1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Aggregate Expr nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCXXABI.h"
14 #include "CGObjCRuntime.h"
15 #include "CodeGenFunction.h"
16 #include "CodeGenModule.h"
17 #include "ConstantEmitter.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/Attr.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/DeclTemplate.h"
23 #include "clang/AST/StmtVisitor.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/GlobalVariable.h"
27 #include "llvm/IR/IntrinsicInst.h"
28 #include "llvm/IR/Intrinsics.h"
29 using namespace clang;
30 using namespace CodeGen;
31 
32 //===----------------------------------------------------------------------===//
33 //                        Aggregate Expression Emitter
34 //===----------------------------------------------------------------------===//
35 
36 namespace  {
37 class AggExprEmitter : public StmtVisitor<AggExprEmitter> {
38   CodeGenFunction &CGF;
39   CGBuilderTy &Builder;
40   AggValueSlot Dest;
41   bool IsResultUnused;
42 
43   AggValueSlot EnsureSlot(QualType T) {
44     if (!Dest.isIgnored()) return Dest;
45     return CGF.CreateAggTemp(T, "agg.tmp.ensured");
46   }
47   void EnsureDest(QualType T) {
48     if (!Dest.isIgnored()) return;
49     Dest = CGF.CreateAggTemp(T, "agg.tmp.ensured");
50   }
51 
52   // Calls `Fn` with a valid return value slot, potentially creating a temporary
53   // to do so. If a temporary is created, an appropriate copy into `Dest` will
54   // be emitted, as will lifetime markers.
55   //
56   // The given function should take a ReturnValueSlot, and return an RValue that
57   // points to said slot.
58   void withReturnValueSlot(const Expr *E,
59                            llvm::function_ref<RValue(ReturnValueSlot)> Fn);
60 
61 public:
62   AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest, bool IsResultUnused)
63     : CGF(cgf), Builder(CGF.Builder), Dest(Dest),
64     IsResultUnused(IsResultUnused) { }
65 
66   //===--------------------------------------------------------------------===//
67   //                               Utilities
68   //===--------------------------------------------------------------------===//
69 
70   /// EmitAggLoadOfLValue - Given an expression with aggregate type that
71   /// represents a value lvalue, this method emits the address of the lvalue,
72   /// then loads the result into DestPtr.
73   void EmitAggLoadOfLValue(const Expr *E);
74 
75   enum ExprValueKind {
76     EVK_RValue,
77     EVK_NonRValue
78   };
79 
80   /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
81   /// SrcIsRValue is true if source comes from an RValue.
82   void EmitFinalDestCopy(QualType type, const LValue &src,
83                          ExprValueKind SrcValueKind = EVK_NonRValue);
84   void EmitFinalDestCopy(QualType type, RValue src);
85   void EmitCopy(QualType type, const AggValueSlot &dest,
86                 const AggValueSlot &src);
87 
88   void EmitMoveFromReturnSlot(const Expr *E, RValue Src);
89 
90   void EmitArrayInit(Address DestPtr, llvm::ArrayType *AType,
91                      QualType ArrayQTy, InitListExpr *E);
92 
93   AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) {
94     if (CGF.getLangOpts().getGC() && TypeRequiresGCollection(T))
95       return AggValueSlot::NeedsGCBarriers;
96     return AggValueSlot::DoesNotNeedGCBarriers;
97   }
98 
99   bool TypeRequiresGCollection(QualType T);
100 
101   //===--------------------------------------------------------------------===//
102   //                            Visitor Methods
103   //===--------------------------------------------------------------------===//
104 
105   void Visit(Expr *E) {
106     ApplyDebugLocation DL(CGF, E);
107     StmtVisitor<AggExprEmitter>::Visit(E);
108   }
109 
110   void VisitStmt(Stmt *S) {
111     CGF.ErrorUnsupported(S, "aggregate expression");
112   }
113   void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
114   void VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
115     Visit(GE->getResultExpr());
116   }
117   void VisitCoawaitExpr(CoawaitExpr *E) {
118     CGF.EmitCoawaitExpr(*E, Dest, IsResultUnused);
119   }
120   void VisitCoyieldExpr(CoyieldExpr *E) {
121     CGF.EmitCoyieldExpr(*E, Dest, IsResultUnused);
122   }
123   void VisitUnaryCoawait(UnaryOperator *E) { Visit(E->getSubExpr()); }
124   void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
125   void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
126     return Visit(E->getReplacement());
127   }
128 
129   void VisitConstantExpr(ConstantExpr *E) {
130     if (llvm::Value *Result = ConstantEmitter(CGF).tryEmitConstantExpr(E)) {
131       CGF.EmitAggregateStore(Result, Dest.getAddress(),
132                              E->getType().isVolatileQualified());
133       return;
134     }
135     return Visit(E->getSubExpr());
136   }
137 
138   // l-values.
139   void VisitDeclRefExpr(DeclRefExpr *E) { EmitAggLoadOfLValue(E); }
140   void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
141   void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
142   void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
143   void VisitCompoundLiteralExpr(CompoundLiteralExpr *E);
144   void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
145     EmitAggLoadOfLValue(E);
146   }
147   void VisitPredefinedExpr(const PredefinedExpr *E) {
148     EmitAggLoadOfLValue(E);
149   }
150 
151   // Operators.
152   void VisitCastExpr(CastExpr *E);
153   void VisitCallExpr(const CallExpr *E);
154   void VisitStmtExpr(const StmtExpr *E);
155   void VisitBinaryOperator(const BinaryOperator *BO);
156   void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO);
157   void VisitBinAssign(const BinaryOperator *E);
158   void VisitBinComma(const BinaryOperator *E);
159   void VisitBinCmp(const BinaryOperator *E);
160   void VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) {
161     Visit(E->getSemanticForm());
162   }
163 
164   void VisitObjCMessageExpr(ObjCMessageExpr *E);
165   void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
166     EmitAggLoadOfLValue(E);
167   }
168 
169   void VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E);
170   void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
171   void VisitChooseExpr(const ChooseExpr *CE);
172   void VisitInitListExpr(InitListExpr *E);
173   void VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E,
174                               llvm::Value *outerBegin = nullptr);
175   void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E);
176   void VisitNoInitExpr(NoInitExpr *E) { } // Do nothing.
177   void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
178     CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE);
179     Visit(DAE->getExpr());
180   }
181   void VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
182     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE);
183     Visit(DIE->getExpr());
184   }
185   void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E);
186   void VisitCXXConstructExpr(const CXXConstructExpr *E);
187   void VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E);
188   void VisitLambdaExpr(LambdaExpr *E);
189   void VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E);
190   void VisitExprWithCleanups(ExprWithCleanups *E);
191   void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E);
192   void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); }
193   void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E);
194   void VisitOpaqueValueExpr(OpaqueValueExpr *E);
195 
196   void VisitPseudoObjectExpr(PseudoObjectExpr *E) {
197     if (E->isGLValue()) {
198       LValue LV = CGF.EmitPseudoObjectLValue(E);
199       return EmitFinalDestCopy(E->getType(), LV);
200     }
201 
202     CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType()));
203   }
204 
205   void VisitVAArgExpr(VAArgExpr *E);
206 
207   void EmitInitializationToLValue(Expr *E, LValue Address);
208   void EmitNullInitializationToLValue(LValue Address);
209   //  case Expr::ChooseExprClass:
210   void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); }
211   void VisitAtomicExpr(AtomicExpr *E) {
212     RValue Res = CGF.EmitAtomicExpr(E);
213     EmitFinalDestCopy(E->getType(), Res);
214   }
215 };
216 }  // end anonymous namespace.
217 
218 //===----------------------------------------------------------------------===//
219 //                                Utilities
220 //===----------------------------------------------------------------------===//
221 
222 /// EmitAggLoadOfLValue - Given an expression with aggregate type that
223 /// represents a value lvalue, this method emits the address of the lvalue,
224 /// then loads the result into DestPtr.
225 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
226   LValue LV = CGF.EmitLValue(E);
227 
228   // If the type of the l-value is atomic, then do an atomic load.
229   if (LV.getType()->isAtomicType() || CGF.LValueIsSuitableForInlineAtomic(LV)) {
230     CGF.EmitAtomicLoad(LV, E->getExprLoc(), Dest);
231     return;
232   }
233 
234   EmitFinalDestCopy(E->getType(), LV);
235 }
236 
237 /// True if the given aggregate type requires special GC API calls.
238 bool AggExprEmitter::TypeRequiresGCollection(QualType T) {
239   // Only record types have members that might require garbage collection.
240   const RecordType *RecordTy = T->getAs<RecordType>();
241   if (!RecordTy) return false;
242 
243   // Don't mess with non-trivial C++ types.
244   RecordDecl *Record = RecordTy->getDecl();
245   if (isa<CXXRecordDecl>(Record) &&
246       (cast<CXXRecordDecl>(Record)->hasNonTrivialCopyConstructor() ||
247        !cast<CXXRecordDecl>(Record)->hasTrivialDestructor()))
248     return false;
249 
250   // Check whether the type has an object member.
251   return Record->hasObjectMember();
252 }
253 
254 void AggExprEmitter::withReturnValueSlot(
255     const Expr *E, llvm::function_ref<RValue(ReturnValueSlot)> EmitCall) {
256   QualType RetTy = E->getType();
257   bool RequiresDestruction =
258       !Dest.isExternallyDestructed() &&
259       RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct;
260 
261   // If it makes no observable difference, save a memcpy + temporary.
262   //
263   // We need to always provide our own temporary if destruction is required.
264   // Otherwise, EmitCall will emit its own, notice that it's "unused", and end
265   // its lifetime before we have the chance to emit a proper destructor call.
266   bool UseTemp = Dest.isPotentiallyAliased() || Dest.requiresGCollection() ||
267                  (RequiresDestruction && !Dest.getAddress().isValid());
268 
269   Address RetAddr = Address::invalid();
270   Address RetAllocaAddr = Address::invalid();
271 
272   EHScopeStack::stable_iterator LifetimeEndBlock;
273   llvm::Value *LifetimeSizePtr = nullptr;
274   llvm::IntrinsicInst *LifetimeStartInst = nullptr;
275   if (!UseTemp) {
276     RetAddr = Dest.getAddress();
277   } else {
278     RetAddr = CGF.CreateMemTemp(RetTy, "tmp", &RetAllocaAddr);
279     uint64_t Size =
280         CGF.CGM.getDataLayout().getTypeAllocSize(CGF.ConvertTypeForMem(RetTy));
281     LifetimeSizePtr = CGF.EmitLifetimeStart(Size, RetAllocaAddr.getPointer());
282     if (LifetimeSizePtr) {
283       LifetimeStartInst =
284           cast<llvm::IntrinsicInst>(std::prev(Builder.GetInsertPoint()));
285       assert(LifetimeStartInst->getIntrinsicID() ==
286                  llvm::Intrinsic::lifetime_start &&
287              "Last insertion wasn't a lifetime.start?");
288 
289       CGF.pushFullExprCleanup<CodeGenFunction::CallLifetimeEnd>(
290           NormalEHLifetimeMarker, RetAllocaAddr, LifetimeSizePtr);
291       LifetimeEndBlock = CGF.EHStack.stable_begin();
292     }
293   }
294 
295   RValue Src =
296       EmitCall(ReturnValueSlot(RetAddr, Dest.isVolatile(), IsResultUnused,
297                                Dest.isExternallyDestructed()));
298 
299   if (!UseTemp)
300     return;
301 
302   assert(Dest.getPointer() != Src.getAggregatePointer());
303   EmitFinalDestCopy(E->getType(), Src);
304 
305   if (!RequiresDestruction && LifetimeStartInst) {
306     // If there's no dtor to run, the copy was the last use of our temporary.
