1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Aggregate Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "CGObjCRuntime.h" 17 #include "clang/AST/ASTContext.h" 18 #include "clang/AST/DeclCXX.h" 19 #include "clang/AST/StmtVisitor.h" 20 #include "llvm/Constants.h" 21 #include "llvm/Function.h" 22 #include "llvm/GlobalVariable.h" 23 #include "llvm/Support/Compiler.h" 24 #include "llvm/Intrinsics.h" 25 using namespace clang; 26 using namespace CodeGen; 27 28 //===----------------------------------------------------------------------===// 29 // Aggregate Expression Emitter 30 //===----------------------------------------------------------------------===// 31 32 namespace { 33 class VISIBILITY_HIDDEN AggExprEmitter : public StmtVisitor<AggExprEmitter> { 34 CodeGenFunction &CGF; 35 CGBuilderTy &Builder; 36 llvm::Value *DestPtr; 37 bool VolatileDest; 38 bool IgnoreResult; 39 bool IsInitializer; 40 bool RequiresGCollection; 41 public: 42 AggExprEmitter(CodeGenFunction &cgf, llvm::Value *destPtr, bool v, 43 bool ignore, bool isinit, bool requiresGCollection) 44 : CGF(cgf), Builder(CGF.Builder), 45 DestPtr(destPtr), VolatileDest(v), IgnoreResult(ignore), 46 IsInitializer(isinit), RequiresGCollection(requiresGCollection) { 47 } 48 49 //===--------------------------------------------------------------------===// 50 // Utilities 51 //===--------------------------------------------------------------------===// 52 53 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 54 /// represents a value lvalue, this method emits the address of the lvalue, 55 /// then loads the result into DestPtr. 56 void EmitAggLoadOfLValue(const Expr *E); 57 58 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 59 void EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore = false); 60 void EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore = false); 61 62 //===--------------------------------------------------------------------===// 63 // Visitor Methods 64 //===--------------------------------------------------------------------===// 65 66 void VisitStmt(Stmt *S) { 67 CGF.ErrorUnsupported(S, "aggregate expression"); 68 } 69 void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); } 70 void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); } 71 72 // l-values. 73 void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); } 74 void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); } 75 void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); } 76 void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); } 77 void VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 78 EmitAggLoadOfLValue(E); 79 } 80 void VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 81 EmitAggLoadOfLValue(E); 82 } 83 void VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) { 84 EmitAggLoadOfLValue(E); 85 } 86 void VisitPredefinedExpr(const PredefinedExpr *E) { 87 EmitAggLoadOfLValue(E); 88 } 89 90 // Operators. 91 void VisitCastExpr(CastExpr *E); 92 void VisitCallExpr(const CallExpr *E); 93 void VisitStmtExpr(const StmtExpr *E); 94 void VisitBinaryOperator(const BinaryOperator *BO); 95 void VisitBinAssign(const BinaryOperator *E); 96 void VisitBinComma(const BinaryOperator *E); 97 void VisitUnaryAddrOf(const UnaryOperator *E); 98 99 void VisitObjCMessageExpr(ObjCMessageExpr *E); 100 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 101 EmitAggLoadOfLValue(E); 102 } 103 void VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E); 104 void VisitObjCImplicitSetterGetterRefExpr(ObjCImplicitSetterGetterRefExpr *E); 105 106 void