run, the copy was the last use of our temporary. 294 // Since we're not guaranteed to be in an ExprWithCleanups, clean up 295 // eagerly. 296 CGF.DeactivateCleanupBlock(LifetimeEndBlock, LifetimeStartInst); 297 CGF.EmitLifetimeEnd(LifetimeSizePtr, RetAddr.getPointer()); 298 } 299 } 300 301 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 302 void AggExprEmitter::EmitFinalDestCopy(QualType type, RValue src) { 303 assert(src.isAggregate() && "value must be aggregate value!"); 304 LValue srcLV = CGF.MakeAddrLValue(src.getAggregateAddress(), type); 305 EmitFinalDestCopy(type, srcLV, EVK_RValue); 306 } 307 308 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 309 void AggExprEmitter::EmitFinalDestCopy(QualType type, const LValue &src, 310 ExprValueKind SrcValueKind) { 311 // If Dest is ignored, then we're evaluating an aggregate expression 312 // in a context that doesn't care about the result. Note that loads 313 // from volatile l-values force the existence of a non-ignored 314 // destination. 315 if (Dest.isIgnored()) 316 return; 317 318 // Copy non-trivial C structs here. 319 LValue DstLV = CGF.MakeAddrLValue( 320 Dest.getAddress(), Dest.isVolatile() ? type.withVolatile() : type); 321 322 if (SrcValueKind == EVK_RValue) { 323 if (type.isNonTrivialToPrimitiveDestructiveMove() == QualType::PCK_Struct) { 324 if (Dest.isPotentiallyAliased()) 325 CGF.callCStructMoveAssignmentOperator(DstLV, src); 326 else 327 CGF.callCStructMoveConstructor(DstLV, src); 328 return; 329 } 330 } else { 331 if (type.isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) { 332 if (Dest.isPotentiallyAliased()) 333 CGF.callCStructCopyAssignmentOperator(DstLV, src); 334 else 335 CGF.callCStructCopyConstructor(DstLV, src); 336 return; 337 } 338 } 339 340 AggValueSlot srcAgg = 341 AggValueSlot::forLValue(src, AggValueSlot::IsDestructed, 342 needsGC(type), AggValueSlot::IsAliased, 343 AggValueSlot::MayOverlap); 344 EmitCopy(type, Dest, srcAgg); 345 } 346 347 /// Perform a copy from the source into the destination. 348 /// 349 /// \param type - the type of the aggregate being copied; qualifiers are 350 /// ignored 351 void AggExprEmitter::EmitCopy(QualType type, const AggValueSlot &dest, 352 const AggValueSlot &src) { 353 if (dest.requiresGCollection()) { 354 CharUnits sz = dest.getPreferredSize(CGF.getContext(), type); 355 llvm::Value *size = llvm::ConstantInt::get(CGF.SizeTy, sz.getQuantity()); 356 CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, 357 dest.getAddress(), 358 src.getAddress(), 359 size); 360 return; 361 } 362 363 // If the result of the assignment is used, copy the LHS there also. 364 // It's volatile if either side is. Use the minimum alignment of 365 // the two sides. 366 LValue DestLV = CGF.MakeAddrLValue(dest.getAddress(), type); 367 LValue SrcLV = CGF.MakeAddrLValue(src.getAddress(), type); 368 CGF.EmitAggregateCopy(DestLV, SrcLV, type, dest.mayOverlap(), 369 dest.isVolatile() || src.isVolatile()); 370 } 371 372 /// Emit the initializer for a std::initializer_list initialized with a 373 /// real initializer list. 374 void 375 AggExprEmitter::VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E) { 376 // Emit an array containing the elements. The array is externally destructed 377 // if the std::initializer_list object is. 378 ASTContext &Ctx = CGF.getContext(); 379 LValue Array = CGF.EmitLValue(E->getSubExpr()); 380 assert(Array.isSimple() && "initializer_list array not a simple lvalue"); 381 Address ArrayPtr = Array.getAddress(); 382 383 const ConstantArrayType *ArrayType = 384 Ctx.getAsConstantArrayType(E->getSubExpr()->getType()); 385 assert(ArrayType && "std::initializer_list constructed from non-array"); 386 387 // FIXME: Perform the checks on the field types in SemaInit. 388 RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl(); 389 RecordDecl::field_iterator Field = Record->field_begin(); 390 if (Field == Record->field_end()) { 391 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 392 return; 393 } 394 395 // Start pointer. 396 if (!Field->getType()->isPointerType() || 397 !Ctx.hasSameType(Field->getType()->getPointeeType(), 398 ArrayType->getElementType())) { 399 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 400 return; 401 } 402 403 AggValueSlot Dest = EnsureSlot(E->getType()); 404 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType()); 405 LValue Start = CGF.EmitLValueForFieldInitialization(DestLV, *Field); 406 llvm::Value *Zero = llvm::ConstantInt::get(CGF.PtrDiffTy, 0); 407 llvm::Value *IdxStart[] = { Zero, Zero }; 408 llvm::Value *ArrayStart = 409 Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxStart, "arraystart"); 410 CGF.EmitStoreThroughLValue(RValue::get(ArrayStart), Start); 411 ++Field; 412 413 if (Field == Record->field_end()) { 414 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 415 return; 416 } 417 418 llvm::Value *Size = Builder.getInt(ArrayType->getSize()); 419 LValue EndOrLength = CGF.EmitLValueForFieldInitialization(DestLV, *Field); 420 if (Field->getType()->isPointerType() && 421 Ctx.hasSameType(Field->getType()->getPointeeType(), 422 ArrayType->getElementType())) { 423 // End pointer. 424 llvm::Value *IdxEnd[] = { Zero, Size }; 425 llvm::Value *ArrayEnd = 426 Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxEnd, "arrayend"); 427 CGF.EmitStoreThroughLValue(RValue::get(ArrayEnd), EndOrLength); 428 } else if (Ctx.hasSameType(Field->getType(), Ctx.getSizeType())) { 429 // Length. 430 CGF.EmitStoreThroughLValue(RValue::get(Size), EndOrLength); 431 } else { 432 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 433 return; 434 } 435 } 436 437 /// Determine if E is a trivial array filler, that is, one that is 438 /// equivalent to zero-initialization. 439 static bool isTrivialFiller(Expr *E) { 440 if (!E) 441 return true; 442 443 if (isa<ImplicitValueInitExpr>(E)) 444 return true; 445 446 if (auto *ILE = dyn_cast<InitListExpr>(E)) { 447 if (ILE->getNumInits()) 448 return false; 449 return isTrivialFiller(ILE->getArrayFiller()); 450 } 451 452 if (auto *Cons = dyn_cast_or_null<CXXConstructExpr>(E)) 453 return Cons->getConstructor()->isDefaultConstructor() && 454 Cons->getConstructor()->isTrivial(); 455 456 // FIXME: Are there other cases where we can avoid emitting an initializer? 457 return false; 458 } 459 460 /// Emit initialization of an array from an initializer list. 461 void AggExprEmitter::EmitArrayInit(Address DestPtr, llvm::ArrayType *AType, 462 QualType ArrayQTy, InitListExpr *E) { 463 uint64_t NumInitElements = E->getNumInits(); 464 465 uint64_t NumArrayElements = AType->getNumElements(); 466 assert(NumInitElements <= NumArrayElements); 467 468 QualType elementType = 469 CGF.getContext().getAsArrayType(ArrayQTy)->getElementType(); 470 471 // DestPtr is an array*. Construct an elementType* by drilling 472 // down a level. 473 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 474 llvm::Value *indices[] = { zero, zero }; 475 llvm::Value *begin = 476 Builder.CreateInBoundsGEP(DestPtr.getPointer(), indices, "arrayinit.begin"); 477 478 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType); 479 CharUnits elementAlign = 480 DestPtr.getAlignment().alignmentOfArrayElement(elementSize); 481 482 // Consider initializing the array by copying from a global. For this to be 483 // more efficient than per-element initialization, the size of the elements 484 // with explicit initializers should be large enough. 