1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Aggregate Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "CGObjCRuntime.h" 17 #include "clang/AST/ASTContext.h" 18 #include "clang/AST/DeclCXX.h" 19 #include "clang/AST/DeclTemplate.h" 20 #include "clang/AST/StmtVisitor.h" 21 #include "llvm/Constants.h" 22 #include "llvm/Function.h" 23 #include "llvm/GlobalVariable.h" 24 #include "llvm/Intrinsics.h" 25 using namespace clang; 26 using namespace CodeGen; 27 28 //===----------------------------------------------------------------------===// 29 // Aggregate Expression Emitter 30 //===----------------------------------------------------------------------===// 31 32 namespace { 33 class AggExprEmitter : public StmtVisitor<AggExprEmitter> { 34 CodeGenFunction &CGF; 35 CGBuilderTy &Builder; 36 AggValueSlot Dest; 37 bool IgnoreResult; 38 39 /// We want to use 'dest' as the return slot except under two 40 /// conditions: 41 /// - The destination slot requires garbage collection, so we 42 /// need to use the GC API. 43 /// - The destination slot is potentially aliased. 44 bool shouldUseDestForReturnSlot() const { 45 return !(Dest.requiresGCollection() || Dest.isPotentiallyAliased()); 46 } 47 48 ReturnValueSlot getReturnValueSlot() const { 49 if (!shouldUseDestForReturnSlot()) 50 return ReturnValueSlot(); 51 52 return ReturnValueSlot(Dest.getAddr(), Dest.isVolatile()); 53 } 54 55 AggValueSlot EnsureSlot(QualType T) { 56 if (!Dest.isIgnored()) return Dest; 57 return CGF.CreateAggTemp(T, "agg.tmp.ensured"); 58 } 59 60 public: 61 AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest, 62 bool ignore) 63 : CGF(cgf), Builder(CGF.Builder), Dest(Dest), 64 IgnoreResult(ignore) { 65 } 66 67 //===--------------------------------------------------------------------===// 68 // Utilities 69 //===--------------------------------------------------------------------===// 70 71 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 72 /// represents a value lvalue, this method emits the address of the lvalue, 73 /// then loads the result into DestPtr. 74 void EmitAggLoadOfLValue(const Expr *E); 75 76 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 77 void EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore = false); 78 void EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore = false, 79 unsigned Alignment = 0); 80 81 void EmitMoveFromReturnSlot(const Expr *E, RValue Src); 82 83 void EmitStdInitializerList(llvm::Value *DestPtr, InitListExpr *InitList); 84 void EmitArrayInit(llvm::Value *DestPtr, llvm::ArrayType *AType, 85 QualType elementType, InitListExpr *E); 86 87 AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) { 88 if (CGF.getLangOptions().getGC() && TypeRequiresGCollection(T)) 89 return AggValueSlot::NeedsGCBarriers; 90 return AggValueSlot::DoesNotNeedGCBarriers; 91 } 92 93 bool TypeRequiresGCollection(QualType T); 94 95 //===--------------------------------------------------------------------===// 96 // Visitor Methods 97 //===--------------------------------------------------------------------===// 98 99 void VisitStmt(Stmt *S) { 100 CGF.ErrorUnsupported(S, "aggregate expression"); 101 } 102 void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); } 103 void VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 104 Visit(GE->getResultExpr()); 105 } 106 void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); } 107 void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 108 return Visit(E->getReplacement()); 109 } 110 111 // l-values. 112 void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); } 113 void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); } 114 void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); } 115 void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); } 116 void VisitCompoundLiteralExpr(CompoundLiteralExpr *E); 117 void VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 118 EmitAggLoadOfLValue(E); 119 } 120 void VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) { 121 EmitAggLoadOfLValue(E); 122 } 123 void VisitPredefinedExpr(const PredefinedExpr *E) { 124 EmitAggLoadOfLValue(E); 125 } 126 127 // Operators. 128 void VisitCastExpr(CastExpr *E); 129 void VisitCallExpr(const CallExpr *E); 130 void VisitStmtExpr(const StmtExpr *E); 131 void VisitBinaryOperator(const BinaryOperator *BO); 132 void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO); 133 void VisitBinAssign(const BinaryOperator *E); 134 void VisitBinComma(const BinaryOperator *E); 135 136 void VisitObjCMessageExpr(ObjCMessageExpr *E); 137 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 138 EmitAggLoadOfLValue(E); 139 } 140 141 void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO); 142 void VisitChooseExpr(const ChooseExpr *CE); 143 void VisitInitListExpr(InitListExpr *E); 144 void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E); 145 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 146 Visit(DAE->getExpr()); 147 } 148 void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E); 149 void VisitCXXConstructExpr(const CXXConstructExpr *E); 150 void VisitLambdaExpr(LambdaExpr *E); 151 void VisitExprWithCleanups(ExprWithCleanups *E); 152 void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E); 153 void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); } 154 void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E); 155 void VisitOpaqueValueExpr(OpaqueValueExpr *E); 156 157 void VisitPseudoObjectExpr(PseudoObjectExpr *E) { 158 if (E->isGLValue()) { 159 LValue LV = CGF.EmitPseudoObjectLValue(E); 160 return EmitFinalDestCopy(E, LV); 161 } 162 163 CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType())); 164 } 165 166 void VisitVAArgExpr(VAArgExpr *E); 167 168 void EmitInitializationToLValue(Expr *E, LValue Address); 169 void EmitNullInitializationToLValue(LValue Address); 170 // case Expr::ChooseExprClass: 171 void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); } 172 void VisitAtomicExpr(AtomicExpr *E) { 173 CGF.EmitAtomicExpr(E, EnsureSlot(E->getType()).getAddr()); 174 } 175 }; 176 } // end anonymous namespace. 177 178 //===----------------------------------------------------------------------===// 179 // Utilities 180 //===----------------------------------------------------------------------===// 181 182 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 183 /// represents a value lvalue, this method emits the address of the lvalue, 184 /// then loads the result into DestPtr. 