1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Aggregate Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGObjCRuntime.h" 16 #include "CodeGenModule.h" 17 #include "clang/AST/ASTContext.h" 18 #include "clang/AST/DeclCXX.h" 19 #include "clang/AST/DeclTemplate.h" 20 #include "clang/AST/StmtVisitor.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/Function.h" 23 #include "llvm/IR/GlobalVariable.h" 24 #include "llvm/IR/Intrinsics.h" 25 using namespace clang; 26 using namespace CodeGen; 27 28 //===----------------------------------------------------------------------===// 29 // Aggregate Expression Emitter 30 //===----------------------------------------------------------------------===// 31 32 namespace { 33 class AggExprEmitter : public StmtVisitor<AggExprEmitter> { 34 CodeGenFunction &CGF; 35 CGBuilderTy &Builder; 36 AggValueSlot Dest; 37 38 /// We want to use 'dest' as the return slot except under two 39 /// conditions: 40 /// - The destination slot requires garbage collection, so we 41 /// need to use the GC API. 42 /// - The destination slot is potentially aliased. 43 bool shouldUseDestForReturnSlot() const { 44 return !(Dest.requiresGCollection() || Dest.isPotentiallyAliased()); 45 } 46 47 ReturnValueSlot getReturnValueSlot() const { 48 if (!shouldUseDestForReturnSlot()) 49 return ReturnValueSlot(); 50 51 return ReturnValueSlot(Dest.getAddr(), Dest.isVolatile()); 52 } 53 54 AggValueSlot EnsureSlot(QualType T) { 55 if (!Dest.isIgnored()) return Dest; 56 return CGF.CreateAggTemp(T, "agg.tmp.ensured"); 57 } 58 void EnsureDest(QualType T) { 59 if (!Dest.isIgnored()) return; 60 Dest = CGF.CreateAggTemp(T, "agg.tmp.ensured"); 61 } 62 63 public: 64 AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest) 65 : CGF(cgf), Builder(CGF.Builder), Dest(Dest) { 66 } 67 68 //===--------------------------------------------------------------------===// 69 // Utilities 70 //===--------------------------------------------------------------------===// 71 72 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 73 /// represents a value lvalue, this method emits the address of the lvalue, 74 /// then loads the result into DestPtr. 75 void EmitAggLoadOfLValue(const Expr *E); 76 77 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 78 void EmitFinalDestCopy(QualType type, const LValue &src); 79 void EmitFinalDestCopy(QualType type, RValue src, 80 CharUnits srcAlignment = CharUnits::Zero()); 81 void EmitCopy(QualType type, const AggValueSlot &dest, 82 const AggValueSlot &src); 83 84 void EmitMoveFromReturnSlot(const Expr *E, RValue Src); 85 86 void EmitArrayInit(llvm::Value *DestPtr, llvm::ArrayType *AType, 87 QualType elementType, InitListExpr *E); 88 89 AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) { 90 if (CGF.getLangOpts().getGC() && TypeRequiresGCollection(T)) 91 return AggValueSlot::NeedsGCBarriers; 92 return AggValueSlot::DoesNotNeedGCBarriers; 93 } 94 95 bool TypeRequiresGCollection(QualType T); 96 97 //===--------------------------------------------------------------------===// 98 // Visitor Methods 99 //===--------------------------------------------------------------------===// 100 101 void VisitStmt(Stmt *S) { 102 CGF.ErrorUnsupported(S, "aggregate expression"); 103 } 104 void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); } 105 void VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 106 Visit(GE->getResultExpr()); 107 } 108 void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); } 109 void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 110 return Visit(E->getReplacement()); 111 } 112 113 // l-values. 114 void VisitDeclRefExpr(DeclRefExpr *E) { 115 // For aggregates, we should always be able to emit the variable 116 // as an l-value unless it's a reference. This is due to the fact 117 // that we can't actually ever see a normal l2r conversion on an 118 // aggregate in C++, and in C there's no language standard 119 // actively preventing us from listing variables in the captures 120 // list of a block. 121 if (E->getDecl()->getType()->isReferenceType()) { 122 if (CodeGenFunction::ConstantEmission result 123 = CGF.tryEmitAsConstant(E)) { 124 EmitFinalDestCopy(E->getType(), result.getReferenceLValue(CGF, E)); 125 return; 126 } 127 } 128 129 EmitAggLoadOfLValue(E); 130 } 131 132 void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); } 133 void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); } 134 void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); } 135 void VisitCompoundLiteralExpr(CompoundLiteralExpr *E); 136 void VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 137 EmitAggLoadOfLValue(E); 138 } 139 void VisitPredefinedExpr(const PredefinedExpr *E) { 140 EmitAggLoadOfLValue(E); 141 } 142 143 // Operators. 144 void VisitCastExpr(CastExpr *E); 145 void VisitCallExpr(const CallExpr *E); 146 void VisitStmtExpr(const StmtExpr *E); 147 void VisitBinaryOperator(const BinaryOperator *BO); 148 void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO); 149 void VisitBinAssign(const BinaryOperator *E); 150 void VisitBinComma(const BinaryOperator *E); 151 152 void VisitObjCMessageExpr(ObjCMessageExpr *E); 153 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 154 EmitAggLoadOfLValue(E); 155 } 156 157 void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO); 158 void VisitChooseExpr(const ChooseExpr *CE); 159 void VisitInitListExpr(InitListExpr *E); 160 void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E); 161 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 162 Visit(DAE->getExpr()); 163 } 164 void VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 165 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF); 166 Visit(DIE->getExpr()); 167 } 168 void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E); 169 void VisitCXXConstructExpr(const CXXConstructExpr *E); 170 void VisitLambdaExpr(LambdaExpr *E); 171 void VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E); 172 void VisitExprWithCleanups(ExprWithCleanups *E); 173 void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E); 174 void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); } 175 void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E); 176 void VisitOpaqueValueExpr(OpaqueValueExpr *E); 177 178 void VisitPseudoObjectExpr(PseudoObjectExpr *E) { 179 if (E->isGLValue()) { 180 LValue LV = CGF.EmitPseudoObjectLValue(E); 181 return EmitFinalDestCopy(E->getType(), LV); 182 } 183 184 CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType())); 185 } 186 187 void VisitVAArgExpr(VAArgExpr *E); 188 189 void EmitInitializationToLValue(Expr *E, LValue Address); 190 void EmitNullInitializationToLValue(LValue Address); 191 // case Expr::ChooseExprClass: 192 void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); } 193 void VisitAtomicExpr(AtomicExpr *E) { 194 CGF.EmitAtomicExpr(E, EnsureSlot(E->getType()).getAddr()); 195 } 196 }; 197 } // end anonymous namespace. 