485 if (NumInitElements * elementSize.getQuantity() > 16 && 486 elementType.isTriviallyCopyableType(CGF.getContext())) { 487 CodeGen::CodeGenModule &CGM = CGF.CGM; 488 ConstantEmitter Emitter(CGM); 489 LangAS AS = ArrayQTy.getAddressSpace(); 490 if (llvm::Constant *C = Emitter.tryEmitForInitializer(E, AS, ArrayQTy)) { 491 auto GV = new llvm::GlobalVariable( 492 CGM.getModule(), C->getType(), 493 CGM.isTypeConstant(ArrayQTy, /* ExcludeCtorDtor= */ true), 494 llvm::GlobalValue::PrivateLinkage, C, "constinit", 495 /* InsertBefore= */ nullptr, llvm::GlobalVariable::NotThreadLocal, 496 CGM.getContext().getTargetAddressSpace(AS)); 497 Emitter.finalize(GV); 498 CharUnits Align = CGM.getContext().getTypeAlignInChars(ArrayQTy); 499 GV->setAlignment(Align.getQuantity()); 500 EmitFinalDestCopy(ArrayQTy, CGF.MakeAddrLValue(GV, ArrayQTy, Align)); 501 return; 502 } 503 } 504 505 // Exception safety requires us to destroy all the 506 // already-constructed members if an initializer throws. 507 // For that, we'll need an EH cleanup. 508 QualType::DestructionKind dtorKind = elementType.isDestructedType(); 509 Address endOfInit = Address::invalid(); 510 EHScopeStack::stable_iterator cleanup; 511 llvm::Instruction *cleanupDominator = nullptr; 512 if (CGF.needsEHCleanup(dtorKind)) { 513 // In principle we could tell the cleanup where we are more 514 // directly, but the control flow can get so varied here that it 515 // would actually be quite complex. Therefore we go through an 516 // alloca. 517 endOfInit = CGF.CreateTempAlloca(begin->getType(), CGF.getPointerAlign(), 518 "arrayinit.endOfInit"); 519 cleanupDominator = Builder.CreateStore(begin, endOfInit); 520 CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType, 521 elementAlign, 522 CGF.getDestroyer(dtorKind)); 523 cleanup = CGF.EHStack.stable_begin(); 524 525 // Otherwise, remember that we didn't need a cleanup. 526 } else { 527 dtorKind = QualType::DK_none; 528 } 529 530 llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1); 531 532 // The 'current element to initialize'. The invariants on this 533 // variable are complicated. Essentially, after each iteration of 534 // the loop, it points to the last initialized element, except 535 // that it points to the beginning of the array before any 536 // elements have been initialized. 537 llvm::Value *element = begin; 538 539 // Emit the explicit initializers. 540 for (uint64_t i = 0; i != NumInitElements; ++i) { 541 // Advance to the next element. 542 if (i > 0) { 543 element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element"); 544 545 // Tell the cleanup that it needs to destroy up to this 546 // element. TODO: some of these stores can be trivially 547 // observed to be unnecessary. 548 if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit); 549 } 550 551 LValue elementLV = 552 CGF.MakeAddrLValue(Address(element, elementAlign), elementType); 553 EmitInitializationToLValue(E->getInit(i), elementLV); 554 } 555 556 // Check whether there's a non-trivial array-fill expression. 557 Expr *filler = E->getArrayFiller(); 558 bool hasTrivialFiller = isTrivialFiller(filler); 559 560 // Any remaining elements need to be zero-initialized, possibly 561 // using the filler expression. We can skip this if the we're 562 // emitting to zeroed memory. 563 if (NumInitElements != NumArrayElements && 564 !(Dest.isZeroed() && hasTrivialFiller && 565 CGF.getTypes().isZeroInitializable(elementType))) { 566 567 // Use an actual loop. This is basically 568 // do { *array++ = filler; } while (array != end); 569 570 // Advance to the start of the rest of the array. 571 if (NumInitElements) { 572 element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start"); 573 if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit); 574 } 575 576 // Compute the end of the array. 577 llvm::Value *end = Builder.CreateInBoundsGEP(begin, 578 llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements), 579 "arrayinit.end"); 580 581 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 582 llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body"); 583 584 // Jump into the body. 585 CGF.EmitBlock(bodyBB); 586 llvm::PHINode *currentElement = 587 Builder.CreatePHI(element->getType(), 2, "arrayinit.cur"); 588 currentElement->addIncoming(element, entryBB); 589 590 // Emit the actual filler expression. 591 { 592 // C++1z [class.temporary]p5: 593 // when a default constructor is called to initialize an element of 594 // an array with no corresponding initializer [...] the destruction of 595 // every temporary created in a default argument is sequenced before 596 // the construction of the next array element, if any 597 CodeGenFunction::RunCleanupsScope CleanupsScope(CGF); 598 LValue elementLV = 599 CGF.MakeAddrLValue(Address(currentElement, elementAlign), elementType); 600 if (filler) 601 EmitInitializationToLValue(filler, elementLV); 602 else 603 EmitNullInitializationToLValue(elementLV); 604 } 605 606 // Move on to the next element. 607 llvm::Value *nextElement = 608 Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next"); 609 610 // Tell the EH cleanup that we finished with the last element. 611 if (endOfInit.isValid()) Builder.CreateStore(nextElement, endOfInit); 612 613 // Leave the loop if we're done. 614 llvm::Value *done = Builder.CreateICmpEQ(nextElement, end, 615 "arrayinit.done"); 616 llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end"); 617 Builder.CreateCondBr(done, endBB, bodyBB); 618 currentElement->addIncoming(nextElement, Builder.GetInsertBlock()); 619 620 CGF.EmitBlock(endBB); 621 } 622 623 // Leave the partial-array cleanup if we entered one. 624 if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator); 625 } 626 627 //===----------------------------------------------------------------------===// 628 // Visitor Methods 629 //===----------------------------------------------------------------------===// 630 631 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){ 632 Visit(E->GetTemporaryExpr()); 633 } 634 635 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) { 636 // If this is a unique OVE, just visit its source expression. 637 if (e->isUnique()) 638 Visit(e->getSourceExpr()); 639 else 640 EmitFinalDestCopy(e->getType(), CGF.getOrCreateOpaqueLValueMapping(e)); 641 } 642 643 void 644 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 645 if (Dest.isPotentiallyAliased() && 646 E->getType().isPODType(CGF.getContext())) { 647 // For a POD type, just emit a load of the lvalue + a copy, because our 648 // compound literal might alias the destination. 649 EmitAggLoadOfLValue(E); 650 return; 651 } 652 653 AggValueSlot Slot = EnsureSlot(E->getType()); 654 CGF.EmitAggExpr(E->getInitializer(), Slot); 655 } 656 657 /// Attempt to look through various unimportant expressions to find a 658 /// cast of the given kind. 659 static Expr *findPeephole(Expr *op, CastKind kind) { 660 while (true) { 661 op = op->IgnoreParens(); 662 if (CastExpr *castE = dyn_cast<CastExpr>(op)) { 663 if (castE->getCastKind() == kind) 664 return castE->getSubExpr(); 665 if (castE->getCastKind() == CK_NoOp) 666 continue; 667 } 668 return nullptr; 669 } 670 } 671 672 void AggExprEmitter::VisitCastExpr(CastExpr *E) { 673 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E)) 674 CGF.CGM.EmitExplicitCastExprType(ECE, &CGF); 675 switch (E->getCastKind()) { 676 case CK_Dynamic: { 677 // FIXME: Can this actually happen? We have no test coverage for it. 678 assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?"); 679 LValue LV = CGF.EmitCheckedLValue(E->getSubExpr(), 680 CodeGenFunction::TCK_Load); 681 // FIXME: Do we also need to handle property references here? 682 if (LV.isSimple()) 683 CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E)); 684 else 685 CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast"); 686 687 if (!Dest.isIgnored()) 688 CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination"); 689 break; 690 } 691 692 case CK_ToUnion: { 693 // Evaluate even if the destination is ignored. 