185 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) { 186 LValue LV = CGF.EmitLValue(E); 187 EmitFinalDestCopy(E, LV); 188 } 189 190 /// \brief True if the given aggregate type requires special GC API calls. 191 bool AggExprEmitter::TypeRequiresGCollection(QualType T) { 192 // Only record types have members that might require garbage collection. 193 const RecordType *RecordTy = T->getAs<RecordType>(); 194 if (!RecordTy) return false; 195 196 // Don't mess with non-trivial C++ types. 197 RecordDecl *Record = RecordTy->getDecl(); 198 if (isa<CXXRecordDecl>(Record) && 199 (!cast<CXXRecordDecl>(Record)->hasTrivialCopyConstructor() || 200 !cast<CXXRecordDecl>(Record)->hasTrivialDestructor())) 201 return false; 202 203 // Check whether the type has an object member. 204 return Record->hasObjectMember(); 205 } 206 207 /// \brief Perform the final move to DestPtr if for some reason 208 /// getReturnValueSlot() didn't use it directly. 209 /// 210 /// The idea is that you do something like this: 211 /// RValue Result = EmitSomething(..., getReturnValueSlot()); 212 /// EmitMoveFromReturnSlot(E, Result); 213 /// 214 /// If nothing interferes, this will cause the result to be emitted 215 /// directly into the return value slot. Otherwise, a final move 216 /// will be performed. 217 void AggExprEmitter::EmitMoveFromReturnSlot(const Expr *E, RValue Src) { 218 if (shouldUseDestForReturnSlot()) { 219 // Logically, Dest.getAddr() should equal Src.getAggregateAddr(). 220 // The possibility of undef rvalues complicates that a lot, 221 // though, so we can't really assert. 222 return; 223 } 224 225 // Otherwise, do a final copy, 226 assert(Dest.getAddr() != Src.getAggregateAddr()); 227 EmitFinalDestCopy(E, Src, /*Ignore*/ true); 228 } 229 230 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 231 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore, 232 unsigned Alignment) { 233 assert(Src.isAggregate() && "value must be aggregate value!"); 234 235 // If Dest is ignored, then we're evaluating an aggregate expression 236 // in a context (like an expression statement) that doesn't care 237 // about the result. C says that an lvalue-to-rvalue conversion is 238 // performed in these cases; C++ says that it is not. In either 239 // case, we don't actually need to do anything unless the value is 240 // volatile. 241 if (Dest.isIgnored()) { 242 if (!Src.isVolatileQualified() || 243 CGF.CGM.getLangOptions().CPlusPlus || 244 (IgnoreResult && Ignore)) 245 return; 246 247 // If the source is volatile, we must read from it; to do that, we need 248 // some place to put it. 249 Dest = CGF.CreateAggTemp(E->getType(), "agg.tmp"); 250 } 251 252 if (Dest.requiresGCollection()) { 253 CharUnits size = CGF.getContext().getTypeSizeInChars(E->getType()); 254 llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType()); 255 llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity()); 256 CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, 257 Dest.getAddr(), 258 Src.getAggregateAddr(), 259 SizeVal); 260 return; 261 } 262 // If the result of the assignment is used, copy the LHS there also. 263 // FIXME: Pass VolatileDest as well. I think we also need to merge volatile 264 // from the source as well, as we can't eliminate it if either operand 265 // is volatile, unless copy has volatile for both source and destination.. 266 CGF.EmitAggregateCopy(Dest.getAddr(), Src.getAggregateAddr(), E->getType(), 267 Dest.isVolatile()|Src.isVolatileQualified(), 268 Alignment); 269 } 270 271 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 272 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore) { 273 assert(Src.isSimple() && "Can't have aggregate bitfield, vector, etc"); 274 275 CharUnits Alignment = std::min(Src.getAlignment(), Dest.getAlignment()); 276 EmitFinalDestCopy(E, Src.asAggregateRValue(), Ignore, Alignment.getQuantity()); 277 } 278 279 static QualType GetStdInitializerListElementType(QualType T) { 280 // Just assume that this is really std::initializer_list. 281 ClassTemplateSpecializationDecl *specialization = 282 cast<ClassTemplateSpecializationDecl>(T->castAs<RecordType>()->getDecl()); 283 return specialization->getTemplateArgs()[0].getAsType(); 284 } 285 286 /// \brief Prepare cleanup for the temporary array. 287 static void EmitStdInitializerListCleanup(CodeGenFunction &CGF, 288 QualType arrayType, 289 llvm::Value *addr, 290 const InitListExpr *initList) { 291 QualType::DestructionKind dtorKind = arrayType.isDestructedType(); 292 if (!dtorKind) 293 return; // Type doesn't need destroying. 294 if (dtorKind != QualType::DK_cxx_destructor) { 295 CGF.ErrorUnsupported(initList, "ObjC ARC type in initializer_list"); 296 return; 297 } 298 299 CodeGenFunction::Destroyer *destroyer = CGF.getDestroyer(dtorKind); 300 CGF.pushDestroy(NormalAndEHCleanup, addr, arrayType, destroyer, 301 /*EHCleanup=*/true); 302 } 303 304 /// \brief Emit the initializer for a std::initializer_list initialized with a 305 /// real initializer list. 306 void AggExprEmitter::EmitStdInitializerList(llvm::Value *destPtr, 307 InitListExpr *initList) { 308 // We emit an array containing the elements, then have the init list point 309 // at the array. 310 ASTContext &ctx = CGF.getContext(); 311 unsigned numInits = initList->getNumInits(); 312 QualType element = GetStdInitializerListElementType(initList->getType()); 313 llvm::APInt size(ctx.getTypeSize(ctx.getSizeType()), numInits); 314 QualType array = ctx.getConstantArrayType(element, size, ArrayType::Normal,0); 315 llvm::Type *LTy = CGF.ConvertTypeForMem(array); 316 llvm::AllocaInst *alloc = CGF.CreateTempAlloca(LTy); 317 alloc->setAlignment(ctx.getTypeAlignInChars(array).getQuantity()); 318 alloc->setName(".initlist."); 319 320 EmitArrayInit(alloc, cast<llvm::ArrayType>(LTy), element, initList); 321 322 // FIXME: The diagnostics are somewhat out of place here. 323 RecordDecl *record = initList->getType()->castAs<RecordType>()->getDecl(); 324 RecordDecl::field_iterator field = record->field_begin(); 325 if (field == record->field_end()) { 326 CGF.ErrorUnsupported(initList, "weird std::initializer_list"); 327 } 328 329 QualType elementPtr = ctx.getPointerType(element.withConst()); 330 331 // Start pointer. 