307     // Since we're not guaranteed to be in an ExprWithCleanups, clean up
308     // eagerly.
309     CGF.DeactivateCleanupBlock(LifetimeEndBlock, LifetimeStartInst);
310     CGF.EmitLifetimeEnd(LifetimeSizePtr, RetAllocaAddr.getPointer());
311   }
312 }
313 
314 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
315 void AggExprEmitter::EmitFinalDestCopy(QualType type, RValue src) {
316   assert(src.isAggregate() && "value must be aggregate value!");
317   LValue srcLV = CGF.MakeAddrLValue(src.getAggregateAddress(), type);
318   EmitFinalDestCopy(type, srcLV, EVK_RValue);
319 }
320 
321 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
322 void AggExprEmitter::EmitFinalDestCopy(QualType type, const LValue &src,
323                                        ExprValueKind SrcValueKind) {
324   // If Dest is ignored, then we're evaluating an aggregate expression
325   // in a context that doesn't care about the result.  Note that loads
326   // from volatile l-values force the existence of a non-ignored
327   // destination.
328   if (Dest.isIgnored())
329     return;
330 
331   // Copy non-trivial C structs here.
332   LValue DstLV = CGF.MakeAddrLValue(
333       Dest.getAddress(), Dest.isVolatile() ? type.withVolatile() : type);
334 
335   if (SrcValueKind == EVK_RValue) {
336     if (type.isNonTrivialToPrimitiveDestructiveMove() == QualType::PCK_Struct) {
337       if (Dest.isPotentiallyAliased())
338         CGF.callCStructMoveAssignmentOperator(DstLV, src);
339       else
340         CGF.callCStructMoveConstructor(DstLV, src);
341       return;
342     }
343   } else {
344     if (type.isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) {
345       if (Dest.isPotentiallyAliased())
346         CGF.callCStructCopyAssignmentOperator(DstLV, src);
347       else
348         CGF.callCStructCopyConstructor(DstLV, src);
349       return;
350     }
351   }
352 
353   AggValueSlot srcAgg = AggValueSlot::forLValue(
354       src, CGF, AggValueSlot::IsDestructed, needsGC(type),
355       AggValueSlot::IsAliased, AggValueSlot::MayOverlap);
356   EmitCopy(type, Dest, srcAgg);
357 }
358 
359 /// Perform a copy from the source into the destination.
360 ///
361 /// \param type - the type of the aggregate being copied; qualifiers are
362 ///   ignored
363 void AggExprEmitter::EmitCopy(QualType type, const AggValueSlot &dest,
364                               const AggValueSlot &src) {
365   if (dest.requiresGCollection()) {
366     CharUnits sz = dest.getPreferredSize(CGF.getContext(), type);
367     llvm::Value *size = llvm::ConstantInt::get(CGF.SizeTy, sz.getQuantity());
368     CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF,
369                                                       dest.getAddress(),
370                                                       src.getAddress(),
371                                                       size);
372     return;
373   }
374 
375   // If the result of the assignment is used, copy the LHS there also.
376   // It's volatile if either side is.  Use the minimum alignment of
377   // the two sides.
378   LValue DestLV = CGF.MakeAddrLValue(dest.getAddress(), type);
379   LValue SrcLV = CGF.MakeAddrLValue(src.getAddress(), type);
380   CGF.EmitAggregateCopy(DestLV, SrcLV, type, dest.mayOverlap(),
381                         dest.isVolatile() || src.isVolatile());
382 }
383 
384 /// Emit the initializer for a std::initializer_list initialized with a
385 /// real initializer list.
386 void
387 AggExprEmitter::VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E) {
388   // Emit an array containing the elements.  The array is externally destructed
389   // if the std::initializer_list object is.
390   ASTContext &Ctx = CGF.getContext();
391   LValue Array = CGF.EmitLValue(E->getSubExpr());
392   assert(Array.isSimple() && "initializer_list array not a simple lvalue");
393   Address ArrayPtr = Array.getAddress(CGF);
394 
395   const ConstantArrayType *ArrayType =
396       Ctx.getAsConstantArrayType(E->getSubExpr()->getType());
397   assert(ArrayType && "std::initializer_list constructed from non-array");
398 
399   // FIXME: Perform the checks on the field types in SemaInit.
400   RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl();
401   RecordDecl::field_iterator Field = Record->field_begin();
402   if (Field == Record->field_end()) {
403     CGF.ErrorUnsupported(E, "weird std::initializer_list");
404     return;
405   }
406 
407   // Start pointer.
408   if (!Field->getType()->isPointerType() ||
409       !Ctx.hasSameType(Field->getType()->getPointeeType(),
410                        ArrayType->getElementType())) {
411     CGF.ErrorUnsupported(E, "weird std::initializer_list");
412     return;
413   }
414 
415   AggValueSlot Dest = EnsureSlot(E->getType());
416   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
417   LValue Start = CGF.EmitLValueForFieldInitialization(DestLV, *Field);
418   llvm::Value *Zero = llvm::ConstantInt::get(CGF.PtrDiffTy, 0);
419   llvm::Value *IdxStart[] = { Zero, Zero };
420   llvm::Value *ArrayStart =
421       Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxStart, "arraystart");
422   CGF.EmitStoreThroughLValue(RValue::get(ArrayStart), Start);
423   ++Field;
424 
425   if (Field == Record->field_end()) {
426     CGF.ErrorUnsupported(E, "weird std::initializer_list");
427     return;
428   }
429 
430   llvm::Value *Size = Builder.getInt(ArrayType->getSize());
431   LValue EndOrLength = CGF.EmitLValueForFieldInitialization(DestLV, *Field);
432   if (Field->getType()->isPointerType() &&
433       Ctx.hasSameType(Field->getType()->getPointeeType(),
434                       ArrayType->getElementType())) {
435     // End pointer.
436     llvm::Value *IdxEnd[] = { Zero, Size };
437     llvm::Value *ArrayEnd =
438         Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxEnd, "arrayend");
439     CGF.EmitStoreThroughLValue(RValue::get(ArrayEnd), EndOrLength);
440   } else if (Ctx.hasSameType(Field->getType(), Ctx.getSizeType())) {
441     // Length.
442     CGF.EmitStoreThroughLValue(RValue::get(Size), EndOrLength);
443   } else {
444     CGF.ErrorUnsupported(E, "weird std::initializer_list");
445     return;
446   }
447 }
448 
449 /// Determine if E is a trivial array filler, that is, one that is
450 /// equivalent to zero-initialization.
451 static bool isTrivialFiller(Expr *E) {
452   if (!E)
453     return true;
454 
455   if (isa<ImplicitValueInitExpr>(E))
456     return true;
457 
458   if (auto *ILE = dyn_cast<InitListExpr>(E)) {
459     if (ILE->getNumInits())
460       return false;
461     return isTrivialFiller(ILE->getArrayFiller());
462   }
463 
464   if (auto *Cons = dyn_cast_or_null<CXXConstructExpr>(E))
465     return Cons->getConstructor()->isDefaultConstructor() &&
466            Cons->getConstructor()->isTrivial();
467 
468   // FIXME: Are there other cases where we can avoid emitting an initializer?
469   return false;
470 }
471 
472 /// Emit initialization of an array from an initializer list.
473 void AggExprEmitter::EmitArrayInit(Address DestPtr, llvm::ArrayType *AType,
474                                    QualType ArrayQTy, InitListExpr *E) {
475   uint64_t NumInitElements = E->getNumInits();
476 
477   uint64_t NumArrayElements = AType->getNumElements();
478   assert(NumInitElements <= NumArrayElements);
479 
480   QualType elementType =
481       CGF.getContext().getAsArrayType(ArrayQTy)->getElementType();
482 
483   // DestPtr is an array*.  Construct an elementType* by drilling
484   // down a level.
485   llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
486   llvm::Value *indices[] = { zero, zero };
487   llvm::Value *begin =
488     Builder.CreateInBoundsGEP(DestPtr.getPointer(), indices, "arrayinit.begin");
489 
490   CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
491   CharUnits elementAlign =
492     DestPtr.getAlignment().alignmentOfArrayElement(elementSize);
493 
494   // Consider initializing the array by copying from a global. For this to be
495   // more efficient than per-element initialization, the size of the elements
496   // with explicit initializers should be large enough.
497   if (NumInitElements * elementSize.getQuantity() > 16 &&
498       elementType.isTriviallyCopyableType(CGF.getContext())) {
499     CodeGen::CodeGenModule &CGM = CGF.CGM;
500     ConstantEmitter Emitter(CGF);
501     LangAS AS = ArrayQTy.getAddressSpace();
502     if (llvm::Constant *C = Emitter.tryEmitForInitializer(E, AS, ArrayQTy)) {
503       auto GV = new llvm::GlobalVariable(
504           CGM.getModule(), C->getType(),
505           CGM.isTypeConstant(ArrayQTy, /* ExcludeCtorDtor= */ true),
506           llvm::GlobalValue::PrivateLinkage, C, "constinit",
507           /* InsertBefore= */ nullptr, llvm::GlobalVariable::NotThreadLocal,
508           CGM.getContext().getTargetAddressSpace(AS));
509       Emitter.finalize(GV);
510       CharUnits Align = CGM.getContext().getTypeAlignInChars(ArrayQTy);
511       GV->setAlignment(Align.getAsAlign());
512       EmitFinalDestCopy(ArrayQTy, CGF.MakeAddrLValue(GV, ArrayQTy, Align));
513       return;
514     }
515   }
516 
517   // Exception safety requires us to destroy all the
518   // already-constructed members if an initializer throws.
519   // For that, we'll need an EH cleanup.