694 if (Dest.isIgnored()) { 695 CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(), 696 /*ignoreResult=*/true); 697 break; 698 } 699 700 // GCC union extension 701 QualType Ty = E->getSubExpr()->getType(); 702 Address CastPtr = 703 Builder.CreateElementBitCast(Dest.getAddress(), CGF.ConvertType(Ty)); 704 EmitInitializationToLValue(E->getSubExpr(), 705 CGF.MakeAddrLValue(CastPtr, Ty)); 706 break; 707 } 708 709 case CK_DerivedToBase: 710 case CK_BaseToDerived: 711 case CK_UncheckedDerivedToBase: { 712 llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: " 713 "should have been unpacked before we got here"); 714 } 715 716 case CK_NonAtomicToAtomic: 717 case CK_AtomicToNonAtomic: { 718 bool isToAtomic = (E->getCastKind() == CK_NonAtomicToAtomic); 719 720 // Determine the atomic and value types. 721 QualType atomicType = E->getSubExpr()->getType(); 722 QualType valueType = E->getType(); 723 if (isToAtomic) std::swap(atomicType, valueType); 724 725 assert(atomicType->isAtomicType()); 726 assert(CGF.getContext().hasSameUnqualifiedType(valueType, 727 atomicType->castAs<AtomicType>()->getValueType())); 728 729 // Just recurse normally if we're ignoring the result or the 730 // atomic type doesn't change representation. 731 if (Dest.isIgnored() || !CGF.CGM.isPaddedAtomicType(atomicType)) { 732 return Visit(E->getSubExpr()); 733 } 734 735 CastKind peepholeTarget = 736 (isToAtomic ? CK_AtomicToNonAtomic : CK_NonAtomicToAtomic); 737 738 // These two cases are reverses of each other; try to peephole them. 739 if (Expr *op = findPeephole(E->getSubExpr(), peepholeTarget)) { 740 assert(CGF.getContext().hasSameUnqualifiedType(op->getType(), 741 E->getType()) && 742 "peephole significantly changed types?"); 743 return Visit(op); 744 } 745 746 // If we're converting an r-value of non-atomic type to an r-value 747 // of atomic type, just emit directly into the relevant sub-object. 748 if (isToAtomic) { 749 AggValueSlot valueDest = Dest; 750 if (!valueDest.isIgnored() && CGF.CGM.isPaddedAtomicType(atomicType)) { 751 // Zero-initialize. (Strictly speaking, we only need to initialize 752 // the padding at the end, but this is simpler.) 753 if (!Dest.isZeroed()) 754 CGF.EmitNullInitialization(Dest.getAddress(), atomicType); 755 756 // Build a GEP to refer to the subobject. 757 Address valueAddr = 758 CGF.Builder.CreateStructGEP(valueDest.getAddress(), 0, 759 CharUnits()); 760 valueDest = AggValueSlot::forAddr(valueAddr, 761 valueDest.getQualifiers(), 762 valueDest.isExternallyDestructed(), 763 valueDest.requiresGCollection(), 764 valueDest.isPotentiallyAliased(), 765 AggValueSlot::DoesNotOverlap, 766 AggValueSlot::IsZeroed); 767 } 768 769 CGF.EmitAggExpr(E->getSubExpr(), valueDest); 770 return; 771 } 772 773 // Otherwise, we're converting an atomic type to a non-atomic type. 774 // Make an atomic temporary, emit into that, and then copy the value out. 775 AggValueSlot atomicSlot = 776 CGF.CreateAggTemp(atomicType, "atomic-to-nonatomic.temp"); 777 CGF.EmitAggExpr(E->getSubExpr(), atomicSlot); 778 779 Address valueAddr = 780 Builder.CreateStructGEP(atomicSlot.getAddress(), 0, CharUnits()); 781 RValue rvalue = RValue::getAggregate(valueAddr, atomicSlot.isVolatile()); 782 return EmitFinalDestCopy(valueType, rvalue); 783 } 784 785 case CK_LValueToRValue: 786 // If we're loading from a volatile type, force the destination 787 // into existence. 788 if (E->getSubExpr()->getType().isVolatileQualified()) { 789 EnsureDest(E->getType()); 790 return Visit(E->getSubExpr()); 791 } 792 793 LLVM_FALLTHROUGH; 794 795 case CK_NoOp: 796 case CK_UserDefinedConversion: 797 case CK_ConstructorConversion: 798 assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(), 799 E->getType()) && 800 "Implicit cast types must be compatible"); 801 Visit(E->getSubExpr()); 802 break; 803 804 case CK_LValueBitCast: 805 llvm_unreachable("should not be emitting lvalue bitcast as rvalue"); 806 807 case CK_Dependent: 808 case CK_BitCast: 809 case CK_ArrayToPointerDecay: 810 case CK_FunctionToPointerDecay: 811 case CK_NullToPointer: 812 case CK_NullToMemberPointer: 813 case CK_BaseToDerivedMemberPointer: 814 case CK_DerivedToBaseMemberPointer: 815 case CK_MemberPointerToBoolean: 816 case CK_ReinterpretMemberPointer: 817 case CK_IntegralToPointer: 818 case CK_PointerToIntegral: 819 case CK_PointerToBoolean: 820 case CK_ToVoid: 821 case CK_VectorSplat: 822 case CK_IntegralCast: 823 case CK_BooleanToSignedIntegral: 824 case CK_IntegralToBoolean: 825 case CK_IntegralToFloating: 826 case CK_FloatingToIntegral: 827 case CK_FloatingToBoolean: 828 case CK_FloatingCast: 829 case CK_CPointerToObjCPointerCast: 830 case CK_BlockPointerToObjCPointerCast: 831 case CK_AnyPointerToBlockPointerCast: 832 case CK_ObjCObjectLValueCast: 833 case CK_FloatingRealToComplex: 834 case CK_FloatingComplexToReal: 835 case CK_FloatingComplexToBoolean: 836 case CK_FloatingComplexCast: 837 case CK_FloatingComplexToIntegralComplex: 838 case CK_IntegralRealToComplex: 839 case CK_IntegralComplexToReal: 840 case CK_IntegralComplexToBoolean: 841 case CK_IntegralComplexCast: 842 case CK_IntegralComplexToFloatingComplex: 843 case CK_ARCProduceObject: 844 case CK_ARCConsumeObject: 845 case CK_ARCReclaimReturnedObject: 846 case CK_ARCExtendBlockObject: 847 case CK_CopyAndAutoreleaseBlockObject: 848 case CK_BuiltinFnToFnPtr: 849 case CK_ZeroToOCLEvent: 850 case CK_ZeroToOCLQueue: 851 case CK_AddressSpaceConversion: 852 case CK_IntToOCLSampler: 853 llvm_unreachable("cast kind invalid for aggregate types"); 854 } 855 } 856 857 void AggExprEmitter::VisitCallExpr(const CallExpr *E) { 858 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) { 859 EmitAggLoadOfLValue(E); 860 return; 861 } 862 863 withReturnValueSlot(E, [&](ReturnValueSlot Slot) { 864 return CGF.EmitCallExpr(E, Slot); 865 }); 866 } 867 868 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) { 869 withReturnValueSlot(E, [&](ReturnValueSlot Slot) { 870 return CGF.EmitObjCMessageExpr(E, Slot); 871 }); 872 } 873 874 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) { 875 CGF.EmitIgnoredExpr(E->getLHS()); 876 Visit(E->getRHS()); 877 } 878 879 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) { 880 CodeGenFunction::StmtExprEvaluation eval(CGF); 881 CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest); 882 } 883 884 enum CompareKind { 885 CK_Less, 886 CK_Greater, 887 CK_Equal, 888 }; 889 890 static llvm::Value *EmitCompare(CGBuilderTy &Builder, CodeGenFunction &CGF, 891 const BinaryOperator *E, llvm::Value *LHS, 892 llvm::Value *RHS, CompareKind Kind, 893 const char *NameSuffix = "") { 894 QualType ArgTy = E->getLHS()->getType(); 895 if (const ComplexType *CT = ArgTy->getAs<ComplexType>()) 896 ArgTy = CT->getElementType(); 897 898 if (const auto *MPT = ArgTy->getAs<MemberPointerType>()) { 899 assert(Kind == CK_Equal && 900 "member pointers may only be compared for equality"); 901 return CGF.CGM.getCXXABI().EmitMemberPointerComparison( 902 CGF, LHS, RHS, MPT, /*IsInequality*/ false); 903 } 904 905 // Compute the comparison instructions for the specified comparison kind. 906 struct CmpInstInfo { 907 const char *Name; 908 llvm::CmpInst::Predicate FCmp; 909 llvm::CmpInst::Predicate SCmp; 910 llvm::CmpInst::Predicate UCmp; 911 }; 912 CmpInstInfo InstInfo = [&]() -> CmpInstInfo { 913 using FI = llvm::FCmpInst; 914 using II = llvm::ICmpInst; 915 switch (Kind) { 916 case CK_Less: 917 return {"cmp.lt", FI::FCMP_OLT, II::ICMP_SLT, II::ICMP_ULT}; 918 case CK_Greater: 919 return {"cmp.gt", FI::FCMP_OGT, II::ICMP_SGT, II::ICMP_UGT}; 920 case CK_Equal: 921 return {"cmp.eq", FI::FCMP_OEQ, II::ICMP_EQ, II::ICMP_EQ}; 922 } 923 llvm_unreachable("Unrecognised CompareKind enum"); 924 }(); 925 926 if (ArgTy->hasFloatingRepresentation()) 927 return Builder.CreateFCmp(InstInfo.FCmp, LHS, RHS, 928 llvm::Twine(InstInfo.Name) + NameSuffix); 929 if (ArgTy->isIntegralOrEnumerationType() || ArgTy->isPointerType()) { 930 auto Inst = 931 ArgTy->hasSignedIntegerRepresentation() ? InstInfo.SCmp : InstInfo.UCmp; 932 return Builder.CreateICmp(Inst, LHS, RHS, 933 llvm::Twine(InstInfo.Name) + NameSuffix); 934 } 935 936 llvm_unreachable("unsupported aggregate binary expression should have " 937 "already been handled"); 938 } 939 940 void AggExprEmitter::VisitBinCmp(const BinaryOperator *E) { 941 using llvm::BasicBlock; 942 using llvm::PHINode; 943 using llvm::Value; 944 assert(CGF.getContext().hasSameType(E->getLHS()->getType(), 945 E->getRHS()->getType())); 946 const ComparisonCategoryInfo &CmpInfo = 947 CGF.getContext().CompCategories.getInfoForType(E->getType()); 948 assert(CmpInfo.Record->isTriviallyCopyable() && 949 "cannot copy non-trivially copyable aggregate"); 950 951 QualType ArgTy = E->getLHS()->getType(); 952 953 // TODO: Handle comparing these types. 