1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Aggregate Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "CGObjCRuntime.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/StmtVisitor.h"
20 #include "llvm/Constants.h"
21 #include "llvm/Function.h"
22 #include "llvm/GlobalVariable.h"
23 #include "llvm/Support/Compiler.h"
24 #include "llvm/Intrinsics.h"
25 using namespace clang;
26 using namespace CodeGen;
27 
28 //===----------------------------------------------------------------------===//
29 //                        Aggregate Expression Emitter
30 //===----------------------------------------------------------------------===//
31 
32 namespace  {
33 class VISIBILITY_HIDDEN AggExprEmitter : public StmtVisitor<AggExprEmitter> {
34   CodeGenFunction &CGF;
35   CGBuilderTy &Builder;
36   llvm::Value *DestPtr;
37   bool VolatileDest;
38   bool IgnoreResult;
39   bool IsInitializer;
40 public:
41   AggExprEmitter(CodeGenFunction &cgf, llvm::Value *destPtr, bool v,
42                  bool ignore, bool isinit)
43     : CGF(cgf), Builder(CGF.Builder),
44       DestPtr(destPtr), VolatileDest(v), IgnoreResult(ignore),
45       IsInitializer(isinit) {
46   }
47 
48   //===--------------------------------------------------------------------===//
49   //                               Utilities
50   //===--------------------------------------------------------------------===//
51 
52   /// EmitAggLoadOfLValue - Given an expression with aggregate type that
53   /// represents a value lvalue, this method emits the address of the lvalue,
54   /// then loads the result into DestPtr.
55   void EmitAggLoadOfLValue(const Expr *E);
56 
57   /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
58   void EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore = false);
59   void EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore = false);
60 
61   //===--------------------------------------------------------------------===//
62   //                            Visitor Methods
63   //===--------------------------------------------------------------------===//
64 
65   void VisitStmt(Stmt *S) {
66     CGF.ErrorUnsupported(S, "aggregate expression");
67   }
68   void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
69   void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
70 
71   // l-values.
72   void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); }
73   void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
74   void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
75   void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
76   void VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
77     EmitAggLoadOfLValue(E);
78   }
79   void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
80     EmitAggLoadOfLValue(E);
81   }
82   void VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
83     EmitAggLoadOfLValue(E);
84   }
85   void VisitPredefinedExpr(const PredefinedExpr *E) {
86     EmitAggLoadOfLValue(E);
87   }
88 
89   // Operators.
90   void VisitCastExpr(CastExpr *E);
91   void VisitCallExpr(const CallExpr *E);
92   void VisitStmtExpr(const StmtExpr *E);
93   void VisitBinaryOperator(const BinaryOperator *BO);
94   void VisitBinAssign(const BinaryOperator *E);
95   void VisitBinComma(const BinaryOperator *E);
96 
97   void VisitObjCMessageExpr(ObjCMessageExpr *E);
98   void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
99     EmitAggLoadOfLValue(E);
100   }
101   void VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E);
102   void VisitObjCImplicitSetterGetterRefExpr(ObjCImplicitSetterGetterRefExpr *E);
103 
104   void VisitConditionalOperator(const ConditionalOperator *CO);
105   void VisitChooseExpr(const ChooseExpr *CE);
106   void VisitInitListExpr(InitListExpr *E);
107   void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
108     Visit(DAE->getExpr());
109   }
110   void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E);
111   void VisitCXXConstructExpr(const CXXConstructExpr *E);
112   void VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E);
113 
114   void VisitVAArgExpr(VAArgExpr *E);
115 
116   void EmitInitializationToLValue(Expr *E, LValue Address);
117   void EmitNullInitializationToLValue(LValue Address, QualType T);
118   //  case Expr::ChooseExprClass:
119 
120 };
121 }  // end anonymous namespace.
122 
123 //===----------------------------------------------------------------------===//
124 //                                Utilities
125 //===----------------------------------------------------------------------===//
126 
127 /// EmitAggLoadOfLValue - Given an expression with aggregate type that
128 /// represents a value lvalue, this method emits the address of the lvalue,
129 /// then loads the result into DestPtr.
130 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
131   LValue LV = CGF.EmitLValue(E);
132   EmitFinalDestCopy(E, LV);
133 }
134 
135 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
136 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore) {
137   assert(Src.isAggregate() && "value must be aggregate value!");
138 
139   // If the result is ignored, don't copy from the value.
140   if (DestPtr == 0) {
141     if (!Src.isVolatileQualified() || (IgnoreResult && Ignore))
142       return;
143     // If the source is volatile, we must read from it; to do that, we need
144     // some place to put it.