332 if (!ctx.hasSameType(field->getType(), elementPtr)) { 333 CGF.ErrorUnsupported(initList, "weird std::initializer_list"); 334 } 335 LValue start = CGF.EmitLValueForFieldInitialization(destPtr, *field, 0); 336 llvm::Value *arrayStart = Builder.CreateStructGEP(alloc, 0, "arraystart"); 337 CGF.EmitStoreThroughLValue(RValue::get(arrayStart), start); 338 ++field; 339 340 if (field == record->field_end()) { 341 CGF.ErrorUnsupported(initList, "weird std::initializer_list"); 342 } 343 LValue endOrLength = CGF.EmitLValueForFieldInitialization(destPtr, *field, 0); 344 if (ctx.hasSameType(field->getType(), elementPtr)) { 345 // End pointer. 346 llvm::Value *arrayEnd = Builder.CreateStructGEP(alloc,numInits, "arrayend"); 347 CGF.EmitStoreThroughLValue(RValue::get(arrayEnd), endOrLength); 348 } else if(ctx.hasSameType(field->getType(), ctx.getSizeType())) { 349 // Length. 350 CGF.EmitStoreThroughLValue(RValue::get(Builder.getInt(size)), endOrLength); 351 } else { 352 CGF.ErrorUnsupported(initList, "weird std::initializer_list"); 353 } 354 355 if (!Dest.isExternallyDestructed()) 356 EmitStdInitializerListCleanup(CGF, array, alloc, initList); 357 } 358 359 /// \brief Emit initialization of an array from an initializer list. 360 void AggExprEmitter::EmitArrayInit(llvm::Value *DestPtr, llvm::ArrayType *AType, 361 QualType elementType, InitListExpr *E) { 362 uint64_t NumInitElements = E->getNumInits(); 363 364 uint64_t NumArrayElements = AType->getNumElements(); 365 assert(NumInitElements <= NumArrayElements); 366 367 // DestPtr is an array*. Construct an elementType* by drilling 368 // down a level. 369 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 370 llvm::Value *indices[] = { zero, zero }; 371 llvm::Value *begin = 372 Builder.CreateInBoundsGEP(DestPtr, indices, "arrayinit.begin"); 373 374 // Exception safety requires us to destroy all the 375 // already-constructed members if an initializer throws. 376 // For that, we'll need an EH cleanup. 377 QualType::DestructionKind dtorKind = elementType.isDestructedType(); 378 llvm::AllocaInst *endOfInit = 0; 379 EHScopeStack::stable_iterator cleanup; 380 llvm::Instruction *cleanupDominator = 0; 381 if (CGF.needsEHCleanup(dtorKind)) { 382 // In principle we could tell the cleanup where we are more 383 // directly, but the control flow can get so varied here that it 384 // would actually be quite complex. Therefore we go through an 385 // alloca. 386 endOfInit = CGF.CreateTempAlloca(begin->getType(), 387 "arrayinit.endOfInit"); 388 cleanupDominator = Builder.CreateStore(begin, endOfInit); 389 CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType, 390 CGF.getDestroyer(dtorKind)); 391 cleanup = CGF.EHStack.stable_begin(); 392 393 // Otherwise, remember that we didn't need a cleanup. 394 } else { 395 dtorKind = QualType::DK_none; 396 } 397 398 llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1); 399 400 // The 'current element to initialize'. The invariants on this 401 // variable are complicated. Essentially, after each iteration of 402 // the loop, it points to the last initialized element, except 403 // that it points to the beginning of the array before any 404 // elements have been initialized. 405 llvm::Value *element = begin; 406 407 // Emit the explicit initializers. 408 for (uint64_t i = 0; i != NumInitElements; ++i) { 409 // Advance to the next element. 410 if (i > 0) { 411 element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element"); 412 413 // Tell the cleanup that it needs to destroy up to this 414 // element. TODO: some of these stores can be trivially 415 // observed to be unnecessary. 416 if (endOfInit) Builder.CreateStore(element, endOfInit); 417 } 418 419 // If these are nested std::initializer_list inits, do them directly, 420 // because they are conceptually the same "location". 421 InitListExpr *initList = dyn_cast<InitListExpr>(E->getInit(i)); 422 if (initList && initList->initializesStdInitializerList()) { 423 EmitStdInitializerList(element, initList); 424 } else { 425 LValue elementLV = CGF.MakeAddrLValue(element, elementType); 426 EmitInitializationToLValue(E->getInit(i), elementLV); 427 } 428 } 429 430 // Check whether there's a non-trivial array-fill expression. 431 // Note that this will be a CXXConstructExpr even if the element 432 // type is an array (or array of array, etc.) of class type. 433 Expr *filler = E->getArrayFiller(); 434 bool hasTrivialFiller = true; 435 if (CXXConstructExpr *cons = dyn_cast_or_null<CXXConstructExpr>(filler)) { 436 assert(cons->getConstructor()->isDefaultConstructor()); 437 hasTrivialFiller = cons->getConstructor()->isTrivial(); 438 } 439 440 // Any remaining elements need to be zero-initialized, possibly 441 // using the filler expression. We can skip this if the we're 442 // emitting to zeroed memory. 443 if (NumInitElements != NumArrayElements && 444 !(Dest.isZeroed() && hasTrivialFiller && 445 CGF.getTypes().isZeroInitializable(elementType))) { 446 447 // Use an actual loop. This is basically 448 // do { *array++ = filler; } while (array != end); 449 450 // Advance to the start of the rest of the array. 451 if (NumInitElements) { 452 element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start"); 453 if (endOfInit) Builder.CreateStore(element, endOfInit); 454 } 455 456 // Compute the end of the array. 457 llvm::Value *end = Builder.CreateInBoundsGEP(begin, 458 llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements), 459 "arrayinit.end"); 460 461 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 462 llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body"); 463 464 // Jump into the body. 465 CGF.EmitBlock(bodyBB); 466 llvm::PHINode *currentElement = 467 Builder.CreatePHI(element->getType(), 2, "arrayinit.cur"); 468 currentElement->addIncoming(element, entryBB); 469 470 // Emit the actual filler expression. 471 LValue elementLV = CGF.MakeAddrLValue(currentElement, elementType); 472 if (filler) 473 EmitInitializationToLValue(filler, elementLV); 474 else 475 EmitNullInitializationToLValue(elementLV); 476 477 // Move on to the next element. 478 llvm::Value *nextElement = 479 Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next"); 480 481 // Tell the EH cleanup that we finished with the last element. 