1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Aggregate Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "clang/AST/ASTContext.h" 17 #include "clang/AST/DeclCXX.h" 18 #include "clang/AST/StmtVisitor.h" 19 #include "llvm/Constants.h" 20 #include "llvm/Function.h" 21 #include "llvm/GlobalVariable.h" 22 #include "llvm/Support/Compiler.h" 23 #include "llvm/Intrinsics.h" 24 using namespace clang; 25 using namespace CodeGen; 26 27 //===----------------------------------------------------------------------===// 28 // Aggregate Expression Emitter 29 //===----------------------------------------------------------------------===// 30 31 namespace { 32 class VISIBILITY_HIDDEN AggExprEmitter : public StmtVisitor<AggExprEmitter> { 33 CodeGenFunction &CGF; 34 CGBuilderTy &Builder; 35 llvm::Value *DestPtr; 36 bool VolatileDest; 37 public: 38 AggExprEmitter(CodeGenFunction &cgf, llvm::Value *destPtr, bool volatileDest) 39 : CGF(cgf), Builder(CGF.Builder), 40 DestPtr(destPtr), VolatileDest(volatileDest) { 41 } 42 43 //===--------------------------------------------------------------------===// 44 // Utilities 45 //===--------------------------------------------------------------------===// 46 47 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 48 /// represents a value lvalue, this method emits the address of the lvalue, 49 /// then loads the result into DestPtr. 50 void EmitAggLoadOfLValue(const Expr *E); 51 52 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 53 void EmitFinalDestCopy(const Expr *E, LValue Src); 54 void EmitFinalDestCopy(const Expr *E, RValue Src); 55 56 //===--------------------------------------------------------------------===// 57 // Visitor Methods 58 //===--------------------------------------------------------------------===// 59 60 void VisitStmt(Stmt *S) { 61 CGF.ErrorUnsupported(S, "aggregate expression"); 62 } 63 void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); } 64 void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); } 65 66 // l-values. 67 void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); } 68 void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); } 69 void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); } 70 void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); } 71 void VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 72 EmitAggLoadOfLValue(E); 73 } 74 void VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 75 EmitAggLoadOfLValue(E); 76 } 77 void VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) { 78 EmitAggLoadOfLValue(E); 79 } 80 void VisitPredefinedExpr(const PredefinedExpr *E) { 81 EmitAggLoadOfLValue(E); 82 } 83 84 // Operators. 85 void VisitCStyleCastExpr(CStyleCastExpr *E); 86 void VisitImplicitCastExpr(ImplicitCastExpr *E); 87 void VisitCallExpr(const CallExpr *E); 88 void VisitStmtExpr(const StmtExpr *E); 89 void VisitBinaryOperator(const BinaryOperator *BO); 90 void VisitBinAssign(const BinaryOperator *E); 91 void VisitBinComma(const BinaryOperator *E); 92 93 void VisitObjCMessageExpr(ObjCMessageExpr *E); 94 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 95 EmitAggLoadOfLValue(E); 96 } 97 void VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E); 98 void VisitObjCKVCRefExpr(ObjCKVCRefExpr *E); 99 100 void VisitConditionalOperator(const ConditionalOperator *CO); 101 void VisitInitListExpr(InitListExpr *E); 102 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 103 Visit(DAE->getExpr()); 104 } 105 void VisitCXXConstructExpr(const CXXConstructExpr *E); 106 void VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E); 107 108 void VisitVAArgExpr(VAArgExpr *E); 109 110 void EmitInitializationToLValue(Expr *E, LValue Address); 111 void EmitNullInitializationToLValue(LValue Address, QualType T); 112 // case Expr::ChooseExprClass: 113 114 }; 115 } // end anonymous namespace. 