145     DestPtr = CGF.CreateTempAlloca(CGF.ConvertType(E->getType()), "agg.tmp");
146   }
147 
148   // If the result of the assignment is used, copy the LHS there also.
149   // FIXME: Pass VolatileDest as well.  I think we also need to merge volatile
150   // from the source as well, as we can't eliminate it if either operand
151   // is volatile, unless copy has volatile for both source and destination..
152   CGF.EmitAggregateCopy(DestPtr, Src.getAggregateAddr(), E->getType(),
153                         VolatileDest|Src.isVolatileQualified());
154 }
155 
156 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
157 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore) {
158   assert(Src.isSimple() && "Can't have aggregate bitfield, vector, etc");
159 
160   EmitFinalDestCopy(E, RValue::getAggregate(Src.getAddress(),
161                                             Src.isVolatileQualified()),
162                     Ignore);
163 }
164 
165 //===----------------------------------------------------------------------===//
166 //                            Visitor Methods
167 //===----------------------------------------------------------------------===//
168 
169 void AggExprEmitter::VisitCastExpr(CastExpr *E) {
170   if (E->getCastKind() == CastExpr::CK_ToUnion) {
171     // GCC union extension
172     QualType PtrTy =
173         CGF.getContext().getPointerType(E->getSubExpr()->getType());
174     llvm::Value *CastPtr = Builder.CreateBitCast(DestPtr,
175                                                  CGF.ConvertType(PtrTy));
176     EmitInitializationToLValue(E->getSubExpr(),
177                                LValue::MakeAddr(CastPtr, 0));
178     return;
179   }
180 
181   // FIXME: Remove the CK_Unknown check here.
182   assert((E->getCastKind() == CastExpr::CK_NoOp ||
183           E->getCastKind() == CastExpr::CK_Unknown) &&
184          "Only no-op casts allowed!");
185   assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(),
186                                                  E->getType()) &&
187          "Implicit cast types must be compatible");
188   Visit(E->getSubExpr());
189 }
190 
191 void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
192   if (E->getCallReturnType()->isReferenceType()) {
193     EmitAggLoadOfLValue(E);
194     return;
195   }
196 
197   RValue RV = CGF.EmitCallExpr(E);
198   EmitFinalDestCopy(E, RV);
199 }
200 
201 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
202   RValue RV = CGF.EmitObjCMessageExpr(E);
203   EmitFinalDestCopy(E, RV);
204 }
205 
206 void AggExprEmitter::VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
207   RValue RV = CGF.EmitObjCPropertyGet(E);
208   EmitFinalDestCopy(E, RV);
209 }
210 
211 void AggExprEmitter::VisitObjCImplicitSetterGetterRefExpr(
212                                    ObjCImplicitSetterGetterRefExpr *E) {
213   RValue RV = CGF.EmitObjCPropertyGet(E);
214   EmitFinalDestCopy(E, RV);
215 }
216 
217 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
218   CGF.EmitAnyExpr(E->getLHS(), 0, false, true);
219   CGF.EmitAggExpr(E->getRHS(), DestPtr, VolatileDest,
220                   /*IgnoreResult=*/false, IsInitializer);
221 }
222 
223 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
224   CGF.EmitCompoundStmt(*E->getSubStmt(), true, DestPtr, VolatileDest);
225 }
226 
227 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
228   CGF.ErrorUnsupported(E, "aggregate binary expression");
229 }
230 
231 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
232   // For an assignment to work, the value on the right has
233   // to be compatible with the value on the left.
234   assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
235                                                  E->getRHS()->getType())
236          && "Invalid assignment");
237   LValue LHS = CGF.EmitLValue(E->getLHS());
238 
239   // We have to special case property setters, otherwise we must have
240   // a simple lvalue (no aggregates inside vectors, bitfields).