198 199 //===----------------------------------------------------------------------===// 200 // Utilities 201 //===----------------------------------------------------------------------===// 202 203 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 204 /// represents a value lvalue, this method emits the address of the lvalue, 205 /// then loads the result into DestPtr. 206 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) { 207 LValue LV = CGF.EmitLValue(E); 208 209 // If the type of the l-value is atomic, then do an atomic load. 210 if (LV.getType()->isAtomicType()) { 211 CGF.EmitAtomicLoad(LV, E->getExprLoc(), Dest); 212 return; 213 } 214 215 EmitFinalDestCopy(E->getType(), LV); 216 } 217 218 /// \brief True if the given aggregate type requires special GC API calls. 219 bool AggExprEmitter::TypeRequiresGCollection(QualType T) { 220 // Only record types have members that might require garbage collection. 221 const RecordType *RecordTy = T->getAs<RecordType>(); 222 if (!RecordTy) return false; 223 224 // Don't mess with non-trivial C++ types. 225 RecordDecl *Record = RecordTy->getDecl(); 226 if (isa<CXXRecordDecl>(Record) && 227 (cast<CXXRecordDecl>(Record)->hasNonTrivialCopyConstructor() || 228 !cast<CXXRecordDecl>(Record)->hasTrivialDestructor())) 229 return false; 230 231 // Check whether the type has an object member. 232 return Record->hasObjectMember(); 233 } 234 235 /// \brief Perform the final move to DestPtr if for some reason 236 /// getReturnValueSlot() didn't use it directly. 237 /// 238 /// The idea is that you do something like this: 239 /// RValue Result = EmitSomething(..., getReturnValueSlot()); 240 /// EmitMoveFromReturnSlot(E, Result); 241 /// 242 /// If nothing interferes, this will cause the result to be emitted 243 /// directly into the return value slot. Otherwise, a final move 244 /// will be performed. 245 void AggExprEmitter::EmitMoveFromReturnSlot(const Expr *E, RValue src) { 246 if (shouldUseDestForReturnSlot()) { 247 // Logically, Dest.getAddr() should equal Src.getAggregateAddr(). 248 // The possibility of undef rvalues complicates that a lot, 249 // though, so we can't really assert. 250 return; 251 } 252 253 // Otherwise, copy from there to the destination. 254 assert(Dest.getAddr() != src.getAggregateAddr()); 255 std::pair<CharUnits, CharUnits> typeInfo = 256 CGF.getContext().getTypeInfoInChars(E->getType()); 257 EmitFinalDestCopy(E->getType(), src, typeInfo.second); 258 } 259 260 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 261 void AggExprEmitter::EmitFinalDestCopy(QualType type, RValue src, 262 CharUnits srcAlign) { 263 assert(src.isAggregate() && "value must be aggregate value!"); 264 LValue srcLV = CGF.MakeAddrLValue(src.getAggregateAddr(), type, srcAlign); 265 EmitFinalDestCopy(type, srcLV); 266 } 267 268 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 269 void AggExprEmitter::EmitFinalDestCopy(QualType type, const LValue &src) { 270 // If Dest is ignored, then we're evaluating an aggregate expression 271 // in a context that doesn't care about the result. Note that loads 272 // from volatile l-values force the existence of a non-ignored 273 // destination. 274 if (Dest.isIgnored()) 275 return; 276 277 AggValueSlot srcAgg = 278 AggValueSlot::forLValue(src, AggValueSlot::IsDestructed, 279 needsGC(type), AggValueSlot::IsAliased); 280 EmitCopy(type, Dest, srcAgg); 281 } 282 283 /// Perform a copy from the source into the destination. 284 /// 285 /// \param type - the type of the aggregate being copied; qualifiers are 286 /// ignored 287 void AggExprEmitter::EmitCopy(QualType type, const AggValueSlot &dest, 288 const AggValueSlot &src) { 289 if (dest.requiresGCollection()) { 290 CharUnits sz = CGF.getContext().getTypeSizeInChars(type); 291 llvm::Value *size = llvm::ConstantInt::get(CGF.SizeTy, sz.getQuantity()); 292 CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, 293 dest.getAddr(), 294 src.getAddr(), 295 size); 296 return; 297 } 298 299 // If the result of the assignment is used, copy the LHS there also. 300 // It's volatile if either side is. Use the minimum alignment of 301 // the two sides. 302 CGF.EmitAggregateCopy(dest.getAddr(), src.getAddr(), type, 303 dest.isVolatile() || src.isVolatile(), 304 std::min(dest.getAlignment(), src.getAlignment())); 305 } 306 307 /// \brief Emit the initializer for a std::initializer_list initialized with a 308 /// real initializer list. 309 void 310 AggExprEmitter::VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E) { 311 // Emit an array containing the elements. The array is externally destructed 312 // if the std::initializer_list object is. 313 ASTContext &Ctx = CGF.getContext(); 314 LValue Array = CGF.EmitLValue(E->getSubExpr()); 315 assert(Array.isSimple() && "initializer_list array not a simple lvalue"); 316 llvm::Value *ArrayPtr = Array.getAddress(); 317 318 const ConstantArrayType *ArrayType = 319 Ctx.getAsConstantArrayType(E->getSubExpr()->getType()); 320 assert(ArrayType && "std::initializer_list constructed from non-array"); 321 322 // FIXME: Perform the checks on the field types in SemaInit. 323 RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl(); 324 RecordDecl::field_iterator Field = Record->field_begin(); 325 if (Field == Record->field_end()) { 326 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 327 return; 328 } 329 330 // Start pointer. 331 if (!Field->getType()->isPointerType() || 332 !Ctx.hasSameType(Field->getType()->getPointeeType(), 333 ArrayType->getElementType())) { 334 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 335 return; 336 } 337 338 AggValueSlot Dest = EnsureSlot(E->getType()); 339 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddr(), E->getType(), 340 Dest.getAlignment()); 341 LValue Start = CGF.EmitLValueForFieldInitialization(DestLV, *Field); 342 llvm::Value *Zero = llvm::ConstantInt::get(CGF.PtrDiffTy, 0); 343 llvm::Value *IdxStart[] = { Zero, Zero }; 344 llvm::Value *ArrayStart = 345 Builder.CreateInBoundsGEP(ArrayPtr, IdxStart, "arraystart"); 346 CGF.EmitStoreThroughLValue(RValue::get(ArrayStart), Start); 347 ++Field; 348 349 if (Field == Record->field_end()) { 350 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 351 return; 352 } 353 354 llvm::Value *Size = Builder.getInt(ArrayType->getSize()); 355 LValue EndOrLength = CGF.EmitLValueForFieldInitialization(DestLV, *Field); 356 if (Field->getType()->isPointerType() && 357 Ctx.hasSameType(Field->getType()->getPointeeType(), 358 ArrayType->getElementType())) { 359 // End pointer. 360 llvm::Value *IdxEnd[] = { Zero, Size }; 361 llvm::Value *ArrayEnd = 362 Builder.CreateInBoundsGEP(ArrayPtr, IdxEnd, "arrayend"); 363 CGF.EmitStoreThroughLValue(RValue::get(ArrayEnd), EndOrLength); 364 } else if (Ctx.hasSameType(Field->getType(), Ctx.getSizeType())) { 365 // Length. 