116 117 //===----------------------------------------------------------------------===// 118 // Utilities 119 //===----------------------------------------------------------------------===// 120 121 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 122 /// represents a value lvalue, this method emits the address of the lvalue, 123 /// then loads the result into DestPtr. 124 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) { 125 LValue LV = CGF.EmitLValue(E); 126 EmitFinalDestCopy(E, LV); 127 } 128 129 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 130 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, RValue Src) { 131 assert(Src.isAggregate() && "value must be aggregate value!"); 132 133 // If the result is ignored, don't copy from the value. 134 if (DestPtr == 0) { 135 if (Src.isVolatileQualified()) 136 // If the source is volatile, we must read from it; to do that, we need 137 // some place to put it. 138 DestPtr = CGF.CreateTempAlloca(CGF.ConvertType(E->getType()), "agg.tmp"); 139 else 140 return; 141 } 142 143 // If the result of the assignment is used, copy the LHS there also. 144 // FIXME: Pass VolatileDest as well. I think we also need to merge volatile 145 // from the source as well, as we can't eliminate it if either operand 146 // is volatile, unless copy has volatile for both source and destination.. 147 CGF.EmitAggregateCopy(DestPtr, Src.getAggregateAddr(), E->getType(), 148 VolatileDest|Src.isVolatileQualified()); 149 } 150 151 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 152 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, LValue Src) { 153 assert(Src.isSimple() && "Can't have aggregate bitfield, vector, etc"); 154 155 EmitFinalDestCopy(E, RValue::getAggregate(Src.getAddress(), 156 Src.isVolatileQualified())); 157 } 158 159 //===----------------------------------------------------------------------===// 160 // Visitor Methods 161 //===----------------------------------------------------------------------===// 162 163 void AggExprEmitter::VisitCStyleCastExpr(CStyleCastExpr *E) { 164 // GCC union extension 165 if (E->getType()->isUnionType()) { 166 RecordDecl *SD = E->getType()->getAsRecordType()->getDecl(); 167 LValue FieldLoc = CGF.EmitLValueForField(DestPtr, 168 *SD->field_begin(CGF.getContext()), 169 true, 0); 170 EmitInitializationToLValue(E->getSubExpr(), FieldLoc); 171 return; 172 } 173 174 Visit(E->getSubExpr()); 175 } 176 177 void AggExprEmitter::VisitImplicitCastExpr(ImplicitCastExpr *E) { 178 assert(CGF.getContext().typesAreCompatible( 179 E->getSubExpr()->getType().getUnqualifiedType(), 180 E->getType().getUnqualifiedType()) && 181 "Implicit cast types must be compatible"); 182 Visit(E->getSubExpr()); 183 } 184 185 void AggExprEmitter::VisitCallExpr(const CallExpr *E) { 186 RValue RV = CGF.EmitCallExpr(E); 187 EmitFinalDestCopy(E, RV); 188 } 189 190 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) { 191 RValue RV = CGF.EmitObjCMessageExpr(E); 192 EmitFinalDestCopy(E, RV); 193 } 194 195 void AggExprEmitter::VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) { 196 RValue RV = CGF.EmitObjCPropertyGet(E); 197 EmitFinalDestCopy(E, RV); 198 } 199 200 void AggExprEmitter::VisitObjCKVCRefExpr(ObjCKVCRefExpr *E) { 201 RValue RV = CGF.EmitObjCPropertyGet(E); 202 EmitFinalDestCopy(E, RV); 203 } 204 205 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) { 206 CGF.EmitAnyExpr(E->getLHS()); 207 CGF.EmitAggExpr(E->getRHS(), DestPtr, VolatileDest); 208 } 209 210 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) { 211 CGF.EmitCompoundStmt(*E->getSubStmt(), true, DestPtr, VolatileDest); 212 } 213 214 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) { 215 CGF.ErrorUnsupported(E, "aggregate binary expression"); 216 } 217 218 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) { 219 // For an assignment to work, the value on the right has 220 // to be compatible with the value on the left. 221 assert(CGF.getContext().typesAreCompatible( 222 E->getLHS()->getType().getUnqualifiedType(), 223 E->getRHS()->getType().getUnqualifiedType()) 224 && "Invalid assignment"); 225 LValue LHS = CGF.EmitLValue(E->getLHS()); 226 227 // We have to special case property setters, otherwise we must have 228 // a simple lvalue (no aggregates inside vectors, bitfields). 