520   QualType::DestructionKind dtorKind = elementType.isDestructedType();
521   Address endOfInit = Address::invalid();
522   EHScopeStack::stable_iterator cleanup;
523   llvm::Instruction *cleanupDominator = nullptr;
524   if (CGF.needsEHCleanup(dtorKind)) {
525     // In principle we could tell the cleanup where we are more
526     // directly, but the control flow can get so varied here that it
527     // would actually be quite complex.  Therefore we go through an
528     // alloca.
529     endOfInit = CGF.CreateTempAlloca(begin->getType(), CGF.getPointerAlign(),
530                                      "arrayinit.endOfInit");
531     cleanupDominator = Builder.CreateStore(begin, endOfInit);
532     CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType,
533                                          elementAlign,
534                                          CGF.getDestroyer(dtorKind));
535     cleanup = CGF.EHStack.stable_begin();
536 
537   // Otherwise, remember that we didn't need a cleanup.
538   } else {
539     dtorKind = QualType::DK_none;
540   }
541 
542   llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1);
543 
544   // The 'current element to initialize'.  The invariants on this
545   // variable are complicated.  Essentially, after each iteration of
546   // the loop, it points to the last initialized element, except
547   // that it points to the beginning of the array before any
548   // elements have been initialized.
549   llvm::Value *element = begin;
550 
551   // Emit the explicit initializers.
552   for (uint64_t i = 0; i != NumInitElements; ++i) {
553     // Advance to the next element.
554     if (i > 0) {
555       element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element");
556 
557       // Tell the cleanup that it needs to destroy up to this
558       // element.  TODO: some of these stores can be trivially
559       // observed to be unnecessary.
560       if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit);
561     }
562 
563     LValue elementLV =
564       CGF.MakeAddrLValue(Address(element, elementAlign), elementType);
565     EmitInitializationToLValue(E->getInit(i), elementLV);
566   }
567 
568   // Check whether there's a non-trivial array-fill expression.
569   Expr *filler = E->getArrayFiller();
570   bool hasTrivialFiller = isTrivialFiller(filler);
571 
572   // Any remaining elements need to be zero-initialized, possibly
573   // using the filler expression.  We can skip this if the we're
574   // emitting to zeroed memory.
575   if (NumInitElements != NumArrayElements &&
576       !(Dest.isZeroed() && hasTrivialFiller &&
577         CGF.getTypes().isZeroInitializable(elementType))) {
578 
579     // Use an actual loop.  This is basically
580     //   do { *array++ = filler; } while (array != end);
581 
582     // Advance to the start of the rest of the array.
583     if (NumInitElements) {
584       element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start");
585       if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit);
586     }
587 
588     // Compute the end of the array.
589     llvm::Value *end = Builder.CreateInBoundsGEP(begin,
590                       llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements),
591                                                  "arrayinit.end");
592 
593     llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
594     llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
595 
596     // Jump into the body.
597     CGF.EmitBlock(bodyBB);
598     llvm::PHINode *currentElement =
599       Builder.CreatePHI(element->getType(), 2, "arrayinit.cur");
600     currentElement->addIncoming(element, entryBB);
601 
602     // Emit the actual filler expression.
603     {
604       // C++1z [class.temporary]p5:
605       //   when a default constructor is called to initialize an element of
606       //   an array with no corresponding initializer [...] the destruction of
607       //   every temporary created in a default argument is sequenced before
608       //   the construction of the next array element, if any
609       CodeGenFunction::RunCleanupsScope CleanupsScope(CGF);
610       LValue elementLV =
611         CGF.MakeAddrLValue(Address(currentElement, elementAlign), elementType);
612       if (filler)
613         EmitInitializationToLValue(filler, elementLV);
614       else
615         EmitNullInitializationToLValue(elementLV);
616     }
617 
618     // Move on to the next element.
619     llvm::Value *nextElement =
620       Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next");
621 
622     // Tell the EH cleanup that we finished with the last element.
623     if (endOfInit.isValid()) Builder.CreateStore(nextElement, endOfInit);
624 
625     // Leave the loop if we're done.
626     llvm::Value *done = Builder.CreateICmpEQ(nextElement, end,
627                                              "arrayinit.done");
628     llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
629     Builder.CreateCondBr(done, endBB, bodyBB);
630     currentElement->addIncoming(nextElement, Builder.GetInsertBlock());
631 
632     CGF.EmitBlock(endBB);
633   }
634 
635   // Leave the partial-array cleanup if we entered one.
636   if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator);
637 }
638 
639 //===----------------------------------------------------------------------===//
640 //                            Visitor Methods
641 //===----------------------------------------------------------------------===//
642 
643 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){
644   Visit(E->getSubExpr());
645 }
646 
647 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) {
648   // If this is a unique OVE, just visit its source expression.
649   if (e->isUnique())
650     Visit(e->getSourceExpr());
651   else
652     EmitFinalDestCopy(e->getType(), CGF.getOrCreateOpaqueLValueMapping(e));
653 }
654 
655 void
656 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
657   if (Dest.isPotentiallyAliased() &&
658       E->getType().isPODType(CGF.getContext())) {
659     // For a POD type, just emit a load of the lvalue + a copy, because our
660     // compound literal might alias the destination.
661     EmitAggLoadOfLValue(E);
662     return;
663   }
664 
665   AggValueSlot Slot = EnsureSlot(E->getType());
666 
667   // Block-scope compound literals are destroyed at the end of the enclosing
668   // scope in C.
669   bool Destruct =
670       !CGF.getLangOpts().CPlusPlus && !Slot.isExternallyDestructed();
671   if (Destruct)
672     Slot.setExternallyDestructed();
673 
674   CGF.EmitAggExpr(E->getInitializer(), Slot);
675 
676   if (Destruct)
677     if (QualType::DestructionKind DtorKind = E->getType().isDestructedType())
678       CGF.pushLifetimeExtendedDestroy(
679           CGF.getCleanupKind(DtorKind), Slot.getAddress(), E->getType(),
680           CGF.getDestroyer(DtorKind), DtorKind & EHCleanup);
681 }
682 
683 /// Attempt to look through various unimportant expressions to find a
684 /// cast of the given kind.
685 static Expr *findPeephole(Expr *op, CastKind kind, const ASTContext &ctx) {
686   op = op->IgnoreParenNoopCasts(ctx);
687   if (auto castE = dyn_cast<CastExpr>(op)) {
688     if (castE->getCastKind() == kind)
689       return castE->getSubExpr();
690   }
691   return nullptr;
692 }
693 
694 void AggExprEmitter::VisitCastExpr(CastExpr *E) {
695   if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E))
696     CGF.CGM.EmitExplicitCastExprType(ECE, &CGF);
697   switch (E->getCastKind()) {
698   case CK_Dynamic: {
699     // FIXME: Can this actually happen? We have no test coverage for it.
700     assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?");
701     LValue LV = CGF.EmitCheckedLValue(E->getSubExpr(),
702                                       CodeGenFunction::TCK_Load);
703     // FIXME: Do we also need to handle property references here?
704     if (LV.isSimple())
705       CGF.EmitDynamicCast(LV.getAddress(CGF), cast<CXXDynamicCastExpr>(E));
706     else
707       CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast");
708 
709     if (!Dest.isIgnored())
710       CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination");
711     break;
712   }
713 
714   case CK_ToUnion: {
715     // Evaluate even if the destination is ignored.
716     if (Dest.isIgnored()) {
717       CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(),
718                       /*ignoreResult=*/true);
719       break;
720     }
721 
722     // GCC union extension
723     QualType Ty = E->getSubExpr()->getType();
724     Address CastPtr =
725       Builder.CreateElementBitCast(Dest.getAddress(), CGF.ConvertType(Ty));
726     EmitInitializationToLValue(E->getSubExpr(),
727                                CGF.MakeAddrLValue(CastPtr, Ty));
728     break;
729   }
730 
731   case CK_LValueToRValueBitCast: {
732     if (Dest.isIgnored()) {
733       CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(),
734                       /*ignoreResult=*/true);
735       break;
736     }
737 
738     LValue SourceLV = CGF.EmitLValue(E->getSubExpr());
739     Address SourceAddress =
740         Builder.CreateElementBitCast(SourceLV.getAddress(CGF), CGF.Int8Ty);
741     Address DestAddress =
742         Builder.CreateElementBitCast(Dest.getAddress(), CGF.Int8Ty);
743     llvm::Value *SizeVal = llvm::ConstantInt::get(
744         CGF.SizeTy,
745         CGF.getContext().getTypeSizeInChars(E->getType()).getQuantity());
746     Builder.CreateMemCpy(DestAddress, SourceAddress, SizeVal);
747     break;
748   }
749 
750   case CK_DerivedToBase:
751   case CK_BaseToDerived:
752   case CK_UncheckedDerivedToBase: {
753     llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: "
754                 "should have been unpacked before we got here");
755   }
756 
757   case CK_NonAtomicToAtomic:
758   case CK_AtomicToNonAtomic: {
759     bool isToAtomic = (E->getCastKind() == CK_NonAtomicToAtomic);
760 
761     // Determine the atomic and value types.
762     QualType atomicType = E->getSubExpr()->getType();
763     QualType valueType = E->getType();
764     if (isToAtomic) std::swap(atomicType, valueType);
765 
766     assert(atomicType->isAtomicType());
767     assert(CGF.getContext().hasSameUnqualifiedType(valueType,
768                           atomicType->castAs<AtomicType>()->getValueType()));
769 
770     // Just recurse normally if we're ignoring the result or the
771     // atomic type doesn't change representation.
772     if (Dest.isIgnored() || !CGF.CGM.isPaddedAtomicType(atomicType)) {
773       return Visit(E->getSubExpr());
774     }
775 
776     CastKind peepholeTarget =
777       (isToAtomic ? CK_AtomicToNonAtomic : CK_NonAtomicToAtomic);
778 
779     // These two cases are reverses of each other; try to peephole them.
780     if (Expr *op =
781             findPeephole(E->getSubExpr(), peepholeTarget, CGF.getContext())) {
782       assert(CGF.getContext().hasSameUnqualifiedType(op->getType(),
783                                                      E->getType()) &&
784            "peephole significantly changed types?");
785       return Visit(op);
786     }
787 
788     // If we're converting an r-value of non-atomic type to an r-value
789     // of atomic type, just emit directly into the relevant sub-object.
790     if (isToAtomic) {
791       AggValueSlot valueDest = Dest;
792       if (!valueDest.isIgnored() && CGF.CGM.isPaddedAtomicType(atomicType)) {
793         // Zero-initialize.  (Strictly speaking, we only need to initialize
794         // the padding at the end, but this is simpler.)
795         if (!Dest.isZeroed())
796           CGF.EmitNullInitialization(Dest.getAddress(), atomicType);
797 
798         // Build a GEP to refer to the subobject.