VisitConditionalOperator(const ConditionalOperator *CO); 107 void VisitChooseExpr(const ChooseExpr *CE); 108 void VisitInitListExpr(InitListExpr *E); 109 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 110 Visit(DAE->getExpr()); 111 } 112 void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E); 113 void VisitCXXConstructExpr(const CXXConstructExpr *E); 114 void VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E); 115 void VisitCXXZeroInitValueExpr(CXXZeroInitValueExpr *E); 116 117 void VisitVAArgExpr(VAArgExpr *E); 118 119 void EmitInitializationToLValue(Expr *E, LValue Address); 120 void EmitNullInitializationToLValue(LValue Address, QualType T); 121 // case Expr::ChooseExprClass: 122 123 }; 124 } // end anonymous namespace. 125 126 //===----------------------------------------------------------------------===// 127 // Utilities 128 //===----------------------------------------------------------------------===// 129 130 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 131 /// represents a value lvalue, this method emits the address of the lvalue, 132 /// then loads the result into DestPtr. 133 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) { 134 LValue LV = CGF.EmitLValue(E); 135 EmitFinalDestCopy(E, LV); 136 } 137 138 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 139 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore) { 140 assert(Src.isAggregate() && "value must be aggregate value!"); 141 142 // If the result is ignored, don't copy from the value. 143 if (DestPtr == 0) { 144 if (!Src.isVolatileQualified() || (IgnoreResult && Ignore)) 145 return; 146 // If the source is volatile, we must read from it; to do that, we need 147 // some place to put it. 148 DestPtr = CGF.CreateTempAlloca(CGF.ConvertType(E->getType()), "agg.tmp"); 149 } 150 151 if (RequiresGCollection) { 152 CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, 153 DestPtr, Src.getAggregateAddr(), 154 E->getType()); 155 return; 156 } 157 // If the result of the assignment is used, copy the LHS there also. 158 // FIXME: Pass VolatileDest as well. I think we also need to merge volatile 159 // from the source as well, as we can't eliminate it if either operand 160 // is volatile, unless copy has volatile for both source and destination.. 161 CGF.EmitAggregateCopy(DestPtr, Src.getAggregateAddr(), E->getType(), 162 VolatileDest|Src.isVolatileQualified()); 163 } 164 165 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 166 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore) { 167 assert(Src.isSimple() && "Can't have aggregate bitfield, vector, etc"); 168 169 EmitFinalDestCopy(E, RValue::getAggregate(Src.getAddress(), 170 Src.isVolatileQualified()), 171 Ignore); 172 } 173 174 //===----------------------------------------------------------------------===// 175 // Visitor Methods 176 //===----------------------------------------------------------------------===// 177 178 void AggExprEmitter::VisitCastExpr(CastExpr *E) { 179 switch (E->getCastKind()) { 180 default: assert(0 && "Unhandled cast kind!"); 181 182 case CastExpr::CK_ToUnion: { 183 // GCC union extension 184 QualType PtrTy = 185 CGF.getContext().getPointerType(E->getSubExpr()->getType()); 186 llvm::Value *CastPtr = Builder.CreateBitCast(DestPtr, 187 CGF.ConvertType(PtrTy)); 188 EmitInitializationToLValue(E->getSubExpr(), 189 LValue::MakeAddr(CastPtr, Qualifiers())); 190 break; 191 } 192 193 // FIXME: Remove the CK_Unknown check here. 194 case CastExpr::CK_Unknown: 195 case CastExpr::CK_NoOp: 196 case CastExpr::CK_UserDefinedConversion: 197 case CastExpr::CK_ConstructorConversion: 