1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Aggregate Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "CGObjCRuntime.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/DeclTemplate.h"
20 #include "clang/AST/StmtVisitor.h"
21 #include "llvm/Constants.h"
22 #include "llvm/Function.h"
23 #include "llvm/GlobalVariable.h"
24 #include "llvm/Intrinsics.h"
25 using namespace clang;
26 using namespace CodeGen;
27 
28 //===----------------------------------------------------------------------===//
29 //                        Aggregate Expression Emitter
30 //===----------------------------------------------------------------------===//
31 
32 namespace  {
33 class AggExprEmitter : public StmtVisitor<AggExprEmitter> {
34   CodeGenFunction &CGF;
35   CGBuilderTy &Builder;
36   AggValueSlot Dest;
37   bool IgnoreResult;
38 
39   /// We want to use 'dest' as the return slot except under two
40   /// conditions:
41   ///   - The destination slot requires garbage collection, so we
42   ///     need to use the GC API.
43   ///   - The destination slot is potentially aliased.
44   bool shouldUseDestForReturnSlot() const {
45     return !(Dest.requiresGCollection() || Dest.isPotentiallyAliased());
46   }
47 
48   ReturnValueSlot getReturnValueSlot() const {
49     if (!shouldUseDestForReturnSlot())
50       return ReturnValueSlot();
51 
52     return ReturnValueSlot(Dest.getAddr(), Dest.isVolatile());
53   }
54 
55   AggValueSlot EnsureSlot(QualType T) {
56     if (!Dest.isIgnored()) return Dest;
57     return CGF.CreateAggTemp(T, "agg.tmp.ensured");
58   }
59 
60 public:
61   AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest,
62                  bool ignore)
63     : CGF(cgf), Builder(CGF.Builder), Dest(Dest),
64       IgnoreResult(ignore) {
65   }
66 
67   //===--------------------------------------------------------------------===//
68   //                               Utilities
69   //===--------------------------------------------------------------------===//
70 
71   /// EmitAggLoadOfLValue - Given an expression with aggregate type that
72   /// represents a value lvalue, this method emits the address of the lvalue,
73   /// then loads the result into DestPtr.
74   void EmitAggLoadOfLValue(const Expr *E);
75 
76   /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
77   void EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore = false);
78   void EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore = false,
79                          unsigned Alignment = 0);
80 
81   void EmitMoveFromReturnSlot(const Expr *E, RValue Src);
82 
83   void EmitStdInitializerList(llvm::Value *DestPtr, InitListExpr *InitList);
84   void EmitArrayInit(llvm::Value *DestPtr, llvm::ArrayType *AType,
85                      QualType elementType, InitListExpr *E);
86 
87   AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) {
88     if (CGF.getLangOptions().getGC() && TypeRequiresGCollection(T))
89       return AggValueSlot::NeedsGCBarriers;
90     return AggValueSlot::DoesNotNeedGCBarriers;
91   }
92 
93   bool TypeRequiresGCollection(QualType T);
94 
95   //===--------------------------------------------------------------------===//
96   //                            Visitor Methods
97   //===--------------------------------------------------------------------===//
98 
99   void VisitStmt(Stmt *S) {
100     CGF.ErrorUnsupported(S, "aggregate expression");
101   }
102   void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
103   void VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
104     Visit(GE->getResultExpr());
105   }
106   void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
107   void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
108     return Visit(E->getReplacement());
109   }
110 
111   // l-values.
112   void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); }
113   void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
114   void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
115   void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
116   void VisitCompoundLiteralExpr(CompoundLiteralExpr *E);
117   void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
118     EmitAggLoadOfLValue(E);
119   }
120   void VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
121     EmitAggLoadOfLValue(E);
122   }
123   void VisitPredefinedExpr(const PredefinedExpr *E) {
124     EmitAggLoadOfLValue(E);
125   }
126 
127   // Operators.
128   void VisitCastExpr(CastExpr *E);
129   void VisitCallExpr(const CallExpr *E);
130   void VisitStmtExpr(const StmtExpr *E);
131   void VisitBinaryOperator(const BinaryOperator *BO);
132   void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO);
133   void VisitBinAssign(const BinaryOperator *E);
134   void VisitBinComma(const BinaryOperator *E);
135 
136   void VisitObjCMessageExpr(ObjCMessageExpr *E);
137   void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
138     EmitAggLoadOfLValue(E);
139   }
140 
141   void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
142   void VisitChooseExpr(const ChooseExpr *CE);
143   void VisitInitListExpr(InitListExpr *E);
144   void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E);
145   void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
146     Visit(DAE->getExpr());
147   }
148   void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E);
149   void VisitCXXConstructExpr(const CXXConstructExpr *E);
150   void VisitLambdaExpr(LambdaExpr *E);
151   void VisitExprWithCleanups(ExprWithCleanups *E);
152   void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E);
153   void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); }
154   void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E);
155   void VisitOpaqueValueExpr(OpaqueValueExpr *E);
156 
157   void VisitPseudoObjectExpr(PseudoObjectExpr *E) {
158     if (E->isGLValue()) {
159       LValue LV = CGF.EmitPseudoObjectLValue(E);
160       return EmitFinalDestCopy(E, LV);
161     }
162 
163     CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType()));
164   }
165 
166   void VisitVAArgExpr(VAArgExpr *E);
167 
168   void EmitInitializationToLValue(Expr *E, LValue Address);
169   void EmitNullInitializationToLValue(LValue Address);
170   //  case Expr::ChooseExprClass:
171   void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); }
172   void VisitAtomicExpr(AtomicExpr *E) {
173     CGF.EmitAtomicExpr(E, EnsureSlot(E->getType()).getAddr());
174   }
175 };
176 }  // end anonymous namespace.