482 if (endOfInit) Builder.CreateStore(nextElement, endOfInit); 483 484 // Leave the loop if we're done. 485 llvm::Value *done = Builder.CreateICmpEQ(nextElement, end, 486 "arrayinit.done"); 487 llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end"); 488 Builder.CreateCondBr(done, endBB, bodyBB); 489 currentElement->addIncoming(nextElement, Builder.GetInsertBlock()); 490 491 CGF.EmitBlock(endBB); 492 } 493 494 // Leave the partial-array cleanup if we entered one. 495 if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator); 496 } 497 498 //===----------------------------------------------------------------------===// 499 // Visitor Methods 500 //===----------------------------------------------------------------------===// 501 502 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){ 503 Visit(E->GetTemporaryExpr()); 504 } 505 506 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) { 507 EmitFinalDestCopy(e, CGF.getOpaqueLValueMapping(e)); 508 } 509 510 void 511 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 512 if (E->getType().isPODType(CGF.getContext())) { 513 // For a POD type, just emit a load of the lvalue + a copy, because our 514 // compound literal might alias the destination. 515 // FIXME: This is a band-aid; the real problem appears to be in our handling 516 // of assignments, where we store directly into the LHS without checking 517 // whether anything in the RHS aliases. 518 EmitAggLoadOfLValue(E); 519 return; 520 } 521 522 AggValueSlot Slot = EnsureSlot(E->getType()); 523 CGF.EmitAggExpr(E->getInitializer(), Slot); 524 } 525 526 527 void AggExprEmitter::VisitCastExpr(CastExpr *E) { 528 switch (E->getCastKind()) { 529 case CK_Dynamic: { 530 assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?"); 531 LValue LV = CGF.EmitCheckedLValue(E->getSubExpr()); 532 // FIXME: Do we also need to handle property references here? 533 if (LV.isSimple()) 534 CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E)); 535 else 536 CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast"); 537 538 if (!Dest.isIgnored()) 539 CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination"); 540 break; 541 } 542 543 case CK_ToUnion: { 544 if (Dest.isIgnored()) break; 545 546 // GCC union extension 547 QualType Ty = E->getSubExpr()->getType(); 548 QualType PtrTy = CGF.getContext().getPointerType(Ty); 549 llvm::Value *CastPtr = Builder.CreateBitCast(Dest.getAddr(), 550 CGF.ConvertType(PtrTy)); 551 EmitInitializationToLValue(E->getSubExpr(), 552 CGF.MakeAddrLValue(CastPtr, Ty)); 553 break; 554 } 555 556 case CK_DerivedToBase: 557 case CK_BaseToDerived: 558 case CK_UncheckedDerivedToBase: { 559 llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: " 560 "should have been unpacked before we got here"); 561 } 562 563 case CK_LValueToRValue: // hope for downstream optimization 564 case CK_NoOp: 565 case CK_AtomicToNonAtomic: 566 case CK_NonAtomicToAtomic: 567 case CK_UserDefinedConversion: 568 case CK_ConstructorConversion: 569 assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(), 570 E->getType()) && 571 "Implicit cast types must be compatible"); 572 Visit(E->getSubExpr()); 573 break; 574 575 case CK_LValueBitCast: 576 llvm_unreachable("should not be emitting lvalue bitcast as rvalue"); 577 578 case CK_Dependent: 579 case CK_BitCast: 580 case CK_ArrayToPointerDecay: 581 case CK_FunctionToPointerDecay: 582 case CK_NullToPointer: 583 case CK_NullToMemberPointer: 584 case CK_BaseToDerivedMemberPointer: 585 case CK_DerivedToBaseMemberPointer: 586 case CK_MemberPointerToBoolean: 587 case CK_ReinterpretMemberPointer: 588 case CK_IntegralToPointer: 589 case CK_PointerToIntegral: 590 case CK_PointerToBoolean: 591 case CK_ToVoid: 592 case CK_VectorSplat: 593 case CK_IntegralCast: 594 case CK_IntegralToBoolean: 595 case CK_IntegralToFloating: 596 case CK_FloatingToIntegral: 597 case CK_FloatingToBoolean: 598 case CK_FloatingCast: 599 case CK_CPointerToObjCPointerCast: 600 case CK_BlockPointerToObjCPointerCast: 601 case CK_AnyPointerToBlockPointerCast: 602 case CK_ObjCObjectLValueCast: 603 case CK_FloatingRealToComplex: 604 case CK_FloatingComplexToReal: 605 case CK_FloatingComplexToBoolean: 606 case CK_FloatingComplexCast: 607 case CK_FloatingComplexToIntegralComplex: 608 case CK_IntegralRealToComplex: 609 case CK_IntegralComplexToReal: 610 case CK_IntegralComplexToBoolean: 611 case CK_IntegralComplexCast: 612 case CK_IntegralComplexToFloatingComplex: 613 case CK_ARCProduceObject: 614 case CK_ARCConsumeObject: 615 case CK_ARCReclaimReturnedObject: 616 case CK_ARCExtendBlockObject: 617 case CK_CopyAndAutoreleaseBlockObject: 618 llvm_unreachable("cast kind invalid for aggregate types"); 619 } 620 } 621 622 void AggExprEmitter::VisitCallExpr(const CallExpr *E) { 623 if (E->getCallReturnType()->isReferenceType()) { 624 EmitAggLoadOfLValue(E); 625 return; 626 } 627 628 RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot()); 629 EmitMoveFromReturnSlot(E, RV); 630 } 631 632 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) { 633 RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot()); 634 EmitMoveFromReturnSlot(E, RV); 635 } 636 637 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) { 638 CGF.EmitIgnoredExpr(E->getLHS()); 639 Visit(E->getRHS()); 640 } 641 642 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) { 643 CodeGenFunction::StmtExprEvaluation eval(CGF); 644 CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest); 645 } 646 647 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) { 648 if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI) 649 VisitPointerToDataMemberBinaryOperator(E); 650 else 651 CGF.ErrorUnsupported(E, "aggregate binary expression"); 652 } 653 654 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator( 655 const BinaryOperator *E) { 656 LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E); 657 EmitFinalDestCopy(E, LV); 658 } 659 660 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) { 661 // For an assignment to work, the value on the right has 662 // to be compatible with the value on the left. 663 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), 664 E->getRHS()->getType()) 665 && "Invalid assignment"); 666 667 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->getLHS())) 668 if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) 