1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Aggregate Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "CGObjCRuntime.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/DeclTemplate.h"
20 #include "clang/AST/StmtVisitor.h"
21 #include "llvm/Constants.h"
22 #include "llvm/Function.h"
23 #include "llvm/GlobalVariable.h"
24 #include "llvm/Intrinsics.h"
25 using namespace clang;
26 using namespace CodeGen;
27 
28 //===----------------------------------------------------------------------===//
29 //                        Aggregate Expression Emitter
30 //===----------------------------------------------------------------------===//
31 
32 namespace  {
33 class AggExprEmitter : public StmtVisitor<AggExprEmitter> {
34   CodeGenFunction &CGF;
35   CGBuilderTy &Builder;
36   AggValueSlot Dest;
37   bool IgnoreResult;
38 
39   /// We want to use 'dest' as the return slot except under two
40   /// conditions:
41   ///   - The destination slot requires garbage collection, so we
42   ///     need to use the GC API.
43   ///   - The destination slot is potentially aliased.
44   bool shouldUseDestForReturnSlot() const {
45     return !(Dest.requiresGCollection() || Dest.isPotentiallyAliased());
46   }
47 
48   ReturnValueSlot getReturnValueSlot() const {
49     if (!shouldUseDestForReturnSlot())
50       return ReturnValueSlot();
51 
52     return ReturnValueSlot(Dest.getAddr(), Dest.isVolatile());
53   }
54 
55   AggValueSlot EnsureSlot(QualType T) {
56     if (!Dest.isIgnored()) return Dest;
57     return CGF.CreateAggTemp(T, "agg.tmp.ensured");
58   }
59 
60 public:
61   AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest,
62                  bool ignore)
63     : CGF(cgf), Builder(CGF.Builder), Dest(Dest),
64       IgnoreResult(ignore) {
65   }
66 
67   //===--------------------------------------------------------------------===//
68   //                               Utilities
69   //===--------------------------------------------------------------------===//
70 
71   /// EmitAggLoadOfLValue - Given an expression with aggregate type that
72   /// represents a value lvalue, this method emits the address of the lvalue,
73   /// then loads the result into DestPtr.
74   void EmitAggLoadOfLValue(const Expr *E);
75 
76   /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
77   void EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore = false);
78   void EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore = false,
79                          unsigned Alignment = 0);
80 
81   void EmitMoveFromReturnSlot(const Expr *E, RValue Src);
82 
83   void EmitStdInitializerList(llvm::Value *DestPtr, InitListExpr *InitList);
84   void EmitArrayInit(llvm::Value *DestPtr, llvm::ArrayType *AType,
85                      QualType elementType, InitListExpr *E);
86 
87   AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) {
88     if (CGF.getLangOptions().getGC() && TypeRequiresGCollection(T))
89       return AggValueSlot::NeedsGCBarriers;
90     return AggValueSlot::DoesNotNeedGCBarriers;
91   }
92 
93   bool TypeRequiresGCollection(QualType T);
94 
95   //===--------------------------------------------------------------------===//
96   //                            Visitor Methods
97   //===--------------------------------------------------------------------===//
98 
99   void VisitStmt(Stmt *S) {
100     CGF.ErrorUnsupported(S, "aggregate expression");
101   }
102   void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
103   void VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
104     Visit(GE->getResultExpr());
105   }
106   void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
107   void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
108     return Visit(E->getReplacement());
109   }
110 
111   // l-values.
112   void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); }
113   void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
114   void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
115   void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
116   void VisitCompoundLiteralExpr(CompoundLiteralExpr *E);
117   void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
118     EmitAggLoadOfLValue(E);
119   }
120   void VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
121     EmitAggLoadOfLValue(E);
122   }
123   void VisitPredefinedExpr(const PredefinedExpr *E) {
124     EmitAggLoadOfLValue(E);
125   }
126 
127   // Operators.
128   void VisitCastExpr(CastExpr *E);
129   void VisitCallExpr(const CallExpr *E);
130   void VisitStmtExpr(const StmtExpr *E);
131   void VisitBinaryOperator(const BinaryOperator *BO);
132   void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO);
133   void VisitBinAssign(const BinaryOperator *E);
134   void VisitBinComma(const BinaryOperator *E);
135 
136   void VisitObjCMessageExpr(ObjCMessageExpr *E);
137   void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
138     EmitAggLoadOfLValue(E);
139   }
140 
141   void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
142   void VisitChooseExpr(const ChooseExpr *CE);
143   void VisitInitListExpr(InitListExpr *E);
144   void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E);
145   void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
146     Visit(DAE->getExpr());
147   }
148   void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E);
149   void VisitCXXConstructExpr(const CXXConstructExpr *E);
150   void VisitLambdaExpr(LambdaExpr *E);
151   void VisitExprWithCleanups(ExprWithCleanups *E);
152   void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E);
153   void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); }
154   void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E);
155   void VisitOpaqueValueExpr(OpaqueValueExpr *E);
156 
157   void VisitPseudoObjectExpr(PseudoObjectExpr *E) {
158     if (E->isGLValue()) {
159       LValue LV = CGF.EmitPseudoObjectLValue(E);
160       return EmitFinalDestCopy(E, LV);
161     }
162 
163     CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType()));
164   }
165 
166   void VisitVAArgExpr(VAArgExpr *E);
167 
168   void EmitInitializationToLValue(Expr *E, LValue Address);
169   void EmitNullInitializationToLValue(LValue Address);
170   //  case Expr::ChooseExprClass:
171   void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); }
172   void VisitAtomicExpr(AtomicExpr *E) {
173     CGF.EmitAtomicExpr(E, EnsureSlot(E->getType()).getAddr());
174   }
175 };
176 }  // end anonymous namespace.
177 
178 //===----------------------------------------------------------------------===//
179 //                                Utilities
180 //===----------------------------------------------------------------------===//
181 
182 /// EmitAggLoadOfLValue - Given an expression with aggregate type that
183 /// represents a value lvalue, this method emits the address of the lvalue,
184 /// then loads the result into DestPtr.
185 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
186   LValue LV = CGF.EmitLValue(E);
187   EmitFinalDestCopy(E, LV);
188 }
189 
190 /// \brief True if the given aggregate type requires special GC API calls.
191 bool AggExprEmitter::TypeRequiresGCollection(QualType T) {
192   // Only record types have members that might require garbage collection.
193   const RecordType *RecordTy = T->getAs<RecordType>();
194   if (!RecordTy) return false;
195 
196   // Don't mess with non-trivial C++ types.