229 if (LHS.isPropertyRef()) { 230 llvm::Value *AggLoc = DestPtr; 231 if (!AggLoc) 232 AggLoc = CGF.CreateTempAlloca(CGF.ConvertType(E->getRHS()->getType())); 233 CGF.EmitAggExpr(E->getRHS(), AggLoc, VolatileDest); 234 CGF.EmitObjCPropertySet(LHS.getPropertyRefExpr(), 235 RValue::getAggregate(AggLoc, VolatileDest)); 236 } 237 else if (LHS.isKVCRef()) { 238 // FIXME: Volatility? 239 llvm::Value *AggLoc = DestPtr; 240 if (!AggLoc) 241 AggLoc = CGF.CreateTempAlloca(CGF.ConvertType(E->getRHS()->getType())); 242 CGF.EmitAggExpr(E->getRHS(), AggLoc, false); 243 CGF.EmitObjCPropertySet(LHS.getKVCRefExpr(), 244 RValue::getAggregate(AggLoc)); 245 } else { 246 // Codegen the RHS so that it stores directly into the LHS. 247 CGF.EmitAggExpr(E->getRHS(), LHS.getAddress(), LHS.isVolatileQualified()); 248 EmitFinalDestCopy(E, LHS); 249 } 250 } 251 252 void AggExprEmitter::VisitConditionalOperator(const ConditionalOperator *E) { 253 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 254 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 255 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 256 257 llvm::Value *Cond = CGF.EvaluateExprAsBool(E->getCond()); 258 Builder.CreateCondBr(Cond, LHSBlock, RHSBlock); 259 260 CGF.EmitBlock(LHSBlock); 261 262 // Handle the GNU extension for missing LHS. 263 assert(E->getLHS() && "Must have LHS for aggregate value"); 264 265 Visit(E->getLHS()); 266 CGF.EmitBranch(ContBlock); 267 268 CGF.EmitBlock(RHSBlock); 269 270 Visit(E->getRHS()); 271 CGF.EmitBranch(ContBlock); 272 273 CGF.EmitBlock(ContBlock); 274 } 275 276 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 277 llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr()); 278 llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType()); 279 280 if (!ArgPtr) { 281 CGF.ErrorUnsupported(VE, "aggregate va_arg expression"); 282 return; 283 } 284 285 EmitFinalDestCopy(VE, LValue::MakeAddr(ArgPtr, 0)); 286 } 287 288 void 289 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) { 290 llvm::Value *V = DestPtr; 291 292 if (!V) { 293 assert(isa<CXXTempVarDecl>(E->getVarDecl()) && 294 "Must have a temp var decl when there's no destination!"); 295 296 V = CGF.CreateTempAlloca(CGF.ConvertType(E->getVarDecl()->getType()), 297 "tmpvar"); 298 } 299 300 CGF.EmitCXXConstructExpr(V, E); 301 } 302 303 void AggExprEmitter::VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E) { 304 // FIXME: Do something with the temporaries! 305 Visit(E->getSubExpr()); 306 } 307 308 void AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV) { 309 // FIXME: Are initializers affected by volatile? 310 if (isa<ImplicitValueInitExpr>(E)) { 311 EmitNullInitializationToLValue(LV, E->getType()); 312 } else if (E->getType()->isComplexType()) { 313 CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false); 314 } else if (CGF.hasAggregateLLVMType(E->getType())) { 315 CGF.EmitAnyExpr(E, LV.getAddress(), false); 316 } else { 317 CGF.EmitStoreThroughLValue(CGF.EmitAnyExpr(E), LV, E->getType()); 318 } 319 } 320 321 void AggExprEmitter::EmitNullInitializationToLValue(LValue LV, QualType T) { 322 if (!CGF.hasAggregateLLVMType(T)) { 323 // For non-aggregates, we can store zero 324 llvm::Value *Null = llvm::Constant::getNullValue(CGF.ConvertType(T)); 325 CGF.EmitStoreThroughLValue(RValue::get(Null), LV, T); 326 } else { 327 // Otherwise, just memset the whole thing to zero. This is legal 328 // because in LLVM, all default initializers are guaranteed to have a 329 // bit pattern of all zeros. 330 // FIXME: That isn't true for member pointers! 