177 
178 //===----------------------------------------------------------------------===//
179 //                                Utilities
180 //===----------------------------------------------------------------------===//
181 
182 /// EmitAggLoadOfLValue - Given an expression with aggregate type that
183 /// represents a value lvalue, this method emits the address of the lvalue,
184 /// then loads the result into DestPtr.
185 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
186   LValue LV = CGF.EmitLValue(E);
187   EmitFinalDestCopy(E, LV);
188 }
189 
190 /// \brief True if the given aggregate type requires special GC API calls.
191 bool AggExprEmitter::TypeRequiresGCollection(QualType T) {
192   // Only record types have members that might require garbage collection.
193   const RecordType *RecordTy = T->getAs<RecordType>();
194   if (!RecordTy) return false;
195 
196   // Don't mess with non-trivial C++ types.
197   RecordDecl *Record = RecordTy->getDecl();
198   if (isa<CXXRecordDecl>(Record) &&
199       (!cast<CXXRecordDecl>(Record)->hasTrivialCopyConstructor() ||
200        !cast<CXXRecordDecl>(Record)->hasTrivialDestructor()))
201     return false;
202 
203   // Check whether the type has an object member.
204   return Record->hasObjectMember();
205 }
206 
207 /// \brief Perform the final move to DestPtr if for some reason
208 /// getReturnValueSlot() didn't use it directly.
209 ///
210 /// The idea is that you do something like this:
211 ///   RValue Result = EmitSomething(..., getReturnValueSlot());
212 ///   EmitMoveFromReturnSlot(E, Result);
213 ///
214 /// If nothing interferes, this will cause the result to be emitted
215 /// directly into the return value slot.  Otherwise, a final move
216 /// will be performed.
217 void AggExprEmitter::EmitMoveFromReturnSlot(const Expr *E, RValue Src) {
218   if (shouldUseDestForReturnSlot()) {
219     // Logically, Dest.getAddr() should equal Src.getAggregateAddr().
220     // The possibility of undef rvalues complicates that a lot,
221     // though, so we can't really assert.
222     return;
223   }
224 
225   // Otherwise, do a final copy,
226   assert(Dest.getAddr() != Src.getAggregateAddr());
227   EmitFinalDestCopy(E, Src, /*Ignore*/ true);
228 }
229 
230 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
231 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore,
232                                        unsigned Alignment) {
233   assert(Src.isAggregate() && "value must be aggregate value!");
234 
235   // If Dest is ignored, then we're evaluating an aggregate expression
236   // in a context (like an expression statement) that doesn't care
237   // about the result.  C says that an lvalue-to-rvalue conversion is
238   // performed in these cases; C++ says that it is not.  In either
239   // case, we don't actually need to do anything unless the value is
240   // volatile.
241   if (Dest.isIgnored()) {
242     if (!Src.isVolatileQualified() ||
243         CGF.CGM.getLangOptions().CPlusPlus ||
244         (IgnoreResult && Ignore))
245       return;
246 
247     // If the source is volatile, we must read from it; to do that, we need
248     // some place to put it.
249     Dest = CGF.CreateAggTemp(E->getType(), "agg.tmp");
250   }
251 
252   if (Dest.requiresGCollection()) {
253     CharUnits size = CGF.getContext().getTypeSizeInChars(E->getType());
254     llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType());
255     llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity());
256     CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF,
257                                                       Dest.getAddr(),
258                                                       Src.getAggregateAddr(),
259                                                       SizeVal);
260     return;
261   }
262   // If the result of the assignment is used, copy the LHS there also.
263   // FIXME: Pass VolatileDest as well.  I think we also need to merge volatile
264   // from the source as well, as we can't eliminate it if either operand
265   // is volatile, unless copy has volatile for both source and destination..
266   CGF.EmitAggregateCopy(Dest.getAddr(), Src.getAggregateAddr(), E->getType(),
267                         Dest.isVolatile()|Src.isVolatileQualified(),
268                         Alignment);
269 }
270 
271 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
272 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore) {
273   assert(Src.isSimple() && "Can't have aggregate bitfield, vector, etc");
274 
275   CharUnits Alignment = std::min(Src.getAlignment(), Dest.getAlignment());
276   EmitFinalDestCopy(E, Src.asAggregateRValue(), Ignore, Alignment.getQuantity());
277 }
278 
279 static QualType GetStdInitializerListElementType(QualType T) {
280   // Just assume that this is really std::initializer_list.
281   ClassTemplateSpecializationDecl *specialization =
282       cast<ClassTemplateSpecializationDecl>(T->castAs<RecordType>()->getDecl());
283   return specialization->getTemplateArgs()[0].getAsType();
284 }
285 
286 /// \brief Prepare cleanup for the temporary array.
287 static void EmitStdInitializerListCleanup(CodeGenFunction &CGF,
288                                           QualType arrayType,
289                                           llvm::Value *addr,
290                                           const InitListExpr *initList) {
291   QualType::DestructionKind dtorKind = arrayType.isDestructedType();
292   if (!dtorKind)
293     return; // Type doesn't need destroying.
294   if (dtorKind != QualType::DK_cxx_destructor) {
295     CGF.ErrorUnsupported(initList, "ObjC ARC type in initializer_list");
296     return;
297   }
298 
299   CodeGenFunction::Destroyer *destroyer = CGF.getDestroyer(dtorKind);
300   CGF.pushDestroy(NormalAndEHCleanup, addr, arrayType, destroyer,
301                   /*EHCleanup=*/true);
302 }
303 
304 /// \brief Emit the initializer for a std::initializer_list initialized with a
305 /// real initializer list.