954 if (ArgTy->isVectorType()) 955 return CGF.ErrorUnsupported( 956 E, "aggregate three-way comparison with vector arguments"); 957 if (!ArgTy->isIntegralOrEnumerationType() && !ArgTy->isRealFloatingType() && 958 !ArgTy->isNullPtrType() && !ArgTy->isPointerType() && 959 !ArgTy->isMemberPointerType() && !ArgTy->isAnyComplexType()) { 960 return CGF.ErrorUnsupported(E, "aggregate three-way comparison"); 961 } 962 bool IsComplex = ArgTy->isAnyComplexType(); 963 964 // Evaluate the operands to the expression and extract their values. 965 auto EmitOperand = [&](Expr *E) -> std::pair<Value *, Value *> { 966 RValue RV = CGF.EmitAnyExpr(E); 967 if (RV.isScalar()) 968 return {RV.getScalarVal(), nullptr}; 969 if (RV.isAggregate()) 970 return {RV.getAggregatePointer(), nullptr}; 971 assert(RV.isComplex()); 972 return RV.getComplexVal(); 973 }; 974 auto LHSValues = EmitOperand(E->getLHS()), 975 RHSValues = EmitOperand(E->getRHS()); 976 977 auto EmitCmp = [&](CompareKind K) { 978 Value *Cmp = EmitCompare(Builder, CGF, E, LHSValues.first, RHSValues.first, 979 K, IsComplex ? ".r" : ""); 980 if (!IsComplex) 981 return Cmp; 982 assert(K == CompareKind::CK_Equal); 983 Value *CmpImag = EmitCompare(Builder, CGF, E, LHSValues.second, 984 RHSValues.second, K, ".i"); 985 return Builder.CreateAnd(Cmp, CmpImag, "and.eq"); 986 }; 987 auto EmitCmpRes = [&](const ComparisonCategoryInfo::ValueInfo *VInfo) { 988 return Builder.getInt(VInfo->getIntValue()); 989 }; 990 991 Value *Select; 992 if (ArgTy->isNullPtrType()) { 993 Select = EmitCmpRes(CmpInfo.getEqualOrEquiv()); 994 } else if (CmpInfo.isEquality()) { 995 Select = Builder.CreateSelect( 996 EmitCmp(CK_Equal), EmitCmpRes(CmpInfo.getEqualOrEquiv()), 997 EmitCmpRes(CmpInfo.getNonequalOrNonequiv()), "sel.eq"); 998 } else if (!CmpInfo.isPartial()) { 999 Value *SelectOne = 1000 Builder.CreateSelect(EmitCmp(CK_Less), EmitCmpRes(CmpInfo.getLess()), 1001 EmitCmpRes(CmpInfo.getGreater()), "sel.lt"); 1002 Select = Builder.CreateSelect(EmitCmp(CK_Equal), 1003 EmitCmpRes(CmpInfo.getEqualOrEquiv()), 1004 SelectOne, "sel.eq"); 1005 } else { 1006 Value *SelectEq = Builder.CreateSelect( 1007 EmitCmp(CK_Equal), EmitCmpRes(CmpInfo.getEqualOrEquiv()), 1008 EmitCmpRes(CmpInfo.getUnordered()), "sel.eq"); 1009 Value *SelectGT = Builder.CreateSelect(EmitCmp(CK_Greater), 1010 EmitCmpRes(CmpInfo.getGreater()), 1011 SelectEq, "sel.gt"); 1012 Select = Builder.CreateSelect( 1013 EmitCmp(CK_Less), EmitCmpRes(CmpInfo.getLess()), SelectGT, "sel.lt"); 1014 } 1015 // Create the return value in the destination slot. 1016 EnsureDest(E->getType()); 1017 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType()); 1018 1019 // Emit the address of the first (and only) field in the comparison category 1020 // type, and initialize it from the constant integer value selected above. 1021 LValue FieldLV = CGF.EmitLValueForFieldInitialization( 1022 DestLV, *CmpInfo.Record->field_begin()); 1023 CGF.EmitStoreThroughLValue(RValue::get(Select), FieldLV, /*IsInit*/ true); 1024 1025 // All done! The result is in the Dest slot. 1026 } 1027 1028 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) { 1029 if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI) 1030 VisitPointerToDataMemberBinaryOperator(E); 1031 else 1032 CGF.ErrorUnsupported(E, "aggregate binary expression"); 1033 } 1034 1035 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator( 1036 const BinaryOperator *E) { 1037 LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E); 1038 EmitFinalDestCopy(E->getType(), LV); 1039 } 1040 1041 /// Is the value of the given expression possibly a reference to or 1042 /// into a __block variable? 1043 static bool isBlockVarRef(const Expr *E) { 1044 // Make sure we look through parens. 1045 E = E->IgnoreParens(); 1046 1047 // Check for a direct reference to a __block variable. 1048 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { 1049 const VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl()); 1050 return (var && var->hasAttr<BlocksAttr>()); 1051 } 1052 1053 // More complicated stuff. 1054 1055 // Binary operators. 1056 if (const BinaryOperator *op = dyn_cast<BinaryOperator>(E)) { 1057 // For an assignment or pointer-to-member operation, just care 1058 // about the LHS. 1059 if (op->isAssignmentOp() || op->isPtrMemOp()) 1060 return isBlockVarRef(op->getLHS()); 1061 1062 // For a comma, just care about the RHS. 1063 if (op->getOpcode() == BO_Comma) 1064 return isBlockVarRef(op->getRHS()); 1065 1066 // FIXME: pointer arithmetic? 1067 return false; 1068 1069 // Check both sides of a conditional operator. 1070 } else if (const AbstractConditionalOperator *op 1071 = dyn_cast<AbstractConditionalOperator>(E)) { 1072 return isBlockVarRef(op->getTrueExpr()) 1073 || isBlockVarRef(op->getFalseExpr()); 1074 1075 // OVEs are required to support BinaryConditionalOperators. 1076 } else if (const OpaqueValueExpr *op 1077 = dyn_cast<OpaqueValueExpr>(E)) { 1078 if (const Expr *src = op->getSourceExpr()) 1079 return isBlockVarRef(src); 1080 1081 // Casts are necessary to get things like (*(int*)&var) = foo(). 1082 // We don't really care about the kind of cast here, except 1083 // we don't want to look through l2r casts, because it's okay 1084 // to get the *value* in a __block variable. 1085 } else if (const CastExpr *cast = dyn_cast<CastExpr>(E)) { 1086 if (cast->getCastKind() == CK_LValueToRValue) 1087 return false; 1088 return isBlockVarRef(cast->getSubExpr()); 1089 1090 // Handle unary operators. Again, just aggressively look through 1091 // it, ignoring the operation. 1092 } else if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E)) { 1093 return isBlockVarRef(uop->getSubExpr()); 1094 1095 // Look into the base of a field access. 1096 } else if (const MemberExpr *mem = dyn_cast<MemberExpr>(E)) { 1097 return isBlockVarRef(mem->getBase()); 1098 1099 // Look into the base of a subscript. 1100 } else if (const ArraySubscriptExpr *sub = dyn_cast<ArraySubscriptExpr>(E)) { 1101 return isBlockVarRef(sub->getBase()); 1102 } 1103 1104 return false; 1105 } 1106 1107 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) { 1108 // For an assignment to work, the value on the right has 1109 // to be compatible with the value on the left. 1110 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), 1111 E->getRHS()->getType()) 1112 && "Invalid assignment"); 1113 1114 // If the LHS might be a __block variable, and the RHS can 1115 // potentially cause a block copy, we need to evaluate the RHS first 1116 // so that the assignment goes the right place. 1117 // This is pretty semantically fragile. 