669 if (VD->hasAttr<BlocksAttr>() && 670 E->getRHS()->HasSideEffects(CGF.getContext())) { 671 // When __block variable on LHS, the RHS must be evaluated first 672 // as it may change the 'forwarding' field via call to Block_copy. 673 LValue RHS = CGF.EmitLValue(E->getRHS()); 674 LValue LHS = CGF.EmitLValue(E->getLHS()); 675 Dest = AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed, 676 needsGC(E->getLHS()->getType()), 677 AggValueSlot::IsAliased); 678 EmitFinalDestCopy(E, RHS, true); 679 return; 680 } 681 682 LValue LHS = CGF.EmitLValue(E->getLHS()); 683 684 // Codegen the RHS so that it stores directly into the LHS. 685 AggValueSlot LHSSlot = 686 AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed, 687 needsGC(E->getLHS()->getType()), 688 AggValueSlot::IsAliased); 689 CGF.EmitAggExpr(E->getRHS(), LHSSlot, false); 690 EmitFinalDestCopy(E, LHS, true); 691 } 692 693 void AggExprEmitter:: 694 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 695 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 696 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 697 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 698 699 // Bind the common expression if necessary. 700 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 701 702 CodeGenFunction::ConditionalEvaluation eval(CGF); 703 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock); 704 705 // Save whether the destination's lifetime is externally managed. 706 bool isExternallyDestructed = Dest.isExternallyDestructed(); 707 708 eval.begin(CGF); 709 CGF.EmitBlock(LHSBlock); 710 Visit(E->getTrueExpr()); 711 eval.end(CGF); 712 713 assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!"); 714 CGF.Builder.CreateBr(ContBlock); 715 716 // If the result of an agg expression is unused, then the emission 717 // of the LHS might need to create a destination slot. That's fine 718 // with us, and we can safely emit the RHS into the same slot, but 719 // we shouldn't claim that it's already being destructed. 720 Dest.setExternallyDestructed(isExternallyDestructed); 721 722 eval.begin(CGF); 723 CGF.EmitBlock(RHSBlock); 724 Visit(E->getFalseExpr()); 725 eval.end(CGF); 726 727 CGF.EmitBlock(ContBlock); 728 } 729 730 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) { 731 Visit(CE->getChosenSubExpr(CGF.getContext())); 732 } 733 734 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 735 llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr()); 736 llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType()); 737 738 if (!ArgPtr) { 739 CGF.ErrorUnsupported(VE, "aggregate va_arg expression"); 740 return; 741 } 742 743 EmitFinalDestCopy(VE, CGF.MakeAddrLValue(ArgPtr, VE->getType())); 744 } 745 746 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 747 // Ensure that we have a slot, but if we already do, remember 748 // whether it was externally destructed. 749 bool wasExternallyDestructed = Dest.isExternallyDestructed(); 750 Dest = EnsureSlot(E->getType()); 751 752 // We're going to push a destructor if there isn't already one. 753 Dest.setExternallyDestructed(); 754 755 Visit(E->getSubExpr()); 756 757 // Push that destructor we promised. 758 if (!wasExternallyDestructed) 759 CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddr()); 760 } 761 762 void 763 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) { 764 AggValueSlot Slot = EnsureSlot(E->getType()); 765 CGF.EmitCXXConstructExpr(E, Slot); 766 } 767 768 void 769 AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) { 770 AggValueSlot Slot = EnsureSlot(E->getType()); 771 CGF.EmitLambdaExpr(E, Slot); 772 } 773 774 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) { 775 CGF.enterFullExpression(E); 776 CodeGenFunction::RunCleanupsScope cleanups(CGF); 777 Visit(E->getSubExpr()); 778 } 779 780 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) { 781 QualType T = E->getType(); 782 AggValueSlot Slot = EnsureSlot(T); 783 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T)); 784 } 785 786 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) { 787 QualType T = E->getType(); 788 AggValueSlot Slot = EnsureSlot(T); 789 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T)); 790 } 791 792 /// isSimpleZero - If emitting this value will obviously just cause a store of 793 /// zero to memory, return true. This can return false if uncertain, so it just 794 /// handles simple cases. 795 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) { 796 E = E->IgnoreParens(); 797 798 // 0 799 if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) 800 return IL->getValue() == 0; 801 // +0.0 802 if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E)) 803 return FL->getValue().isPosZero(); 804 // int() 805 if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) && 806 CGF.getTypes().isZeroInitializable(E->getType())) 807 return true; 808 // (int*)0 - Null pointer expressions. 809 if (const CastExpr *ICE = dyn_cast<CastExpr>(E)) 810 return ICE->getCastKind() == CK_NullToPointer; 811 // '\0' 812 if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) 813 return CL->getValue() == 0; 814 815 // Otherwise, hard case: conservatively return false. 816 return false; 817 } 818 819 820 void 821 AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV) { 822 QualType type = LV.getType(); 823 // FIXME: Ignore result? 824 // FIXME: Are initializers affected by volatile? 825 if (Dest.isZeroed() && isSimpleZero(E, CGF)) { 826 // Storing "i32 0" to a zero'd memory location is a noop. 827 } else if (isa<ImplicitValueInitExpr>(E)) { 828 EmitNullInitializationToLValue(LV); 829 } else if (type->isReferenceType()) { 830 RValue RV = CGF.EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0); 831 CGF.EmitStoreThroughLValue(RV, LV); 832 } else if (type->isAnyComplexType()) { 833 CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false); 834 } else if (CGF.hasAggregateLLVMType(type)) { 835 CGF.EmitAggExpr(E, AggValueSlot::forLValue(LV, 836 AggValueSlot::IsDestructed, 837 AggValueSlot::DoesNotNeedGCBarriers, 838 AggValueSlot::IsNotAliased, 839 Dest.isZeroed())); 840 } else if (LV.isSimple()) { 841 CGF.EmitScalarInit(E, /*D=*/0, LV, /*Captured=*/false); 842 } else { 843 CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV); 844 } 845 } 846 847 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) { 848 QualType type = lv.getType(); 849 850 // If the destination slot is already zeroed out before the aggregate is 851 // copied into it, we don't have to emit any zeros here. 852 if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type)) 853 return; 854 855 if (!CGF.hasAggregateLLVMType(type)) { 856 // For non-aggregates, we can store zero. 857 llvm::Value *null = llvm::Constant::getNullValue(CGF.ConvertType(type)); 858 // Note that the following is not equivalent to 859 // EmitStoreThroughBitfieldLValue for ARC types. 