366 CGF.EmitStoreThroughLValue(RValue::get(Size), EndOrLength); 367 } else { 368 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 369 return; 370 } 371 } 372 373 /// \brief Emit initialization of an array from an initializer list. 374 void AggExprEmitter::EmitArrayInit(llvm::Value *DestPtr, llvm::ArrayType *AType, 375 QualType elementType, InitListExpr *E) { 376 uint64_t NumInitElements = E->getNumInits(); 377 378 uint64_t NumArrayElements = AType->getNumElements(); 379 assert(NumInitElements <= NumArrayElements); 380 381 // DestPtr is an array*. Construct an elementType* by drilling 382 // down a level. 383 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 384 llvm::Value *indices[] = { zero, zero }; 385 llvm::Value *begin = 386 Builder.CreateInBoundsGEP(DestPtr, indices, "arrayinit.begin"); 387 388 // Exception safety requires us to destroy all the 389 // already-constructed members if an initializer throws. 390 // For that, we'll need an EH cleanup. 391 QualType::DestructionKind dtorKind = elementType.isDestructedType(); 392 llvm::AllocaInst *endOfInit = 0; 393 EHScopeStack::stable_iterator cleanup; 394 llvm::Instruction *cleanupDominator = 0; 395 if (CGF.needsEHCleanup(dtorKind)) { 396 // In principle we could tell the cleanup where we are more 397 // directly, but the control flow can get so varied here that it 398 // would actually be quite complex. Therefore we go through an 399 // alloca. 400 endOfInit = CGF.CreateTempAlloca(begin->getType(), 401 "arrayinit.endOfInit"); 402 cleanupDominator = Builder.CreateStore(begin, endOfInit); 403 CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType, 404 CGF.getDestroyer(dtorKind)); 405 cleanup = CGF.EHStack.stable_begin(); 406 407 // Otherwise, remember that we didn't need a cleanup. 408 } else { 409 dtorKind = QualType::DK_none; 410 } 411 412 llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1); 413 414 // The 'current element to initialize'. The invariants on this 415 // variable are complicated. Essentially, after each iteration of 416 // the loop, it points to the last initialized element, except 417 // that it points to the beginning of the array before any 418 // elements have been initialized. 419 llvm::Value *element = begin; 420 421 // Emit the explicit initializers. 422 for (uint64_t i = 0; i != NumInitElements; ++i) { 423 // Advance to the next element. 424 if (i > 0) { 425 element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element"); 426 427 // Tell the cleanup that it needs to destroy up to this 428 // element. TODO: some of these stores can be trivially 429 // observed to be unnecessary. 430 if (endOfInit) Builder.CreateStore(element, endOfInit); 431 } 432 433 LValue elementLV = CGF.MakeAddrLValue(element, elementType); 434 EmitInitializationToLValue(E->getInit(i), elementLV); 435 } 436 437 // Check whether there's a non-trivial array-fill expression. 438 // Note that this will be a CXXConstructExpr even if the element 439 // type is an array (or array of array, etc.) of class type. 440 Expr *filler = E->getArrayFiller(); 441 bool hasTrivialFiller = true; 442 if (CXXConstructExpr *cons = dyn_cast_or_null<CXXConstructExpr>(filler)) { 443 assert(cons->getConstructor()->isDefaultConstructor()); 444 hasTrivialFiller = cons->getConstructor()->isTrivial(); 445 } 446 447 // Any remaining elements need to be zero-initialized, possibly 448 // using the filler expression. We can skip this if the we're 449 // emitting to zeroed memory. 450 if (NumInitElements != NumArrayElements && 451 !(Dest.isZeroed() && hasTrivialFiller && 452 CGF.getTypes().isZeroInitializable(elementType))) { 453 454 // Use an actual loop. This is basically 455 // do { *array++ = filler; } while (array != end); 456 457 // Advance to the start of the rest of the array. 458 if (NumInitElements) { 459 element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start"); 460 if (endOfInit) Builder.CreateStore(element, endOfInit); 461 } 462 463 // Compute the end of the array. 464 llvm::Value *end = Builder.CreateInBoundsGEP(begin, 465 llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements), 466 "arrayinit.end"); 467 468 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 469 llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body"); 470 471 // Jump into the body. 472 CGF.EmitBlock(bodyBB); 473 llvm::PHINode *currentElement = 474 Builder.CreatePHI(element->getType(), 2, "arrayinit.cur"); 475 currentElement->addIncoming(element, entryBB); 476 477 // Emit the actual filler expression. 478 LValue elementLV = CGF.MakeAddrLValue(currentElement, elementType); 479 if (filler) 480 EmitInitializationToLValue(filler, elementLV); 481 else 482 EmitNullInitializationToLValue(elementLV); 483 484 // Move on to the next element. 485 llvm::Value *nextElement = 486 Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next"); 487 488 // Tell the EH cleanup that we finished with the last element. 489 if (endOfInit) Builder.CreateStore(nextElement, endOfInit); 490 491 // Leave the loop if we're done. 492 llvm::Value *done = Builder.CreateICmpEQ(nextElement, end, 493 "arrayinit.done"); 494 llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end"); 495 Builder.CreateCondBr(done, endBB, bodyBB); 496 currentElement->addIncoming(nextElement, Builder.GetInsertBlock()); 497 498 CGF.EmitBlock(endBB); 499 } 500 501 // Leave the partial-array cleanup if we entered one. 502 if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator); 503 } 504 505 //===----------------------------------------------------------------------===// 506 // Visitor Methods 507 //===----------------------------------------------------------------------===// 508 509 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){ 510 Visit(E->GetTemporaryExpr()); 511 } 512 513 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) { 514 EmitFinalDestCopy(e->getType(), CGF.getOpaqueLValueMapping(e)); 515 } 516 517 void 518 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 519 if (Dest.isPotentiallyAliased() && 520 E->getType().isPODType(CGF.getContext())) { 521 // For a POD type, just emit a load of the lvalue + a copy, because our 522 // compound literal might alias the destination. 