331 // There's a potential optimization opportunity in combining 332 // memsets; that would be easy for arrays, but relatively 333 // difficult for structures with the current code. 334 CGF.EmitMemSetToZero(LV.getAddress(), T); 335 } 336 } 337 338 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) { 339 #if 0 340 // FIXME: Disabled while we figure out what to do about 341 // test/CodeGen/bitfield.c 342 // 343 // If we can, prefer a copy from a global; this is a lot less code for long 344 // globals, and it's easier for the current optimizers to analyze. 345 // FIXME: Should we really be doing this? Should we try to avoid cases where 346 // we emit a global with a lot of zeros? Should we try to avoid short 347 // globals? 348 if (E->isConstantInitializer(CGF.getContext(), 0)) { 349 llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, &CGF); 350 llvm::GlobalVariable* GV = 351 new llvm::GlobalVariable(C->getType(), true, 352 llvm::GlobalValue::InternalLinkage, 353 C, "", &CGF.CGM.getModule(), 0); 354 EmitFinalDestCopy(E, LValue::MakeAddr(GV, 0)); 355 return; 356 } 357 #endif 358 if (E->hadArrayRangeDesignator()) { 359 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 360 } 361 362 // Handle initialization of an array. 363 if (E->getType()->isArrayType()) { 364 const llvm::PointerType *APType = 365 cast<llvm::PointerType>(DestPtr->getType()); 366 const llvm::ArrayType *AType = 367 cast<llvm::ArrayType>(APType->getElementType()); 368 369 uint64_t NumInitElements = E->getNumInits(); 370 371 if (E->getNumInits() > 0) { 372 QualType T1 = E->getType(); 373 QualType T2 = E->getInit(0)->getType(); 374 if (CGF.getContext().getCanonicalType(T1).getUnqualifiedType() == 375 CGF.getContext().getCanonicalType(T2).getUnqualifiedType()) { 376 EmitAggLoadOfLValue(E->getInit(0)); 377 return; 378 } 379 } 380 381 uint64_t NumArrayElements = AType->getNumElements(); 382 QualType ElementType = CGF.getContext().getCanonicalType(E->getType()); 383 ElementType = CGF.getContext().getAsArrayType(ElementType)->getElementType(); 384 385 unsigned CVRqualifier = ElementType.getCVRQualifiers(); 386 387 for (uint64_t i = 0; i != NumArrayElements; ++i) { 388 llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array"); 389 if (i < NumInitElements) 390 EmitInitializationToLValue(E->getInit(i), 391 LValue::MakeAddr(NextVal, CVRqualifier)); 392 else 393 EmitNullInitializationToLValue(LValue::MakeAddr(NextVal, CVRqualifier), 394 ElementType); 395 } 396 return; 397 } 398 399 assert(E->getType()->isRecordType() && "Only support structs/unions here!"); 400 401 // Do struct initialization; this code just sets each individual member 402 // to the approprate value. This makes bitfield support automatic; 403 // the disadvantage is that the generated code is more difficult for 404 // the optimizer, especially with bitfields. 405 unsigned NumInitElements = E->getNumInits(); 406 RecordDecl *SD = E->getType()->getAsRecordType()->getDecl(); 407 unsigned CurInitVal = 0; 408 409 if (E->getType()->isUnionType()) { 410 // Only initialize one field of a union. The field itself is 411 // specified by the initializer list. 412 if (!E->getInitializedFieldInUnion()) { 413 // Empty union; we have nothing to do. 414 415 #ifndef NDEBUG 416 // Make sure that it's really an empty and not a failure of 417 // semantic analysis. 418 for (RecordDecl::field_iterator Field = SD->field_begin(CGF.getContext()), 419 FieldEnd = SD->field_end(CGF.getContext()); 420 Field != FieldEnd; ++Field) 421 assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed"); 422 #endif 423 return; 424 } 425 426 // FIXME: volatility 427 FieldDecl *Field = E->getInitializedFieldInUnion(); 428 LValue FieldLoc = CGF.EmitLValueForField(DestPtr, Field, true, 0); 429 430 if (NumInitElements) { 431 // Store the initializer into the field 432 EmitInitializationToLValue(E->getInit(0), FieldLoc); 433 } else { 434 // Default-initialize to null 435 EmitNullInitializationToLValue(FieldLoc, Field->getType()); 436 } 437 438 return; 439 } 440 441 // Here we iterate over the fields; this makes it simpler to both 442 // default-initialize fields and skip over unnamed fields. 