860 if (lv.isBitField()) 861 CGF.EmitStoreThroughBitfieldLValue(RValue::get(null), lv); 862 assert(lv.isSimple()); 863 CGF.EmitStoreOfScalar(null, lv, /* isInitialization */ true); 864 } else { 865 // There's a potential optimization opportunity in combining 866 // memsets; that would be easy for arrays, but relatively 867 // difficult for structures with the current code. 868 CGF.EmitNullInitialization(lv.getAddress(), lv.getType()); 869 } 870 } 871 872 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) { 873 #if 0 874 // FIXME: Assess perf here? Figure out what cases are worth optimizing here 875 // (Length of globals? Chunks of zeroed-out space?). 876 // 877 // If we can, prefer a copy from a global; this is a lot less code for long 878 // globals, and it's easier for the current optimizers to analyze. 879 if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) { 880 llvm::GlobalVariable* GV = 881 new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true, 882 llvm::GlobalValue::InternalLinkage, C, ""); 883 EmitFinalDestCopy(E, CGF.MakeAddrLValue(GV, E->getType())); 884 return; 885 } 886 #endif 887 if (E->hadArrayRangeDesignator()) 888 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 889 890 if (E->initializesStdInitializerList()) { 891 EmitStdInitializerList(Dest.getAddr(), E); 892 return; 893 } 894 895 llvm::Value *DestPtr = Dest.getAddr(); 896 897 // Handle initialization of an array. 898 if (E->getType()->isArrayType()) { 899 if (E->getNumInits() > 0) { 900 QualType T1 = E->getType(); 901 QualType T2 = E->getInit(0)->getType(); 902 if (CGF.getContext().hasSameUnqualifiedType(T1, T2)) { 903 EmitAggLoadOfLValue(E->getInit(0)); 904 return; 905 } 906 } 907 908 QualType elementType = 909 CGF.getContext().getAsArrayType(E->getType())->getElementType(); 910 911 llvm::PointerType *APType = 912 cast<llvm::PointerType>(DestPtr->getType()); 913 llvm::ArrayType *AType = 914 cast<llvm::ArrayType>(APType->getElementType()); 915 916 EmitArrayInit(DestPtr, AType, elementType, E); 917 return; 918 } 919 920 assert(E->getType()->isRecordType() && "Only support structs/unions here!"); 921 922 // Do struct initialization; this code just sets each individual member 923 // to the approprate value. This makes bitfield support automatic; 924 // the disadvantage is that the generated code is more difficult for 925 // the optimizer, especially with bitfields. 926 unsigned NumInitElements = E->getNumInits(); 927 RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl(); 928 929 if (record->isUnion()) { 930 // Only initialize one field of a union. The field itself is 931 // specified by the initializer list. 932 if (!E->getInitializedFieldInUnion()) { 933 // Empty union; we have nothing to do. 934 935 #ifndef NDEBUG 936 // Make sure that it's really an empty and not a failure of 937 // semantic analysis. 938 for (RecordDecl::field_iterator Field = record->field_begin(), 939 FieldEnd = record->field_end(); 940 Field != FieldEnd; ++Field) 941 assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed"); 942 #endif 943 return; 944 } 945 946 // FIXME: volatility 947 FieldDecl *Field = E->getInitializedFieldInUnion(); 948 949 LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestPtr, Field, 0); 950 if (NumInitElements) { 951 // Store the initializer into the field 952 EmitInitializationToLValue(E->getInit(0), FieldLoc); 953 } else { 954 // Default-initialize to null. 955 EmitNullInitializationToLValue(FieldLoc); 956 } 957 958 return; 959 } 960 961 // We'll need to enter cleanup scopes in case any of the member 962 // initializers throw an exception. 963 SmallVector<EHScopeStack::stable_iterator, 16> cleanups; 964 llvm::Instruction *cleanupDominator = 0; 965 966 // Here we iterate over the fields; this makes it simpler to both 967 // default-initialize fields and skip over unnamed fields. 968 unsigned curInitIndex = 0; 969 for (RecordDecl::field_iterator field = record->field_begin(), 970 fieldEnd = record->field_end(); 971 field != fieldEnd; ++field) { 972 // We're done once we hit the flexible array member. 973 if (field->getType()->isIncompleteArrayType()) 974 break; 975 976 // Always skip anonymous bitfields. 977 if (field->isUnnamedBitfield()) 978 continue; 979 980 // We're done if we reach the end of the explicit initializers, we 981 // have a zeroed object, and the rest of the fields are 982 // zero-initializable. 983 if (curInitIndex == NumInitElements && Dest.isZeroed() && 984 CGF.getTypes().isZeroInitializable(E->getType())) 985 break; 986 987 // FIXME: volatility 988 LValue LV = CGF.EmitLValueForFieldInitialization(DestPtr, *field, 0); 989 // We never generate write-barries for initialized fields. 990 LV.setNonGC(true); 991 992 if (curInitIndex < NumInitElements) { 993 // Store the initializer into the field. 994 EmitInitializationToLValue(E->getInit(curInitIndex++), LV); 995 } else { 996 // We're out of initalizers; default-initialize to null 997 EmitNullInitializationToLValue(LV); 998 } 999 1000 // Push a destructor if necessary. 1001 // FIXME: if we have an array of structures, all explicitly 1002 // initialized, we can end up pushing a linear number of cleanups. 1003 bool pushedCleanup = false; 1004 if (QualType::DestructionKind dtorKind 1005 = field->getType().isDestructedType()) { 1006 assert(LV.isSimple()); 1007 if (CGF.needsEHCleanup(dtorKind)) { 1008 if (!cleanupDominator) 1009 cleanupDominator = CGF.Builder.CreateUnreachable(); // placeholder 1010 1011 CGF.pushDestroy(EHCleanup, LV.getAddress(), field->getType(), 1012 CGF.getDestroyer(dtorKind), false); 1013 cleanups.push_back(CGF.EHStack.stable_begin()); 1014 pushedCleanup = true; 1015 } 1016 } 1017 1018 // If the GEP didn't get used because of a dead zero init or something 1019 // else, clean it up for -O0 builds and general tidiness. 