1118 if (isBlockVarRef(E->getLHS()) && 1119 E->getRHS()->HasSideEffects(CGF.getContext())) { 1120 // Ensure that we have a destination, and evaluate the RHS into that. 1121 EnsureDest(E->getRHS()->getType()); 1122 Visit(E->getRHS()); 1123 1124 // Now emit the LHS and copy into it. 1125 LValue LHS = CGF.EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 1126 1127 // That copy is an atomic copy if the LHS is atomic. 1128 if (LHS.getType()->isAtomicType() || 1129 CGF.LValueIsSuitableForInlineAtomic(LHS)) { 1130 CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false); 1131 return; 1132 } 1133 1134 EmitCopy(E->getLHS()->getType(), 1135 AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed, 1136 needsGC(E->getLHS()->getType()), 1137 AggValueSlot::IsAliased, 1138 AggValueSlot::MayOverlap), 1139 Dest); 1140 return; 1141 } 1142 1143 LValue LHS = CGF.EmitLValue(E->getLHS()); 1144 1145 // If we have an atomic type, evaluate into the destination and then 1146 // do an atomic copy. 1147 if (LHS.getType()->isAtomicType() || 1148 CGF.LValueIsSuitableForInlineAtomic(LHS)) { 1149 EnsureDest(E->getRHS()->getType()); 1150 Visit(E->getRHS()); 1151 CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false); 1152 return; 1153 } 1154 1155 // Codegen the RHS so that it stores directly into the LHS. 1156 AggValueSlot LHSSlot = 1157 AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed, 1158 needsGC(E->getLHS()->getType()), 1159 AggValueSlot::IsAliased, 1160 AggValueSlot::MayOverlap); 1161 // A non-volatile aggregate destination might have volatile member. 1162 if (!LHSSlot.isVolatile() && 1163 CGF.hasVolatileMember(E->getLHS()->getType())) 1164 LHSSlot.setVolatile(true); 1165 1166 CGF.EmitAggExpr(E->getRHS(), LHSSlot); 1167 1168 // Copy into the destination if the assignment isn't ignored. 1169 EmitFinalDestCopy(E->getType(), LHS); 1170 } 1171 1172 void AggExprEmitter:: 1173 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 1174 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 1175 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 1176 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 1177 1178 // Bind the common expression if necessary. 1179 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 1180 1181 CodeGenFunction::ConditionalEvaluation eval(CGF); 1182 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock, 1183 CGF.getProfileCount(E)); 1184 1185 // Save whether the destination's lifetime is externally managed. 1186 bool isExternallyDestructed = Dest.isExternallyDestructed(); 1187 1188 eval.begin(CGF); 1189 CGF.EmitBlock(LHSBlock); 1190 CGF.incrementProfileCounter(E); 1191 Visit(E->getTrueExpr()); 1192 eval.end(CGF); 1193 1194 assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!"); 1195 CGF.Builder.CreateBr(ContBlock); 1196 1197 // If the result of an agg expression is unused, then the emission 1198 // of the LHS might need to create a destination slot. That's fine 1199 // with us, and we can safely emit the RHS into the same slot, but 1200 // we shouldn't claim that it's already being destructed. 1201 Dest.setExternallyDestructed(isExternallyDestructed); 1202 1203 eval.begin(CGF); 1204 CGF.EmitBlock(RHSBlock); 1205 Visit(E->getFalseExpr()); 1206 eval.end(CGF); 1207 1208 CGF.EmitBlock(ContBlock); 1209 } 1210 1211 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) { 1212 Visit(CE->getChosenSubExpr()); 1213 } 1214 1215 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 1216 Address ArgValue = Address::invalid(); 1217 Address ArgPtr = CGF.EmitVAArg(VE, ArgValue); 1218 1219 // If EmitVAArg fails, emit an error. 1220 if (!ArgPtr.isValid()) { 1221 CGF.ErrorUnsupported(VE, "aggregate va_arg expression"); 1222 return; 1223 } 1224 1225 EmitFinalDestCopy(VE->getType(), CGF.MakeAddrLValue(ArgPtr, VE->getType())); 1226 } 1227 1228 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 1229 // Ensure that we have a slot, but if we already do, remember 1230 // whether it was externally destructed. 1231 bool wasExternallyDestructed = Dest.isExternallyDestructed(); 1232 EnsureDest(E->getType()); 1233 1234 // We're going to push a destructor if there isn't already one. 1235 Dest.setExternallyDestructed(); 1236 1237 Visit(E->getSubExpr()); 1238 1239 // Push that destructor we promised. 1240 if (!wasExternallyDestructed) 1241 CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddress()); 1242 } 1243 1244 void 1245 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) { 1246 AggValueSlot Slot = EnsureSlot(E->getType()); 1247 CGF.EmitCXXConstructExpr(E, Slot); 1248 } 1249 1250 void AggExprEmitter::VisitCXXInheritedCtorInitExpr( 1251 const CXXInheritedCtorInitExpr *E) { 1252 AggValueSlot Slot = EnsureSlot(E->getType()); 1253 CGF.EmitInheritedCXXConstructorCall( 1254 E->getConstructor(), E->constructsVBase(), Slot.getAddress(), 1255 E->inheritedFromVBase(), E); 1256 } 1257 1258 void 1259 AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) { 1260 AggValueSlot Slot = EnsureSlot(E->getType()); 1261 CGF.EmitLambdaExpr(E, Slot); 1262 } 1263 1264 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) { 1265 CGF.enterFullExpression(E); 1266 CodeGenFunction::RunCleanupsScope cleanups(CGF); 1267 Visit(E->getSubExpr()); 1268 } 1269 1270 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) { 1271 QualType T = E->getType(); 1272 AggValueSlot Slot = EnsureSlot(T); 1273 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T)); 1274 } 1275 1276 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) { 1277 QualType T = E->getType(); 1278 AggValueSlot Slot = EnsureSlot(T); 1279 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T)); 1280 } 1281 1282 /// isSimpleZero - If emitting this value will obviously just cause a store of 1283 /// zero to memory, return true. This can return false if uncertain, so it just 1284 /// handles simple cases. 1285 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) { 1286 E = E->IgnoreParens(); 1287 1288 // 0 1289 if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) 1290 return IL->getValue() == 0; 1291 // +0.0 1292 if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E)) 1293 return FL->getValue().isPosZero(); 1294 // int() 1295 if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) && 1296 CGF.getTypes().isZeroInitializable(E->getType())) 1297 return true; 1298 // (int*)0 - Null pointer expressions. 1299 if (const CastExpr *ICE = dyn_cast<CastExpr>(E)) 1300 return ICE->getCastKind() == CK_NullToPointer && 1301 CGF.getTypes().isPointerZeroInitializable(E->getType()); 1302 // '\0' 1303 if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) 1304 return CL->getValue() == 0; 1305 1306 // Otherwise, hard case: conservatively return false. 1307 return false; 1308 } 1309 1310 1311 void 1312 AggExprEmitter::EmitInitializationToLValue(Expr *E, LValue LV) { 1313 QualType type = LV.getType(); 1314 // FIXME: Ignore result? 1315 // FIXME: Are initializers affected by volatile? 1316 if (Dest.isZeroed() && isSimpleZero(E, CGF)) { 1317 // Storing "i32 0" to a zero'd memory location is a noop. 1318 return; 1319 } else if (isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) { 1320 return EmitNullInitializationToLValue(LV); 1321 } else if (isa<NoInitExpr>(E)) { 1322 // Do nothing. 1323 return; 1324 } else if (type->isReferenceType()) { 1325 RValue RV = CGF.EmitReferenceBindingToExpr(E); 1326 return CGF.EmitStoreThroughLValue(RV, LV); 1327 } 1328 1329 switch (CGF.getEvaluationKind(type)) { 1330 case TEK_Complex: 1331 CGF.EmitComplexExprIntoLValue(E, LV, /*isInit*/ true); 1332 return; 1333 case TEK_Aggregate: 1334 CGF.EmitAggExpr(E, AggValueSlot::forLValue(LV, 1335 AggValueSlot::IsDestructed, 1336 AggValueSlot::DoesNotNeedGCBarriers, 1337 AggValueSlot::IsNotAliased, 1338 AggValueSlot::MayOverlap, 1339 Dest.isZeroed())); 1340 return; 1341 case TEK_Scalar: 1342 if (LV.isSimple()) { 1343 CGF.EmitScalarInit(E, /*D=*/nullptr, LV, /*Captured=*/false); 1344 } else { 1345 CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV); 1346 } 1347 return; 1348 } 1349 llvm_unreachable("bad evaluation kind"); 1350 } 1351 1352 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) { 1353 QualType type = lv.getType(); 1354 1355 // If the destination slot is already zeroed out before the aggregate is 1356 // copied into it, we don't have to emit any zeros here. 1357 if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type)) 1358 return; 1359 1360 if (CGF.hasScalarEvaluationKind(type)) { 1361 // For non-aggregates, we can store the appropriate null constant. 