241   if (LHS.isPropertyRef()) {
242     llvm::Value *AggLoc = DestPtr;
243     if (!AggLoc)
244       AggLoc = CGF.CreateTempAlloca(CGF.ConvertType(E->getRHS()->getType()));
245     CGF.EmitAggExpr(E->getRHS(), AggLoc, VolatileDest);
246     CGF.EmitObjCPropertySet(LHS.getPropertyRefExpr(),
247                             RValue::getAggregate(AggLoc, VolatileDest));
248   } else if (LHS.isKVCRef()) {
249     llvm::Value *AggLoc = DestPtr;
250     if (!AggLoc)
251       AggLoc = CGF.CreateTempAlloca(CGF.ConvertType(E->getRHS()->getType()));
252     CGF.EmitAggExpr(E->getRHS(), AggLoc, VolatileDest);
253     CGF.EmitObjCPropertySet(LHS.getKVCRefExpr(),
254                             RValue::getAggregate(AggLoc, VolatileDest));
255   } else {
256     if (CGF.getContext().getLangOptions().NeXTRuntime) {
257       QualType LHSTy = E->getLHS()->getType();
258       if (const RecordType *FDTTy = LHSTy.getTypePtr()->getAs<RecordType>())
259         if (FDTTy->getDecl()->hasObjectMember()) {
260           LValue RHS = CGF.EmitLValue(E->getRHS());
261           CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, LHS.getAddress(),
262                                       RHS.getAddress(),
263                                       CGF.getContext().getTypeSize(LHSTy) / 8);
264           return;
265         }
266     }
267     // Codegen the RHS so that it stores directly into the LHS.
268     CGF.EmitAggExpr(E->getRHS(), LHS.getAddress(), LHS.isVolatileQualified());
269     EmitFinalDestCopy(E, LHS, true);
270   }
271 }
272 
273 void AggExprEmitter::VisitConditionalOperator(const ConditionalOperator *E) {
274   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
275   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
276   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
277 
278   llvm::Value *Cond = CGF.EvaluateExprAsBool(E->getCond());
279   Builder.CreateCondBr(Cond, LHSBlock, RHSBlock);
280 
281   CGF.PushConditionalTempDestruction();
282   CGF.EmitBlock(LHSBlock);
283 
284   // Handle the GNU extension for missing LHS.
285   assert(E->getLHS() && "Must have LHS for aggregate value");
286 
287   Visit(E->getLHS());
288   CGF.PopConditionalTempDestruction();
289   CGF.EmitBranch(ContBlock);
290 
291   CGF.PushConditionalTempDestruction();
292   CGF.EmitBlock(RHSBlock);
293 
294   Visit(E->getRHS());
295   CGF.PopConditionalTempDestruction();
296   CGF.EmitBranch(ContBlock);
297 
298   CGF.EmitBlock(ContBlock);
299 }
300 
301 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) {
302   Visit(CE->getChosenSubExpr(CGF.getContext()));
303 }
304 
305 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
306   llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
307   llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
308 
309   if (!ArgPtr) {
310     CGF.ErrorUnsupported(VE, "aggregate va_arg expression");
311     return;
312   }
313 
314   EmitFinalDestCopy(VE, LValue::MakeAddr(ArgPtr, 0));
315 }
316 
317 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
318   llvm::Value *Val = DestPtr;
319 
320   if (!Val) {
321     // Create a temporary variable.
322     Val = CGF.CreateTempAlloca(CGF.ConvertTypeForMem(E->getType()), "tmp");
323 
324     // FIXME: volatile
325     CGF.EmitAggExpr(E->getSubExpr(), Val, false);
326   } else
327     Visit(E->getSubExpr());
328 
329   // Don't make this a live temporary if we're emitting an initializer expr.
330   if (!IsInitializer)
331     CGF.PushCXXTemporary(E->getTemporary(), Val);
332 }
333 
334 void
335 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) {
336   llvm::Value *Val = DestPtr;
337 
338   if (!Val) {
339     // Create a temporary variable.
340     Val = CGF.CreateTempAlloca(CGF.ConvertTypeForMem(E->getType()), "tmp");
341   }
342 
343   CGF.EmitCXXConstructExpr(Val, E);
344 }
345 
346 void AggExprEmitter::VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E) {
347   CGF.EmitCXXExprWithTemporaries(E, DestPtr, VolatileDest, IsInitializer);
348 }
349 
350 void AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV) {
351   // FIXME: Ignore result?
352   // FIXME: Are initializers affected by volatile?
353   if (isa<ImplicitValueInitExpr>(E)) {
354     EmitNullInitializationToLValue(LV, E->getType());
355   } else if (E->getType()->isComplexType()) {
356     CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false);
357   } else if (CGF.hasAggregateLLVMType(E->getType())) {
358     CGF.EmitAnyExpr(E, LV.getAddress(), false);
359   } else {
360     CGF.EmitStoreThroughLValue(CGF.EmitAnyExpr(E), LV, E->getType());
361   }
362 }
363 
364 void AggExprEmitter::EmitNullInitializationToLValue(LValue LV, QualType T) {
365   if (!CGF.hasAggregateLLVMType(T)) {
366     // For non-aggregates, we can store zero
367     llvm::Value *Null = llvm::Constant::getNullValue(CGF.ConvertType(T));
368     CGF.EmitStoreThroughLValue(RValue::get(Null), LV, T);
369   } else {
370     // Otherwise, just memset the whole thing to zero.  This is legal
371     // because in LLVM, all default initializers are guaranteed to have a
372     // bit pattern of all zeros.