197   RecordDecl *Record = RecordTy->getDecl();
198   if (isa<CXXRecordDecl>(Record) &&
199       (!cast<CXXRecordDecl>(Record)->hasTrivialCopyConstructor() ||
200        !cast<CXXRecordDecl>(Record)->hasTrivialDestructor()))
201     return false;
202 
203   // Check whether the type has an object member.
204   return Record->hasObjectMember();
205 }
206 
207 /// \brief Perform the final move to DestPtr if for some reason
208 /// getReturnValueSlot() didn't use it directly.
209 ///
210 /// The idea is that you do something like this:
211 ///   RValue Result = EmitSomething(..., getReturnValueSlot());
212 ///   EmitMoveFromReturnSlot(E, Result);
213 ///
214 /// If nothing interferes, this will cause the result to be emitted
215 /// directly into the return value slot.  Otherwise, a final move
216 /// will be performed.
217 void AggExprEmitter::EmitMoveFromReturnSlot(const Expr *E, RValue Src) {
218   if (shouldUseDestForReturnSlot()) {
219     // Logically, Dest.getAddr() should equal Src.getAggregateAddr().
220     // The possibility of undef rvalues complicates that a lot,
221     // though, so we can't really assert.
222     return;
223   }
224 
225   // Otherwise, do a final copy,
226   assert(Dest.getAddr() != Src.getAggregateAddr());
227   EmitFinalDestCopy(E, Src, /*Ignore*/ true);
228 }
229 
230 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
231 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore,
232                                        unsigned Alignment) {
233   assert(Src.isAggregate() && "value must be aggregate value!");
234 
235   // If Dest is ignored, then we're evaluating an aggregate expression
236   // in a context (like an expression statement) that doesn't care
237   // about the result.  C says that an lvalue-to-rvalue conversion is
238   // performed in these cases; C++ says that it is not.  In either
239   // case, we don't actually need to do anything unless the value is
240   // volatile.
241   if (Dest.isIgnored()) {
242     if (!Src.isVolatileQualified() ||
243         CGF.CGM.getLangOptions().CPlusPlus ||
244         (IgnoreResult && Ignore))
245       return;
246 
247     // If the source is volatile, we must read from it; to do that, we need
248     // some place to put it.
249     Dest = CGF.CreateAggTemp(E->getType(), "agg.tmp");
250   }
251 
252   if (Dest.requiresGCollection()) {
253     CharUnits size = CGF.getContext().getTypeSizeInChars(E->getType());
254     llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType());
255     llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity());
256     CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF,
257                                                       Dest.getAddr(),
258                                                       Src.getAggregateAddr(),
259                                                       SizeVal);
260     return;
261   }
262   // If the result of the assignment is used, copy the LHS there also.
263   // FIXME: Pass VolatileDest as well.  I think we also need to merge volatile
264   // from the source as well, as we can't eliminate it if either operand
265   // is volatile, unless copy has volatile for both source and destination..
266   CGF.EmitAggregateCopy(Dest.getAddr(), Src.getAggregateAddr(), E->getType(),
267                         Dest.isVolatile()|Src.isVolatileQualified(),
268                         Alignment);
269 }
270 
271 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
272 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore) {
273   assert(Src.isSimple() && "Can't have aggregate bitfield, vector, etc");
274 
275   CharUnits Alignment = std::min(Src.getAlignment(), Dest.getAlignment());
276   EmitFinalDestCopy(E, Src.asAggregateRValue(), Ignore, Alignment.getQuantity());
277 }
278 
279 static QualType GetStdInitializerListElementType(QualType T) {
280   // Just assume that this is really std::initializer_list.
281   ClassTemplateSpecializationDecl *specialization =
282       cast<ClassTemplateSpecializationDecl>(T->castAs<RecordType>()->getDecl());
283   return specialization->getTemplateArgs()[0].getAsType();
284 }
285 
286 /// \brief Prepare cleanup for the temporary array.
287 static void EmitStdInitializerListCleanup(CodeGenFunction &CGF,
288                                           QualType arrayType,
289                                           llvm::Value *addr,
290                                           const InitListExpr *initList) {
291   QualType::DestructionKind dtorKind = arrayType.isDestructedType();
292   if (!dtorKind)
293     return; // Type doesn't need destroying.
294   if (dtorKind != QualType::DK_cxx_destructor) {
295     CGF.ErrorUnsupported(initList, "ObjC ARC type in initializer_list");
296     return;
297   }
298 
299   CodeGenFunction::Destroyer *destroyer = CGF.getDestroyer(dtorKind);
300   CGF.pushDestroy(NormalAndEHCleanup, addr, arrayType, destroyer,
301                   /*EHCleanup=*/true);
302 }
303 
304 /// \brief Emit the initializer for a std::initializer_list initialized with a
305 /// real initializer list.
306 void AggExprEmitter::EmitStdInitializerList(llvm::Value *destPtr,
307                                             InitListExpr *initList) {
308   // We emit an array containing the elements, then have the init list point
309   // at the array.
310   ASTContext &ctx = CGF.getContext();
311   unsigned numInits = initList->getNumInits();
312   QualType element = GetStdInitializerListElementType(initList->getType());
313   llvm::APInt size(ctx.getTypeSize(ctx.getSizeType()), numInits);
314   QualType array = ctx.getConstantArrayType(element, size, ArrayType::Normal,0);
315   llvm::Type *LTy = CGF.ConvertTypeForMem(array);
316   llvm::AllocaInst *alloc = CGF.CreateTempAlloca(LTy);
317   alloc->setAlignment(ctx.getTypeAlignInChars(array).getQuantity());
318   alloc->setName(".initlist.");
319 
320   EmitArrayInit(alloc, cast<llvm::ArrayType>(LTy), element, initList);
321 
322   // FIXME: The diagnostics are somewhat out of place here.
323   RecordDecl *record = initList->getType()->castAs<RecordType>()->getDecl();
324   RecordDecl::field_iterator field = record->field_begin();
325   if (field == record->field_end()) {
326     CGF.ErrorUnsupported(initList, "weird std::initializer_list");
327   }
328 
329   QualType elementPtr = ctx.getPointerType(element.withConst());
330 
331   // Start pointer.