1020 if (!pushedCleanup && LV.isSimple()) 1021 if (llvm::GetElementPtrInst *GEP = 1022 dyn_cast<llvm::GetElementPtrInst>(LV.getAddress())) 1023 if (GEP->use_empty()) 1024 GEP->eraseFromParent(); 1025 } 1026 1027 // Deactivate all the partial cleanups in reverse order, which 1028 // generally means popping them. 1029 for (unsigned i = cleanups.size(); i != 0; --i) 1030 CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator); 1031 1032 // Destroy the placeholder if we made one. 1033 if (cleanupDominator) 1034 cleanupDominator->eraseFromParent(); 1035 } 1036 1037 //===----------------------------------------------------------------------===// 1038 // Entry Points into this File 1039 //===----------------------------------------------------------------------===// 1040 1041 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of 1042 /// non-zero bytes that will be stored when outputting the initializer for the 1043 /// specified initializer expression. 1044 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) { 1045 E = E->IgnoreParens(); 1046 1047 // 0 and 0.0 won't require any non-zero stores! 1048 if (isSimpleZero(E, CGF)) return CharUnits::Zero(); 1049 1050 // If this is an initlist expr, sum up the size of sizes of the (present) 1051 // elements. If this is something weird, assume the whole thing is non-zero. 1052 const InitListExpr *ILE = dyn_cast<InitListExpr>(E); 1053 if (ILE == 0 || !CGF.getTypes().isZeroInitializable(ILE->getType())) 1054 return CGF.getContext().getTypeSizeInChars(E->getType()); 1055 1056 // InitListExprs for structs have to be handled carefully. If there are 1057 // reference members, we need to consider the size of the reference, not the 1058 // referencee. InitListExprs for unions and arrays can't have references. 1059 if (const RecordType *RT = E->getType()->getAs<RecordType>()) { 1060 if (!RT->isUnionType()) { 1061 RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl(); 1062 CharUnits NumNonZeroBytes = CharUnits::Zero(); 1063 1064 unsigned ILEElement = 0; 1065 for (RecordDecl::field_iterator Field = SD->field_begin(), 1066 FieldEnd = SD->field_end(); Field != FieldEnd; ++Field) { 1067 // We're done once we hit the flexible array member or run out of 1068 // InitListExpr elements. 1069 if (Field->getType()->isIncompleteArrayType() || 1070 ILEElement == ILE->getNumInits()) 1071 break; 1072 if (Field->isUnnamedBitfield()) 1073 continue; 1074 1075 const Expr *E = ILE->getInit(ILEElement++); 1076 1077 // Reference values are always non-null and have the width of a pointer. 1078 if (Field->getType()->isReferenceType()) 1079 NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits( 1080 CGF.getContext().getTargetInfo().getPointerWidth(0)); 1081 else 1082 NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF); 1083 } 1084 1085 return NumNonZeroBytes; 1086 } 1087 } 1088 1089 1090 CharUnits NumNonZeroBytes = CharUnits::Zero(); 1091 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) 1092 NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF); 1093 return NumNonZeroBytes; 1094 } 1095 1096 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of 1097 /// zeros in it, emit a memset and avoid storing the individual zeros. 1098 /// 1099 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E, 1100 CodeGenFunction &CGF) { 1101 // If the slot is already known to be zeroed, nothing to do. Don't mess with 1102 // volatile stores. 1103 if (Slot.isZeroed() || Slot.isVolatile() || Slot.getAddr() == 0) return; 1104 1105 // C++ objects with a user-declared constructor don't need zero'ing. 1106 if (CGF.getContext().getLangOptions().CPlusPlus) 1107 if (const RecordType *RT = CGF.getContext() 1108 .getBaseElementType(E->getType())->getAs<RecordType>()) { 1109 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1110 if (RD->hasUserDeclaredConstructor()) 1111 return; 1112 } 1113 1114 // If the type is 16-bytes or smaller, prefer individual stores over memset. 1115 std::pair<CharUnits, CharUnits> TypeInfo = 1116 CGF.getContext().getTypeInfoInChars(E->getType()); 1117 if (TypeInfo.first <= CharUnits::fromQuantity(16)) 1118 return; 1119 1120 // Check to see if over 3/4 of the initializer are known to be zero. If so, 1121 // we prefer to emit memset + individual stores for the rest. 1122 CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF); 1123 if (NumNonZeroBytes*4 > TypeInfo.first) 1124 return; 1125 1126 // Okay, it seems like a good idea to use an initial memset, emit the call. 1127 llvm::Constant *SizeVal = CGF.Builder.getInt64(TypeInfo.first.getQuantity()); 1128 CharUnits Align = TypeInfo.second; 1129 1130 llvm::Value *Loc = Slot.getAddr(); 1131 1132 Loc = CGF.Builder.CreateBitCast(Loc, CGF.Int8PtrTy); 1133 CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, 1134 Align.getQuantity(), false); 1135 1136 // Tell the AggExprEmitter that the slot is known zero. 1137 Slot.setZeroed(); 1138 } 1139 1140 1141 1142 1143 /// EmitAggExpr - Emit the computation of the specified expression of aggregate 1144 /// type. The result is computed into DestPtr. Note that if DestPtr is null, 1145 /// the value of the aggregate expression is not needed. If VolatileDest is 1146 /// true, DestPtr cannot be 0. 1147 /// 1148 /// \param IsInitializer - true if this evaluation is initializing an 1149 /// object whose lifetime is already being managed. 1150 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot, 1151 bool IgnoreResult) { 1152 assert(E && hasAggregateLLVMType(E->getType()) && 1153 "Invalid aggregate expression to emit"); 1154 assert((Slot.getAddr() != 0 || Slot.isIgnored()) && 1155 "slot has bits but no address"); 1156 1157 // Optimize the slot if possible. 