306 void AggExprEmitter::EmitStdInitializerList(llvm::Value *destPtr,
307                                             InitListExpr *initList) {
308   // We emit an array containing the elements, then have the init list point
309   // at the array.
310   ASTContext &ctx = CGF.getContext();
311   unsigned numInits = initList->getNumInits();
312   QualType element = GetStdInitializerListElementType(initList->getType());
313   llvm::APInt size(ctx.getTypeSize(ctx.getSizeType()), numInits);
314   QualType array = ctx.getConstantArrayType(element, size, ArrayType::Normal,0);
315   llvm::Type *LTy = CGF.ConvertTypeForMem(array);
316   llvm::AllocaInst *alloc = CGF.CreateTempAlloca(LTy);
317   alloc->setAlignment(ctx.getTypeAlignInChars(array).getQuantity());
318   alloc->setName(".initlist.");
319 
320   EmitArrayInit(alloc, cast<llvm::ArrayType>(LTy), element, initList);
321 
322   // FIXME: The diagnostics are somewhat out of place here.
323   RecordDecl *record = initList->getType()->castAs<RecordType>()->getDecl();
324   RecordDecl::field_iterator field = record->field_begin();
325   if (field == record->field_end()) {
326     CGF.ErrorUnsupported(initList, "weird std::initializer_list");
327   }
328 
329   QualType elementPtr = ctx.getPointerType(element.withConst());
330 
331   // Start pointer.
332   if (!ctx.hasSameType(field->getType(), elementPtr)) {
333     CGF.ErrorUnsupported(initList, "weird std::initializer_list");
334   }
335   LValue start = CGF.EmitLValueForFieldInitialization(destPtr, *field, 0);
336   llvm::Value *arrayStart = Builder.CreateStructGEP(alloc, 0, "arraystart");
337   CGF.EmitStoreThroughLValue(RValue::get(arrayStart), start);
338   ++field;
339 
340   if (field == record->field_end()) {
341     CGF.ErrorUnsupported(initList, "weird std::initializer_list");
342   }
343   LValue endOrLength = CGF.EmitLValueForFieldInitialization(destPtr, *field, 0);
344   if (ctx.hasSameType(field->getType(), elementPtr)) {
345     // End pointer.
346     llvm::Value *arrayEnd = Builder.CreateStructGEP(alloc,numInits, "arrayend");
347     CGF.EmitStoreThroughLValue(RValue::get(arrayEnd), endOrLength);
348   } else if(ctx.hasSameType(field->getType(), ctx.getSizeType())) {
349     // Length.
350     CGF.EmitStoreThroughLValue(RValue::get(Builder.getInt(size)), endOrLength);
351   } else {
352     CGF.ErrorUnsupported(initList, "weird std::initializer_list");
353   }
354 
355   if (!Dest.isExternallyDestructed())
356     EmitStdInitializerListCleanup(CGF, array, alloc, initList);
357 }
358 
359 /// \brief Emit initialization of an array from an initializer list.
360 void AggExprEmitter::EmitArrayInit(llvm::Value *DestPtr, llvm::ArrayType *AType,
361                                    QualType elementType, InitListExpr *E) {
362   uint64_t NumInitElements = E->getNumInits();
363 
364   uint64_t NumArrayElements = AType->getNumElements();
365   assert(NumInitElements <= NumArrayElements);
366 
367   // DestPtr is an array*.  Construct an elementType* by drilling
368   // down a level.
369   llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
370   llvm::Value *indices[] = { zero, zero };
371   llvm::Value *begin =
372     Builder.CreateInBoundsGEP(DestPtr, indices, "arrayinit.begin");
373 
374   // Exception safety requires us to destroy all the
375   // already-constructed members if an initializer throws.
376   // For that, we'll need an EH cleanup.
377   QualType::DestructionKind dtorKind = elementType.isDestructedType();
378   llvm::AllocaInst *endOfInit = 0;
379   EHScopeStack::stable_iterator cleanup;
380   llvm::Instruction *cleanupDominator = 0;
381   if (CGF.needsEHCleanup(dtorKind)) {
382     // In principle we could tell the cleanup where we are more
383     // directly, but the control flow can get so varied here that it
384     // would actually be quite complex.  Therefore we go through an
385     // alloca.
386     endOfInit = CGF.CreateTempAlloca(begin->getType(),
387                                      "arrayinit.endOfInit");
388     cleanupDominator = Builder.CreateStore(begin, endOfInit);
389     CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType,
390                                          CGF.getDestroyer(dtorKind));
391     cleanup = CGF.EHStack.stable_begin();
392 
393   // Otherwise, remember that we didn't need a cleanup.
394   } else {
395     dtorKind = QualType::DK_none;
396   }
397 
398   llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1);
399 
400   // The 'current element to initialize'.  The invariants on this
401   // variable are complicated.  Essentially, after each iteration of
402   // the loop, it points to the last initialized element, except
403   // that it points to the beginning of the array before any
404   // elements have been initialized.
405   llvm::Value *element = begin;
406 
407   // Emit the explicit initializers.
408   for (uint64_t i = 0; i != NumInitElements; ++i) {
409     // Advance to the next element.
410     if (i > 0) {
411       element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element");
412 
413       // Tell the cleanup that it needs to destroy up to this
414       // element.  TODO: some of these stores can be trivially
415       // observed to be unnecessary.
416       if (endOfInit) Builder.CreateStore(element, endOfInit);
417     }
418 
419     // If these are nested std::initializer_list inits, do them directly,
420     // because they are conceptually the same "location".
421     InitListExpr *initList = dyn_cast<InitListExpr>(E->getInit(i));
422     if (initList && initList->initializesStdInitializerList()) {
423       EmitStdInitializerList(element, initList);
424     } else {
425       LValue elementLV = CGF.MakeAddrLValue(element, elementType);
426       EmitInitializationToLValue(E->getInit(i), elementLV);
427     }
428   }
429 
430   // Check whether there's a non-trivial array-fill expression.