332   if (!ctx.hasSameType(field->getType(), elementPtr)) {
333     CGF.ErrorUnsupported(initList, "weird std::initializer_list");
334   }
335   LValue start = CGF.EmitLValueForFieldInitialization(destPtr, *field, 0);
336   llvm::Value *arrayStart = Builder.CreateStructGEP(alloc, 0, "arraystart");
337   CGF.EmitStoreThroughLValue(RValue::get(arrayStart), start);
338   ++field;
339 
340   if (field == record->field_end()) {
341     CGF.ErrorUnsupported(initList, "weird std::initializer_list");
342   }
343   LValue endOrLength = CGF.EmitLValueForFieldInitialization(destPtr, *field, 0);
344   if (ctx.hasSameType(field->getType(), elementPtr)) {
345     // End pointer.
346     llvm::Value *arrayEnd = Builder.CreateStructGEP(alloc,numInits, "arrayend");
347     CGF.EmitStoreThroughLValue(RValue::get(arrayEnd), endOrLength);
348   } else if(ctx.hasSameType(field->getType(), ctx.getSizeType())) {
349     // Length.
350     CGF.EmitStoreThroughLValue(RValue::get(Builder.getInt(size)), endOrLength);
351   } else {
352     CGF.ErrorUnsupported(initList, "weird std::initializer_list");
353   }
354 
355   if (!Dest.isExternallyDestructed())
356     EmitStdInitializerListCleanup(CGF, array, alloc, initList);
357 }
358 
359 /// \brief Emit initialization of an array from an initializer list.
360 void AggExprEmitter::EmitArrayInit(llvm::Value *DestPtr, llvm::ArrayType *AType,
361                                    QualType elementType, InitListExpr *E) {
362   uint64_t NumInitElements = E->getNumInits();
363 
364   uint64_t NumArrayElements = AType->getNumElements();
365   assert(NumInitElements <= NumArrayElements);
366 
367   // DestPtr is an array*.  Construct an elementType* by drilling
368   // down a level.
369   llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
370   llvm::Value *indices[] = { zero, zero };
371   llvm::Value *begin =
372     Builder.CreateInBoundsGEP(DestPtr, indices, "arrayinit.begin");
373 
374   // Exception safety requires us to destroy all the
375   // already-constructed members if an initializer throws.
376   // For that, we'll need an EH cleanup.
377   QualType::DestructionKind dtorKind = elementType.isDestructedType();
378   llvm::AllocaInst *endOfInit = 0;
379   EHScopeStack::stable_iterator cleanup;
380   llvm::Instruction *cleanupDominator = 0;
381   if (CGF.needsEHCleanup(dtorKind)) {
382     // In principle we could tell the cleanup where we are more
383     // directly, but the control flow can get so varied here that it
384     // would actually be quite complex.  Therefore we go through an
385     // alloca.
386     endOfInit = CGF.CreateTempAlloca(begin->getType(),
387                                      "arrayinit.endOfInit");
388     cleanupDominator = Builder.CreateStore(begin, endOfInit);
389     CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType,
390                                          CGF.getDestroyer(dtorKind));
391     cleanup = CGF.EHStack.stable_begin();
392 
393   // Otherwise, remember that we didn't need a cleanup.
394   } else {
395     dtorKind = QualType::DK_none;
396   }
397 
398   llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1);
399 
400   // The 'current element to initialize'.  The invariants on this
401   // variable are complicated.  Essentially, after each iteration of
402   // the loop, it points to the last initialized element, except
403   // that it points to the beginning of the array before any
404   // elements have been initialized.
405   llvm::Value *element = begin;
406 
407   // Emit the explicit initializers.
408   for (uint64_t i = 0; i != NumInitElements; ++i) {
409     // Advance to the next element.
410     if (i > 0) {
411       element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element");
412 
413       // Tell the cleanup that it needs to destroy up to this
414       // element.  TODO: some of these stores can be trivially
415       // observed to be unnecessary.
416       if (endOfInit) Builder.CreateStore(element, endOfInit);
417     }
418 
419     // If these are nested std::initializer_list inits, do them directly,
420     // because they are conceptually the same "location".
421     InitListExpr *initList = dyn_cast<InitListExpr>(E->getInit(i));
422     if (initList && initList->initializesStdInitializerList()) {
423       EmitStdInitializerList(element, initList);
424     } else {
425       LValue elementLV = CGF.MakeAddrLValue(element, elementType);
426       EmitInitializationToLValue(E->getInit(i), elementLV);
427     }
428   }
429 
430   // Check whether there's a non-trivial array-fill expression.
431   // Note that this will be a CXXConstructExpr even if the element
432   // type is an array (or array of array, etc.) of class type.
433   Expr *filler = E->getArrayFiller();
434   bool hasTrivialFiller = true;
435   if (CXXConstructExpr *cons = dyn_cast_or_null<CXXConstructExpr>(filler)) {
436     assert(cons->getConstructor()->isDefaultConstructor());
437     hasTrivialFiller = cons->getConstructor()->isTrivial();
438   }
439 
440   // Any remaining elements need to be zero-initialized, possibly
441   // using the filler expression.  We can skip this if the we're
442   // emitting to zeroed memory.
443   if (NumInitElements != NumArrayElements &&
444       !(Dest.isZeroed() && hasTrivialFiller &&
445         CGF.getTypes().isZeroInitializable(elementType))) {
446 
447     // Use an actual loop.  This is basically
448     //   do { *array++ = filler; } while (array != end);
449 
450     // Advance to the start of the rest of the array.
451     if (NumInitElements) {
452       element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start");
453       if (endOfInit) Builder.CreateStore(element, endOfInit);
454     }
455 
456     // Compute the end of the array.
457     llvm::Value *end = Builder.CreateInBoundsGEP(begin,
458                       llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements),
459                                                  "arrayinit.end");
460 
461     llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
462     llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
463 
464     // Jump into the body.
465     CGF.EmitBlock(bodyBB);
466     llvm::PHINode *currentElement =
467       Builder.CreatePHI(element->getType(), 2, "arrayinit.cur");
468     currentElement->addIncoming(element, entryBB);
469 
470     // Emit the actual filler expression.
471     LValue elementLV = CGF.MakeAddrLValue(currentElement, elementType);
472     if (filler)
473       EmitInitializationToLValue(filler, elementLV);
474     else
475       EmitNullInitializationToLValue(elementLV);
476 
477     // Move on to the next element.
478     llvm::Value *nextElement =
479       Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next");
480 
481     // Tell the EH cleanup that we finished with the last element.
482     if (endOfInit) Builder.CreateStore(nextElement, endOfInit);
483 
484     // Leave the loop if we're done.