799         Address valueAddr =
800             CGF.Builder.CreateStructGEP(valueDest.getAddress(), 0);
801         valueDest = AggValueSlot::forAddr(valueAddr,
802                                           valueDest.getQualifiers(),
803                                           valueDest.isExternallyDestructed(),
804                                           valueDest.requiresGCollection(),
805                                           valueDest.isPotentiallyAliased(),
806                                           AggValueSlot::DoesNotOverlap,
807                                           AggValueSlot::IsZeroed);
808       }
809 
810       CGF.EmitAggExpr(E->getSubExpr(), valueDest);
811       return;
812     }
813 
814     // Otherwise, we're converting an atomic type to a non-atomic type.
815     // Make an atomic temporary, emit into that, and then copy the value out.
816     AggValueSlot atomicSlot =
817       CGF.CreateAggTemp(atomicType, "atomic-to-nonatomic.temp");
818     CGF.EmitAggExpr(E->getSubExpr(), atomicSlot);
819 
820     Address valueAddr = Builder.CreateStructGEP(atomicSlot.getAddress(), 0);
821     RValue rvalue = RValue::getAggregate(valueAddr, atomicSlot.isVolatile());
822     return EmitFinalDestCopy(valueType, rvalue);
823   }
824   case CK_AddressSpaceConversion:
825      return Visit(E->getSubExpr());
826 
827   case CK_LValueToRValue:
828     // If we're loading from a volatile type, force the destination
829     // into existence.
830     if (E->getSubExpr()->getType().isVolatileQualified()) {
831       bool Destruct =
832           !Dest.isExternallyDestructed() &&
833           E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct;
834       if (Destruct)
835         Dest.setExternallyDestructed();
836       EnsureDest(E->getType());
837       Visit(E->getSubExpr());
838 
839       if (Destruct)
840         CGF.pushDestroy(QualType::DK_nontrivial_c_struct, Dest.getAddress(),
841                         E->getType());
842 
843       return;
844     }
845 
846     LLVM_FALLTHROUGH;
847 
848 
849   case CK_NoOp:
850   case CK_UserDefinedConversion:
851   case CK_ConstructorConversion:
852     assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(),
853                                                    E->getType()) &&
854            "Implicit cast types must be compatible");
855     Visit(E->getSubExpr());
856     break;
857 
858   case CK_LValueBitCast:
859     llvm_unreachable("should not be emitting lvalue bitcast as rvalue");
860 
861   case CK_Dependent:
862   case CK_BitCast:
863   case CK_ArrayToPointerDecay:
864   case CK_FunctionToPointerDecay:
865   case CK_NullToPointer:
866   case CK_NullToMemberPointer:
867   case CK_BaseToDerivedMemberPointer:
868   case CK_DerivedToBaseMemberPointer:
869   case CK_MemberPointerToBoolean:
870   case CK_ReinterpretMemberPointer:
871   case CK_IntegralToPointer:
872   case CK_PointerToIntegral:
873   case CK_PointerToBoolean:
874   case CK_ToVoid:
875   case CK_VectorSplat:
876   case CK_IntegralCast:
877   case CK_BooleanToSignedIntegral:
878   case CK_IntegralToBoolean:
879   case CK_IntegralToFloating:
880   case CK_FloatingToIntegral:
881   case CK_FloatingToBoolean:
882   case CK_FloatingCast:
883   case CK_CPointerToObjCPointerCast:
884   case CK_BlockPointerToObjCPointerCast:
885   case CK_AnyPointerToBlockPointerCast:
886   case CK_ObjCObjectLValueCast:
887   case CK_FloatingRealToComplex:
888   case CK_FloatingComplexToReal:
889   case CK_FloatingComplexToBoolean:
890   case CK_FloatingComplexCast:
891   case CK_FloatingComplexToIntegralComplex:
892   case CK_IntegralRealToComplex:
893   case CK_IntegralComplexToReal:
894   case CK_IntegralComplexToBoolean:
895   case CK_IntegralComplexCast:
896   case CK_IntegralComplexToFloatingComplex:
897   case CK_ARCProduceObject:
898   case CK_ARCConsumeObject:
899   case CK_ARCReclaimReturnedObject:
900   case CK_ARCExtendBlockObject:
901   case CK_CopyAndAutoreleaseBlockObject:
902   case CK_BuiltinFnToFnPtr:
903   case CK_ZeroToOCLOpaqueType:
904 
905   case CK_IntToOCLSampler:
906   case CK_FloatingToFixedPoint:
907   case CK_FixedPointToFloating:
908   case CK_FixedPointCast:
909   case CK_FixedPointToBoolean:
910   case CK_FixedPointToIntegral:
911   case CK_IntegralToFixedPoint:
912     llvm_unreachable("cast kind invalid for aggregate types");
913   }
914 }
915 
916 void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
917   if (E->getCallReturnType(CGF.getContext())->isReferenceType()) {
918     EmitAggLoadOfLValue(E);
919     return;
920   }
921 
922   withReturnValueSlot(E, [&](ReturnValueSlot Slot) {
923     return CGF.EmitCallExpr(E, Slot);
924   });
925 }
926 
927 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
928   withReturnValueSlot(E, [&](ReturnValueSlot Slot) {
929     return CGF.EmitObjCMessageExpr(E, Slot);
930   });
931 }
932 
933 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
934   CGF.EmitIgnoredExpr(E->getLHS());
935   Visit(E->getRHS());
936 }
937 
938 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
939   CodeGenFunction::StmtExprEvaluation eval(CGF);
940   CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest);
941 }
942 
943 enum CompareKind {
944   CK_Less,
945   CK_Greater,
946   CK_Equal,
947 };
948 
949 static llvm::Value *EmitCompare(CGBuilderTy &Builder, CodeGenFunction &CGF,
950                                 const BinaryOperator *E, llvm::Value *LHS,
951                                 llvm::Value *RHS, CompareKind Kind,
952                                 const char *NameSuffix = "") {
953   QualType ArgTy = E->getLHS()->getType();
954   if (const ComplexType *CT = ArgTy->getAs<ComplexType>())
955     ArgTy = CT->getElementType();
956 
957   if (const auto *MPT = ArgTy->getAs<MemberPointerType>()) {
958     assert(Kind == CK_Equal &&
959            "member pointers may only be compared for equality");
960     return CGF.CGM.getCXXABI().EmitMemberPointerComparison(
961         CGF, LHS, RHS, MPT, /*IsInequality*/ false);
962   }
963 
964   // Compute the comparison instructions for the specified comparison kind.
965   struct CmpInstInfo {
966     const char *Name;
967     llvm::CmpInst::Predicate FCmp;
968     llvm::CmpInst::Predicate SCmp;
969     llvm::CmpInst::Predicate UCmp;
970   };
971   CmpInstInfo InstInfo = [&]() -> CmpInstInfo {
972     using FI = llvm::FCmpInst;
973     using II = llvm::ICmpInst;
974     switch (Kind) {
975     case CK_Less:
976       return {"cmp.lt", FI::FCMP_OLT, II::ICMP_SLT, II::ICMP_ULT};
977     case CK_Greater:
978       return {"cmp.gt", FI::FCMP_OGT, II::ICMP_SGT, II::ICMP_UGT};
979     case CK_Equal:
980       return {"cmp.eq", FI::FCMP_OEQ, II::ICMP_EQ, II::ICMP_EQ};
981     }
982     llvm_unreachable("Unrecognised CompareKind enum");
983   }();
984 
985   if (ArgTy->hasFloatingRepresentation())
986     return Builder.CreateFCmp(InstInfo.FCmp, LHS, RHS,
987                               llvm::Twine(InstInfo.Name) + NameSuffix);
988   if (ArgTy->isIntegralOrEnumerationType() || ArgTy->isPointerType()) {
989     auto Inst =
990         ArgTy->hasSignedIntegerRepresentation() ? InstInfo.SCmp : InstInfo.UCmp;
991     return Builder.CreateICmp(Inst, LHS, RHS,
992                               llvm::Twine(InstInfo.Name) + NameSuffix);
993   }
994 
995   llvm_unreachable("unsupported aggregate binary expression should have "
996                    "already been handled");
997 }
998 
999 void AggExprEmitter::VisitBinCmp(const BinaryOperator *E) {
1000   using llvm::BasicBlock;
1001   using llvm::PHINode;
1002   using llvm::Value;
1003   assert(CGF.getContext().hasSameType(E->getLHS()->getType(),
1004                                       E->getRHS()->getType()));
1005   const ComparisonCategoryInfo &CmpInfo =
1006       CGF.getContext().CompCategories.getInfoForType(E->getType());
1007   assert(CmpInfo.Record->isTriviallyCopyable() &&
1008          "cannot copy non-trivially copyable aggregate");
1009 
1010   QualType ArgTy = E->getLHS()->getType();
1011 
1012   if (!ArgTy->isIntegralOrEnumerationType() && !ArgTy->isRealFloatingType() &&
1013       !ArgTy->isNullPtrType() && !ArgTy->isPointerType() &&
1014       !ArgTy->isMemberPointerType() && !ArgTy->isAnyComplexType()) {
1015     return CGF.ErrorUnsupported(E, "aggregate three-way comparison");
1016   }
1017   bool IsComplex = ArgTy->isAnyComplexType();
1018 
1019   // Evaluate the operands to the expression and extract their values.