431   // Note that this will be a CXXConstructExpr even if the element
432   // type is an array (or array of array, etc.) of class type.
433   Expr *filler = E->getArrayFiller();
434   bool hasTrivialFiller = true;
435   if (CXXConstructExpr *cons = dyn_cast_or_null<CXXConstructExpr>(filler)) {
436     assert(cons->getConstructor()->isDefaultConstructor());
437     hasTrivialFiller = cons->getConstructor()->isTrivial();
438   }
439 
440   // Any remaining elements need to be zero-initialized, possibly
441   // using the filler expression.  We can skip this if the we're
442   // emitting to zeroed memory.
443   if (NumInitElements != NumArrayElements &&
444       !(Dest.isZeroed() && hasTrivialFiller &&
445         CGF.getTypes().isZeroInitializable(elementType))) {
446 
447     // Use an actual loop.  This is basically
448     //   do { *array++ = filler; } while (array != end);
449 
450     // Advance to the start of the rest of the array.
451     if (NumInitElements) {
452       element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start");
453       if (endOfInit) Builder.CreateStore(element, endOfInit);
454     }
455 
456     // Compute the end of the array.
457     llvm::Value *end = Builder.CreateInBoundsGEP(begin,
458                       llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements),
459                                                  "arrayinit.end");
460 
461     llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
462     llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
463 
464     // Jump into the body.
465     CGF.EmitBlock(bodyBB);
466     llvm::PHINode *currentElement =
467       Builder.CreatePHI(element->getType(), 2, "arrayinit.cur");
468     currentElement->addIncoming(element, entryBB);
469 
470     // Emit the actual filler expression.
471     LValue elementLV = CGF.MakeAddrLValue(currentElement, elementType);
472     if (filler)
473       EmitInitializationToLValue(filler, elementLV);
474     else
475       EmitNullInitializationToLValue(elementLV);
476 
477     // Move on to the next element.
478     llvm::Value *nextElement =
479       Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next");
480 
481     // Tell the EH cleanup that we finished with the last element.
482     if (endOfInit) Builder.CreateStore(nextElement, endOfInit);
483 
484     // Leave the loop if we're done.
485     llvm::Value *done = Builder.CreateICmpEQ(nextElement, end,
486                                              "arrayinit.done");
487     llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
488     Builder.CreateCondBr(done, endBB, bodyBB);
489     currentElement->addIncoming(nextElement, Builder.GetInsertBlock());
490 
491     CGF.EmitBlock(endBB);
492   }
493 
494   // Leave the partial-array cleanup if we entered one.
495   if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator);
496 }
497 
498 //===----------------------------------------------------------------------===//
499 //                            Visitor Methods
500 //===----------------------------------------------------------------------===//
501 
502 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){
503   Visit(E->GetTemporaryExpr());
504 }
505 
506 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) {
507   EmitFinalDestCopy(e, CGF.getOpaqueLValueMapping(e));
508 }
509 
510 void
511 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
512   if (E->getType().isPODType(CGF.getContext())) {
513     // For a POD type, just emit a load of the lvalue + a copy, because our
514     // compound literal might alias the destination.
515     // FIXME: This is a band-aid; the real problem appears to be in our handling
516     // of assignments, where we store directly into the LHS without checking
517     // whether anything in the RHS aliases.
518     EmitAggLoadOfLValue(E);
519     return;
520   }
521 
522   AggValueSlot Slot = EnsureSlot(E->getType());
523   CGF.EmitAggExpr(E->getInitializer(), Slot);
524 }
525 
526 
527 void AggExprEmitter::VisitCastExpr(CastExpr *E) {
528   switch (E->getCastKind()) {
529   case CK_Dynamic: {
530     assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?");
531     LValue LV = CGF.EmitCheckedLValue(E->getSubExpr());
532     // FIXME: Do we also need to handle property references here?