198 assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(), 199 E->getType()) && 200 "Implicit cast types must be compatible"); 201 Visit(E->getSubExpr()); 202 break; 203 204 case CastExpr::CK_NullToMemberPointer: { 205 const llvm::Type *PtrDiffTy = 206 CGF.ConvertType(CGF.getContext().getPointerDiffType()); 207 208 llvm::Value *NullValue = llvm::Constant::getNullValue(PtrDiffTy); 209 llvm::Value *Ptr = Builder.CreateStructGEP(DestPtr, 0, "ptr"); 210 Builder.CreateStore(NullValue, Ptr, VolatileDest); 211 212 llvm::Value *Adj = Builder.CreateStructGEP(DestPtr, 1, "adj"); 213 Builder.CreateStore(NullValue, Adj, VolatileDest); 214 215 break; 216 } 217 218 case CastExpr::CK_BitCast: { 219 // This must be a member function pointer cast. 220 Visit(E->getSubExpr()); 221 break; 222 } 223 224 case CastExpr::CK_BaseToDerivedMemberPointer: { 225 QualType SrcType = E->getSubExpr()->getType(); 226 227 llvm::Value *Src = CGF.CreateTempAlloca(CGF.ConvertTypeForMem(SrcType), 228 "tmp"); 229 CGF.EmitAggExpr(E->getSubExpr(), Src, SrcType.isVolatileQualified()); 230 231 llvm::Value *SrcPtr = Builder.CreateStructGEP(Src, 0, "src.ptr"); 232 SrcPtr = Builder.CreateLoad(SrcPtr); 233 234 llvm::Value *SrcAdj = Builder.CreateStructGEP(Src, 1, "src.adj"); 235 SrcAdj = Builder.CreateLoad(SrcAdj); 236 237 llvm::Value *DstPtr = Builder.CreateStructGEP(DestPtr, 0, "dst.ptr"); 238 Builder.CreateStore(SrcPtr, DstPtr, VolatileDest); 239 240 llvm::Value *DstAdj = Builder.CreateStructGEP(DestPtr, 1, "dst.adj"); 241 242 // Now See if we need to update the adjustment. 243 const CXXRecordDecl *SrcDecl = 244 cast<CXXRecordDecl>(SrcType->getAs<MemberPointerType>()-> 245 getClass()->getAs<RecordType>()->getDecl()); 246 const CXXRecordDecl *DstDecl = 247 cast<CXXRecordDecl>(E->getType()->getAs<MemberPointerType>()-> 248 getClass()->getAs<RecordType>()->getDecl()); 249 250 llvm::Constant *Adj = CGF.CGM.GetCXXBaseClassOffset(DstDecl, SrcDecl); 251 if (Adj) 252 SrcAdj = Builder.CreateAdd(SrcAdj, Adj, "adj"); 253 254 Builder.CreateStore(SrcAdj, DstAdj, VolatileDest); 255 break; 256 } 257 } 258 } 259 260 void AggExprEmitter::VisitCallExpr(const CallExpr *E) { 261 if (E->getCallReturnType()->isReferenceType()) { 262 EmitAggLoadOfLValue(E); 263 return; 264 } 265 266 RValue RV = CGF.EmitCallExpr(E); 267 EmitFinalDestCopy(E, RV); 268 } 269 270 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) { 271 RValue RV = CGF.EmitObjCMessageExpr(E); 272 EmitFinalDestCopy(E, RV); 273 } 274 275 void AggExprEmitter::VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) { 276 RValue RV = CGF.EmitObjCPropertyGet(E); 277 EmitFinalDestCopy(E, RV); 278 } 279 280 void AggExprEmitter::VisitObjCImplicitSetterGetterRefExpr( 281 ObjCImplicitSetterGetterRefExpr *E) { 282 RValue RV = CGF.EmitObjCPropertyGet(E); 283 EmitFinalDestCopy(E, RV); 284 } 285 286 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) { 287 CGF.EmitAnyExpr(E->getLHS(), 0, false, true); 288 CGF.EmitAggExpr(E->getRHS(), DestPtr, VolatileDest, 289 /*IgnoreResult=*/false, IsInitializer); 290 } 291 292 void AggExprEmitter::VisitUnaryAddrOf(const UnaryOperator *E) { 293 // We have a member function pointer. 