1020   auto EmitOperand = [&](Expr *E) -> std::pair<Value *, Value *> {
1021     RValue RV = CGF.EmitAnyExpr(E);
1022     if (RV.isScalar())
1023       return {RV.getScalarVal(), nullptr};
1024     if (RV.isAggregate())
1025       return {RV.getAggregatePointer(), nullptr};
1026     assert(RV.isComplex());
1027     return RV.getComplexVal();
1028   };
1029   auto LHSValues = EmitOperand(E->getLHS()),
1030        RHSValues = EmitOperand(E->getRHS());
1031 
1032   auto EmitCmp = [&](CompareKind K) {
1033     Value *Cmp = EmitCompare(Builder, CGF, E, LHSValues.first, RHSValues.first,
1034                              K, IsComplex ? ".r" : "");
1035     if (!IsComplex)
1036       return Cmp;
1037     assert(K == CompareKind::CK_Equal);
1038     Value *CmpImag = EmitCompare(Builder, CGF, E, LHSValues.second,
1039                                  RHSValues.second, K, ".i");
1040     return Builder.CreateAnd(Cmp, CmpImag, "and.eq");
1041   };
1042   auto EmitCmpRes = [&](const ComparisonCategoryInfo::ValueInfo *VInfo) {
1043     return Builder.getInt(VInfo->getIntValue());
1044   };
1045 
1046   Value *Select;
1047   if (ArgTy->isNullPtrType()) {
1048     Select = EmitCmpRes(CmpInfo.getEqualOrEquiv());
1049   } else if (!CmpInfo.isPartial()) {
1050     Value *SelectOne =
1051         Builder.CreateSelect(EmitCmp(CK_Less), EmitCmpRes(CmpInfo.getLess()),
1052                              EmitCmpRes(CmpInfo.getGreater()), "sel.lt");
1053     Select = Builder.CreateSelect(EmitCmp(CK_Equal),
1054                                   EmitCmpRes(CmpInfo.getEqualOrEquiv()),
1055                                   SelectOne, "sel.eq");
1056   } else {
1057     Value *SelectEq = Builder.CreateSelect(
1058         EmitCmp(CK_Equal), EmitCmpRes(CmpInfo.getEqualOrEquiv()),
1059         EmitCmpRes(CmpInfo.getUnordered()), "sel.eq");
1060     Value *SelectGT = Builder.CreateSelect(EmitCmp(CK_Greater),
1061                                            EmitCmpRes(CmpInfo.getGreater()),
1062                                            SelectEq, "sel.gt");
1063     Select = Builder.CreateSelect(
1064         EmitCmp(CK_Less), EmitCmpRes(CmpInfo.getLess()), SelectGT, "sel.lt");
1065   }
1066   // Create the return value in the destination slot.
1067   EnsureDest(E->getType());
1068   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
1069 
1070   // Emit the address of the first (and only) field in the comparison category
1071   // type, and initialize it from the constant integer value selected above.
1072   LValue FieldLV = CGF.EmitLValueForFieldInitialization(
1073       DestLV, *CmpInfo.Record->field_begin());
1074   CGF.EmitStoreThroughLValue(RValue::get(Select), FieldLV, /*IsInit*/ true);
1075 
1076   // All done! The result is in the Dest slot.
1077 }
1078 
1079 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
1080   if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI)
1081     VisitPointerToDataMemberBinaryOperator(E);
1082   else
1083     CGF.ErrorUnsupported(E, "aggregate binary expression");
1084 }
1085 
1086 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator(
1087                                                     const BinaryOperator *E) {
1088   LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E);
1089   EmitFinalDestCopy(E->getType(), LV);
1090 }
1091 
1092 /// Is the value of the given expression possibly a reference to or
1093 /// into a __block variable?
1094 static bool isBlockVarRef(const Expr *E) {
1095   // Make sure we look through parens.
1096   E = E->IgnoreParens();
1097 
1098   // Check for a direct reference to a __block variable.
1099   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
1100     const VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
1101     return (var && var->hasAttr<BlocksAttr>());
1102   }
1103 
1104   // More complicated stuff.
1105 
1106   // Binary operators.
1107   if (const BinaryOperator *op = dyn_cast<BinaryOperator>(E)) {
1108     // For an assignment or pointer-to-member operation, just care
1109     // about the LHS.
1110     if (op->isAssignmentOp() || op->isPtrMemOp())
1111       return isBlockVarRef(op->getLHS());
1112 
1113     // For a comma, just care about the RHS.
1114     if (op->getOpcode() == BO_Comma)
1115       return isBlockVarRef(op->getRHS());
1116 
1117     // FIXME: pointer arithmetic?
1118     return false;
1119 
1120   // Check both sides of a conditional operator.
1121   } else if (const AbstractConditionalOperator *op
1122                = dyn_cast<AbstractConditionalOperator>(E)) {
1123     return isBlockVarRef(op->getTrueExpr())
1124         || isBlockVarRef(op->getFalseExpr());
1125 
1126   // OVEs are required to support BinaryConditionalOperators.
1127   } else if (const OpaqueValueExpr *op
1128                = dyn_cast<OpaqueValueExpr>(E)) {
1129     if (const Expr *src = op->getSourceExpr())
1130       return isBlockVarRef(src);
1131 
1132   // Casts are necessary to get things like (*(int*)&var) = foo().
1133   // We don't really care about the kind of cast here, except
1134   // we don't want to look through l2r casts, because it's okay
1135   // to get the *value* in a __block variable.
1136   } else if (const CastExpr *cast = dyn_cast<CastExpr>(E)) {
1137     if (cast->getCastKind() == CK_LValueToRValue)
1138       return false;
1139     return isBlockVarRef(cast->getSubExpr());
1140 
1141   // Handle unary operators.  Again, just aggressively look through
1142   // it, ignoring the operation.
1143   } else if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E)) {
1144     return isBlockVarRef(uop->getSubExpr());
1145 
1146   // Look into the base of a field access.
1147   } else if (const MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
1148     return isBlockVarRef(mem->getBase());
1149 
1150   // Look into the base of a subscript.
1151   } else if (const ArraySubscriptExpr *sub = dyn_cast<ArraySubscriptExpr>(E)) {
1152     return isBlockVarRef(sub->getBase());
1153   }
1154 
1155   return false;
1156 }
1157 
1158 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
1159   // For an assignment to work, the value on the right has
1160   // to be compatible with the value on the left.
1161   assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
1162                                                  E->getRHS()->getType())
1163          && "Invalid assignment");
1164 
1165   // If the LHS might be a __block variable, and the RHS can
1166   // potentially cause a block copy, we need to evaluate the RHS first
1167   // so that the assignment goes the right place.
1168   // This is pretty semantically fragile.
1169   if (isBlockVarRef(E->getLHS()) &&
1170       E->getRHS()->HasSideEffects(CGF.getContext())) {
1171     // Ensure that we have a destination, and evaluate the RHS into that.
1172     EnsureDest(E->getRHS()->getType());
1173     Visit(E->getRHS());
1174 
1175     // Now emit the LHS and copy into it.
1176     LValue LHS = CGF.EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
1177 
1178     // That copy is an atomic copy if the LHS is atomic.
1179     if (LHS.getType()->isAtomicType() ||
1180         CGF.LValueIsSuitableForInlineAtomic(LHS)) {
1181       CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false);
1182       return;
1183     }
1184 
1185     EmitCopy(E->getLHS()->getType(),
1186              AggValueSlot::forLValue(LHS, CGF, AggValueSlot::IsDestructed,
1187                                      needsGC(E->getLHS()->getType()),
1188                                      AggValueSlot::IsAliased,
1189                                      AggValueSlot::MayOverlap),
1190              Dest);
1191     return;
1192   }
1193 
1194   LValue LHS = CGF.EmitLValue(E->getLHS());
1195 
1196   // If we have an atomic type, evaluate into the destination and then
1197   // do an atomic copy.
1198   if (LHS.getType()->isAtomicType() ||
1199       CGF.LValueIsSuitableForInlineAtomic(LHS)) {
1200     EnsureDest(E->getRHS()->getType());
1201     Visit(E->getRHS());
1202     CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false);
1203     return;
1204   }
1205 
1206   // Codegen the RHS so that it stores directly into the LHS.
1207   AggValueSlot LHSSlot = AggValueSlot::forLValue(
1208       LHS, CGF, AggValueSlot::IsDestructed, needsGC(E->getLHS()->getType()),
1209       AggValueSlot::IsAliased, AggValueSlot::MayOverlap);
1210   // A non-volatile aggregate destination might have volatile member.
1211   if (!LHSSlot.isVolatile() &&
1212       CGF.hasVolatileMember(E->getLHS()->getType()))
1213     LHSSlot.setVolatile(true);
1214 
1215   CGF.EmitAggExpr(E->getRHS(), LHSSlot);
1216 
1217   // Copy into the destination if the assignment isn't ignored.
1218   EmitFinalDestCopy(E->getType(), LHS);
1219 }
1220 
1221 void AggExprEmitter::
1222 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
1223   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
1224   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
1225   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
1226 
1227   // Bind the common expression if necessary.
1228   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
1229 
1230   CodeGenFunction::ConditionalEvaluation eval(CGF);
1231   CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock,
1232                            CGF.getProfileCount(E));
1233 
1234   // Save whether the destination's lifetime is externally managed.
1235   bool isExternallyDestructed = Dest.isExternallyDestructed();
1236 
1237   eval.begin(CGF);
1238   CGF.EmitBlock(LHSBlock);
1239   CGF.incrementProfileCounter(E);
1240   Visit(E->getTrueExpr());
1241   eval.end(CGF);
1242 
1243   assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!");
1244   CGF.Builder.CreateBr(ContBlock);
1245 
1246   // If the result of an agg expression is unused, then the emission
1247   // of the LHS might need to create a destination slot.  That's fine
1248   // with us, and we can safely emit the RHS into the same slot, but
1249   // we shouldn't claim that it's already being destructed.
1250   Dest.setExternallyDestructed(isExternallyDestructed);
1251 
1252   eval.begin(CGF);
1253   CGF.EmitBlock(RHSBlock);
1254   Visit(E->getFalseExpr());
1255   eval.end(CGF);
1256 
1257   CGF.EmitBlock(ContBlock);
1258 }
1259 
1260 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) {
1261   Visit(CE->getChosenSubExpr());
1262 }
1263 
1264 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
1265   Address ArgValue = Address::invalid();
1266   Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
1267 
1268   // If EmitVAArg fails, emit an error.
1269   if (!ArgPtr.isValid()) {
1270     CGF.ErrorUnsupported(VE, "aggregate va_arg expression");
1271     return;
1272   }
1273 
1274   EmitFinalDestCopy(VE->getType(), CGF.MakeAddrLValue(ArgPtr, VE->getType()));
1275 }
1276 
1277 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
1278   // Ensure that we have a slot, but if we already do, remember
1279   // whether it was externally destructed.
1280   bool wasExternallyDestructed = Dest.isExternallyDestructed();
1281   EnsureDest(E->getType());
1282 
1283   // We're going to push a destructor if there isn't already one.
1284   Dest.setExternallyDestructed();
1285 
1286   Visit(E->getSubExpr());
1287 
1288   // Push that destructor we promised.
1289   if (!wasExternallyDestructed)
1290     CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddress());
1291 }
1292 
1293 void
1294 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) {
1295   AggValueSlot Slot = EnsureSlot(E->getType());
1296   CGF.EmitCXXConstructExpr(E, Slot);
1297 }
1298 
1299 void AggExprEmitter::VisitCXXInheritedCtorInitExpr(
1300     const CXXInheritedCtorInitExpr *E) {
1301   AggValueSlot Slot = EnsureSlot(E->getType());
1302   CGF.EmitInheritedCXXConstructorCall(
1303       E->getConstructor(), E->constructsVBase(), Slot.getAddress(),
1304       E->inheritedFromVBase(), E);
1305 }
1306 
1307 void
1308 AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) {
1309   AggValueSlot Slot = EnsureSlot(E->getType());
1310   LValue SlotLV = CGF.MakeAddrLValue(Slot.getAddress(), E->getType());
1311 
1312   // We'll need to enter cleanup scopes in case any of the element
1313   // initializers throws an exception.