523 EmitAggLoadOfLValue(E); 524 return; 525 } 526 527 AggValueSlot Slot = EnsureSlot(E->getType()); 528 CGF.EmitAggExpr(E->getInitializer(), Slot); 529 } 530 531 /// Attempt to look through various unimportant expressions to find a 532 /// cast of the given kind. 533 static Expr *findPeephole(Expr *op, CastKind kind) { 534 while (true) { 535 op = op->IgnoreParens(); 536 if (CastExpr *castE = dyn_cast<CastExpr>(op)) { 537 if (castE->getCastKind() == kind) 538 return castE->getSubExpr(); 539 if (castE->getCastKind() == CK_NoOp) 540 continue; 541 } 542 return 0; 543 } 544 } 545 546 void AggExprEmitter::VisitCastExpr(CastExpr *E) { 547 switch (E->getCastKind()) { 548 case CK_Dynamic: { 549 // FIXME: Can this actually happen? We have no test coverage for it. 550 assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?"); 551 LValue LV = CGF.EmitCheckedLValue(E->getSubExpr(), 552 CodeGenFunction::TCK_Load); 553 // FIXME: Do we also need to handle property references here? 554 if (LV.isSimple()) 555 CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E)); 556 else 557 CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast"); 558 559 if (!Dest.isIgnored()) 560 CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination"); 561 break; 562 } 563 564 case CK_ToUnion: { 565 if (Dest.isIgnored()) break; 566 567 // GCC union extension 568 QualType Ty = E->getSubExpr()->getType(); 569 QualType PtrTy = CGF.getContext().getPointerType(Ty); 570 llvm::Value *CastPtr = Builder.CreateBitCast(Dest.getAddr(), 571 CGF.ConvertType(PtrTy)); 572 EmitInitializationToLValue(E->getSubExpr(), 573 CGF.MakeAddrLValue(CastPtr, Ty)); 574 break; 575 } 576 577 case CK_DerivedToBase: 578 case CK_BaseToDerived: 579 case CK_UncheckedDerivedToBase: { 580 llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: " 581 "should have been unpacked before we got here"); 582 } 583 584 case CK_NonAtomicToAtomic: 585 case CK_AtomicToNonAtomic: { 586 bool isToAtomic = (E->getCastKind() == CK_NonAtomicToAtomic); 587 588 // Determine the atomic and value types. 589 QualType atomicType = E->getSubExpr()->getType(); 590 QualType valueType = E->getType(); 591 if (isToAtomic) std::swap(atomicType, valueType); 592 593 assert(atomicType->isAtomicType()); 594 assert(CGF.getContext().hasSameUnqualifiedType(valueType, 595 atomicType->castAs<AtomicType>()->getValueType())); 596 597 // Just recurse normally if we're ignoring the result or the 598 // atomic type doesn't change representation. 599 if (Dest.isIgnored() || !CGF.CGM.isPaddedAtomicType(atomicType)) { 600 return Visit(E->getSubExpr()); 601 } 602 603 CastKind peepholeTarget = 604 (isToAtomic ? CK_AtomicToNonAtomic : CK_NonAtomicToAtomic); 605 606 // These two cases are reverses of each other; try to peephole them. 607 if (Expr *op = findPeephole(E->getSubExpr(), peepholeTarget)) { 608 assert(CGF.getContext().hasSameUnqualifiedType(op->getType(), 609 E->getType()) && 610 "peephole significantly changed types?"); 611 return Visit(op); 612 } 613 614 // If we're converting an r-value of non-atomic type to an r-value 615 // of atomic type, just emit directly into the relevant sub-object. 616 if (isToAtomic) { 617 AggValueSlot valueDest = Dest; 618 if (!valueDest.isIgnored() && CGF.CGM.isPaddedAtomicType(atomicType)) { 619 // Zero-initialize. (Strictly speaking, we only need to intialize 620 // the padding at the end, but this is simpler.) 621 if (!Dest.isZeroed()) 622 CGF.EmitNullInitialization(Dest.getAddr(), atomicType); 623 624 // Build a GEP to refer to the subobject. 625 llvm::Value *valueAddr = 626 CGF.Builder.CreateStructGEP(valueDest.getAddr(), 0); 627 valueDest = AggValueSlot::forAddr(valueAddr, 628 valueDest.getAlignment(), 629 valueDest.getQualifiers(), 630 valueDest.isExternallyDestructed(), 631 valueDest.requiresGCollection(), 632 valueDest.isPotentiallyAliased(), 633 AggValueSlot::IsZeroed); 634 } 635 636 CGF.EmitAggExpr(E->getSubExpr(), valueDest); 637 return; 638 } 639 640 // Otherwise, we're converting an atomic type to a non-atomic type. 641 // Make an atomic temporary, emit into that, and then copy the value out. 642 AggValueSlot atomicSlot = 643 CGF.CreateAggTemp(atomicType, "atomic-to-nonatomic.temp"); 644 CGF.EmitAggExpr(E->getSubExpr(), atomicSlot); 645 646 llvm::Value *valueAddr = 647 Builder.CreateStructGEP(atomicSlot.getAddr(), 0); 648 RValue rvalue = RValue::getAggregate(valueAddr, atomicSlot.isVolatile()); 649 return EmitFinalDestCopy(valueType, rvalue); 650 } 651 652 case CK_LValueToRValue: 653 // If we're loading from a volatile type, force the destination 654 // into existence. 655 if (E->getSubExpr()->getType().isVolatileQualified()) { 656 EnsureDest(E->getType()); 657 return Visit(E->getSubExpr()); 658 } 659 660 // fallthrough 661 662 case CK_NoOp: 663 case CK_UserDefinedConversion: 664 case CK_ConstructorConversion: 665 assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(), 666 E->getType()) && 667 "Implicit cast types must be compatible"); 668 Visit(E->getSubExpr()); 669 break; 670 671 case CK_LValueBitCast: 672 llvm_unreachable("should not be emitting lvalue bitcast as rvalue"); 673 674 case CK_Dependent: 675 case CK_BitCast: 676 case CK_ArrayToPointerDecay: 677 case CK_FunctionToPointerDecay: 678 case CK_NullToPointer: 679 case CK_NullToMemberPointer: 680 case CK_BaseToDerivedMemberPointer: 681 case CK_DerivedToBaseMemberPointer: 682 case CK_MemberPointerToBoolean: 683 case CK_ReinterpretMemberPointer: 684 case CK_IntegralToPointer: 685 case CK_PointerToIntegral: 686 case CK_PointerToBoolean: 687 case CK_ToVoid: 688 case CK_VectorSplat: 689 case CK_IntegralCast: 690 case CK_IntegralToBoolean: 691 case CK_IntegralToFloating: 692 case CK_FloatingToIntegral: 693 case CK_FloatingToBoolean: 694 case CK_FloatingCast: 695 case CK_CPointerToObjCPointerCast: 696 case CK_BlockPointerToObjCPointerCast: 697 case CK_AnyPointerToBlockPointerCast: 698 case CK_ObjCObjectLValueCast: 699 case CK_FloatingRealToComplex: 700 case CK_FloatingComplexToReal: 701 case CK_FloatingComplexToBoolean: 702 case CK_FloatingComplexCast: 703 case CK_FloatingComplexToIntegralComplex: 704 case CK_IntegralRealToComplex: 705 case CK_IntegralComplexToReal: 706 case CK_IntegralComplexToBoolean: 707 case CK_IntegralComplexCast: 708 case CK_IntegralComplexToFloatingComplex: 709 case CK_ARCProduceObject: 710 case CK_ARCConsumeObject: 711 case CK_ARCReclaimReturnedObject: 712 case CK_ARCExtendBlockObject: 713 case CK_CopyAndAutoreleaseBlockObject: 714 case CK_BuiltinFnToFnPtr: 715 case CK_ZeroToOCLEvent: 716 case CK_AddressSpaceConversion: 717 llvm_unreachable("cast kind invalid for aggregate types"); 718 } 719 } 720 721 void AggExprEmitter::VisitCallExpr(const CallExpr *E) { 722 if (E->getCallReturnType()->isReferenceType()) { 723 EmitAggLoadOfLValue(E); 724 return; 725 } 726 727 RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot()); 728 EmitMoveFromReturnSlot(E, RV); 729 } 730 731 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) { 732 RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot()); 733 EmitMoveFromReturnSlot(E, RV); 734 } 735 736 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) { 737 CGF.EmitIgnoredExpr(E->getLHS()); 738 Visit(E->getRHS()); 739 } 740 741 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) { 742 CodeGenFunction::StmtExprEvaluation eval(CGF); 743 CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest); 744 } 745 746 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) { 747 if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI) 748 VisitPointerToDataMemberBinaryOperator(E); 749 else 750 CGF.ErrorUnsupported(E, "aggregate binary expression"); 751 } 752 753 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator( 754 const BinaryOperator *E) { 755 LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E); 756 EmitFinalDestCopy(E->getType(), LV); 757 } 758 759 /// Is the value of the given expression possibly a reference to or 760 /// into a __block variable? 