294 const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>(); 295 (void) MPT; 296 assert(MPT->getPointeeType()->isFunctionProtoType() && 297 "Unexpected member pointer type!"); 298 299 const QualifiedDeclRefExpr *DRE = cast<QualifiedDeclRefExpr>(E->getSubExpr()); 300 const CXXMethodDecl *MD = cast<CXXMethodDecl>(DRE->getDecl()); 301 302 const llvm::Type *PtrDiffTy = 303 CGF.ConvertType(CGF.getContext().getPointerDiffType()); 304 305 llvm::Value *DstPtr = Builder.CreateStructGEP(DestPtr, 0, "dst.ptr"); 306 llvm::Value *FuncPtr; 307 308 if (MD->isVirtual()) { 309 int64_t Index = 310 CGF.CGM.getVtableInfo().getMethodVtableIndex(MD); 311 312 FuncPtr = llvm::ConstantInt::get(PtrDiffTy, Index + 1); 313 } else { 314 FuncPtr = llvm::ConstantExpr::getPtrToInt(CGF.CGM.GetAddrOfFunction(MD), 315 PtrDiffTy); 316 } 317 Builder.CreateStore(FuncPtr, DstPtr, VolatileDest); 318 319 llvm::Value *AdjPtr = Builder.CreateStructGEP(DestPtr, 1, "dst.adj"); 320 321 // The adjustment will always be 0. 322 Builder.CreateStore(llvm::ConstantInt::get(PtrDiffTy, 0), AdjPtr, 323 VolatileDest); 324 } 325 326 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) { 327 CGF.EmitCompoundStmt(*E->getSubStmt(), true, DestPtr, VolatileDest); 328 } 329 330 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) { 331 CGF.ErrorUnsupported(E, "aggregate binary expression"); 332 } 333 334 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) { 335 // For an assignment to work, the value on the right has 336 // to be compatible with the value on the left. 337 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), 338 E->getRHS()->getType()) 339 && "Invalid assignment"); 340 LValue LHS = CGF.EmitLValue(E->getLHS()); 341 342 // We have to special case property setters, otherwise we must have 343 // a simple lvalue (no aggregates inside vectors, bitfields). 344 if (LHS.isPropertyRef()) { 345 llvm::Value *AggLoc = DestPtr; 346 if (!AggLoc) 347 AggLoc = CGF.CreateTempAlloca(CGF.ConvertType(E->getRHS()->getType())); 348 CGF.EmitAggExpr(E->getRHS(), AggLoc, VolatileDest); 349 CGF.EmitObjCPropertySet(LHS.getPropertyRefExpr(), 350 RValue::getAggregate(AggLoc, VolatileDest)); 351 } else if (LHS.isKVCRef()) { 352 llvm::Value *AggLoc = DestPtr; 353 if (!AggLoc) 354 AggLoc = CGF.CreateTempAlloca(CGF.ConvertType(E->getRHS()->getType())); 355 CGF.EmitAggExpr(E->getRHS(), AggLoc, VolatileDest); 356 CGF.EmitObjCPropertySet(LHS.getKVCRefExpr(), 357 RValue::getAggregate(AggLoc, VolatileDest)); 358 } else { 359 bool RequiresGCollection = false; 360 if (CGF.getContext().getLangOptions().NeXTRuntime) { 361 QualType LHSTy = E->getLHS()->getType(); 362 if (const RecordType *FDTTy = LHSTy.getTypePtr()->getAs<RecordType>()) 363 RequiresGCollection = FDTTy->getDecl()->hasObjectMember(); 364 } 365 // Codegen the RHS so that it stores directly into the LHS. 366 CGF.EmitAggExpr(E->getRHS(), LHS.getAddress(), LHS.isVolatileQualified(), 367 false, false, RequiresGCollection); 368 EmitFinalDestCopy(E, LHS, true); 369 } 370 } 371 372 void AggExprEmitter::VisitConditionalOperator(const ConditionalOperator *E) { 373 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 374 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 375 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 376 377 llvm::Value *Cond = CGF.EvaluateExprAsBool(E->getCond()); 378 Builder.CreateCondBr(Cond, LHSBlock, RHSBlock); 379 380 CGF.PushConditionalTempDestruction(); 381 CGF.EmitBlock(LHSBlock); 382 383 // Handle the GNU extension for missing LHS. 384 assert(E->getLHS() && "Must have LHS for aggregate value"); 385 386 Visit(E->getLHS()); 387 CGF.PopConditionalTempDestruction(); 388 CGF.EmitBranch(ContBlock); 389 390 CGF.PushConditionalTempDestruction(); 391 CGF.EmitBlock(RHSBlock); 392 393 Visit(E->getRHS()); 394 CGF.PopConditionalTempDestruction(); 395 CGF.EmitBranch(ContBlock); 396 397 CGF.EmitBlock(ContBlock); 398 } 399 400 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) { 401 Visit(CE->getChosenSubExpr(CGF.getContext())); 402 } 403 404 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 405 llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr()); 406 llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType()); 407 408 if (!ArgPtr) { 409 CGF.ErrorUnsupported(VE, "aggregate va_arg expression"); 410 return; 411 } 412 413 EmitFinalDestCopy(VE, LValue::MakeAddr(ArgPtr, Qualifiers())); 414 } 415 416 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 417 llvm::Value *Val = DestPtr; 418 419 if (!Val) { 420 // Create a temporary variable. 