1362 llvm::Value *null = CGF.CGM.EmitNullConstant(type); 1363 // Note that the following is not equivalent to 1364 // EmitStoreThroughBitfieldLValue for ARC types. 1365 if (lv.isBitField()) { 1366 CGF.EmitStoreThroughBitfieldLValue(RValue::get(null), lv); 1367 } else { 1368 assert(lv.isSimple()); 1369 CGF.EmitStoreOfScalar(null, lv, /* isInitialization */ true); 1370 } 1371 } else { 1372 // There's a potential optimization opportunity in combining 1373 // memsets; that would be easy for arrays, but relatively 1374 // difficult for structures with the current code. 1375 CGF.EmitNullInitialization(lv.getAddress(), lv.getType()); 1376 } 1377 } 1378 1379 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) { 1380 #if 0 1381 // FIXME: Assess perf here? Figure out what cases are worth optimizing here 1382 // (Length of globals? Chunks of zeroed-out space?). 1383 // 1384 // If we can, prefer a copy from a global; this is a lot less code for long 1385 // globals, and it's easier for the current optimizers to analyze. 1386 if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) { 1387 llvm::GlobalVariable* GV = 1388 new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true, 1389 llvm::GlobalValue::InternalLinkage, C, ""); 1390 EmitFinalDestCopy(E->getType(), CGF.MakeAddrLValue(GV, E->getType())); 1391 return; 1392 } 1393 #endif 1394 if (E->hadArrayRangeDesignator()) 1395 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 1396 1397 if (E->isTransparent()) 1398 return Visit(E->getInit(0)); 1399 1400 AggValueSlot Dest = EnsureSlot(E->getType()); 1401 1402 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType()); 1403 1404 // Handle initialization of an array. 1405 if (E->getType()->isArrayType()) { 1406 auto AType = cast<llvm::ArrayType>(Dest.getAddress().getElementType()); 1407 EmitArrayInit(Dest.getAddress(), AType, E->getType(), E); 1408 return; 1409 } 1410 1411 assert(E->getType()->isRecordType() && "Only support structs/unions here!"); 1412 1413 // Do struct initialization; this code just sets each individual member 1414 // to the approprate value. This makes bitfield support automatic; 1415 // the disadvantage is that the generated code is more difficult for 1416 // the optimizer, especially with bitfields. 1417 unsigned NumInitElements = E->getNumInits(); 1418 RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl(); 1419 1420 // We'll need to enter cleanup scopes in case any of the element 1421 // initializers throws an exception. 1422 SmallVector<EHScopeStack::stable_iterator, 16> cleanups; 1423 llvm::Instruction *cleanupDominator = nullptr; 1424 1425 unsigned curInitIndex = 0; 1426 1427 // Emit initialization of base classes. 1428 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(record)) { 1429 assert(E->getNumInits() >= CXXRD->getNumBases() && 1430 "missing initializer for base class"); 1431 for (auto &Base : CXXRD->bases()) { 1432 assert(!Base.isVirtual() && "should not see vbases here"); 1433 auto *BaseRD = Base.getType()->getAsCXXRecordDecl(); 1434 Address V = CGF.GetAddressOfDirectBaseInCompleteClass( 1435 Dest.getAddress(), CXXRD, BaseRD, 1436 /*isBaseVirtual*/ false); 1437 AggValueSlot AggSlot = AggValueSlot::forAddr( 1438 V, Qualifiers(), 1439 AggValueSlot::IsDestructed, 1440 AggValueSlot::DoesNotNeedGCBarriers, 1441 AggValueSlot::IsNotAliased, 1442 CGF.overlapForBaseInit(CXXRD, BaseRD, Base.isVirtual())); 1443 CGF.EmitAggExpr(E->getInit(curInitIndex++), AggSlot); 1444 1445 if (QualType::DestructionKind dtorKind = 1446 Base.getType().isDestructedType()) { 1447 CGF.pushDestroy(dtorKind, V, Base.getType()); 1448 cleanups.push_back(CGF.EHStack.stable_begin()); 1449 } 1450 } 1451 } 1452 1453 // Prepare a 'this' for CXXDefaultInitExprs. 1454 CodeGenFunction::FieldConstructionScope FCS(CGF, Dest.getAddress()); 1455 1456 if (record->isUnion()) { 1457 // Only initialize one field of a union. The field itself is 1458 // specified by the initializer list. 1459 if (!E->getInitializedFieldInUnion()) { 1460 // Empty union; we have nothing to do. 1461 1462 #ifndef NDEBUG 1463 // Make sure that it's really an empty and not a failure of 1464 // semantic analysis. 1465 for (const auto *Field : record->fields()) 1466 assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed"); 1467 #endif 1468 return; 1469 } 1470 1471 // FIXME: volatility 1472 FieldDecl *Field = E->getInitializedFieldInUnion(); 1473 1474 LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestLV, Field); 1475 if (NumInitElements) { 1476 // Store the initializer into the field 1477 EmitInitializationToLValue(E->getInit(0), FieldLoc); 1478 } else { 1479 // Default-initialize to null. 1480 EmitNullInitializationToLValue(FieldLoc); 1481 } 1482 1483 return; 1484 } 1485 1486 // Here we iterate over the fields; this makes it simpler to both 1487 // default-initialize fields and skip over unnamed fields. 1488 for (const auto *field : record->fields()) { 1489 // We're done once we hit the flexible array member. 1490 if (field->getType()->isIncompleteArrayType()) 1491 break; 1492 1493 // Always skip anonymous bitfields. 1494 if (field->isUnnamedBitfield()) 1495 continue; 1496 1497 // We're done if we reach the end of the explicit initializers, we 1498 // have a zeroed object, and the rest of the fields are 1499 // zero-initializable. 1500 if (curInitIndex == NumInitElements && Dest.isZeroed() && 1501 CGF.getTypes().isZeroInitializable(E->getType())) 1502 break; 1503 1504 1505 LValue LV = CGF.EmitLValueForFieldInitialization(DestLV, field); 1506 // We never generate write-barries for initialized fields. 1507 LV.setNonGC(true); 1508 1509 if (curInitIndex < NumInitElements) { 1510 // Store the initializer into the field. 1511 EmitInitializationToLValue(E->getInit(curInitIndex++), LV); 1512 } else { 1513 // We're out of initializers; default-initialize to null 1514 EmitNullInitializationToLValue(LV); 1515 } 1516 1517 // Push a destructor if necessary. 1518 // FIXME: if we have an array of structures, all explicitly 1519 // initialized, we can end up pushing a linear number of cleanups. 1520 bool pushedCleanup = false; 1521 if (QualType::DestructionKind dtorKind 1522 = field->getType().isDestructedType()) { 1523 assert(LV.isSimple()); 1524 if (CGF.needsEHCleanup(dtorKind)) { 1525 if (!cleanupDominator) 1526 cleanupDominator = CGF.Builder.CreateAlignedLoad( 1527 CGF.Int8Ty, 1528 llvm::Constant::getNullValue(CGF.Int8PtrTy), 1529 CharUnits::One()); // placeholder 1530 1531 CGF.pushDestroy(EHCleanup, LV.getAddress(), field->getType(), 1532 CGF.getDestroyer(dtorKind), false); 1533 cleanups.push_back(CGF.EHStack.stable_begin()); 1534 pushedCleanup = true; 1535 } 1536 } 1537 1538 // If the GEP didn't get used because of a dead zero init or something 1539 // else, clean it up for -O0 builds and general tidiness. 