485     llvm::Value *done = Builder.CreateICmpEQ(nextElement, end,
486                                              "arrayinit.done");
487     llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
488     Builder.CreateCondBr(done, endBB, bodyBB);
489     currentElement->addIncoming(nextElement, Builder.GetInsertBlock());
490 
491     CGF.EmitBlock(endBB);
492   }
493 
494   // Leave the partial-array cleanup if we entered one.
495   if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator);
496 }
497 
498 //===----------------------------------------------------------------------===//
499 //                            Visitor Methods
500 //===----------------------------------------------------------------------===//
501 
502 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){
503   Visit(E->GetTemporaryExpr());
504 }
505 
506 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) {
507   EmitFinalDestCopy(e, CGF.getOpaqueLValueMapping(e));
508 }
509 
510 void
511 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
512   if (E->getType().isPODType(CGF.getContext())) {
513     // For a POD type, just emit a load of the lvalue + a copy, because our
514     // compound literal might alias the destination.
515     // FIXME: This is a band-aid; the real problem appears to be in our handling
516     // of assignments, where we store directly into the LHS without checking
517     // whether anything in the RHS aliases.
518     EmitAggLoadOfLValue(E);
519     return;
520   }
521 
522   AggValueSlot Slot = EnsureSlot(E->getType());
523   CGF.EmitAggExpr(E->getInitializer(), Slot);
524 }
525 
526 
527 void AggExprEmitter::VisitCastExpr(CastExpr *E) {
528   switch (E->getCastKind()) {
529   case CK_Dynamic: {
530     assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?");
531     LValue LV = CGF.EmitCheckedLValue(E->getSubExpr());
532     // FIXME: Do we also need to handle property references here?
533     if (LV.isSimple())
534       CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E));
535     else
536       CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast");
537 
538     if (!Dest.isIgnored())
539       CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination");
540     break;
541   }
542 
543   case CK_ToUnion: {
544     if (Dest.isIgnored()) break;
545 
546     // GCC union extension
547     QualType Ty = E->getSubExpr()->getType();
548     QualType PtrTy = CGF.getContext().getPointerType(Ty);
549     llvm::Value *CastPtr = Builder.CreateBitCast(Dest.getAddr(),
550                                                  CGF.ConvertType(PtrTy));
551     EmitInitializationToLValue(E->getSubExpr(),
552                                CGF.MakeAddrLValue(CastPtr, Ty));
553     break;
554   }
555 
556   case CK_DerivedToBase:
557   case CK_BaseToDerived:
558   case CK_UncheckedDerivedToBase: {
559     llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: "
560                 "should have been unpacked before we got here");
561   }
562 
563   case CK_LValueToRValue: // hope for downstream optimization
564   case CK_NoOp:
565   case CK_AtomicToNonAtomic:
566   case CK_NonAtomicToAtomic:
567   case CK_UserDefinedConversion:
568   case CK_ConstructorConversion:
569     assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(),
570                                                    E->getType()) &&
571            "Implicit cast types must be compatible");
572     Visit(E->getSubExpr());
573     break;
574 
575   case CK_LValueBitCast:
576     llvm_unreachable("should not be emitting lvalue bitcast as rvalue");
577 
578   case CK_Dependent:
579   case CK_BitCast:
580   case CK_ArrayToPointerDecay:
581   case CK_FunctionToPointerDecay:
582   case CK_NullToPointer:
583   case CK_NullToMemberPointer:
584   case CK_BaseToDerivedMemberPointer:
585   case CK_DerivedToBaseMemberPointer:
586   case CK_MemberPointerToBoolean:
587   case CK_ReinterpretMemberPointer:
588   case CK_IntegralToPointer:
589   case CK_PointerToIntegral:
590   case CK_PointerToBoolean:
591   case CK_ToVoid:
592   case CK_VectorSplat:
593   case CK_IntegralCast:
594   case CK_IntegralToBoolean:
595   case CK_IntegralToFloating:
596   case CK_FloatingToIntegral:
597   case CK_FloatingToBoolean:
598   case CK_FloatingCast:
599   case CK_CPointerToObjCPointerCast:
600   case CK_BlockPointerToObjCPointerCast:
601   case CK_AnyPointerToBlockPointerCast:
602   case CK_ObjCObjectLValueCast:
603   case CK_FloatingRealToComplex:
604   case CK_FloatingComplexToReal:
605   case CK_FloatingComplexToBoolean:
606   case CK_FloatingComplexCast:
607   case CK_FloatingComplexToIntegralComplex:
608   case CK_IntegralRealToComplex:
609   case CK_IntegralComplexToReal:
610   case CK_IntegralComplexToBoolean:
611   case CK_IntegralComplexCast:
612   case CK_IntegralComplexToFloatingComplex:
613   case CK_ARCProduceObject:
614   case CK_ARCConsumeObject:
615   case CK_ARCReclaimReturnedObject:
616   case CK_ARCExtendBlockObject:
617   case CK_CopyAndAutoreleaseBlockObject:
618     llvm_unreachable("cast kind invalid for aggregate types");
619   }
620 }
621 
622 void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
623   if (E->getCallReturnType()->isReferenceType()) {
624     EmitAggLoadOfLValue(E);
625     return;
626   }
627 
628   RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot());
629   EmitMoveFromReturnSlot(E, RV);
630 }
631 
632 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
633   RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot());
634   EmitMoveFromReturnSlot(E, RV);
635 }
636 
637 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
638   CGF.EmitIgnoredExpr(E->getLHS());
639   Visit(E->getRHS());
640 }
641 
642 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
643   CodeGenFunction::StmtExprEvaluation eval(CGF);
644   CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest);
645 }
646 
647 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
648   if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI)
649     VisitPointerToDataMemberBinaryOperator(E);
650   else
651     CGF.ErrorUnsupported(E, "aggregate binary expression");
652 }
653 
654 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator(
655                                                     const BinaryOperator *E) {
656   LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E);
657   EmitFinalDestCopy(E, LV);
658 }
659 
660 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
661   // For an assignment to work, the value on the right has
662   // to be compatible with the value on the left.
663   assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
664                                                  E->getRHS()->getType())
665          && "Invalid assignment");
666 
667   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->getLHS()))
668     if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
669       if (VD->hasAttr<BlocksAttr>() &&
670           E->getRHS()->HasSideEffects(CGF.getContext())) {
671         // When __block variable on LHS, the RHS must be evaluated first
672         // as it may change the 'forwarding' field via call to Block_copy.