533     if (LV.isSimple())
534       CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E));
535     else
536       CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast");
537 
538     if (!Dest.isIgnored())
539       CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination");
540     break;
541   }
542 
543   case CK_ToUnion: {
544     if (Dest.isIgnored()) break;
545 
546     // GCC union extension
547     QualType Ty = E->getSubExpr()->getType();
548     QualType PtrTy = CGF.getContext().getPointerType(Ty);
549     llvm::Value *CastPtr = Builder.CreateBitCast(Dest.getAddr(),
550                                                  CGF.ConvertType(PtrTy));
551     EmitInitializationToLValue(E->getSubExpr(),
552                                CGF.MakeAddrLValue(CastPtr, Ty));
553     break;
554   }
555 
556   case CK_DerivedToBase:
557   case CK_BaseToDerived:
558   case CK_UncheckedDerivedToBase: {
559     llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: "
560                 "should have been unpacked before we got here");
561   }
562 
563   case CK_LValueToRValue: // hope for downstream optimization
564   case CK_NoOp:
565   case CK_AtomicToNonAtomic:
566   case CK_NonAtomicToAtomic:
567   case CK_UserDefinedConversion:
568   case CK_ConstructorConversion:
569     assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(),
570                                                    E->getType()) &&
571            "Implicit cast types must be compatible");
572     Visit(E->getSubExpr());
573     break;
574 
575   case CK_LValueBitCast:
576     llvm_unreachable("should not be emitting lvalue bitcast as rvalue");
577 
578   case CK_Dependent:
579   case CK_BitCast:
580   case CK_ArrayToPointerDecay:
581   case CK_FunctionToPointerDecay:
582   case CK_NullToPointer:
583   case CK_NullToMemberPointer:
584   case CK_BaseToDerivedMemberPointer:
585   case CK_DerivedToBaseMemberPointer:
586   case CK_MemberPointerToBoolean:
587   case CK_ReinterpretMemberPointer:
588   case CK_IntegralToPointer:
589   case CK_PointerToIntegral:
590   case CK_PointerToBoolean:
591   case CK_ToVoid:
592   case CK_VectorSplat:
593   case CK_IntegralCast:
594   case CK_IntegralToBoolean:
595   case CK_IntegralToFloating:
596   case CK_FloatingToIntegral:
597   case CK_FloatingToBoolean:
598   case CK_FloatingCast:
599   case CK_CPointerToObjCPointerCast:
600   case CK_BlockPointerToObjCPointerCast:
601   case CK_AnyPointerToBlockPointerCast:
602   case CK_ObjCObjectLValueCast:
603   case CK_FloatingRealToComplex:
604   case CK_FloatingComplexToReal:
605   case CK_FloatingComplexToBoolean:
606   case CK_FloatingComplexCast:
607   case CK_FloatingComplexToIntegralComplex:
608   case CK_IntegralRealToComplex:
609   case CK_IntegralComplexToReal:
610   case CK_IntegralComplexToBoolean:
611   case CK_IntegralComplexCast:
612   case CK_IntegralComplexToFloatingComplex:
613   case CK_ARCProduceObject:
614   case CK_ARCConsumeObject:
615   case CK_ARCReclaimReturnedObject:
616   case CK_ARCExtendBlockObject:
617     llvm_unreachable("cast kind invalid for aggregate types");
618   }
619 }
620 
621 void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
622   if (E->getCallReturnType()->isReferenceType()) {
623     EmitAggLoadOfLValue(E);
624     return;
625   }
626 
627   RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot());
628   EmitMoveFromReturnSlot(E, RV);
629 }
630 
631 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
632   RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot());
633   EmitMoveFromReturnSlot(E, RV);
634 }
635 
636 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
637   CGF.EmitIgnoredExpr(E->getLHS());
638   Visit(E->getRHS());
639 }
640 
641 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
642   CodeGenFunction::StmtExprEvaluation eval(CGF);
643   CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest);
644 }
645 
646 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
647   if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI)
648     VisitPointerToDataMemberBinaryOperator(E);
649   else
650     CGF.ErrorUnsupported(E, "aggregate binary expression");
651 }
652 
653 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator(
654                                                     const BinaryOperator *E) {
655   LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E);
656   EmitFinalDestCopy(E, LV);
657 }
658 
659 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
660   // For an assignment to work, the value on the right has
661   // to be compatible with the value on the left.
662   assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
663                                                  E->getRHS()->getType())
664          && "Invalid assignment");
665 
666   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->getLHS()))
667     if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
668       if (VD->hasAttr<BlocksAttr>() &&
669           E->getRHS()->HasSideEffects(CGF.getContext())) {
670         // When __block variable on LHS, the RHS must be evaluated first
671         // as it may change the 'forwarding' field via call to Block_copy.
672         LValue RHS = CGF.EmitLValue(E->getRHS());
673         LValue LHS = CGF.EmitLValue(E->getLHS());
674         Dest = AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed,
675                                        needsGC(E->getLHS()->getType()),
676                                        AggValueSlot::IsAliased);
677         EmitFinalDestCopy(E, RHS, true);
678         return;
679       }
680 
681   LValue LHS = CGF.EmitLValue(E->getLHS());
682 
683   // Codegen the RHS so that it stores directly into the LHS.
684   AggValueSlot LHSSlot =
685     AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed,
686                             needsGC(E->getLHS()->getType()),
687                             AggValueSlot::IsAliased);
688   CGF.EmitAggExpr(E->getRHS(), LHSSlot, false);
689   EmitFinalDestCopy(E, LHS, true);
690 }
691 
692 void AggExprEmitter::
693 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
694   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
695   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
696   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
697 
698   // Bind the common expression if necessary.
699   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
700 
701   CodeGenFunction::ConditionalEvaluation eval(CGF);
702   CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock);
703 
704   // Save whether the destination's lifetime is externally managed.
705   bool isExternallyDestructed = Dest.isExternallyDestructed();
706 
707   eval.begin(CGF);
708   CGF.EmitBlock(LHSBlock);
709   Visit(E->getTrueExpr());
710   eval.end(CGF);
711 
712   assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!");
713   CGF.Builder.CreateBr(ContBlock);
714 
715   // If the result of an agg expression is unused, then the emission
716   // of the LHS might need to create a destination slot.  That's fine
717   // with us, and we can safely emit the RHS into the same slot, but
718   // we shouldn't claim that it's already being destructed.
719   Dest.setExternallyDestructed(isExternallyDestructed);
720 
721   eval.begin(CGF);
722   CGF.EmitBlock(RHSBlock);
723   Visit(E->getFalseExpr());
724   eval.end(CGF);
725 
726   CGF.EmitBlock(ContBlock);
727 }
728 
729 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) {
730   Visit(CE->getChosenSubExpr(CGF.getContext()));
731 }
732 
733 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
734   llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
735   llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
736 
737   if (!ArgPtr) {
738     CGF.ErrorUnsupported(VE, "aggregate va_arg expression");
739     return;
740   }
741 
742   EmitFinalDestCopy(VE, CGF.MakeAddrLValue(ArgPtr, VE->getType()));
743 }
744 
745 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
746   // Ensure that we have a slot, but if we already do, remember
747   // whether it was externally destructed.
748   bool wasExternallyDestructed = Dest.isExternallyDestructed();
749   Dest = EnsureSlot(E->getType());
750 
751   // We're going to push a destructor if there isn't already one.