421 Val = CGF.CreateTempAlloca(CGF.ConvertTypeForMem(E->getType()), "tmp"); 422 423 // FIXME: volatile 424 CGF.EmitAggExpr(E->getSubExpr(), Val, false); 425 } else 426 Visit(E->getSubExpr()); 427 428 // Don't make this a live temporary if we're emitting an initializer expr. 429 if (!IsInitializer) 430 CGF.PushCXXTemporary(E->getTemporary(), Val); 431 } 432 433 void 434 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) { 435 llvm::Value *Val = DestPtr; 436 437 if (!Val) { 438 // Create a temporary variable. 439 Val = CGF.CreateTempAlloca(CGF.ConvertTypeForMem(E->getType()), "tmp"); 440 } 441 442 CGF.EmitCXXConstructExpr(Val, E); 443 } 444 445 void AggExprEmitter::VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E) { 446 CGF.EmitCXXExprWithTemporaries(E, DestPtr, VolatileDest, IsInitializer); 447 } 448 449 void AggExprEmitter::VisitCXXZeroInitValueExpr(CXXZeroInitValueExpr *E) { 450 LValue lvalue = LValue::MakeAddr(DestPtr, Qualifiers()); 451 EmitNullInitializationToLValue(lvalue, E->getType()); 452 } 453 454 void AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV) { 455 // FIXME: Ignore result? 456 // FIXME: Are initializers affected by volatile? 457 if (isa<ImplicitValueInitExpr>(E)) { 458 EmitNullInitializationToLValue(LV, E->getType()); 459 } else if (E->getType()->isComplexType()) { 460 CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false); 461 } else if (CGF.hasAggregateLLVMType(E->getType())) { 462 CGF.EmitAnyExpr(E, LV.getAddress(), false); 463 } else { 464 CGF.EmitStoreThroughLValue(CGF.EmitAnyExpr(E), LV, E->getType()); 465 } 466 } 467 468 void AggExprEmitter::EmitNullInitializationToLValue(LValue LV, QualType T) { 469 if (!CGF.hasAggregateLLVMType(T)) { 470 // For non-aggregates, we can store zero 471 llvm::Value *Null = llvm::Constant::getNullValue(CGF.ConvertType(T)); 472 CGF.EmitStoreThroughLValue(RValue::get(Null), LV, T); 473 } else { 474 // Otherwise, just memset the whole thing to zero. This is legal 475 // because in LLVM, all default initializers are guaranteed to have a 476 // bit pattern of all zeros. 477 // FIXME: That isn't true for member pointers! 478 // There's a potential optimization opportunity in combining 479 // memsets; that would be easy for arrays, but relatively 480 // difficult for structures with the current code. 481 CGF.EmitMemSetToZero(LV.getAddress(), T); 482 } 483 } 484 485 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) { 486 #if 0 487 // FIXME: Disabled while we figure out what to do about 488 // test/CodeGen/bitfield.c 489 // 490 // If we can, prefer a copy from a global; this is a lot less code for long 491 // globals, and it's easier for the current optimizers to analyze. 492 // FIXME: Should we really be doing this? Should we try to avoid cases where 493 // we emit a global with a lot of zeros? Should we try to avoid short 494 // globals? 