1158 CheckAggExprForMemSetUse(Slot, E, *this); 1159 1160 AggExprEmitter(*this, Slot, IgnoreResult).Visit(const_cast<Expr*>(E)); 1161 } 1162 1163 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) { 1164 assert(hasAggregateLLVMType(E->getType()) && "Invalid argument!"); 1165 llvm::Value *Temp = CreateMemTemp(E->getType()); 1166 LValue LV = MakeAddrLValue(Temp, E->getType()); 1167 EmitAggExpr(E, AggValueSlot::forLValue(LV, AggValueSlot::IsNotDestructed, 1168 AggValueSlot::DoesNotNeedGCBarriers, 1169 AggValueSlot::IsNotAliased)); 1170 return LV; 1171 } 1172 1173 void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr, 1174 llvm::Value *SrcPtr, QualType Ty, 1175 bool isVolatile, unsigned Alignment) { 1176 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 1177 1178 if (getContext().getLangOptions().CPlusPlus) { 1179 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1180 CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl()); 1181 assert((Record->hasTrivialCopyConstructor() || 1182 Record->hasTrivialCopyAssignment() || 1183 Record->hasTrivialMoveConstructor() || 1184 Record->hasTrivialMoveAssignment()) && 1185 "Trying to aggregate-copy a type without a trivial copy " 1186 "constructor or assignment operator"); 1187 // Ignore empty classes in C++. 1188 if (Record->isEmpty()) 1189 return; 1190 } 1191 } 1192 1193 // Aggregate assignment turns into llvm.memcpy. This is almost valid per 1194 // C99 6.5.16.1p3, which states "If the value being stored in an object is 1195 // read from another object that overlaps in anyway the storage of the first 1196 // object, then the overlap shall be exact and the two objects shall have 1197 // qualified or unqualified versions of a compatible type." 1198 // 1199 // memcpy is not defined if the source and destination pointers are exactly 1200 // equal, but other compilers do this optimization, and almost every memcpy 1201 // implementation handles this case safely. If there is a libc that does not 1202 // safely handle this, we can add a target hook. 1203 1204 // Get size and alignment info for this aggregate. 1205 std::pair<CharUnits, CharUnits> TypeInfo = 1206 getContext().getTypeInfoInChars(Ty); 1207 1208 if (!Alignment) 1209 Alignment = TypeInfo.second.getQuantity(); 1210 1211 // FIXME: Handle variable sized types. 1212 1213 // FIXME: If we have a volatile struct, the optimizer can remove what might 1214 // appear to be `extra' memory ops: 1215 // 1216 // volatile struct { int i; } a, b; 1217 // 1218 // int main() { 1219 // a = b; 1220 // a = b; 1221 // } 1222 // 1223 // we need to use a different call here. We use isVolatile to indicate when 1224 // either the source or the destination is volatile. 1225 1226 llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType()); 1227 llvm::Type *DBP = 1228 llvm::Type::getInt8PtrTy(getLLVMContext(), DPT->getAddressSpace()); 1229 DestPtr = Builder.CreateBitCast(DestPtr, DBP); 1230 1231 llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType()); 1232 llvm::Type *SBP = 1233 llvm::Type::getInt8PtrTy(getLLVMContext(), SPT->getAddressSpace()); 1234 SrcPtr = Builder.CreateBitCast(SrcPtr, SBP); 1235 1236 // Don't do any of the memmove_collectable tests if GC isn't set. 1237 if (CGM.getLangOptions().getGC() == LangOptions::NonGC) { 1238 // fall through 1239 } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 1240 RecordDecl *Record = RecordTy->getDecl(); 1241 if (Record->hasObjectMember()) { 1242 CharUnits size = TypeInfo.first; 1243 llvm::Type *SizeTy = ConvertType(getContext().getSizeType()); 1244 llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity()); 1245 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 1246 SizeVal); 1247 return; 1248 } 1249 } else if (Ty->isArrayType()) { 1250 QualType BaseType = getContext().getBaseElementType(Ty); 1251 if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) { 1252 if (RecordTy->getDecl()->hasObjectMember()) { 1253 CharUnits size = TypeInfo.first; 1254 llvm::Type *SizeTy = ConvertType(getContext().getSizeType()); 1255 llvm::Value *SizeVal = 1256 llvm::ConstantInt::get(SizeTy, size.getQuantity()); 1257 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 1258 SizeVal); 1259 return; 1260 } 1261 } 1262 } 1263 1264 Builder.CreateMemCpy(DestPtr, SrcPtr, 1265 llvm::ConstantInt::get(IntPtrTy, 1266 TypeInfo.first.getQuantity()), 1267 Alignment, isVolatile); 1268 } 1269 1270 void CodeGenFunction::MaybeEmitStdInitializerListCleanup(llvm::Value *loc, 1271 const Expr *init) { 1272 const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(init); 1273 if (cleanups) 1274 init = cleanups->getSubExpr(); 1275 1276 if (isa<InitListExpr>(init) && 1277 cast<InitListExpr>(init)->initializesStdInitializerList()) { 1278 // We initialized this std::initializer_list with an initializer list. 1279 // A backing array was created. Push a cleanup for it. 1280 EmitStdInitializerListCleanup(loc, cast<InitListExpr>(init)); 1281 } 1282 } 1283 1284 static void EmitRecursiveStdInitializerListCleanup(CodeGenFunction &CGF, 1285 llvm::Value *arrayStart, 1286 const InitListExpr *init) { 1287 // Check if there are any recursive cleanups to do, i.e. if we have 1288 // std::initializer_list<std::initializer_list<obj>> list = {{obj()}}; 1289 // then we need to destroy the inner array as well. 1290 for (unsigned i = 0, e = init->getNumInits(); i != e; ++i) { 1291 const InitListExpr *subInit = dyn_cast<InitListExpr>(init->getInit(i)); 1292 if (!subInit || !subInit->initializesStdInitializerList()) 1293 continue; 1294 1295 // This one needs to be destroyed. Get the address of the std::init_list. 1296 llvm::Value *offset = llvm::ConstantInt::get(CGF.SizeTy, i); 1297 llvm::Value *loc = CGF.Builder.CreateInBoundsGEP(arrayStart, offset, 1298 "std.initlist"); 1299 CGF.EmitStdInitializerListCleanup(loc, subInit); 1300 } 1301 } 1302 1303 void CodeGenFunction::EmitStdInitializerListCleanup(llvm::Value *loc, 1304 const InitListExpr *init) { 1305 ASTContext &ctx = getContext(); 1306 QualType element = GetStdInitializerListElementType(init->getType()); 1307 unsigned numInits = init->getNumInits(); 1308 llvm::APInt size(ctx.getTypeSize(ctx.getSizeType()), numInits); 1309 QualType array =ctx.getConstantArrayType(element, size, ArrayType::Normal, 0); 1310 QualType arrayPtr = ctx.getPointerType(array); 1311 llvm::Type *arrayPtrType = ConvertType(arrayPtr); 1312 1313 // lvalue is the location of a std::initializer_list, which as its first 1314 // element has a pointer to the array we want to destroy. 1315 llvm::Value *startPointer = Builder.CreateStructGEP(loc, 0, "startPointer"); 1316 llvm::Value *startAddress = Builder.CreateLoad(startPointer, "startAddress"); 1317 1318 ::EmitRecursiveStdInitializerListCleanup(*this, startAddress, init); 1319 1320 llvm::Value *arrayAddress = 1321 Builder.CreateBitCast(startAddress, arrayPtrType, "arrayAddress"); 1322 ::EmitStdInitializerListCleanup(*this, array, arrayAddress, init); 1323 } 1324