1540 if (!pushedCleanup && LV.isSimple()) 1541 if (llvm::GetElementPtrInst *GEP = 1542 dyn_cast<llvm::GetElementPtrInst>(LV.getPointer())) 1543 if (GEP->use_empty()) 1544 GEP->eraseFromParent(); 1545 } 1546 1547 // Deactivate all the partial cleanups in reverse order, which 1548 // generally means popping them. 1549 for (unsigned i = cleanups.size(); i != 0; --i) 1550 CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator); 1551 1552 // Destroy the placeholder if we made one. 1553 if (cleanupDominator) 1554 cleanupDominator->eraseFromParent(); 1555 } 1556 1557 void AggExprEmitter::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E, 1558 llvm::Value *outerBegin) { 1559 // Emit the common subexpression. 1560 CodeGenFunction::OpaqueValueMapping binding(CGF, E->getCommonExpr()); 1561 1562 Address destPtr = EnsureSlot(E->getType()).getAddress(); 1563 uint64_t numElements = E->getArraySize().getZExtValue(); 1564 1565 if (!numElements) 1566 return; 1567 1568 // destPtr is an array*. Construct an elementType* by drilling down a level. 1569 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 1570 llvm::Value *indices[] = {zero, zero}; 1571 llvm::Value *begin = Builder.CreateInBoundsGEP(destPtr.getPointer(), indices, 1572 "arrayinit.begin"); 1573 1574 // Prepare to special-case multidimensional array initialization: we avoid 1575 // emitting multiple destructor loops in that case. 1576 if (!outerBegin) 1577 outerBegin = begin; 1578 ArrayInitLoopExpr *InnerLoop = dyn_cast<ArrayInitLoopExpr>(E->getSubExpr()); 1579 1580 QualType elementType = 1581 CGF.getContext().getAsArrayType(E->getType())->getElementType(); 1582 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType); 1583 CharUnits elementAlign = 1584 destPtr.getAlignment().alignmentOfArrayElement(elementSize); 1585 1586 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 1587 llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body"); 1588 1589 // Jump into the body. 1590 CGF.EmitBlock(bodyBB); 1591 llvm::PHINode *index = 1592 Builder.CreatePHI(zero->getType(), 2, "arrayinit.index"); 1593 index->addIncoming(zero, entryBB); 1594 llvm::Value *element = Builder.CreateInBoundsGEP(begin, index); 1595 1596 // Prepare for a cleanup. 1597 QualType::DestructionKind dtorKind = elementType.isDestructedType(); 1598 EHScopeStack::stable_iterator cleanup; 1599 if (CGF.needsEHCleanup(dtorKind) && !InnerLoop) { 1600 if (outerBegin->getType() != element->getType()) 1601 outerBegin = Builder.CreateBitCast(outerBegin, element->getType()); 1602 CGF.pushRegularPartialArrayCleanup(outerBegin, element, elementType, 1603 elementAlign, 1604 CGF.getDestroyer(dtorKind)); 1605 cleanup = CGF.EHStack.stable_begin(); 1606 } else { 1607 dtorKind = QualType::DK_none; 1608 } 1609 1610 // Emit the actual filler expression. 1611 { 1612 // Temporaries created in an array initialization loop are destroyed 1613 // at the end of each iteration. 1614 CodeGenFunction::RunCleanupsScope CleanupsScope(CGF); 1615 CodeGenFunction::ArrayInitLoopExprScope Scope(CGF, index); 1616 LValue elementLV = 1617 CGF.MakeAddrLValue(Address(element, elementAlign), elementType); 1618 1619 if (InnerLoop) { 1620 // If the subexpression is an ArrayInitLoopExpr, share its cleanup. 1621 auto elementSlot = AggValueSlot::forLValue( 1622 elementLV, AggValueSlot::IsDestructed, 1623 AggValueSlot::DoesNotNeedGCBarriers, 1624 AggValueSlot::IsNotAliased, 1625 AggValueSlot::DoesNotOverlap); 1626 AggExprEmitter(CGF, elementSlot, false) 1627 .VisitArrayInitLoopExpr(InnerLoop, outerBegin); 1628 } else 1629 EmitInitializationToLValue(E->getSubExpr(), elementLV); 1630 } 1631 1632 // Move on to the next element. 1633 llvm::Value *nextIndex = Builder.CreateNUWAdd( 1634 index, llvm::ConstantInt::get(CGF.SizeTy, 1), "arrayinit.next"); 1635 index->addIncoming(nextIndex, Builder.GetInsertBlock()); 1636 1637 // Leave the loop if we're done. 1638 llvm::Value *done = Builder.CreateICmpEQ( 1639 nextIndex, llvm::ConstantInt::get(CGF.SizeTy, numElements), 1640 "arrayinit.done"); 1641 llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end"); 1642 Builder.CreateCondBr(done, endBB, bodyBB); 1643 1644 CGF.EmitBlock(endBB); 1645 1646 // Leave the partial-array cleanup if we entered one. 1647 if (dtorKind) 1648 CGF.DeactivateCleanupBlock(cleanup, index); 1649 } 1650 1651 void AggExprEmitter::VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E) { 1652 AggValueSlot Dest = EnsureSlot(E->getType()); 1653 1654 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType()); 1655 EmitInitializationToLValue(E->getBase(), DestLV); 1656 VisitInitListExpr(E->getUpdater()); 1657 } 1658 1659 //===----------------------------------------------------------------------===// 1660 // Entry Points into this File 1661 //===----------------------------------------------------------------------===// 1662 1663 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of 1664 /// non-zero bytes that will be stored when outputting the initializer for the 1665 /// specified initializer expression. 1666 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) { 1667 E = E->IgnoreParens(); 1668 1669 // 0 and 0.0 won't require any non-zero stores! 1670 if (isSimpleZero(E, CGF)) return CharUnits::Zero(); 1671 1672 // If this is an initlist expr, sum up the size of sizes of the (present) 1673 // elements. If this is something weird, assume the whole thing is non-zero. 1674 const InitListExpr *ILE = dyn_cast<InitListExpr>(E); 1675 if (!ILE || !CGF.getTypes().isZeroInitializable(ILE->getType())) 1676 return CGF.getContext().getTypeSizeInChars(E->getType()); 1677 1678 // InitListExprs for structs have to be handled carefully. If there are 1679 // reference members, we need to consider the size of the reference, not the 1680 // referencee. InitListExprs for unions and arrays can't have references. 1681 if (const RecordType *RT = E->getType()->getAs<RecordType>()) { 1682 if (!RT->isUnionType()) { 1683 RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl(); 1684 CharUnits NumNonZeroBytes = CharUnits::Zero(); 1685 1686 unsigned ILEElement = 0; 1687 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(SD)) 1688 while (ILEElement != CXXRD->getNumBases()) 1689 NumNonZeroBytes += 1690 GetNumNonZeroBytesInInit(ILE->getInit(ILEElement++), CGF); 1691 for (const auto *Field : SD->fields()) { 1692 // We're done once we hit the flexible array member or run out of 1693 // InitListExpr elements. 1694 if (Field->getType()->isIncompleteArrayType() || 1695 ILEElement == ILE->getNumInits()) 1696 break; 1697 if (Field->isUnnamedBitfield()) 1698 continue; 1699 1700 const Expr *E = ILE->getInit(ILEElement++); 1701 1702 // Reference values are always non-null and have the width of a pointer. 1703 if (Field->getType()->isReferenceType()) 1704 NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits( 1705 CGF.getTarget().getPointerWidth(0)); 1706 else 1707 NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF); 1708 } 1709 1710 return NumNonZeroBytes; 1711 } 1712 } 1713 1714 1715 CharUnits NumNonZeroBytes = CharUnits::Zero(); 1716 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) 1717 NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF); 1718 return NumNonZeroBytes; 1719 } 1720 1721 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of 1722 /// zeros in it, emit a memset and avoid storing the individual zeros. 1723 /// 1724 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E, 1725 CodeGenFunction &CGF) { 1726 // If the slot is already known to be zeroed, nothing to do. Don't mess with 1727 // volatile stores. 1728 if (Slot.isZeroed() || Slot.isVolatile() || !Slot.getAddress().isValid()) 1729 return; 1730 1731 // C++ objects with a user-declared constructor don't need zero'ing. 1732 if (CGF.getLangOpts().CPlusPlus) 1733 if (const RecordType *RT = CGF.getContext() 1734 .getBaseElementType(E->getType())->getAs<RecordType>()) { 1735 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1736 if (RD->hasUserDeclaredConstructor()) 1737 return; 1738 } 1739 1740 // If the type is 16-bytes or smaller, prefer individual stores over memset. 