1314   SmallVector<EHScopeStack::stable_iterator, 16> Cleanups;
1315   llvm::Instruction *CleanupDominator = nullptr;
1316 
1317   CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin();
1318   for (LambdaExpr::const_capture_init_iterator i = E->capture_init_begin(),
1319                                                e = E->capture_init_end();
1320        i != e; ++i, ++CurField) {
1321     // Emit initialization
1322     LValue LV = CGF.EmitLValueForFieldInitialization(SlotLV, *CurField);
1323     if (CurField->hasCapturedVLAType()) {
1324       CGF.EmitLambdaVLACapture(CurField->getCapturedVLAType(), LV);
1325       continue;
1326     }
1327 
1328     EmitInitializationToLValue(*i, LV);
1329 
1330     // Push a destructor if necessary.
1331     if (QualType::DestructionKind DtorKind =
1332             CurField->getType().isDestructedType()) {
1333       assert(LV.isSimple());
1334       if (CGF.needsEHCleanup(DtorKind)) {
1335         if (!CleanupDominator)
1336           CleanupDominator = CGF.Builder.CreateAlignedLoad(
1337               CGF.Int8Ty,
1338               llvm::Constant::getNullValue(CGF.Int8PtrTy),
1339               CharUnits::One()); // placeholder
1340 
1341         CGF.pushDestroy(EHCleanup, LV.getAddress(CGF), CurField->getType(),
1342                         CGF.getDestroyer(DtorKind), false);
1343         Cleanups.push_back(CGF.EHStack.stable_begin());
1344       }
1345     }
1346   }
1347 
1348   // Deactivate all the partial cleanups in reverse order, which
1349   // generally means popping them.
1350   for (unsigned i = Cleanups.size(); i != 0; --i)
1351     CGF.DeactivateCleanupBlock(Cleanups[i-1], CleanupDominator);
1352 
1353   // Destroy the placeholder if we made one.
1354   if (CleanupDominator)
1355     CleanupDominator->eraseFromParent();
1356 }
1357 
1358 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
1359   CodeGenFunction::RunCleanupsScope cleanups(CGF);
1360   Visit(E->getSubExpr());
1361 }
1362 
1363 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
1364   QualType T = E->getType();
1365   AggValueSlot Slot = EnsureSlot(T);
1366   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T));
1367 }
1368 
1369 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
1370   QualType T = E->getType();
1371   AggValueSlot Slot = EnsureSlot(T);
1372   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T));
1373 }
1374 
1375 /// isSimpleZero - If emitting this value will obviously just cause a store of
1376 /// zero to memory, return true.  This can return false if uncertain, so it just
1377 /// handles simple cases.
1378 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) {
1379   E = E->IgnoreParens();
1380 
1381   // 0
1382   if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E))
1383     return IL->getValue() == 0;
1384   // +0.0
1385   if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E))
1386     return FL->getValue().isPosZero();
1387   // int()
1388   if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) &&
1389       CGF.getTypes().isZeroInitializable(E->getType()))
1390     return true;
1391   // (int*)0 - Null pointer expressions.
1392   if (const CastExpr *ICE = dyn_cast<CastExpr>(E))
1393     return ICE->getCastKind() == CK_NullToPointer &&
1394            CGF.getTypes().isPointerZeroInitializable(E->getType()) &&
1395            !E->HasSideEffects(CGF.getContext());
1396   // '\0'
1397   if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E))
1398     return CL->getValue() == 0;
1399 
1400   // Otherwise, hard case: conservatively return false.
1401   return false;
1402 }
1403 
1404 
1405 void
1406 AggExprEmitter::EmitInitializationToLValue(Expr *E, LValue LV) {
1407   QualType type = LV.getType();
1408   // FIXME: Ignore result?
1409   // FIXME: Are initializers affected by volatile?
1410   if (Dest.isZeroed() && isSimpleZero(E, CGF)) {
1411     // Storing "i32 0" to a zero'd memory location is a noop.
1412     return;
1413   } else if (isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) {
1414     return EmitNullInitializationToLValue(LV);
1415   } else if (isa<NoInitExpr>(E)) {
1416     // Do nothing.
1417     return;
1418   } else if (type->isReferenceType()) {
1419     RValue RV = CGF.EmitReferenceBindingToExpr(E);
1420     return CGF.EmitStoreThroughLValue(RV, LV);
1421   }
1422 
1423   switch (CGF.getEvaluationKind(type)) {
1424   case TEK_Complex:
1425     CGF.EmitComplexExprIntoLValue(E, LV, /*isInit*/ true);
1426     return;
1427   case TEK_Aggregate:
1428     CGF.EmitAggExpr(
1429         E, AggValueSlot::forLValue(LV, CGF, AggValueSlot::IsDestructed,
1430                                    AggValueSlot::DoesNotNeedGCBarriers,
1431                                    AggValueSlot::IsNotAliased,
1432                                    AggValueSlot::MayOverlap, Dest.isZeroed()));
1433     return;
1434   case TEK_Scalar:
1435     if (LV.isSimple()) {
1436       CGF.EmitScalarInit(E, /*D=*/nullptr, LV, /*Captured=*/false);
1437     } else {
1438       CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV);
1439     }
1440     return;
1441   }
1442   llvm_unreachable("bad evaluation kind");
1443 }
1444 
1445 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) {
1446   QualType type = lv.getType();
1447 
1448   // If the destination slot is already zeroed out before the aggregate is
1449   // copied into it, we don't have to emit any zeros here.
1450   if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type))
1451     return;
1452 
1453   if (CGF.hasScalarEvaluationKind(type)) {
1454     // For non-aggregates, we can store the appropriate null constant.
1455     llvm::Value *null = CGF.CGM.EmitNullConstant(type);
1456     // Note that the following is not equivalent to
1457     // EmitStoreThroughBitfieldLValue for ARC types.
1458     if (lv.isBitField()) {
1459       CGF.EmitStoreThroughBitfieldLValue(RValue::get(null), lv);
1460     } else {
1461       assert(lv.isSimple());
1462       CGF.EmitStoreOfScalar(null, lv, /* isInitialization */ true);
1463     }
1464   } else {
1465     // There's a potential optimization opportunity in combining
1466     // memsets; that would be easy for arrays, but relatively
1467     // difficult for structures with the current code.
1468     CGF.EmitNullInitialization(lv.getAddress(CGF), lv.getType());
1469   }
1470 }
1471 
1472 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
1473 #if 0
1474   // FIXME: Assess perf here?  Figure out what cases are worth optimizing here
1475   // (Length of globals? Chunks of zeroed-out space?).
1476   //
1477   // If we can, prefer a copy from a global; this is a lot less code for long
1478   // globals, and it's easier for the current optimizers to analyze.
1479   if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) {
1480     llvm::GlobalVariable* GV =
1481     new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true,
1482                              llvm::GlobalValue::InternalLinkage, C, "");
1483     EmitFinalDestCopy(E->getType(), CGF.MakeAddrLValue(GV, E->getType()));
1484     return;
1485   }
1486 #endif
1487   if (E->hadArrayRangeDesignator())
1488     CGF.ErrorUnsupported(E, "GNU array range designator extension");
1489 
1490   if (E->isTransparent())
1491     return Visit(E->getInit(0));
1492 
1493   AggValueSlot Dest = EnsureSlot(E->getType());
1494 
1495   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
1496 
1497   // Handle initialization of an array.
1498   if (E->getType()->isArrayType()) {
1499     auto AType = cast<llvm::ArrayType>(Dest.getAddress().getElementType());
1500     EmitArrayInit(Dest.getAddress(), AType, E->getType(), E);
1501     return;
1502   }
1503 
1504   assert(E->getType()->isRecordType() && "Only support structs/unions here!");
1505 
1506   // Do struct initialization; this code just sets each individual member
1507   // to the approprate value.  This makes bitfield support automatic;
1508   // the disadvantage is that the generated code is more difficult for
1509   // the optimizer, especially with bitfields.
1510   unsigned NumInitElements = E->getNumInits();
1511   RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl();
1512 
1513   // We'll need to enter cleanup scopes in case any of the element
1514   // initializers throws an exception.
1515   SmallVector<EHScopeStack::stable_iterator, 16> cleanups;
1516   llvm::Instruction *cleanupDominator = nullptr;
1517   auto addCleanup = [&](const EHScopeStack::stable_iterator &cleanup) {
1518     cleanups.push_back(cleanup);
1519     if (!cleanupDominator) // create placeholder once needed
1520       cleanupDominator = CGF.Builder.CreateAlignedLoad(
1521           CGF.Int8Ty, llvm::Constant::getNullValue(CGF.Int8PtrTy),
1522           CharUnits::One());
1523   };
1524 
1525   unsigned curInitIndex = 0;
1526 
1527   // Emit initialization of base classes.
1528   if (auto *CXXRD = dyn_cast<CXXRecordDecl>(record)) {
1529     assert(E->getNumInits() >= CXXRD->getNumBases() &&
1530            "missing initializer for base class");
1531     for (auto &Base : CXXRD->bases()) {
1532       assert(!Base.isVirtual() && "should not see vbases here");
1533       auto *BaseRD = Base.getType()->getAsCXXRecordDecl();
1534       Address V = CGF.GetAddressOfDirectBaseInCompleteClass(
1535           Dest.getAddress(), CXXRD, BaseRD,
1536           /*isBaseVirtual*/ false);
1537       AggValueSlot AggSlot = AggValueSlot::forAddr(
1538           V, Qualifiers(),
1539           AggValueSlot::IsDestructed,
1540           AggValueSlot::DoesNotNeedGCBarriers,
1541           AggValueSlot::IsNotAliased,
1542           CGF.getOverlapForBaseInit(CXXRD, BaseRD, Base.isVirtual()));
1543       CGF.EmitAggExpr(E->getInit(curInitIndex++), AggSlot);
1544 
1545       if (QualType::DestructionKind dtorKind =
1546               Base.getType().isDestructedType()) {
1547         CGF.pushDestroy(dtorKind, V, Base.getType());
1548         addCleanup(CGF.EHStack.stable_begin());
1549       }
1550     }
1551   }
1552 
1553   // Prepare a 'this' for CXXDefaultInitExprs.
1554   CodeGenFunction::FieldConstructionScope FCS(CGF, Dest.getAddress());
1555 
1556   if (record->isUnion()) {
1557     // Only initialize one field of a union. The field itself is
1558     // specified by the initializer list.
1559     if (!E->getInitializedFieldInUnion()) {
1560       // Empty union; we have nothing to do.