752   Dest.setExternallyDestructed();
753 
754   Visit(E->getSubExpr());
755 
756   // Push that destructor we promised.
757   if (!wasExternallyDestructed)
758     CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddr());
759 }
760 
761 void
762 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) {
763   AggValueSlot Slot = EnsureSlot(E->getType());
764   CGF.EmitCXXConstructExpr(E, Slot);
765 }
766 
767 void
768 AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) {
769   AggValueSlot Slot = EnsureSlot(E->getType());
770   CGF.EmitLambdaExpr(E, Slot);
771 }
772 
773 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
774   CGF.enterFullExpression(E);
775   CodeGenFunction::RunCleanupsScope cleanups(CGF);
776   Visit(E->getSubExpr());
777 }
778 
779 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
780   QualType T = E->getType();
781   AggValueSlot Slot = EnsureSlot(T);
782   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T));
783 }
784 
785 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
786   QualType T = E->getType();
787   AggValueSlot Slot = EnsureSlot(T);
788   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T));
789 }
790 
791 /// isSimpleZero - If emitting this value will obviously just cause a store of
792 /// zero to memory, return true.  This can return false if uncertain, so it just
793 /// handles simple cases.
794 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) {
795   E = E->IgnoreParens();
796 
797   // 0
798   if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E))
799     return IL->getValue() == 0;
800   // +0.0
801   if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E))
802     return FL->getValue().isPosZero();
803   // int()
804   if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) &&
805       CGF.getTypes().isZeroInitializable(E->getType()))
806     return true;
807   // (int*)0 - Null pointer expressions.
808   if (const CastExpr *ICE = dyn_cast<CastExpr>(E))
809     return ICE->getCastKind() == CK_NullToPointer;
810   // '\0'
811   if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E))
812     return CL->getValue() == 0;
813 
814   // Otherwise, hard case: conservatively return false.
815   return false;
816 }
817 
818 
819 void
820 AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV) {
821   QualType type = LV.getType();
822   // FIXME: Ignore result?
823   // FIXME: Are initializers affected by volatile?
824   if (Dest.isZeroed() && isSimpleZero(E, CGF)) {
825     // Storing "i32 0" to a zero'd memory location is a noop.
826   } else if (isa<ImplicitValueInitExpr>(E)) {
827     EmitNullInitializationToLValue(LV);
828   } else if (type->isReferenceType()) {
829     RValue RV = CGF.EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0);
830     CGF.EmitStoreThroughLValue(RV, LV);
831   } else if (type->isAnyComplexType()) {
832     CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false);
833   } else if (CGF.hasAggregateLLVMType(type)) {
834     CGF.EmitAggExpr(E, AggValueSlot::forLValue(LV,
835                                                AggValueSlot::IsDestructed,
836                                       AggValueSlot::DoesNotNeedGCBarriers,
837                                                AggValueSlot::IsNotAliased,
838                                                Dest.isZeroed()));
839   } else if (LV.isSimple()) {
840     CGF.EmitScalarInit(E, /*D=*/0, LV, /*Captured=*/false);
841   } else {
842     CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV);
843   }
844 }
845 
846 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) {
847   QualType type = lv.getType();
848 
849   // If the destination slot is already zeroed out before the aggregate is
850   // copied into it, we don't have to emit any zeros here.
851   if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type))
852     return;
853 
854   if (!CGF.hasAggregateLLVMType(type)) {
855     // For non-aggregates, we can store zero
856     llvm::Value *null = llvm::Constant::getNullValue(CGF.ConvertType(type));
857     CGF.EmitStoreThroughLValue(RValue::get(null), lv);
858   } else {
859     // There's a potential optimization opportunity in combining
860     // memsets; that would be easy for arrays, but relatively
861     // difficult for structures with the current code.
862     CGF.EmitNullInitialization(lv.getAddress(), lv.getType());
863   }
864 }
865 
866 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
867 #if 0
868   // FIXME: Assess perf here?  Figure out what cases are worth optimizing here
869   // (Length of globals? Chunks of zeroed-out space?).
870   //
871   // If we can, prefer a copy from a global; this is a lot less code for long
872   // globals, and it's easier for the current optimizers to analyze.
873   if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) {
874     llvm::GlobalVariable* GV =
875     new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true,
876                              llvm::GlobalValue::InternalLinkage, C, "");
877     EmitFinalDestCopy(E, CGF.MakeAddrLValue(GV, E->getType()));
878     return;
879   }
880 #endif
881   if (E->hadArrayRangeDesignator())
882     CGF.ErrorUnsupported(E, "GNU array range designator extension");
883 
884   if (E->initializesStdInitializerList()) {
885     EmitStdInitializerList(Dest.getAddr(), E);
886     return;
887   }
888 
889   llvm::Value *DestPtr = Dest.getAddr();
890 
891   // Handle initialization of an array.
892   if (E->getType()->isArrayType()) {
893     if (E->getNumInits() > 0) {
894       QualType T1 = E->getType();
895       QualType T2 = E->getInit(0)->getType();
896       if (CGF.getContext().hasSameUnqualifiedType(T1, T2)) {
897         EmitAggLoadOfLValue(E->getInit(0));
898         return;
899       }
900     }
901 
902     QualType elementType = E->getType().getCanonicalType();
903     elementType = CGF.getContext().getQualifiedType(
904                     cast<ArrayType>(elementType)->getElementType(),
905                     elementType.getQualifiers() + Dest.getQualifiers());
906 
907     llvm::PointerType *APType =
908       cast<llvm::PointerType>(DestPtr->getType());
909     llvm::ArrayType *AType =
910       cast<llvm::ArrayType>(APType->getElementType());
911 
912     EmitArrayInit(DestPtr, AType, elementType, E);
913     return;
914   }
915 
916   assert(E->getType()->isRecordType() && "Only support structs/unions here!");
917 
918   // Do struct initialization; this code just sets each individual member
919   // to the approprate value.  This makes bitfield support automatic;
920   // the disadvantage is that the generated code is more difficult for
921   // the optimizer, especially with bitfields.