373     // FIXME: That isn't true for member pointers!
374     // There's a potential optimization opportunity in combining
375     // memsets; that would be easy for arrays, but relatively
376     // difficult for structures with the current code.
377     CGF.EmitMemSetToZero(LV.getAddress(), T);
378   }
379 }
380 
381 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
382 #if 0
383   // FIXME: Disabled while we figure out what to do about
384   // test/CodeGen/bitfield.c
385   //
386   // If we can, prefer a copy from a global; this is a lot less code for long
387   // globals, and it's easier for the current optimizers to analyze.
388   // FIXME: Should we really be doing this? Should we try to avoid cases where
389   // we emit a global with a lot of zeros?  Should we try to avoid short
390   // globals?
391   if (E->isConstantInitializer(CGF.getContext(), 0)) {
392     llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, &CGF);
393     llvm::GlobalVariable* GV =
394     new llvm::GlobalVariable(C->getType(), true,
395                              llvm::GlobalValue::InternalLinkage,
396                              C, "", &CGF.CGM.getModule(), 0);
397     EmitFinalDestCopy(E, LValue::MakeAddr(GV, 0));
398     return;
399   }
400 #endif
401   if (E->hadArrayRangeDesignator()) {
402     CGF.ErrorUnsupported(E, "GNU array range designator extension");
403   }
404 
405   // Handle initialization of an array.
406   if (E->getType()->isArrayType()) {
407     const llvm::PointerType *APType =
408       cast<llvm::PointerType>(DestPtr->getType());
409     const llvm::ArrayType *AType =
410       cast<llvm::ArrayType>(APType->getElementType());
411 
412     uint64_t NumInitElements = E->getNumInits();
413 
414     if (E->getNumInits() > 0) {
415       QualType T1 = E->getType();
416       QualType T2 = E->getInit(0)->getType();
417       if (CGF.getContext().hasSameUnqualifiedType(T1, T2)) {
418         EmitAggLoadOfLValue(E->getInit(0));
419         return;
420       }
421     }
422 
423     uint64_t NumArrayElements = AType->getNumElements();
424     QualType ElementType = CGF.getContext().getCanonicalType(E->getType());
425     ElementType = CGF.getContext().getAsArrayType(ElementType)->getElementType();
426 
427     unsigned CVRqualifier = ElementType.getCVRQualifiers();
428 
429     for (uint64_t i = 0; i != NumArrayElements; ++i) {
430       llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array");
431       if (i < NumInitElements)
432         EmitInitializationToLValue(E->getInit(i),
433                                    LValue::MakeAddr(NextVal, CVRqualifier));
434       else
435         EmitNullInitializationToLValue(LValue::MakeAddr(NextVal, CVRqualifier),
436                                        ElementType);
437     }
438     return;
439   }
440 
441   assert(E->getType()->isRecordType() && "Only support structs/unions here!");
442 
443   // Do struct initialization; this code just sets each individual member
444   // to the approprate value.  This makes bitfield support automatic;
445   // the disadvantage is that the generated code is more difficult for
446   // the optimizer, especially with bitfields.
447   unsigned NumInitElements = E->getNumInits();
448   RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl();
449   unsigned CurInitVal = 0;
450 
451   if (E->getType()->isUnionType()) {
452     // Only initialize one field of a union. The field itself is
453     // specified by the initializer list.
454     if (!E->getInitializedFieldInUnion()) {
455       // Empty union; we have nothing to do.
456 
457 #ifndef NDEBUG
458       // Make sure that it's really an empty and not a failure of
459       // semantic analysis.
460       for (RecordDecl::field_iterator Field = SD->field_begin(),
461                                    FieldEnd = SD->field_end();
462            Field != FieldEnd; ++Field)
463         assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed");
464 #endif
465       return;
466     }
467 
468     // FIXME: volatility
469     FieldDecl *Field = E->getInitializedFieldInUnion();
470     LValue FieldLoc = CGF.EmitLValueForField(DestPtr, Field, true, 0);
471 
472     if (NumInitElements) {
473       // Store the initializer into the field
474       EmitInitializationToLValue(E->getInit(0), FieldLoc);
475     } else {
476       // Default-initialize to null
477       EmitNullInitializationToLValue(FieldLoc, Field->getType());
478     }
479 
480     return;
481   }
482 
483   // Here we iterate over the fields; this makes it simpler to both
484   // default-initialize fields and skip over unnamed fields.