1561 
1562 #ifndef NDEBUG
1563       // Make sure that it's really an empty and not a failure of
1564       // semantic analysis.
1565       for (const auto *Field : record->fields())
1566         assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed");
1567 #endif
1568       return;
1569     }
1570 
1571     // FIXME: volatility
1572     FieldDecl *Field = E->getInitializedFieldInUnion();
1573 
1574     LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestLV, Field);
1575     if (NumInitElements) {
1576       // Store the initializer into the field
1577       EmitInitializationToLValue(E->getInit(0), FieldLoc);
1578     } else {
1579       // Default-initialize to null.
1580       EmitNullInitializationToLValue(FieldLoc);
1581     }
1582 
1583     return;
1584   }
1585 
1586   // Here we iterate over the fields; this makes it simpler to both
1587   // default-initialize fields and skip over unnamed fields.
1588   for (const auto *field : record->fields()) {
1589     // We're done once we hit the flexible array member.
1590     if (field->getType()->isIncompleteArrayType())
1591       break;
1592 
1593     // Always skip anonymous bitfields.
1594     if (field->isUnnamedBitfield())
1595       continue;
1596 
1597     // We're done if we reach the end of the explicit initializers, we
1598     // have a zeroed object, and the rest of the fields are
1599     // zero-initializable.
1600     if (curInitIndex == NumInitElements && Dest.isZeroed() &&
1601         CGF.getTypes().isZeroInitializable(E->getType()))
1602       break;
1603 
1604 
1605     LValue LV = CGF.EmitLValueForFieldInitialization(DestLV, field);
1606     // We never generate write-barries for initialized fields.
1607     LV.setNonGC(true);
1608 
1609     if (curInitIndex < NumInitElements) {
1610       // Store the initializer into the field.
1611       EmitInitializationToLValue(E->getInit(curInitIndex++), LV);
1612     } else {
1613       // We're out of initializers; default-initialize to null
1614       EmitNullInitializationToLValue(LV);
1615     }
1616 
1617     // Push a destructor if necessary.
1618     // FIXME: if we have an array of structures, all explicitly
1619     // initialized, we can end up pushing a linear number of cleanups.
1620     bool pushedCleanup = false;
1621     if (QualType::DestructionKind dtorKind
1622           = field->getType().isDestructedType()) {
1623       assert(LV.isSimple());
1624       if (CGF.needsEHCleanup(dtorKind)) {
1625         CGF.pushDestroy(EHCleanup, LV.getAddress(CGF), field->getType(),
1626                         CGF.getDestroyer(dtorKind), false);
1627         addCleanup(CGF.EHStack.stable_begin());
1628         pushedCleanup = true;
1629       }
1630     }
1631 
1632     // If the GEP didn't get used because of a dead zero init or something
1633     // else, clean it up for -O0 builds and general tidiness.
1634     if (!pushedCleanup && LV.isSimple())
1635       if (llvm::GetElementPtrInst *GEP =
1636               dyn_cast<llvm::GetElementPtrInst>(LV.getPointer(CGF)))
1637         if (GEP->use_empty())
1638           GEP->eraseFromParent();
1639   }
1640 
1641   // Deactivate all the partial cleanups in reverse order, which
1642   // generally means popping them.
1643   assert((cleanupDominator || cleanups.empty()) &&
1644          "Missing cleanupDominator before deactivating cleanup blocks");
1645   for (unsigned i = cleanups.size(); i != 0; --i)
1646     CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator);
1647 
1648   // Destroy the placeholder if we made one.
1649   if (cleanupDominator)
1650     cleanupDominator->eraseFromParent();
1651 }
1652 
1653 void AggExprEmitter::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E,
1654                                             llvm::Value *outerBegin) {
1655   // Emit the common subexpression.
1656   CodeGenFunction::OpaqueValueMapping binding(CGF, E->getCommonExpr());
1657 
1658   Address destPtr = EnsureSlot(E->getType()).getAddress();
1659   uint64_t numElements = E->getArraySize().getZExtValue();
1660 
1661   if (!numElements)
1662     return;
1663 
1664   // destPtr is an array*. Construct an elementType* by drilling down a level.
1665   llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
1666   llvm::Value *indices[] = {zero, zero};
1667   llvm::Value *begin = Builder.CreateInBoundsGEP(destPtr.getPointer(), indices,
1668                                                  "arrayinit.begin");
1669 
1670   // Prepare to special-case multidimensional array initialization: we avoid
1671   // emitting multiple destructor loops in that case.
1672   if (!outerBegin)
1673     outerBegin = begin;
1674   ArrayInitLoopExpr *InnerLoop = dyn_cast<ArrayInitLoopExpr>(E->getSubExpr());
1675 
1676   QualType elementType =
1677       CGF.getContext().getAsArrayType(E->getType())->getElementType();
1678   CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
1679   CharUnits elementAlign =
1680       destPtr.getAlignment().alignmentOfArrayElement(elementSize);
1681 
1682   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1683   llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
1684 
1685   // Jump into the body.
1686   CGF.EmitBlock(bodyBB);
1687   llvm::PHINode *index =
1688       Builder.CreatePHI(zero->getType(), 2, "arrayinit.index");
1689   index->addIncoming(zero, entryBB);
1690   llvm::Value *element = Builder.CreateInBoundsGEP(begin, index);
1691 
1692   // Prepare for a cleanup.
1693   QualType::DestructionKind dtorKind = elementType.isDestructedType();
1694   EHScopeStack::stable_iterator cleanup;
1695   if (CGF.needsEHCleanup(dtorKind) && !InnerLoop) {
1696     if (outerBegin->getType() != element->getType())
1697       outerBegin = Builder.CreateBitCast(outerBegin, element->getType());
1698     CGF.pushRegularPartialArrayCleanup(outerBegin, element, elementType,
1699                                        elementAlign,
1700                                        CGF.getDestroyer(dtorKind));
1701     cleanup = CGF.EHStack.stable_begin();
1702   } else {
1703     dtorKind = QualType::DK_none;
1704   }
1705 
1706   // Emit the actual filler expression.
1707   {
1708     // Temporaries created in an array initialization loop are destroyed
1709     // at the end of each iteration.
1710     CodeGenFunction::RunCleanupsScope CleanupsScope(CGF);
1711     CodeGenFunction::ArrayInitLoopExprScope Scope(CGF, index);
1712     LValue elementLV =
1713         CGF.MakeAddrLValue(Address(element, elementAlign), elementType);
1714 
1715     if (InnerLoop) {
1716       // If the subexpression is an ArrayInitLoopExpr, share its cleanup.
1717       auto elementSlot = AggValueSlot::forLValue(
1718           elementLV, CGF, AggValueSlot::IsDestructed,
1719           AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased,
1720           AggValueSlot::DoesNotOverlap);
1721       AggExprEmitter(CGF, elementSlot, false)
1722           .VisitArrayInitLoopExpr(InnerLoop, outerBegin);
1723     } else
1724       EmitInitializationToLValue(E->getSubExpr(), elementLV);
1725   }
1726 
1727   // Move on to the next element.
1728   llvm::Value *nextIndex = Builder.CreateNUWAdd(
1729       index, llvm::ConstantInt::get(CGF.SizeTy, 1), "arrayinit.next");
1730   index->addIncoming(nextIndex, Builder.GetInsertBlock());
1731 
1732   // Leave the loop if we're done.
1733   llvm::Value *done = Builder.CreateICmpEQ(
1734       nextIndex, llvm::ConstantInt::get(CGF.SizeTy, numElements),
1735       "arrayinit.done");
1736   llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
1737   Builder.CreateCondBr(done, endBB, bodyBB);
1738 
1739   CGF.EmitBlock(endBB);
1740 
1741   // Leave the partial-array cleanup if we entered one.
1742   if (dtorKind)
1743     CGF.DeactivateCleanupBlock(cleanup, index);
1744 }
1745 
1746 void AggExprEmitter::VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E) {
1747   AggValueSlot Dest = EnsureSlot(E->getType());
1748 
1749   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
1750   EmitInitializationToLValue(E->getBase(), DestLV);
1751   VisitInitListExpr(E->getUpdater());
1752 }
1753 
1754 //===----------------------------------------------------------------------===//
1755 //                        Entry Points into this File
1756 //===----------------------------------------------------------------------===//
1757 
1758 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of
1759 /// non-zero bytes that will be stored when outputting the initializer for the
1760 /// specified initializer expression.
1761 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) {
1762   E = E->IgnoreParens();
1763 
1764   // 0 and 0.0 won't require any non-zero stores!
1765   if (isSimpleZero(E, CGF)) return CharUnits::Zero();
1766 
1767   // If this is an initlist expr, sum up the size of sizes of the (present)
1768   // elements.  If this is something weird, assume the whole thing is non-zero.
1769   const InitListExpr *ILE = dyn_cast<InitListExpr>(E);
1770   while (ILE && ILE->isTransparent())
1771     ILE = dyn_cast<InitListExpr>(ILE->getInit(0));
1772   if (!ILE || !CGF.getTypes().isZeroInitializable(ILE->getType()))
1773     return CGF.getContext().getTypeSizeInChars(E->getType());
1774 
1775   // InitListExprs for structs have to be handled carefully.  If there are
1776   // reference members, we need to consider the size of the reference, not the
1777   // referencee.  InitListExprs for unions and arrays can't have references.
1778   if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
1779     if (!RT->isUnionType()) {
1780       RecordDecl *SD = RT->getDecl();
1781       CharUnits NumNonZeroBytes = CharUnits::Zero();
1782 
1783       unsigned ILEElement = 0;
1784       if (auto *CXXRD = dyn_cast<CXXRecordDecl>(SD))
1785         while (ILEElement != CXXRD->getNumBases())
1786           NumNonZeroBytes +=
1787               GetNumNonZeroBytesInInit(ILE->getInit(ILEElement++), CGF);
1788       for (const auto *Field : SD->fields()) {
1789         // We're done once we hit the flexible array member or run out of
1790         // InitListExpr elements.
1791         if (Field->getType()->isIncompleteArrayType() ||
1792             ILEElement == ILE->getNumInits())
1793           break;
1794         if (Field->isUnnamedBitfield())
1795           continue;
1796 
1797         const Expr *E = ILE->getInit(ILEElement++);
1798 
1799         // Reference values are always non-null and have the width of a pointer.
1800         if (Field->getType()->isReferenceType())
1801           NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits(
1802               CGF.getTarget().getPointerWidth(0));
1803         else
1804           NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF);
1805       }
1806 
1807       return NumNonZeroBytes;
1808     }
1809   }
1810 
1811 
1812   CharUnits NumNonZeroBytes = CharUnits::Zero();
1813   for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1814     NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF);
1815   return NumNonZeroBytes;
1816 }
1817 
1818 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of
1819 /// zeros in it, emit a memset and avoid storing the individual zeros.