922   unsigned NumInitElements = E->getNumInits();
923   RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl();
924 
925   if (record->isUnion()) {
926     // Only initialize one field of a union. The field itself is
927     // specified by the initializer list.
928     if (!E->getInitializedFieldInUnion()) {
929       // Empty union; we have nothing to do.
930 
931 #ifndef NDEBUG
932       // Make sure that it's really an empty and not a failure of
933       // semantic analysis.
934       for (RecordDecl::field_iterator Field = record->field_begin(),
935                                    FieldEnd = record->field_end();
936            Field != FieldEnd; ++Field)
937         assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed");
938 #endif
939       return;
940     }
941 
942     // FIXME: volatility
943     FieldDecl *Field = E->getInitializedFieldInUnion();
944 
945     LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestPtr, Field, 0);
946     if (NumInitElements) {
947       // Store the initializer into the field
948       EmitInitializationToLValue(E->getInit(0), FieldLoc);
949     } else {
950       // Default-initialize to null.
951       EmitNullInitializationToLValue(FieldLoc);
952     }
953 
954     return;
955   }
956 
957   // We'll need to enter cleanup scopes in case any of the member
958   // initializers throw an exception.
959   SmallVector<EHScopeStack::stable_iterator, 16> cleanups;
960   llvm::Instruction *cleanupDominator = 0;
961 
962   // Here we iterate over the fields; this makes it simpler to both
963   // default-initialize fields and skip over unnamed fields.
964   unsigned curInitIndex = 0;
965   for (RecordDecl::field_iterator field = record->field_begin(),
966                                fieldEnd = record->field_end();
967        field != fieldEnd; ++field) {
968     // We're done once we hit the flexible array member.
969     if (field->getType()->isIncompleteArrayType())
970       break;
971 
972     // Always skip anonymous bitfields.
973     if (field->isUnnamedBitfield())
974       continue;
975 
976     // We're done if we reach the end of the explicit initializers, we
977     // have a zeroed object, and the rest of the fields are
978     // zero-initializable.
979     if (curInitIndex == NumInitElements && Dest.isZeroed() &&
980         CGF.getTypes().isZeroInitializable(E->getType()))
981       break;
982 
983     // FIXME: volatility
984     LValue LV = CGF.EmitLValueForFieldInitialization(DestPtr, *field, 0);
985     // We never generate write-barries for initialized fields.
986     LV.setNonGC(true);
987 
988     if (curInitIndex < NumInitElements) {
989       // Store the initializer into the field.
990       EmitInitializationToLValue(E->getInit(curInitIndex++), LV);
991     } else {
992       // We're out of initalizers; default-initialize to null
993       EmitNullInitializationToLValue(LV);
994     }
995 
996     // Push a destructor if necessary.
997     // FIXME: if we have an array of structures, all explicitly
998     // initialized, we can end up pushing a linear number of cleanups.
999     bool pushedCleanup = false;
1000     if (QualType::DestructionKind dtorKind
1001           = field->getType().isDestructedType()) {
1002       assert(LV.isSimple());
1003       if (CGF.needsEHCleanup(dtorKind)) {
1004         if (!cleanupDominator)
1005           cleanupDominator = CGF.Builder.CreateUnreachable(); // placeholder
1006 
1007         CGF.pushDestroy(EHCleanup, LV.getAddress(), field->getType(),
1008                         CGF.getDestroyer(dtorKind), false);
1009         cleanups.push_back(CGF.EHStack.stable_begin());
1010         pushedCleanup = true;
1011       }
1012     }
1013 
1014     // If the GEP didn't get used because of a dead zero init or something
1015     // else, clean it up for -O0 builds and general tidiness.
1016     if (!pushedCleanup && LV.isSimple())
1017       if (llvm::GetElementPtrInst *GEP =
1018             dyn_cast<llvm::GetElementPtrInst>(LV.getAddress()))
1019         if (GEP->use_empty())
1020           GEP->eraseFromParent();
1021   }
1022 
1023   // Deactivate all the partial cleanups in reverse order, which
1024   // generally means popping them.
1025   for (unsigned i = cleanups.size(); i != 0; --i)
1026     CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator);
1027 
1028   // Destroy the placeholder if we made one.
1029   if (cleanupDominator)
1030     cleanupDominator->eraseFromParent();
1031 }
1032 
1033 //===----------------------------------------------------------------------===//
1034 //                        Entry Points into this File
1035 //===----------------------------------------------------------------------===//
1036 
1037 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of
1038 /// non-zero bytes that will be stored when outputting the initializer for the
1039 /// specified initializer expression.
1040 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) {
1041   E = E->IgnoreParens();
1042 
1043   // 0 and 0.0 won't require any non-zero stores!
1044   if (isSimpleZero(E, CGF)) return CharUnits::Zero();
1045 
1046   // If this is an initlist expr, sum up the size of sizes of the (present)
1047   // elements.  If this is something weird, assume the whole thing is non-zero.
1048   const InitListExpr *ILE = dyn_cast<InitListExpr>(E);
1049   if (ILE == 0 || !CGF.getTypes().isZeroInitializable(ILE->getType()))
1050     return CGF.getContext().getTypeSizeInChars(E->getType());
1051 
1052   // InitListExprs for structs have to be handled carefully.  If there are
1053   // reference members, we need to consider the size of the reference, not the
1054   // referencee.  InitListExprs for unions and arrays can't have references.