673         LValue RHS = CGF.EmitLValue(E->getRHS());
674         LValue LHS = CGF.EmitLValue(E->getLHS());
675         Dest = AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed,
676                                        needsGC(E->getLHS()->getType()),
677                                        AggValueSlot::IsAliased);
678         EmitFinalDestCopy(E, RHS, true);
679         return;
680       }
681 
682   LValue LHS = CGF.EmitLValue(E->getLHS());
683 
684   // Codegen the RHS so that it stores directly into the LHS.
685   AggValueSlot LHSSlot =
686     AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed,
687                             needsGC(E->getLHS()->getType()),
688                             AggValueSlot::IsAliased);
689   CGF.EmitAggExpr(E->getRHS(), LHSSlot, false);
690   EmitFinalDestCopy(E, LHS, true);
691 }
692 
693 void AggExprEmitter::
694 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
695   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
696   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
697   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
698 
699   // Bind the common expression if necessary.
700   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
701 
702   CodeGenFunction::ConditionalEvaluation eval(CGF);
703   CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock);
704 
705   // Save whether the destination's lifetime is externally managed.
706   bool isExternallyDestructed = Dest.isExternallyDestructed();
707 
708   eval.begin(CGF);
709   CGF.EmitBlock(LHSBlock);
710   Visit(E->getTrueExpr());
711   eval.end(CGF);
712 
713   assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!");
714   CGF.Builder.CreateBr(ContBlock);
715 
716   // If the result of an agg expression is unused, then the emission
717   // of the LHS might need to create a destination slot.  That's fine
718   // with us, and we can safely emit the RHS into the same slot, but
719   // we shouldn't claim that it's already being destructed.
720   Dest.setExternallyDestructed(isExternallyDestructed);
721 
722   eval.begin(CGF);
723   CGF.EmitBlock(RHSBlock);
724   Visit(E->getFalseExpr());
725   eval.end(CGF);
726 
727   CGF.EmitBlock(ContBlock);
728 }
729 
730 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) {
731   Visit(CE->getChosenSubExpr(CGF.getContext()));
732 }
733 
734 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
735   llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
736   llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
737 
738   if (!ArgPtr) {
739     CGF.ErrorUnsupported(VE, "aggregate va_arg expression");
740     return;
741   }
742 
743   EmitFinalDestCopy(VE, CGF.MakeAddrLValue(ArgPtr, VE->getType()));
744 }
745 
746 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
747   // Ensure that we have a slot, but if we already do, remember
748   // whether it was externally destructed.
749   bool wasExternallyDestructed = Dest.isExternallyDestructed();
750   Dest = EnsureSlot(E->getType());
751 
752   // We're going to push a destructor if there isn't already one.
753   Dest.setExternallyDestructed();
754 
755   Visit(E->getSubExpr());
756 
757   // Push that destructor we promised.
758   if (!wasExternallyDestructed)
759     CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddr());
760 }
761 
762 void
763 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) {
764   AggValueSlot Slot = EnsureSlot(E->getType());
765   CGF.EmitCXXConstructExpr(E, Slot);
766 }
767 
768 void
769 AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) {
770   AggValueSlot Slot = EnsureSlot(E->getType());
771   CGF.EmitLambdaExpr(E, Slot);
772 }
773 
774 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
775   CGF.enterFullExpression(E);
776   CodeGenFunction::RunCleanupsScope cleanups(CGF);
777   Visit(E->getSubExpr());
778 }
779 
780 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
781   QualType T = E->getType();
782   AggValueSlot Slot = EnsureSlot(T);
783   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T));
784 }
785 
786 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
787   QualType T = E->getType();
788   AggValueSlot Slot = EnsureSlot(T);
789   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T));
790 }
791 
792 /// isSimpleZero - If emitting this value will obviously just cause a store of
793 /// zero to memory, return true.  This can return false if uncertain, so it just
794 /// handles simple cases.
795 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) {
796   E = E->IgnoreParens();
797 
798   // 0
799   if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E))
800     return IL->getValue() == 0;
801   // +0.0
802   if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E))
803     return FL->getValue().isPosZero();
804   // int()
805   if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) &&
806       CGF.getTypes().isZeroInitializable(E->getType()))
807     return true;
808   // (int*)0 - Null pointer expressions.
809   if (const CastExpr *ICE = dyn_cast<CastExpr>(E))
810     return ICE->getCastKind() == CK_NullToPointer;
811   // '\0'
812   if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E))
813     return CL->getValue() == 0;
814 
815   // Otherwise, hard case: conservatively return false.
816   return false;
817 }
818 
819 
820 void
821 AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV) {
822   QualType type = LV.getType();
823   // FIXME: Ignore result?
824   // FIXME: Are initializers affected by volatile?
825   if (Dest.isZeroed() && isSimpleZero(E, CGF)) {
826     // Storing "i32 0" to a zero'd memory location is a noop.
827   } else if (isa<ImplicitValueInitExpr>(E)) {
828     EmitNullInitializationToLValue(LV);
829   } else if (type->isReferenceType()) {
830     RValue RV = CGF.EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0);
831     CGF.EmitStoreThroughLValue(RV, LV);
832   } else if (type->isAnyComplexType()) {
833     CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false);
834   } else if (CGF.hasAggregateLLVMType(type)) {
835     CGF.EmitAggExpr(E, AggValueSlot::forLValue(LV,
836                                                AggValueSlot::IsDestructed,
837                                       AggValueSlot::DoesNotNeedGCBarriers,
838                                                AggValueSlot::IsNotAliased,
839                                                Dest.isZeroed()));
840   } else if (LV.isSimple()) {
841     CGF.EmitScalarInit(E, /*D=*/0, LV, /*Captured=*/false);
842   } else {
843     CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV);
844   }
845 }
846 
847 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) {
848   QualType type = lv.getType();
849 
850   // If the destination slot is already zeroed out before the aggregate is
851   // copied into it, we don't have to emit any zeros here.
852   if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type))
853     return;
854 
855   if (!CGF.hasAggregateLLVMType(type)) {
856     // For non-aggregates, we can store zero.
857     llvm::Value *null = llvm::Constant::getNullValue(CGF.ConvertType(type));
858     // Note that the following is not equivalent to
859     // EmitStoreThroughBitfieldLValue for ARC types.
860     if (lv.isBitField())
861       CGF.EmitStoreThroughBitfieldLValue(RValue::get(null), lv);
862     assert(lv.isSimple());
863     CGF.EmitStoreOfScalar(null, lv, /* isInitialization */ true);
864   } else {
865     // There's a potential optimization opportunity in combining
866     // memsets; that would be easy for arrays, but relatively
867     // difficult for structures with the current code.