1741 CharUnits Size = Slot.getPreferredSize(CGF.getContext(), E->getType()); 1742 if (Size <= CharUnits::fromQuantity(16)) 1743 return; 1744 1745 // Check to see if over 3/4 of the initializer are known to be zero. If so, 1746 // we prefer to emit memset + individual stores for the rest. 1747 CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF); 1748 if (NumNonZeroBytes*4 > Size) 1749 return; 1750 1751 // Okay, it seems like a good idea to use an initial memset, emit the call. 1752 llvm::Constant *SizeVal = CGF.Builder.getInt64(Size.getQuantity()); 1753 1754 Address Loc = Slot.getAddress(); 1755 Loc = CGF.Builder.CreateElementBitCast(Loc, CGF.Int8Ty); 1756 CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, false); 1757 1758 // Tell the AggExprEmitter that the slot is known zero. 1759 Slot.setZeroed(); 1760 } 1761 1762 1763 1764 1765 /// EmitAggExpr - Emit the computation of the specified expression of aggregate 1766 /// type. The result is computed into DestPtr. Note that if DestPtr is null, 1767 /// the value of the aggregate expression is not needed. If VolatileDest is 1768 /// true, DestPtr cannot be 0. 1769 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot) { 1770 assert(E && hasAggregateEvaluationKind(E->getType()) && 1771 "Invalid aggregate expression to emit"); 1772 assert((Slot.getAddress().isValid() || Slot.isIgnored()) && 1773 "slot has bits but no address"); 1774 1775 // Optimize the slot if possible. 1776 CheckAggExprForMemSetUse(Slot, E, *this); 1777 1778 AggExprEmitter(*this, Slot, Slot.isIgnored()).Visit(const_cast<Expr*>(E)); 1779 } 1780 1781 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) { 1782 assert(hasAggregateEvaluationKind(E->getType()) && "Invalid argument!"); 1783 Address Temp = CreateMemTemp(E->getType()); 1784 LValue LV = MakeAddrLValue(Temp, E->getType()); 1785 EmitAggExpr(E, AggValueSlot::forLValue(LV, AggValueSlot::IsNotDestructed, 1786 AggValueSlot::DoesNotNeedGCBarriers, 1787 AggValueSlot::IsNotAliased, 1788 AggValueSlot::DoesNotOverlap)); 1789 return LV; 1790 } 1791 1792 AggValueSlot::Overlap_t CodeGenFunction::overlapForBaseInit( 1793 const CXXRecordDecl *RD, const CXXRecordDecl *BaseRD, bool IsVirtual) { 1794 // Virtual bases are initialized first, in address order, so there's never 1795 // any overlap during their initialization. 1796 // 1797 // FIXME: Under P0840, this is no longer true: the tail padding of a vbase 1798 // of a field could be reused by a vbase of a containing class. 1799 if (IsVirtual) 1800 return AggValueSlot::DoesNotOverlap; 1801 1802 // If the base class is laid out entirely within the nvsize of the derived 1803 // class, its tail padding cannot yet be initialized, so we can issue 1804 // stores at the full width of the base class. 1805 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 1806 if (Layout.getBaseClassOffset(BaseRD) + 1807 getContext().getASTRecordLayout(BaseRD).getSize() <= 1808 Layout.getNonVirtualSize()) 1809 return AggValueSlot::DoesNotOverlap; 1810 1811 // The tail padding may contain values we need to preserve. 1812 return AggValueSlot::MayOverlap; 1813 } 1814 1815 void CodeGenFunction::EmitAggregateCopy(LValue Dest, LValue Src, QualType Ty, 1816 AggValueSlot::Overlap_t MayOverlap, 1817 bool isVolatile) { 1818 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 1819 1820 Address DestPtr = Dest.getAddress(); 1821 Address SrcPtr = Src.getAddress(); 1822 1823 if (getLangOpts().CPlusPlus) { 1824 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1825 CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl()); 1826 assert((Record->hasTrivialCopyConstructor() || 1827 Record->hasTrivialCopyAssignment() || 1828 Record->hasTrivialMoveConstructor() || 1829 Record->hasTrivialMoveAssignment() || 1830 Record->isUnion()) && 1831 "Trying to aggregate-copy a type without a trivial copy/move " 1832 "constructor or assignment operator"); 1833 // Ignore empty classes in C++. 1834 if (Record->isEmpty()) 1835 return; 1836 } 1837 } 1838 1839 // Aggregate assignment turns into llvm.memcpy. This is almost valid per 1840 // C99 6.5.16.1p3, which states "If the value being stored in an object is 1841 // read from another object that overlaps in anyway the storage of the first 1842 // object, then the overlap shall be exact and the two objects shall have 1843 // qualified or unqualified versions of a compatible type." 1844 // 1845 // memcpy is not defined if the source and destination pointers are exactly 1846 // equal, but other compilers do this optimization, and almost every memcpy 1847 // implementation handles this case safely. If there is a libc that does not 1848 // safely handle this, we can add a target hook. 1849 1850 // Get data size info for this aggregate. Don't copy the tail padding if this 1851 // might be a potentially-overlapping subobject, since the tail padding might 1852 // be occupied by a different object. Otherwise, copying it is fine. 1853 std::pair<CharUnits, CharUnits> TypeInfo; 1854 if (MayOverlap) 1855 TypeInfo = getContext().getTypeInfoDataSizeInChars(Ty); 1856 else 1857 TypeInfo = getContext().getTypeInfoInChars(Ty); 1858 1859 llvm::Value *SizeVal = nullptr; 1860 if (TypeInfo.first.isZero()) { 1861 // But note that getTypeInfo returns 0 for a VLA. 1862 if (auto *VAT = dyn_cast_or_null<VariableArrayType>( 1863 getContext().getAsArrayType(Ty))) { 1864 QualType BaseEltTy; 1865 SizeVal = emitArrayLength(VAT, BaseEltTy, DestPtr); 1866 TypeInfo = getContext().getTypeInfoInChars(BaseEltTy); 1867 assert(!TypeInfo.first.isZero()); 1868 SizeVal = Builder.CreateNUWMul( 1869 SizeVal, 1870 llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity())); 1871 } 1872 } 1873 if (!SizeVal) { 1874 SizeVal = llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity()); 1875 } 1876 1877 // FIXME: If we have a volatile struct, the optimizer can remove what might 1878 // appear to be `extra' memory ops: 1879 // 1880 // volatile struct { int i; } a, b; 1881 // 1882 // int main() { 1883 // a = b; 1884 // a = b; 1885 // } 1886 // 1887 // we need to use a different call here. We use isVolatile to indicate when 1888 // either the source or the destination is volatile. 1889 1890 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1891 SrcPtr = Builder.CreateElementBitCast(SrcPtr, Int8Ty); 1892 1893 // Don't do any of the memmove_collectable tests if GC isn't set. 1894 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) { 1895 // fall through 1896 } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 1897 RecordDecl *Record = RecordTy->getDecl(); 1898 if (Record->hasObjectMember()) { 1899 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 1900 SizeVal); 1901 return; 1902 } 1903 } else if (Ty->isArrayType()) { 1904 QualType BaseType = getContext().getBaseElementType(Ty); 1905 if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) { 1906 if (RecordTy->getDecl()->hasObjectMember()) { 1907 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 1908 SizeVal); 1909 return; 1910 } 1911 } 1912 } 1913 1914 auto Inst = Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, isVolatile); 1915 1916 // Determine the metadata to describe the position of any padding in this 1917 // memcpy, as well as the TBAA tags for the members of the struct, in case 1918 // the optimizer wishes to expand it in to scalar memory operations. 1919 if (llvm::MDNode *TBAAStructTag = CGM.getTBAAStructInfo(Ty)) 1920 Inst->setMetadata(llvm::LLVMContext::MD_tbaa_struct, TBAAStructTag); 1921 1922 if (CGM.getCodeGenOpts().NewStructPathTBAA) { 1923 TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForMemoryTransfer( 1924 Dest.getTBAAInfo(), Src.getTBAAInfo()); 1925 CGM.DecorateInstructionWithTBAA(Inst, TBAAInfo); 1926 } 1927 } 1928