485   for (RecordDecl::field_iterator Field = SD->field_begin(),
486                                FieldEnd = SD->field_end();
487        Field != FieldEnd; ++Field) {
488     // We're done once we hit the flexible array member
489     if (Field->getType()->isIncompleteArrayType())
490       break;
491 
492     if (Field->isUnnamedBitfield())
493       continue;
494 
495     // FIXME: volatility
496     LValue FieldLoc = CGF.EmitLValueForField(DestPtr, *Field, false, 0);
497     // We never generate write-barries for initialized fields.
498     LValue::SetObjCNonGC(FieldLoc, true);
499     if (CurInitVal < NumInitElements) {
500       // Store the initializer into the field
501       EmitInitializationToLValue(E->getInit(CurInitVal++), FieldLoc);
502     } else {
503       // We're out of initalizers; default-initialize to null
504       EmitNullInitializationToLValue(FieldLoc, Field->getType());
505     }
506   }
507 }
508 
509 //===----------------------------------------------------------------------===//
510 //                        Entry Points into this File
511 //===----------------------------------------------------------------------===//
512 
513 /// EmitAggExpr - Emit the computation of the specified expression of aggregate
514 /// type.  The result is computed into DestPtr.  Note that if DestPtr is null,
515 /// the value of the aggregate expression is not needed.  If VolatileDest is
516 /// true, DestPtr cannot be 0.
517 void CodeGenFunction::EmitAggExpr(const Expr *E, llvm::Value *DestPtr,
518                                   bool VolatileDest, bool IgnoreResult,
519                                   bool IsInitializer) {
520   assert(E && hasAggregateLLVMType(E->getType()) &&
521          "Invalid aggregate expression to emit");
522   assert ((DestPtr != 0 || VolatileDest == false)
523           && "volatile aggregate can't be 0");
524 
525   AggExprEmitter(*this, DestPtr, VolatileDest, IgnoreResult, IsInitializer)
526     .Visit(const_cast<Expr*>(E));
527 }
528 
529 void CodeGenFunction::EmitAggregateClear(llvm::Value *DestPtr, QualType Ty) {
530   assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
531 
532   EmitMemSetToZero(DestPtr, Ty);
533 }
534 
535 void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr,
536                                         llvm::Value *SrcPtr, QualType Ty,
537                                         bool isVolatile) {
538   assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
539 
540   // Aggregate assignment turns into llvm.memcpy.  This is almost valid per
541   // C99 6.5.16.1p3, which states "If the value being stored in an object is
542   // read from another object that overlaps in anyway the storage of the first
543   // object, then the overlap shall be exact and the two objects shall have
544   // qualified or unqualified versions of a compatible type."
545   //
546   // memcpy is not defined if the source and destination pointers are exactly
547   // equal, but other compilers do this optimization, and almost every memcpy
548   // implementation handles this case safely.  If there is a libc that does not
549   // safely handle this, we can add a target hook.
550   const llvm::Type *BP =
551                 llvm::PointerType::getUnqual(llvm::Type::getInt8Ty(VMContext));
552   if (DestPtr->getType() != BP)
553     DestPtr = Builder.CreateBitCast(DestPtr, BP, "tmp");
554   if (SrcPtr->getType() != BP)
555     SrcPtr = Builder.CreateBitCast(SrcPtr, BP, "tmp");
556 
557   // Get size and alignment info for this aggregate.
558   std::pair<uint64_t, unsigned> TypeInfo = getContext().getTypeInfo(Ty);
559 
560   // FIXME: Handle variable sized types.
561   const llvm::Type *IntPtr =
562           llvm::IntegerType::get(VMContext, LLVMPointerWidth);
563 
564   // FIXME: If we have a volatile struct, the optimizer can remove what might
565   // appear to be `extra' memory ops:
566   //
567   // volatile struct { int i; } a, b;
568   //
569   // int main() {
570   //   a = b;
571   //   a = b;
572   // }
573   //
574   // we need to use a differnt call here.  We use isVolatile to indicate when
575   // either the source or the destination is volatile.
576   Builder.CreateCall4(CGM.getMemCpyFn(),
577                       DestPtr, SrcPtr,
578                       // TypeInfo.first describes size in bits.
579                       llvm::ConstantInt::get(IntPtr, TypeInfo.first/8),
580                       llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
581                                              TypeInfo.second/8));
582 }
583