1820 ///
1821 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E,
1822                                      CodeGenFunction &CGF) {
1823   // If the slot is already known to be zeroed, nothing to do.  Don't mess with
1824   // volatile stores.
1825   if (Slot.isZeroed() || Slot.isVolatile() || !Slot.getAddress().isValid())
1826     return;
1827 
1828   // C++ objects with a user-declared constructor don't need zero'ing.
1829   if (CGF.getLangOpts().CPlusPlus)
1830     if (const RecordType *RT = CGF.getContext()
1831                        .getBaseElementType(E->getType())->getAs<RecordType>()) {
1832       const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1833       if (RD->hasUserDeclaredConstructor())
1834         return;
1835     }
1836 
1837   // If the type is 16-bytes or smaller, prefer individual stores over memset.
1838   CharUnits Size = Slot.getPreferredSize(CGF.getContext(), E->getType());
1839   if (Size <= CharUnits::fromQuantity(16))
1840     return;
1841 
1842   // Check to see if over 3/4 of the initializer are known to be zero.  If so,
1843   // we prefer to emit memset + individual stores for the rest.
1844   CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF);
1845   if (NumNonZeroBytes*4 > Size)
1846     return;
1847 
1848   // Okay, it seems like a good idea to use an initial memset, emit the call.
1849   llvm::Constant *SizeVal = CGF.Builder.getInt64(Size.getQuantity());
1850 
1851   Address Loc = Slot.getAddress();
1852   Loc = CGF.Builder.CreateElementBitCast(Loc, CGF.Int8Ty);
1853   CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, false);
1854 
1855   // Tell the AggExprEmitter that the slot is known zero.
1856   Slot.setZeroed();
1857 }
1858 
1859 
1860 
1861 
1862 /// EmitAggExpr - Emit the computation of the specified expression of aggregate
1863 /// type.  The result is computed into DestPtr.  Note that if DestPtr is null,
1864 /// the value of the aggregate expression is not needed.  If VolatileDest is
1865 /// true, DestPtr cannot be 0.
1866 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot) {
1867   assert(E && hasAggregateEvaluationKind(E->getType()) &&
1868          "Invalid aggregate expression to emit");
1869   assert((Slot.getAddress().isValid() || Slot.isIgnored()) &&
1870          "slot has bits but no address");
1871 
1872   // Optimize the slot if possible.
1873   CheckAggExprForMemSetUse(Slot, E, *this);
1874 
1875   AggExprEmitter(*this, Slot, Slot.isIgnored()).Visit(const_cast<Expr*>(E));
1876 }
1877 
1878 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) {
1879   assert(hasAggregateEvaluationKind(E->getType()) && "Invalid argument!");
1880   Address Temp = CreateMemTemp(E->getType());
1881   LValue LV = MakeAddrLValue(Temp, E->getType());
1882   EmitAggExpr(E, AggValueSlot::forLValue(
1883                      LV, *this, AggValueSlot::IsNotDestructed,
1884                      AggValueSlot::DoesNotNeedGCBarriers,
1885                      AggValueSlot::IsNotAliased, AggValueSlot::DoesNotOverlap));
1886   return LV;
1887 }
1888 
1889 AggValueSlot::Overlap_t
1890 CodeGenFunction::getOverlapForFieldInit(const FieldDecl *FD) {
1891   if (!FD->hasAttr<NoUniqueAddressAttr>() || !FD->getType()->isRecordType())
1892     return AggValueSlot::DoesNotOverlap;
1893 
1894   // If the field lies entirely within the enclosing class's nvsize, its tail
1895   // padding cannot overlap any already-initialized object. (The only subobjects
1896   // with greater addresses that might already be initialized are vbases.)
1897   const RecordDecl *ClassRD = FD->getParent();
1898   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(ClassRD);
1899   if (Layout.getFieldOffset(FD->getFieldIndex()) +
1900           getContext().getTypeSize(FD->getType()) <=
1901       (uint64_t)getContext().toBits(Layout.getNonVirtualSize()))
1902     return AggValueSlot::DoesNotOverlap;
1903 
1904   // The tail padding may contain values we need to preserve.
1905   return AggValueSlot::MayOverlap;
1906 }
1907 
1908 AggValueSlot::Overlap_t CodeGenFunction::getOverlapForBaseInit(
1909     const CXXRecordDecl *RD, const CXXRecordDecl *BaseRD, bool IsVirtual) {
1910   // If the most-derived object is a field declared with [[no_unique_address]],
1911   // the tail padding of any virtual base could be reused for other subobjects
1912   // of that field's class.
1913   if (IsVirtual)
1914     return AggValueSlot::MayOverlap;
1915 
1916   // If the base class is laid out entirely within the nvsize of the derived
1917   // class, its tail padding cannot yet be initialized, so we can issue
1918   // stores at the full width of the base class.
1919   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
1920   if (Layout.getBaseClassOffset(BaseRD) +
1921           getContext().getASTRecordLayout(BaseRD).getSize() <=
1922       Layout.getNonVirtualSize())
1923     return AggValueSlot::DoesNotOverlap;
1924 
1925   // The tail padding may contain values we need to preserve.
1926   return AggValueSlot::MayOverlap;
1927 }
1928 
1929 void CodeGenFunction::EmitAggregateCopy(LValue Dest, LValue Src, QualType Ty,
1930                                         AggValueSlot::Overlap_t MayOverlap,
1931                                         bool isVolatile) {
1932   assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
1933 
1934   Address DestPtr = Dest.getAddress(*this);
1935   Address SrcPtr = Src.getAddress(*this);
1936 
1937   if (getLangOpts().CPlusPlus) {
1938     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1939       CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
1940       assert((Record->hasTrivialCopyConstructor() ||
1941               Record->hasTrivialCopyAssignment() ||
1942               Record->hasTrivialMoveConstructor() ||
1943               Record->hasTrivialMoveAssignment() ||
1944               Record->isUnion()) &&
1945              "Trying to aggregate-copy a type without a trivial copy/move "
1946              "constructor or assignment operator");
1947       // Ignore empty classes in C++.
1948       if (Record->isEmpty())
1949         return;
1950     }
1951   }
1952 
1953   if (getLangOpts().CUDAIsDevice) {
1954     if (Ty->isCUDADeviceBuiltinSurfaceType()) {
1955       if (getTargetHooks().emitCUDADeviceBuiltinSurfaceDeviceCopy(*this, Dest,
1956                                                                   Src))
1957         return;
1958     } else if (Ty->isCUDADeviceBuiltinTextureType()) {
1959       if (getTargetHooks().emitCUDADeviceBuiltinTextureDeviceCopy(*this, Dest,
1960                                                                   Src))
1961         return;
1962     }
1963   }
1964 
1965   // Aggregate assignment turns into llvm.memcpy.  This is almost valid per
1966   // C99 6.5.16.1p3, which states "If the value being stored in an object is
1967   // read from another object that overlaps in anyway the storage of the first
1968   // object, then the overlap shall be exact and the two objects shall have
1969   // qualified or unqualified versions of a compatible type."
1970   //
1971   // memcpy is not defined if the source and destination pointers are exactly
1972   // equal, but other compilers do this optimization, and almost every memcpy
1973   // implementation handles this case safely.  If there is a libc that does not
1974   // safely handle this, we can add a target hook.
1975 
1976   // Get data size info for this aggregate. Don't copy the tail padding if this
1977   // might be a potentially-overlapping subobject, since the tail padding might
1978   // be occupied by a different object. Otherwise, copying it is fine.
1979   std::pair<CharUnits, CharUnits> TypeInfo;
1980   if (MayOverlap)
1981     TypeInfo = getContext().getTypeInfoDataSizeInChars(Ty);
1982   else
1983     TypeInfo = getContext().getTypeInfoInChars(Ty);
1984 
1985   llvm::Value *SizeVal = nullptr;
1986   if (TypeInfo.first.isZero()) {
1987     // But note that getTypeInfo returns 0 for a VLA.
1988     if (auto *VAT = dyn_cast_or_null<VariableArrayType>(
1989             getContext().getAsArrayType(Ty))) {
1990       QualType BaseEltTy;
1991       SizeVal = emitArrayLength(VAT, BaseEltTy, DestPtr);
1992       TypeInfo = getContext().getTypeInfoInChars(BaseEltTy);
1993       assert(!TypeInfo.first.isZero());
1994       SizeVal = Builder.CreateNUWMul(
1995           SizeVal,
1996           llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity()));
1997     }
1998   }
1999   if (!SizeVal) {
2000     SizeVal = llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity());
2001   }
2002 
2003   // FIXME: If we have a volatile struct, the optimizer can remove what might
2004   // appear to be `extra' memory ops:
2005   //
2006   // volatile struct { int i; } a, b;
2007   //
2008   // int main() {
2009   //   a = b;
2010   //   a = b;
2011   // }
2012   //
2013   // we need to use a different call here.  We use isVolatile to indicate when
2014   // either the source or the destination is volatile.
2015 
2016   DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
2017   SrcPtr = Builder.CreateElementBitCast(SrcPtr, Int8Ty);
2018 
2019   // Don't do any of the memmove_collectable tests if GC isn't set.
2020   if (CGM.getLangOpts().getGC() == LangOptions::NonGC) {
2021     // fall through
2022   } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
2023     RecordDecl *Record = RecordTy->getDecl();
2024     if (Record->hasObjectMember()) {
2025       CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
2026                                                     SizeVal);
2027       return;
2028     }
2029   } else if (Ty->isArrayType()) {
2030     QualType BaseType = getContext().getBaseElementType(Ty);
2031     if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
2032       if (RecordTy->getDecl()->hasObjectMember()) {
2033         CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
2034                                                       SizeVal);
2035         return;
2036       }
2037     }
2038   }
2039 
2040   auto Inst = Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, isVolatile);
2041 
2042   // Determine the metadata to describe the position of any padding in this
2043   // memcpy, as well as the TBAA tags for the members of the struct, in case
2044   // the optimizer wishes to expand it in to scalar memory operations.
2045   if (llvm::MDNode *TBAAStructTag = CGM.getTBAAStructInfo(Ty))
2046     Inst->setMetadata(llvm::LLVMContext::MD_tbaa_struct, TBAAStructTag);
2047 
2048   if (CGM.getCodeGenOpts().NewStructPathTBAA) {
2049     TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForMemoryTransfer(
2050         Dest.getTBAAInfo(), Src.getTBAAInfo());
2051     CGM.DecorateInstructionWithTBAA(Inst, TBAAInfo);
2052   }
2053 }
2054