761 static bool isBlockVarRef(const Expr *E) { 762 // Make sure we look through parens. 763 E = E->IgnoreParens(); 764 765 // Check for a direct reference to a __block variable. 766 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { 767 const VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl()); 768 return (var && var->hasAttr<BlocksAttr>()); 769 } 770 771 // More complicated stuff. 772 773 // Binary operators. 774 if (const BinaryOperator *op = dyn_cast<BinaryOperator>(E)) { 775 // For an assignment or pointer-to-member operation, just care 776 // about the LHS. 777 if (op->isAssignmentOp() || op->isPtrMemOp()) 778 return isBlockVarRef(op->getLHS()); 779 780 // For a comma, just care about the RHS. 781 if (op->getOpcode() == BO_Comma) 782 return isBlockVarRef(op->getRHS()); 783 784 // FIXME: pointer arithmetic? 785 return false; 786 787 // Check both sides of a conditional operator. 788 } else if (const AbstractConditionalOperator *op 789 = dyn_cast<AbstractConditionalOperator>(E)) { 790 return isBlockVarRef(op->getTrueExpr()) 791 || isBlockVarRef(op->getFalseExpr()); 792 793 // OVEs are required to support BinaryConditionalOperators. 794 } else if (const OpaqueValueExpr *op 795 = dyn_cast<OpaqueValueExpr>(E)) { 796 if (const Expr *src = op->getSourceExpr()) 797 return isBlockVarRef(src); 798 799 // Casts are necessary to get things like (*(int*)&var) = foo(). 800 // We don't really care about the kind of cast here, except 801 // we don't want to look through l2r casts, because it's okay 802 // to get the *value* in a __block variable. 803 } else if (const CastExpr *cast = dyn_cast<CastExpr>(E)) { 804 if (cast->getCastKind() == CK_LValueToRValue) 805 return false; 806 return isBlockVarRef(cast->getSubExpr()); 807 808 // Handle unary operators. Again, just aggressively look through 809 // it, ignoring the operation. 810 } else if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E)) { 811 return isBlockVarRef(uop->getSubExpr()); 812 813 // Look into the base of a field access. 814 } else if (const MemberExpr *mem = dyn_cast<MemberExpr>(E)) { 815 return isBlockVarRef(mem->getBase()); 816 817 // Look into the base of a subscript. 818 } else if (const ArraySubscriptExpr *sub = dyn_cast<ArraySubscriptExpr>(E)) { 819 return isBlockVarRef(sub->getBase()); 820 } 821 822 return false; 823 } 824 825 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) { 826 // For an assignment to work, the value on the right has 827 // to be compatible with the value on the left. 828 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), 829 E->getRHS()->getType()) 830 && "Invalid assignment"); 831 832 // If the LHS might be a __block variable, and the RHS can 833 // potentially cause a block copy, we need to evaluate the RHS first 834 // so that the assignment goes the right place. 835 // This is pretty semantically fragile. 836 if (isBlockVarRef(E->getLHS()) && 837 E->getRHS()->HasSideEffects(CGF.getContext())) { 838 // Ensure that we have a destination, and evaluate the RHS into that. 839 EnsureDest(E->getRHS()->getType()); 840 Visit(E->getRHS()); 841 842 // Now emit the LHS and copy into it. 843 LValue LHS = CGF.EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 844 845 // That copy is an atomic copy if the LHS is atomic. 846 if (LHS.getType()->isAtomicType()) { 847 CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false); 848 return; 849 } 850 851 EmitCopy(E->getLHS()->getType(), 852 AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed, 853 needsGC(E->getLHS()->getType()), 854 AggValueSlot::IsAliased), 855 Dest); 856 return; 857 } 858 859 LValue LHS = CGF.EmitLValue(E->getLHS()); 860 861 // If we have an atomic type, evaluate into the destination and then 862 // do an atomic copy. 863 if (LHS.getType()->isAtomicType()) { 864 EnsureDest(E->getRHS()->getType()); 865 Visit(E->getRHS()); 866 CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false); 867 return; 868 } 869 870 // Codegen the RHS so that it stores directly into the LHS. 871 AggValueSlot LHSSlot = 872 AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed, 873 needsGC(E->getLHS()->getType()), 874 AggValueSlot::IsAliased); 875 // A non-volatile aggregate destination might have volatile member. 876 if (!LHSSlot.isVolatile() && 877 CGF.hasVolatileMember(E->getLHS()->getType())) 878 LHSSlot.setVolatile(true); 879 880 CGF.EmitAggExpr(E->getRHS(), LHSSlot); 881 882 // Copy into the destination if the assignment isn't ignored. 883 EmitFinalDestCopy(E->getType(), LHS); 884 } 885 886 void AggExprEmitter:: 887 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 888 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 889 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 890 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 891 892 // Bind the common expression if necessary. 893 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 894 895 RegionCounter Cnt = CGF.getPGORegionCounter(E); 896 CodeGenFunction::ConditionalEvaluation eval(CGF); 897 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock, Cnt.getCount()); 898 899 // Save whether the destination's lifetime is externally managed. 900 bool isExternallyDestructed = Dest.isExternallyDestructed(); 901 902 eval.begin(CGF); 903 CGF.EmitBlock(LHSBlock); 904 Cnt.beginRegion(Builder); 905 Visit(E->getTrueExpr()); 906 eval.end(CGF); 907 908 assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!"); 909 CGF.Builder.CreateBr(ContBlock); 910 911 // If the result of an agg expression is unused, then the emission 912 // of the LHS might need to create a destination slot. That's fine 913 // with us, and we can safely emit the RHS into the same slot, but 914 // we shouldn't claim that it's already being destructed. 915 Dest.setExternallyDestructed(isExternallyDestructed); 916 917 eval.begin(CGF); 918 CGF.EmitBlock(RHSBlock); 919 Visit(E->getFalseExpr()); 920 eval.end(CGF); 921 922 CGF.EmitBlock(ContBlock); 923 } 924 925 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) { 926 Visit(CE->getChosenSubExpr()); 927 } 928 929 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 930 llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr()); 931 llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType()); 932 933 if (!ArgPtr) { 934 // If EmitVAArg fails, we fall back to the LLVM instruction. 