868     CGF.EmitNullInitialization(lv.getAddress(), lv.getType());
869   }
870 }
871 
872 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
873 #if 0
874   // FIXME: Assess perf here?  Figure out what cases are worth optimizing here
875   // (Length of globals? Chunks of zeroed-out space?).
876   //
877   // If we can, prefer a copy from a global; this is a lot less code for long
878   // globals, and it's easier for the current optimizers to analyze.
879   if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) {
880     llvm::GlobalVariable* GV =
881     new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true,
882                              llvm::GlobalValue::InternalLinkage, C, "");
883     EmitFinalDestCopy(E, CGF.MakeAddrLValue(GV, E->getType()));
884     return;
885   }
886 #endif
887   if (E->hadArrayRangeDesignator())
888     CGF.ErrorUnsupported(E, "GNU array range designator extension");
889 
890   if (E->initializesStdInitializerList()) {
891     EmitStdInitializerList(Dest.getAddr(), E);
892     return;
893   }
894 
895   llvm::Value *DestPtr = Dest.getAddr();
896 
897   // Handle initialization of an array.
898   if (E->getType()->isArrayType()) {
899     if (E->getNumInits() > 0) {
900       QualType T1 = E->getType();
901       QualType T2 = E->getInit(0)->getType();
902       if (CGF.getContext().hasSameUnqualifiedType(T1, T2)) {
903         EmitAggLoadOfLValue(E->getInit(0));
904         return;
905       }
906     }
907 
908     QualType elementType = E->getType().getCanonicalType();
909     elementType = CGF.getContext().getQualifiedType(
910                     cast<ArrayType>(elementType)->getElementType(),
911                     elementType.getQualifiers() + Dest.getQualifiers());
912 
913     llvm::PointerType *APType =
914       cast<llvm::PointerType>(DestPtr->getType());
915     llvm::ArrayType *AType =
916       cast<llvm::ArrayType>(APType->getElementType());
917 
918     EmitArrayInit(DestPtr, AType, elementType, E);
919     return;
920   }
921 
922   assert(E->getType()->isRecordType() && "Only support structs/unions here!");
923 
924   // Do struct initialization; this code just sets each individual member
925   // to the approprate value.  This makes bitfield support automatic;
926   // the disadvantage is that the generated code is more difficult for
927   // the optimizer, especially with bitfields.
928   unsigned NumInitElements = E->getNumInits();
929   RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl();
930 
931   if (record->isUnion()) {
932     // Only initialize one field of a union. The field itself is
933     // specified by the initializer list.
934     if (!E->getInitializedFieldInUnion()) {
935       // Empty union; we have nothing to do.
936 
937 #ifndef NDEBUG
938       // Make sure that it's really an empty and not a failure of
939       // semantic analysis.
940       for (RecordDecl::field_iterator Field = record->field_begin(),
941                                    FieldEnd = record->field_end();
942            Field != FieldEnd; ++Field)
943         assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed");
944 #endif
945       return;
946     }
947 
948     // FIXME: volatility
949     FieldDecl *Field = E->getInitializedFieldInUnion();
950 
951     LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestPtr, Field, 0);
952     if (NumInitElements) {
953       // Store the initializer into the field
954       EmitInitializationToLValue(E->getInit(0), FieldLoc);
955     } else {
956       // Default-initialize to null.
957       EmitNullInitializationToLValue(FieldLoc);
958     }
959 
960     return;
961   }
962 
963   // We'll need to enter cleanup scopes in case any of the member
964   // initializers throw an exception.
965   SmallVector<EHScopeStack::stable_iterator, 16> cleanups;
966   llvm::Instruction *cleanupDominator = 0;
967 
968   // Here we iterate over the fields; this makes it simpler to both
969   // default-initialize fields and skip over unnamed fields.
970   unsigned curInitIndex = 0;
971   for (RecordDecl::field_iterator field = record->field_begin(),
972                                fieldEnd = record->field_end();
973        field != fieldEnd; ++field) {
974     // We're done once we hit the flexible array member.
975     if (field->getType()->isIncompleteArrayType())
976       break;
977 
978     // Always skip anonymous bitfields.
979     if (field->isUnnamedBitfield())
980       continue;
981 
982     // We're done if we reach the end of the explicit initializers, we
983     // have a zeroed object, and the rest of the fields are
984     // zero-initializable.
985     if (curInitIndex == NumInitElements && Dest.isZeroed() &&
986         CGF.getTypes().isZeroInitializable(E->getType()))
987       break;
988 
989     // FIXME: volatility
990     LValue LV = CGF.EmitLValueForFieldInitialization(DestPtr, *field, 0);
991     // We never generate write-barries for initialized fields.
992     LV.setNonGC(true);
993 
994     if (curInitIndex < NumInitElements) {
995       // Store the initializer into the field.
996       EmitInitializationToLValue(E->getInit(curInitIndex++), LV);
997     } else {
998       // We're out of initalizers; default-initialize to null
999       EmitNullInitializationToLValue(LV);
1000     }
1001 
1002     // Push a destructor if necessary.
1003     // FIXME: if we have an array of structures, all explicitly
1004     // initialized, we can end up pushing a linear number of cleanups.
1005     bool pushedCleanup = false;
1006     if (QualType::DestructionKind dtorKind
1007           = field->getType().isDestructedType()) {
1008       assert(LV.isSimple());
1009       if (CGF.needsEHCleanup(dtorKind)) {
1010         if (!cleanupDominator)
1011           cleanupDominator = CGF.Builder.CreateUnreachable(); // placeholder
1012 
1013         CGF.pushDestroy(EHCleanup, LV.getAddress(), field->getType(),
1014                         CGF.getDestroyer(dtorKind), false);
1015         cleanups.push_back(CGF.EHStack.stable_begin());
1016         pushedCleanup = true;
1017       }
1018     }
1019 
1020     // If the GEP didn't get used because of a dead zero init or something
1021     // else, clean it up for -O0 builds and general tidiness.
1022     if (!pushedCleanup && LV.isSimple())
1023       if (llvm::GetElementPtrInst *GEP =
1024             dyn_cast<llvm::GetElementPtrInst>(LV.getAddress()))
1025         if (GEP->use_empty())
1026           GEP->eraseFromParent();
1027   }
1028 
1029   // Deactivate all the partial cleanups in reverse order, which
1030   // generally means popping them.