495 if (E->isConstantInitializer(CGF.getContext(), 0)) { 496 llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, &CGF); 497 llvm::GlobalVariable* GV = 498 new llvm::GlobalVariable(C->getType(), true, 499 llvm::GlobalValue::InternalLinkage, 500 C, "", &CGF.CGM.getModule(), 0); 501 EmitFinalDestCopy(E, LValue::MakeAddr(GV, 0)); 502 return; 503 } 504 #endif 505 if (E->hadArrayRangeDesignator()) { 506 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 507 } 508 509 // Handle initialization of an array. 510 if (E->getType()->isArrayType()) { 511 const llvm::PointerType *APType = 512 cast<llvm::PointerType>(DestPtr->getType()); 513 const llvm::ArrayType *AType = 514 cast<llvm::ArrayType>(APType->getElementType()); 515 516 uint64_t NumInitElements = E->getNumInits(); 517 518 if (E->getNumInits() > 0) { 519 QualType T1 = E->getType(); 520 QualType T2 = E->getInit(0)->getType(); 521 if (CGF.getContext().hasSameUnqualifiedType(T1, T2)) { 522 EmitAggLoadOfLValue(E->getInit(0)); 523 return; 524 } 525 } 526 527 uint64_t NumArrayElements = AType->getNumElements(); 528 QualType ElementType = CGF.getContext().getCanonicalType(E->getType()); 529 ElementType = CGF.getContext().getAsArrayType(ElementType)->getElementType(); 530 531 // FIXME: were we intentionally ignoring address spaces and GC attributes? 532 Qualifiers Quals = CGF.MakeQualifiers(ElementType); 533 534 for (uint64_t i = 0; i != NumArrayElements; ++i) { 535 llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array"); 536 if (i < NumInitElements) 537 EmitInitializationToLValue(E->getInit(i), 538 LValue::MakeAddr(NextVal, Quals)); 539 else 540 EmitNullInitializationToLValue(LValue::MakeAddr(NextVal, Quals), 541 ElementType); 542 } 543 return; 544 } 545 546 assert(E->getType()->isRecordType() && "Only support structs/unions here!"); 547 548 // Do struct initialization; this code just sets each individual member 549 // to the approprate value. This makes bitfield support automatic; 550 // the disadvantage is that the generated code is more difficult for 551 // the optimizer, especially with bitfields. 552 unsigned NumInitElements = E->getNumInits(); 553 RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl(); 554 unsigned CurInitVal = 0; 555 556 if (E->getType()->isUnionType()) { 557 // Only initialize one field of a union. The field itself is 558 // specified by the initializer list. 559 if (!E->getInitializedFieldInUnion()) { 560 // Empty union; we have nothing to do. 561 562 #ifndef NDEBUG 563 // Make sure that it's really an empty and not a failure of 564 // semantic analysis. 565 for (RecordDecl::field_iterator Field = SD->field_begin(), 566 FieldEnd = SD->field_end(); 567 Field != FieldEnd; ++Field) 568 assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed"); 569 #endif 570 return; 571 } 572 573 // FIXME: volatility 574 FieldDecl *Field = E->getInitializedFieldInUnion(); 575 LValue FieldLoc = CGF.EmitLValueForField(DestPtr, Field, true, 0); 576 577 if (NumInitElements) { 578 // Store the initializer into the field 579 EmitInitializationToLValue(E->getInit(0), FieldLoc); 580 } else { 581 // Default-initialize to null 582 EmitNullInitializationToLValue(FieldLoc, Field->getType()); 583 } 584 585 return; 586 } 587 588 // Here we iterate over the fields; this makes it simpler to both 589 // default-initialize fields and skip over unnamed fields. 590 for (RecordDecl::field_iterator Field = SD->field_begin(), 591 FieldEnd = SD->field_end(); 592 Field != FieldEnd; ++Field) { 593 // We're done once we hit the flexible array member 594 if (Field->getType()->isIncompleteArrayType()) 595 break; 596 597 if (Field->isUnnamedBitfield()) 598 continue; 599 600 // FIXME: volatility 601 LValue FieldLoc = CGF.EmitLValueForField(DestPtr, *Field, false, 0); 602 // We never generate write-barries for initialized fields. 