935 llvm::Value *Val = 936 Builder.CreateVAArg(ArgValue, CGF.ConvertType(VE->getType())); 937 if (!Dest.isIgnored()) 938 Builder.CreateStore(Val, Dest.getAddr()); 939 return; 940 } 941 942 EmitFinalDestCopy(VE->getType(), CGF.MakeAddrLValue(ArgPtr, VE->getType())); 943 } 944 945 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 946 // Ensure that we have a slot, but if we already do, remember 947 // whether it was externally destructed. 948 bool wasExternallyDestructed = Dest.isExternallyDestructed(); 949 EnsureDest(E->getType()); 950 951 // We're going to push a destructor if there isn't already one. 952 Dest.setExternallyDestructed(); 953 954 Visit(E->getSubExpr()); 955 956 // Push that destructor we promised. 957 if (!wasExternallyDestructed) 958 CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddr()); 959 } 960 961 void 962 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) { 963 AggValueSlot Slot = EnsureSlot(E->getType()); 964 CGF.EmitCXXConstructExpr(E, Slot); 965 } 966 967 void 968 AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) { 969 AggValueSlot Slot = EnsureSlot(E->getType()); 970 CGF.EmitLambdaExpr(E, Slot); 971 } 972 973 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) { 974 CGF.enterFullExpression(E); 975 CodeGenFunction::RunCleanupsScope cleanups(CGF); 976 Visit(E->getSubExpr()); 977 } 978 979 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) { 980 QualType T = E->getType(); 981 AggValueSlot Slot = EnsureSlot(T); 982 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T)); 983 } 984 985 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) { 986 QualType T = E->getType(); 987 AggValueSlot Slot = EnsureSlot(T); 988 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T)); 989 } 990 991 /// isSimpleZero - If emitting this value will obviously just cause a store of 992 /// zero to memory, return true. This can return false if uncertain, so it just 993 /// handles simple cases. 994 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) { 995 E = E->IgnoreParens(); 996 997 // 0 998 if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) 999 return IL->getValue() == 0; 1000 // +0.0 1001 if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E)) 1002 return FL->getValue().isPosZero(); 1003 // int() 1004 if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) && 1005 CGF.getTypes().isZeroInitializable(E->getType())) 1006 return true; 1007 // (int*)0 - Null pointer expressions. 1008 if (const CastExpr *ICE = dyn_cast<CastExpr>(E)) 1009 return ICE->getCastKind() == CK_NullToPointer; 1010 // '\0' 1011 if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) 1012 return CL->getValue() == 0; 1013 1014 // Otherwise, hard case: conservatively return false. 1015 return false; 1016 } 1017 1018 1019 void 1020 AggExprEmitter::EmitInitializationToLValue(Expr *E, LValue LV) { 1021 QualType type = LV.getType(); 1022 // FIXME: Ignore result? 1023 // FIXME: Are initializers affected by volatile? 1024 if (Dest.isZeroed() && isSimpleZero(E, CGF)) { 1025 // Storing "i32 0" to a zero'd memory location is a noop. 1026 return; 1027 } else if (isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) { 1028 return EmitNullInitializationToLValue(LV); 1029 } else if (type->isReferenceType()) { 1030 RValue RV = CGF.EmitReferenceBindingToExpr(E); 1031 return CGF.EmitStoreThroughLValue(RV, LV); 1032 } 1033 1034 switch (CGF.getEvaluationKind(type)) { 1035 case TEK_Complex: 1036 CGF.EmitComplexExprIntoLValue(E, LV, /*isInit*/ true); 1037 return; 1038 case TEK_Aggregate: 1039 CGF.EmitAggExpr(E, AggValueSlot::forLValue(LV, 1040 AggValueSlot::IsDestructed, 1041 AggValueSlot::DoesNotNeedGCBarriers, 1042 AggValueSlot::IsNotAliased, 1043 Dest.isZeroed())); 1044 return; 1045 case TEK_Scalar: 1046 if (LV.isSimple()) { 1047 CGF.EmitScalarInit(E, /*D=*/0, LV, /*Captured=*/false); 1048 } else { 1049 CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV); 1050 } 1051 return; 1052 } 1053 llvm_unreachable("bad evaluation kind"); 1054 } 1055 1056 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) { 1057 QualType type = lv.getType(); 1058 1059 // If the destination slot is already zeroed out before the aggregate is 1060 // copied into it, we don't have to emit any zeros here. 1061 if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type)) 1062 return; 1063 1064 if (CGF.hasScalarEvaluationKind(type)) { 1065 // For non-aggregates, we can store the appropriate null constant. 1066 llvm::Value *null = CGF.CGM.EmitNullConstant(type); 1067 // Note that the following is not equivalent to 1068 // EmitStoreThroughBitfieldLValue for ARC types. 1069 if (lv.isBitField()) { 1070 CGF.EmitStoreThroughBitfieldLValue(RValue::get(null), lv); 1071 } else { 1072 assert(lv.isSimple()); 1073 CGF.EmitStoreOfScalar(null, lv, /* isInitialization */ true); 1074 } 1075 } else { 1076 // There's a potential optimization opportunity in combining 1077 // memsets; that would be easy for arrays, but relatively 1078 // difficult for structures with the current code. 1079 CGF.EmitNullInitialization(lv.getAddress(), lv.getType()); 1080 } 1081 } 1082 1083 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) { 1084 #if 0 1085 // FIXME: Assess perf here? Figure out what cases are worth optimizing here 1086 // (Length of globals? Chunks of zeroed-out space?). 1087 // 1088 // If we can, prefer a copy from a global; this is a lot less code for long 1089 // globals, and it's easier for the current optimizers to analyze. 1090 if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) { 1091 llvm::GlobalVariable* GV = 1092 new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true, 1093 llvm::GlobalValue::InternalLinkage, C, ""); 1094 EmitFinalDestCopy(E->getType(), CGF.MakeAddrLValue(GV, E->getType())); 1095 return; 1096 } 1097 #endif 1098 if (E->hadArrayRangeDesignator()) 1099 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 1100 1101 AggValueSlot Dest = EnsureSlot(E->getType()); 1102 1103 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddr(), E->getType(), 1104 Dest.getAlignment()); 1105 1106 // Handle initialization of an array. 1107 if (E->getType()->isArrayType()) { 1108 if (E->isStringLiteralInit()) 1109 return Visit(E->getInit(0)); 1110 1111 QualType elementType = 1112 CGF.getContext().getAsArrayType(E->getType())->getElementType(); 1113 1114 llvm::PointerType *APType = 1115 cast<llvm::PointerType>(Dest.getAddr()->getType()); 1116 llvm::ArrayType *AType = 1117 cast<llvm::ArrayType>(APType->getElementType()); 1118 1119 EmitArrayInit(Dest.getAddr(), AType, elementType, E); 1120 return; 1121 } 1122 1123 assert(E->getType()->isRecordType() && "Only support structs/unions here!"); 1124 1125 // Do struct initialization; this code just sets each individual member 1126 // to the approprate value. This makes bitfield support automatic; 1127 // the disadvantage is that the generated code is more difficult for 1128 // the optimizer, especially with bitfields. 