1031   for (unsigned i = cleanups.size(); i != 0; --i)
1032     CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator);
1033 
1034   // Destroy the placeholder if we made one.
1035   if (cleanupDominator)
1036     cleanupDominator->eraseFromParent();
1037 }
1038 
1039 //===----------------------------------------------------------------------===//
1040 //                        Entry Points into this File
1041 //===----------------------------------------------------------------------===//
1042 
1043 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of
1044 /// non-zero bytes that will be stored when outputting the initializer for the
1045 /// specified initializer expression.
1046 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) {
1047   E = E->IgnoreParens();
1048 
1049   // 0 and 0.0 won't require any non-zero stores!
1050   if (isSimpleZero(E, CGF)) return CharUnits::Zero();
1051 
1052   // If this is an initlist expr, sum up the size of sizes of the (present)
1053   // elements.  If this is something weird, assume the whole thing is non-zero.
1054   const InitListExpr *ILE = dyn_cast<InitListExpr>(E);
1055   if (ILE == 0 || !CGF.getTypes().isZeroInitializable(ILE->getType()))
1056     return CGF.getContext().getTypeSizeInChars(E->getType());
1057 
1058   // InitListExprs for structs have to be handled carefully.  If there are
1059   // reference members, we need to consider the size of the reference, not the
1060   // referencee.  InitListExprs for unions and arrays can't have references.
1061   if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
1062     if (!RT->isUnionType()) {
1063       RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl();
1064       CharUnits NumNonZeroBytes = CharUnits::Zero();
1065 
1066       unsigned ILEElement = 0;
1067       for (RecordDecl::field_iterator Field = SD->field_begin(),
1068            FieldEnd = SD->field_end(); Field != FieldEnd; ++Field) {
1069         // We're done once we hit the flexible array member or run out of
1070         // InitListExpr elements.
1071         if (Field->getType()->isIncompleteArrayType() ||
1072             ILEElement == ILE->getNumInits())
1073           break;
1074         if (Field->isUnnamedBitfield())
1075           continue;
1076 
1077         const Expr *E = ILE->getInit(ILEElement++);
1078 
1079         // Reference values are always non-null and have the width of a pointer.
1080         if (Field->getType()->isReferenceType())
1081           NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits(
1082               CGF.getContext().getTargetInfo().getPointerWidth(0));
1083         else
1084           NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF);
1085       }
1086 
1087       return NumNonZeroBytes;
1088     }
1089   }
1090 
1091 
1092   CharUnits NumNonZeroBytes = CharUnits::Zero();
1093   for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1094     NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF);
1095   return NumNonZeroBytes;
1096 }
1097 
1098 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of
1099 /// zeros in it, emit a memset and avoid storing the individual zeros.
1100 ///
1101 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E,
1102                                      CodeGenFunction &CGF) {
1103   // If the slot is already known to be zeroed, nothing to do.  Don't mess with
1104   // volatile stores.
1105   if (Slot.isZeroed() || Slot.isVolatile() || Slot.getAddr() == 0) return;
1106 
1107   // C++ objects with a user-declared constructor don't need zero'ing.
1108   if (CGF.getContext().getLangOptions().CPlusPlus)
1109     if (const RecordType *RT = CGF.getContext()
1110                        .getBaseElementType(E->getType())->getAs<RecordType>()) {
1111       const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1112       if (RD->hasUserDeclaredConstructor())
1113         return;
1114     }
1115 
1116   // If the type is 16-bytes or smaller, prefer individual stores over memset.
1117   std::pair<CharUnits, CharUnits> TypeInfo =
1118     CGF.getContext().getTypeInfoInChars(E->getType());
1119   if (TypeInfo.first <= CharUnits::fromQuantity(16))
1120     return;
1121 
1122   // Check to see if over 3/4 of the initializer are known to be zero.  If so,
1123   // we prefer to emit memset + individual stores for the rest.
1124   CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF);
1125   if (NumNonZeroBytes*4 > TypeInfo.first)
1126     return;
1127 
1128   // Okay, it seems like a good idea to use an initial memset, emit the call.
1129   llvm::Constant *SizeVal = CGF.Builder.getInt64(TypeInfo.first.getQuantity());
1130   CharUnits Align = TypeInfo.second;
1131 
1132   llvm::Value *Loc = Slot.getAddr();
1133 
1134   Loc = CGF.Builder.CreateBitCast(Loc, CGF.Int8PtrTy);
1135   CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal,
1136                            Align.getQuantity(), false);
1137 
1138   // Tell the AggExprEmitter that the slot is known zero.
1139   Slot.setZeroed();
1140 }
1141 
1142 
1143 
1144 
1145 /// EmitAggExpr - Emit the computation of the specified expression of aggregate
1146 /// type.  The result is computed into DestPtr.  Note that if DestPtr is null,
1147 /// the value of the aggregate expression is not needed.  If VolatileDest is
1148 /// true, DestPtr cannot be 0.
1149 ///
1150 /// \param IsInitializer - true if this evaluation is initializing an
1151 /// object whose lifetime is already being managed.
1152 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot,
1153                                   bool IgnoreResult) {
1154   assert(E && hasAggregateLLVMType(E->getType()) &&
1155          "Invalid aggregate expression to emit");
1156   assert((Slot.getAddr() != 0 || Slot.isIgnored()) &&
1157          "slot has bits but no address");
1158 
1159   // Optimize the slot if possible.
1160   CheckAggExprForMemSetUse(Slot, E, *this);
1161 
1162   AggExprEmitter(*this, Slot, IgnoreResult).Visit(const_cast<Expr*>(E));
1163 }
1164 
1165 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) {
1166   assert(hasAggregateLLVMType(E->getType()) && "Invalid argument!");
1167   llvm::Value *Temp = CreateMemTemp(E->getType());
1168   LValue LV = MakeAddrLValue(Temp, E->getType());
1169   EmitAggExpr(E, AggValueSlot::forLValue(LV, AggValueSlot::IsNotDestructed,
1170                                          AggValueSlot::DoesNotNeedGCBarriers,
1171                                          AggValueSlot::IsNotAliased));
1172   return LV;
1173 }
1174 
1175 void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr,
1176                                         llvm::Value *SrcPtr, QualType Ty,
1177                                         bool isVolatile, unsigned Alignment) {
1178   assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
1179 
1180   if (getContext().getLangOptions().CPlusPlus) {
1181     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1182       CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
1183       assert((Record->hasTrivialCopyConstructor() ||
1184               Record->hasTrivialCopyAssignment() ||
1185               Record->hasTrivialMoveConstructor() ||
1186               Record->hasTrivialMoveAssignment()) &&
1187              "Trying to aggregate-copy a type without a trivial copy "
1188              "constructor or assignment operator");
1189       // Ignore empty classes in C++.