443 for (RecordDecl::field_iterator Field = SD->field_begin(CGF.getContext()), 444 FieldEnd = SD->field_end(CGF.getContext()); 445 Field != FieldEnd; ++Field) { 446 // We're done once we hit the flexible array member 447 if (Field->getType()->isIncompleteArrayType()) 448 break; 449 450 if (Field->isUnnamedBitfield()) 451 continue; 452 453 // FIXME: volatility 454 LValue FieldLoc = CGF.EmitLValueForField(DestPtr, *Field, false, 0); 455 if (CurInitVal < NumInitElements) { 456 // Store the initializer into the field 457 EmitInitializationToLValue(E->getInit(CurInitVal++), FieldLoc); 458 } else { 459 // We're out of initalizers; default-initialize to null 460 EmitNullInitializationToLValue(FieldLoc, Field->getType()); 461 } 462 } 463 } 464 465 //===----------------------------------------------------------------------===// 466 // Entry Points into this File 467 //===----------------------------------------------------------------------===// 468 469 /// EmitAggExpr - Emit the computation of the specified expression of 470 /// aggregate type. The result is computed into DestPtr. Note that if 471 /// DestPtr is null, the value of the aggregate expression is not needed. 472 void CodeGenFunction::EmitAggExpr(const Expr *E, llvm::Value *DestPtr, 473 bool VolatileDest) { 474 assert(E && hasAggregateLLVMType(E->getType()) && 475 "Invalid aggregate expression to emit"); 476 477 AggExprEmitter(*this, DestPtr, VolatileDest).Visit(const_cast<Expr*>(E)); 478 } 479 480 void CodeGenFunction::EmitAggregateClear(llvm::Value *DestPtr, QualType Ty) { 481 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 482 483 EmitMemSetToZero(DestPtr, Ty); 484 } 485 486 void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr, 487 llvm::Value *SrcPtr, QualType Ty, 488 bool isVolatile) { 489 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 490 491 // Aggregate assignment turns into llvm.memcpy. This is almost valid per 492 // C99 6.5.16.1p3, which states "If the value being stored in an object is 493 // read from another object that overlaps in anyway the storage of the first 494 // object, then the overlap shall be exact and the two objects shall have 495 // qualified or unqualified versions of a compatible type." 496 // 497 // memcpy is not defined if the source and destination pointers are exactly 498 // equal, but other compilers do this optimization, and almost every memcpy 499 // implementation handles this case safely. If there is a libc that does not 500 // safely handle this, we can add a target hook. 501 const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 502 if (DestPtr->getType() != BP) 503 DestPtr = Builder.CreateBitCast(DestPtr, BP, "tmp"); 504 if (SrcPtr->getType() != BP) 505 SrcPtr = Builder.CreateBitCast(SrcPtr, BP, "tmp"); 506 507 // Get size and alignment info for this aggregate. 508 std::pair<uint64_t, unsigned> TypeInfo = getContext().getTypeInfo(Ty); 509 510 // FIXME: Handle variable sized types. 511 const llvm::Type *IntPtr = llvm::IntegerType::get(LLVMPointerWidth); 512 513 // FIXME: If we have a volatile struct, the optimizer can remove what might 514 // appear to be `extra' memory ops: 515 // 516 // volatile struct { int i; } a, b; 517 // 518 // int main() { 519 // a = b; 520 // a = b; 521 // } 522 // 523 // either, we need to use a differnt call here, or the backend needs to be 524 // taught to not do this. We use isVolatile to indicate when either the 525 // source or the destination is volatile. 526 Builder.CreateCall4(CGM.getMemCpyFn(), 527 DestPtr, SrcPtr, 528 // TypeInfo.first describes size in bits. 529 llvm::ConstantInt::get(IntPtr, TypeInfo.first/8), 530 llvm::ConstantInt::get(llvm::Type::Int32Ty, 531 TypeInfo.second/8)); 532 } 533