1129 unsigned NumInitElements = E->getNumInits(); 1130 RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl(); 1131 1132 // Prepare a 'this' for CXXDefaultInitExprs. 1133 CodeGenFunction::FieldConstructionScope FCS(CGF, Dest.getAddr()); 1134 1135 if (record->isUnion()) { 1136 // Only initialize one field of a union. The field itself is 1137 // specified by the initializer list. 1138 if (!E->getInitializedFieldInUnion()) { 1139 // Empty union; we have nothing to do. 1140 1141 #ifndef NDEBUG 1142 // Make sure that it's really an empty and not a failure of 1143 // semantic analysis. 1144 for (const auto *Field : record->fields()) 1145 assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed"); 1146 #endif 1147 return; 1148 } 1149 1150 // FIXME: volatility 1151 FieldDecl *Field = E->getInitializedFieldInUnion(); 1152 1153 LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestLV, Field); 1154 if (NumInitElements) { 1155 // Store the initializer into the field 1156 EmitInitializationToLValue(E->getInit(0), FieldLoc); 1157 } else { 1158 // Default-initialize to null. 1159 EmitNullInitializationToLValue(FieldLoc); 1160 } 1161 1162 return; 1163 } 1164 1165 // We'll need to enter cleanup scopes in case any of the member 1166 // initializers throw an exception. 1167 SmallVector<EHScopeStack::stable_iterator, 16> cleanups; 1168 llvm::Instruction *cleanupDominator = 0; 1169 1170 // Here we iterate over the fields; this makes it simpler to both 1171 // default-initialize fields and skip over unnamed fields. 1172 unsigned curInitIndex = 0; 1173 for (const auto *field : record->fields()) { 1174 // We're done once we hit the flexible array member. 1175 if (field->getType()->isIncompleteArrayType()) 1176 break; 1177 1178 // Always skip anonymous bitfields. 1179 if (field->isUnnamedBitfield()) 1180 continue; 1181 1182 // We're done if we reach the end of the explicit initializers, we 1183 // have a zeroed object, and the rest of the fields are 1184 // zero-initializable. 1185 if (curInitIndex == NumInitElements && Dest.isZeroed() && 1186 CGF.getTypes().isZeroInitializable(E->getType())) 1187 break; 1188 1189 1190 LValue LV = CGF.EmitLValueForFieldInitialization(DestLV, field); 1191 // We never generate write-barries for initialized fields. 1192 LV.setNonGC(true); 1193 1194 if (curInitIndex < NumInitElements) { 1195 // Store the initializer into the field. 1196 EmitInitializationToLValue(E->getInit(curInitIndex++), LV); 1197 } else { 1198 // We're out of initalizers; default-initialize to null 1199 EmitNullInitializationToLValue(LV); 1200 } 1201 1202 // Push a destructor if necessary. 1203 // FIXME: if we have an array of structures, all explicitly 1204 // initialized, we can end up pushing a linear number of cleanups. 1205 bool pushedCleanup = false; 1206 if (QualType::DestructionKind dtorKind 1207 = field->getType().isDestructedType()) { 1208 assert(LV.isSimple()); 1209 if (CGF.needsEHCleanup(dtorKind)) { 1210 if (!cleanupDominator) 1211 cleanupDominator = CGF.Builder.CreateUnreachable(); // placeholder 1212 1213 CGF.pushDestroy(EHCleanup, LV.getAddress(), field->getType(), 1214 CGF.getDestroyer(dtorKind), false); 1215 cleanups.push_back(CGF.EHStack.stable_begin()); 1216 pushedCleanup = true; 1217 } 1218 } 1219 1220 // If the GEP didn't get used because of a dead zero init or something 1221 // else, clean it up for -O0 builds and general tidiness. 1222 if (!pushedCleanup && LV.isSimple()) 1223 if (llvm::GetElementPtrInst *GEP = 1224 dyn_cast<llvm::GetElementPtrInst>(LV.getAddress())) 1225 if (GEP->use_empty()) 1226 GEP->eraseFromParent(); 1227 } 1228 1229 // Deactivate all the partial cleanups in reverse order, which 1230 // generally means popping them. 1231 for (unsigned i = cleanups.size(); i != 0; --i) 1232 CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator); 1233 1234 // Destroy the placeholder if we made one. 1235 if (cleanupDominator) 1236 cleanupDominator->eraseFromParent(); 1237 } 1238 1239 //===----------------------------------------------------------------------===// 1240 // Entry Points into this File 1241 //===----------------------------------------------------------------------===// 1242 1243 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of 1244 /// non-zero bytes that will be stored when outputting the initializer for the 1245 /// specified initializer expression. 1246 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) { 1247 E = E->IgnoreParens(); 1248 1249 // 0 and 0.0 won't require any non-zero stores! 1250 if (isSimpleZero(E, CGF)) return CharUnits::Zero(); 1251 1252 // If this is an initlist expr, sum up the size of sizes of the (present) 1253 // elements. If this is something weird, assume the whole thing is non-zero. 1254 const InitListExpr *ILE = dyn_cast<InitListExpr>(E); 1255 if (ILE == 0 || !CGF.getTypes().isZeroInitializable(ILE->getType())) 1256 return CGF.getContext().getTypeSizeInChars(E->getType()); 1257 1258 // InitListExprs for structs have to be handled carefully. If there are 1259 // reference members, we need to consider the size of the reference, not the 1260 // referencee. InitListExprs for unions and arrays can't have references. 1261 if (const RecordType *RT = E->getType()->getAs<RecordType>()) { 1262 if (!RT->isUnionType()) { 1263 RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl(); 1264 CharUnits NumNonZeroBytes = CharUnits::Zero(); 1265 1266 unsigned ILEElement = 0; 1267 for (const auto *Field : SD->fields()) { 1268 // We're done once we hit the flexible array member or run out of 1269 // InitListExpr elements. 1270 if (Field->getType()->isIncompleteArrayType() || 1271 ILEElement == ILE->getNumInits()) 1272 break; 1273 if (Field->isUnnamedBitfield()) 1274 continue; 1275 1276 const Expr *E = ILE->getInit(ILEElement++); 1277 1278 // Reference values are always non-null and have the width of a pointer. 1279 if (Field->getType()->isReferenceType()) 1280 NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits( 1281 CGF.getTarget().getPointerWidth(0)); 1282 else 1283 NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF); 1284 } 1285 1286 return NumNonZeroBytes; 1287 } 1288 } 1289 1290 1291 CharUnits NumNonZeroBytes = CharUnits::Zero(); 1292 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) 1293 NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF); 1294 return NumNonZeroBytes; 1295 } 1296 1297 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of 1298 /// zeros in it, emit a memset and avoid storing the individual zeros. 1299 /// 1300 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E, 1301 CodeGenFunction &CGF) { 1302 // If the slot is already known to be zeroed, nothing to do. Don't mess with 1303 // volatile stores. 