1190       if (Record->isEmpty())
1191         return;
1192     }
1193   }
1194 
1195   // Aggregate assignment turns into llvm.memcpy.  This is almost valid per
1196   // C99 6.5.16.1p3, which states "If the value being stored in an object is
1197   // read from another object that overlaps in anyway the storage of the first
1198   // object, then the overlap shall be exact and the two objects shall have
1199   // qualified or unqualified versions of a compatible type."
1200   //
1201   // memcpy is not defined if the source and destination pointers are exactly
1202   // equal, but other compilers do this optimization, and almost every memcpy
1203   // implementation handles this case safely.  If there is a libc that does not
1204   // safely handle this, we can add a target hook.
1205 
1206   // Get size and alignment info for this aggregate.
1207   std::pair<CharUnits, CharUnits> TypeInfo =
1208     getContext().getTypeInfoInChars(Ty);
1209 
1210   if (!Alignment)
1211     Alignment = TypeInfo.second.getQuantity();
1212 
1213   // FIXME: Handle variable sized types.
1214 
1215   // FIXME: If we have a volatile struct, the optimizer can remove what might
1216   // appear to be `extra' memory ops:
1217   //
1218   // volatile struct { int i; } a, b;
1219   //
1220   // int main() {
1221   //   a = b;
1222   //   a = b;
1223   // }
1224   //
1225   // we need to use a different call here.  We use isVolatile to indicate when
1226   // either the source or the destination is volatile.
1227 
1228   llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType());
1229   llvm::Type *DBP =
1230     llvm::Type::getInt8PtrTy(getLLVMContext(), DPT->getAddressSpace());
1231   DestPtr = Builder.CreateBitCast(DestPtr, DBP);
1232 
1233   llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType());
1234   llvm::Type *SBP =
1235     llvm::Type::getInt8PtrTy(getLLVMContext(), SPT->getAddressSpace());
1236   SrcPtr = Builder.CreateBitCast(SrcPtr, SBP);
1237 
1238   // Don't do any of the memmove_collectable tests if GC isn't set.
1239   if (CGM.getLangOptions().getGC() == LangOptions::NonGC) {
1240     // fall through
1241   } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
1242     RecordDecl *Record = RecordTy->getDecl();
1243     if (Record->hasObjectMember()) {
1244       CharUnits size = TypeInfo.first;
1245       llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
1246       llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity());
1247       CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
1248                                                     SizeVal);
1249       return;
1250     }
1251   } else if (Ty->isArrayType()) {
1252     QualType BaseType = getContext().getBaseElementType(Ty);
1253     if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
1254       if (RecordTy->getDecl()->hasObjectMember()) {
1255         CharUnits size = TypeInfo.first;
1256         llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
1257         llvm::Value *SizeVal =
1258           llvm::ConstantInt::get(SizeTy, size.getQuantity());
1259         CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
1260                                                       SizeVal);
1261         return;
1262       }
1263     }
1264   }
1265 
1266   Builder.CreateMemCpy(DestPtr, SrcPtr,
1267                        llvm::ConstantInt::get(IntPtrTy,
1268                                               TypeInfo.first.getQuantity()),
1269                        Alignment, isVolatile);
1270 }
1271 
1272 void CodeGenFunction::MaybeEmitStdInitializerListCleanup(llvm::Value *loc,
1273                                                          const Expr *init) {
1274   const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(init);
1275   if (cleanups)
1276     init = cleanups->getSubExpr();
1277 
1278   if (isa<InitListExpr>(init) &&
1279       cast<InitListExpr>(init)->initializesStdInitializerList()) {
1280     // We initialized this std::initializer_list with an initializer list.
1281     // A backing array was created. Push a cleanup for it.
1282     EmitStdInitializerListCleanup(loc, cast<InitListExpr>(init));
1283   }
1284 }
1285 
1286 static void EmitRecursiveStdInitializerListCleanup(CodeGenFunction &CGF,
1287                                                    llvm::Value *arrayStart,
1288                                                    const InitListExpr *init) {
1289   // Check if there are any recursive cleanups to do, i.e. if we have
1290   //   std::initializer_list<std::initializer_list<obj>> list = {{obj()}};
1291   // then we need to destroy the inner array as well.
1292   for (unsigned i = 0, e = init->getNumInits(); i != e; ++i) {
1293     const InitListExpr *subInit = dyn_cast<InitListExpr>(init->getInit(i));
1294     if (!subInit || !subInit->initializesStdInitializerList())
1295       continue;
1296 
1297     // This one needs to be destroyed. Get the address of the std::init_list.
1298     llvm::Value *offset = llvm::ConstantInt::get(CGF.SizeTy, i);
1299     llvm::Value *loc = CGF.Builder.CreateInBoundsGEP(arrayStart, offset,
1300                                                  "std.initlist");
1301     CGF.EmitStdInitializerListCleanup(loc, subInit);
1302   }
1303 }
1304 
1305 void CodeGenFunction::EmitStdInitializerListCleanup(llvm::Value *loc,
1306                                                     const InitListExpr *init) {
1307   ASTContext &ctx = getContext();
1308   QualType element = GetStdInitializerListElementType(init->getType());
1309   unsigned numInits = init->getNumInits();
1310   llvm::APInt size(ctx.getTypeSize(ctx.getSizeType()), numInits);
1311   QualType array =ctx.getConstantArrayType(element, size, ArrayType::Normal, 0);
1312   QualType arrayPtr = ctx.getPointerType(array);
1313   llvm::Type *arrayPtrType = ConvertType(arrayPtr);
1314 
1315   // lvalue is the location of a std::initializer_list, which as its first
1316   // element has a pointer to the array we want to destroy.
1317   llvm::Value *startPointer = Builder.CreateStructGEP(loc, 0, "startPointer");
1318   llvm::Value *startAddress = Builder.CreateLoad(startPointer, "startAddress");
1319 
1320   ::EmitRecursiveStdInitializerListCleanup(*this, startAddress, init);
1321 
1322   llvm::Value *arrayAddress =
1323       Builder.CreateBitCast(startAddress, arrayPtrType, "arrayAddress");
1324   ::EmitStdInitializerListCleanup(*this, array, arrayAddress, init);
1325 }
1326