603 LValue::SetObjCNonGC(FieldLoc, true); 604 if (CurInitVal < NumInitElements) { 605 // Store the initializer into the field 606 EmitInitializationToLValue(E->getInit(CurInitVal++), FieldLoc); 607 } else { 608 // We're out of initalizers; default-initialize to null 609 EmitNullInitializationToLValue(FieldLoc, Field->getType()); 610 } 611 } 612 } 613 614 //===----------------------------------------------------------------------===// 615 // Entry Points into this File 616 //===----------------------------------------------------------------------===// 617 618 /// EmitAggExpr - Emit the computation of the specified expression of aggregate 619 /// type. The result is computed into DestPtr. Note that if DestPtr is null, 620 /// the value of the aggregate expression is not needed. If VolatileDest is 621 /// true, DestPtr cannot be 0. 622 void CodeGenFunction::EmitAggExpr(const Expr *E, llvm::Value *DestPtr, 623 bool VolatileDest, bool IgnoreResult, 624 bool IsInitializer, 625 bool RequiresGCollection) { 626 assert(E && hasAggregateLLVMType(E->getType()) && 627 "Invalid aggregate expression to emit"); 628 assert ((DestPtr != 0 || VolatileDest == false) 629 && "volatile aggregate can't be 0"); 630 631 AggExprEmitter(*this, DestPtr, VolatileDest, IgnoreResult, IsInitializer, 632 RequiresGCollection) 633 .Visit(const_cast<Expr*>(E)); 634 } 635 636 void CodeGenFunction::EmitAggregateClear(llvm::Value *DestPtr, QualType Ty) { 637 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 638 639 EmitMemSetToZero(DestPtr, Ty); 640 } 641 642 void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr, 643 llvm::Value *SrcPtr, QualType Ty, 644 bool isVolatile) { 645 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 646 647 // Aggregate assignment turns into llvm.memcpy. This is almost valid per 648 // C99 6.5.16.1p3, which states "If the value being stored in an object is 649 // read from another object that overlaps in anyway the storage of the first 650 // object, then the overlap shall be exact and the two objects shall have 651 // qualified or unqualified versions of a compatible type." 652 // 653 // memcpy is not defined if the source and destination pointers are exactly 654 // equal, but other compilers do this optimization, and almost every memcpy 655 // implementation handles this case safely. If there is a libc that does not 656 // safely handle this, we can add a target hook. 657 const llvm::Type *BP = llvm::Type::getInt8PtrTy(VMContext); 658 if (DestPtr->getType() != BP) 659 DestPtr = Builder.CreateBitCast(DestPtr, BP, "tmp"); 660 if (SrcPtr->getType() != BP) 661 SrcPtr = Builder.CreateBitCast(SrcPtr, BP, "tmp"); 662 663 // Get size and alignment info for this aggregate. 664 std::pair<uint64_t, unsigned> TypeInfo = getContext().getTypeInfo(Ty); 665 666 // FIXME: Handle variable sized types. 667 const llvm::Type *IntPtr = 668 llvm::IntegerType::get(VMContext, LLVMPointerWidth); 669 670 // FIXME: If we have a volatile struct, the optimizer can remove what might 671 // appear to be `extra' memory ops: 672 // 673 // volatile struct { int i; } a, b; 674 // 675 // int main() { 676 // a = b; 677 // a = b; 678 // } 679 // 680 // we need to use a differnt call here. We use isVolatile to indicate when 681 // either the source or the destination is volatile. 682 Builder.CreateCall4(CGM.getMemCpyFn(), 683 DestPtr, SrcPtr, 684 // TypeInfo.first describes size in bits. 685 llvm::ConstantInt::get(IntPtr, TypeInfo.first/8), 686 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 687 TypeInfo.second/8)); 688 } 689