1304 if (Slot.isZeroed() || Slot.isVolatile() || Slot.getAddr() == 0) return; 1305 1306 // C++ objects with a user-declared constructor don't need zero'ing. 1307 if (CGF.getLangOpts().CPlusPlus) 1308 if (const RecordType *RT = CGF.getContext() 1309 .getBaseElementType(E->getType())->getAs<RecordType>()) { 1310 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1311 if (RD->hasUserDeclaredConstructor()) 1312 return; 1313 } 1314 1315 // If the type is 16-bytes or smaller, prefer individual stores over memset. 1316 std::pair<CharUnits, CharUnits> TypeInfo = 1317 CGF.getContext().getTypeInfoInChars(E->getType()); 1318 if (TypeInfo.first <= CharUnits::fromQuantity(16)) 1319 return; 1320 1321 // Check to see if over 3/4 of the initializer are known to be zero. If so, 1322 // we prefer to emit memset + individual stores for the rest. 1323 CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF); 1324 if (NumNonZeroBytes*4 > TypeInfo.first) 1325 return; 1326 1327 // Okay, it seems like a good idea to use an initial memset, emit the call. 1328 llvm::Constant *SizeVal = CGF.Builder.getInt64(TypeInfo.first.getQuantity()); 1329 CharUnits Align = TypeInfo.second; 1330 1331 llvm::Value *Loc = Slot.getAddr(); 1332 1333 Loc = CGF.Builder.CreateBitCast(Loc, CGF.Int8PtrTy); 1334 CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, 1335 Align.getQuantity(), false); 1336 1337 // Tell the AggExprEmitter that the slot is known zero. 1338 Slot.setZeroed(); 1339 } 1340 1341 1342 1343 1344 /// EmitAggExpr - Emit the computation of the specified expression of aggregate 1345 /// type. The result is computed into DestPtr. Note that if DestPtr is null, 1346 /// the value of the aggregate expression is not needed. If VolatileDest is 1347 /// true, DestPtr cannot be 0. 1348 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot) { 1349 assert(E && hasAggregateEvaluationKind(E->getType()) && 1350 "Invalid aggregate expression to emit"); 1351 assert((Slot.getAddr() != 0 || Slot.isIgnored()) && 1352 "slot has bits but no address"); 1353 1354 // Optimize the slot if possible. 1355 CheckAggExprForMemSetUse(Slot, E, *this); 1356 1357 AggExprEmitter(*this, Slot).Visit(const_cast<Expr*>(E)); 1358 } 1359 1360 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) { 1361 assert(hasAggregateEvaluationKind(E->getType()) && "Invalid argument!"); 1362 llvm::Value *Temp = CreateMemTemp(E->getType()); 1363 LValue LV = MakeAddrLValue(Temp, E->getType()); 1364 EmitAggExpr(E, AggValueSlot::forLValue(LV, AggValueSlot::IsNotDestructed, 1365 AggValueSlot::DoesNotNeedGCBarriers, 1366 AggValueSlot::IsNotAliased)); 1367 return LV; 1368 } 1369 1370 void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr, 1371 llvm::Value *SrcPtr, QualType Ty, 1372 bool isVolatile, 1373 CharUnits alignment, 1374 bool isAssignment) { 1375 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 1376 1377 if (getLangOpts().CPlusPlus) { 1378 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1379 CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl()); 1380 assert((Record->hasTrivialCopyConstructor() || 1381 Record->hasTrivialCopyAssignment() || 1382 Record->hasTrivialMoveConstructor() || 1383 Record->hasTrivialMoveAssignment()) && 1384 "Trying to aggregate-copy a type without a trivial copy/move " 1385 "constructor or assignment operator"); 1386 // Ignore empty classes in C++. 1387 if (Record->isEmpty()) 1388 return; 1389 } 1390 } 1391 1392 // Aggregate assignment turns into llvm.memcpy. This is almost valid per 1393 // C99 6.5.16.1p3, which states "If the value being stored in an object is 1394 // read from another object that overlaps in anyway the storage of the first 1395 // object, then the overlap shall be exact and the two objects shall have 1396 // qualified or unqualified versions of a compatible type." 1397 // 1398 // memcpy is not defined if the source and destination pointers are exactly 1399 // equal, but other compilers do this optimization, and almost every memcpy 1400 // implementation handles this case safely. If there is a libc that does not 1401 // safely handle this, we can add a target hook. 1402 1403 // Get data size and alignment info for this aggregate. If this is an 1404 // assignment don't copy the tail padding. Otherwise copying it is fine. 1405 std::pair<CharUnits, CharUnits> TypeInfo; 1406 if (isAssignment) 1407 TypeInfo = getContext().getTypeInfoDataSizeInChars(Ty); 1408 else 1409 TypeInfo = getContext().getTypeInfoInChars(Ty); 1410 1411 if (alignment.isZero()) 1412 alignment = TypeInfo.second; 1413 1414 // FIXME: Handle variable sized types. 1415 1416 // FIXME: If we have a volatile struct, the optimizer can remove what might 1417 // appear to be `extra' memory ops: 1418 // 1419 // volatile struct { int i; } a, b; 1420 // 1421 // int main() { 1422 // a = b; 1423 // a = b; 1424 // } 1425 // 1426 // we need to use a different call here. We use isVolatile to indicate when 1427 // either the source or the destination is volatile. 1428 1429 llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType()); 1430 llvm::Type *DBP = 1431 llvm::Type::getInt8PtrTy(getLLVMContext(), DPT->getAddressSpace()); 1432 DestPtr = Builder.CreateBitCast(DestPtr, DBP); 1433 1434 llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType()); 1435 llvm::Type *SBP = 1436 llvm::Type::getInt8PtrTy(getLLVMContext(), SPT->getAddressSpace()); 1437 SrcPtr = Builder.CreateBitCast(SrcPtr, SBP); 1438 1439 // Don't do any of the memmove_collectable tests if GC isn't set. 1440 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) { 1441 // fall through 1442 } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 1443 RecordDecl *Record = RecordTy->getDecl(); 1444 if (Record->hasObjectMember()) { 1445 CharUnits size = TypeInfo.first; 1446 llvm::Type *SizeTy = ConvertType(getContext().getSizeType()); 1447 llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity()); 1448 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 1449 SizeVal); 1450 return; 1451 } 1452 } else if (Ty->isArrayType()) { 1453 QualType BaseType = getContext().getBaseElementType(Ty); 1454 if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) { 1455 if (RecordTy->getDecl()->hasObjectMember()) { 1456 CharUnits size = TypeInfo.first; 1457 llvm::Type *SizeTy = ConvertType(getContext().getSizeType()); 1458 llvm::Value *SizeVal = 1459 llvm::ConstantInt::get(SizeTy, size.getQuantity()); 1460 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 1461 SizeVal); 1462 return; 1463 } 1464 } 1465 } 1466 1467 // Determine the metadata to describe the position of any padding in this 1468 // memcpy, as well as the TBAA tags for the members of the struct, in case 1469 // the optimizer wishes to expand it in to scalar memory operations. 1470 llvm::MDNode *TBAAStructTag = CGM.getTBAAStructInfo(Ty); 1471 1472 Builder.CreateMemCpy(DestPtr, SrcPtr, 1473 llvm::ConstantInt::get(IntPtrTy, 1474 TypeInfo.first.getQuantity()), 1475 alignment.getQuantity(), isVolatile, 1476 /*TBAATag=*/0, TBAAStructTag); 1477 } 1478