1055   if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
1056     if (!RT->isUnionType()) {
1057       RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl();
1058       CharUnits NumNonZeroBytes = CharUnits::Zero();
1059 
1060       unsigned ILEElement = 0;
1061       for (RecordDecl::field_iterator Field = SD->field_begin(),
1062            FieldEnd = SD->field_end(); Field != FieldEnd; ++Field) {
1063         // We're done once we hit the flexible array member or run out of
1064         // InitListExpr elements.
1065         if (Field->getType()->isIncompleteArrayType() ||
1066             ILEElement == ILE->getNumInits())
1067           break;
1068         if (Field->isUnnamedBitfield())
1069           continue;
1070 
1071         const Expr *E = ILE->getInit(ILEElement++);
1072 
1073         // Reference values are always non-null and have the width of a pointer.
1074         if (Field->getType()->isReferenceType())
1075           NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits(
1076               CGF.getContext().getTargetInfo().getPointerWidth(0));
1077         else
1078           NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF);
1079       }
1080 
1081       return NumNonZeroBytes;
1082     }
1083   }
1084 
1085 
1086   CharUnits NumNonZeroBytes = CharUnits::Zero();
1087   for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1088     NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF);
1089   return NumNonZeroBytes;
1090 }
1091 
1092 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of
1093 /// zeros in it, emit a memset and avoid storing the individual zeros.
1094 ///
1095 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E,
1096                                      CodeGenFunction &CGF) {
1097   // If the slot is already known to be zeroed, nothing to do.  Don't mess with
1098   // volatile stores.
1099   if (Slot.isZeroed() || Slot.isVolatile() || Slot.getAddr() == 0) return;
1100 
1101   // C++ objects with a user-declared constructor don't need zero'ing.
1102   if (CGF.getContext().getLangOptions().CPlusPlus)
1103     if (const RecordType *RT = CGF.getContext()
1104                        .getBaseElementType(E->getType())->getAs<RecordType>()) {
1105       const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1106       if (RD->hasUserDeclaredConstructor())
1107         return;
1108     }
1109 
1110   // If the type is 16-bytes or smaller, prefer individual stores over memset.
1111   std::pair<CharUnits, CharUnits> TypeInfo =
1112     CGF.getContext().getTypeInfoInChars(E->getType());
1113   if (TypeInfo.first <= CharUnits::fromQuantity(16))
1114     return;
1115 
1116   // Check to see if over 3/4 of the initializer are known to be zero.  If so,
1117   // we prefer to emit memset + individual stores for the rest.
1118   CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF);
1119   if (NumNonZeroBytes*4 > TypeInfo.first)
1120     return;
1121 
1122   // Okay, it seems like a good idea to use an initial memset, emit the call.
1123   llvm::Constant *SizeVal = CGF.Builder.getInt64(TypeInfo.first.getQuantity());
1124   CharUnits Align = TypeInfo.second;
1125 
1126   llvm::Value *Loc = Slot.getAddr();
1127 
1128   Loc = CGF.Builder.CreateBitCast(Loc, CGF.Int8PtrTy);
1129   CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal,
1130                            Align.getQuantity(), false);
1131 
1132   // Tell the AggExprEmitter that the slot is known zero.
1133   Slot.setZeroed();
1134 }
1135 
1136 
1137 
1138 
1139 /// EmitAggExpr - Emit the computation of the specified expression of aggregate
1140 /// type.  The result is computed into DestPtr.  Note that if DestPtr is null,
1141 /// the value of the aggregate expression is not needed.  If VolatileDest is
1142 /// true, DestPtr cannot be 0.
1143 ///
1144 /// \param IsInitializer - true if this evaluation is initializing an
1145 /// object whose lifetime is already being managed.
1146 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot,
1147                                   bool IgnoreResult) {
1148   assert(E && hasAggregateLLVMType(E->getType()) &&
1149          "Invalid aggregate expression to emit");
1150   assert((Slot.getAddr() != 0 || Slot.isIgnored()) &&
1151          "slot has bits but no address");
1152 
1153   // Optimize the slot if possible.
1154   CheckAggExprForMemSetUse(Slot, E, *this);
1155 
1156   AggExprEmitter(*this, Slot, IgnoreResult).Visit(const_cast<Expr*>(E));
1157 }
1158 
1159 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) {
1160   assert(hasAggregateLLVMType(E->getType()) && "Invalid argument!");
1161   llvm::Value *Temp = CreateMemTemp(E->getType());
1162   LValue LV = MakeAddrLValue(Temp, E->getType());
1163   EmitAggExpr(E, AggValueSlot::forLValue(LV, AggValueSlot::IsNotDestructed,
1164                                          AggValueSlot::DoesNotNeedGCBarriers,
1165                                          AggValueSlot::IsNotAliased));
1166   return LV;
1167 }
1168 
1169 void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr,
1170                                         llvm::Value *SrcPtr, QualType Ty,
1171                                         bool isVolatile, unsigned Alignment) {
1172   assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
1173 
1174   if (getContext().getLangOptions().CPlusPlus) {
1175     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1176       CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
1177       assert((Record->hasTrivialCopyConstructor() ||
1178               Record->hasTrivialCopyAssignment() ||
1179               Record->hasTrivialMoveConstructor() ||
1180               Record->hasTrivialMoveAssignment()) &&
1181              "Trying to aggregate-copy a type without a trivial copy "
1182              "constructor or assignment operator");
1183       // Ignore empty classes in C++.
1184       if (Record->isEmpty())
1185         return;
1186     }
1187   }
1188 
1189   // Aggregate assignment turns into llvm.memcpy.  This is almost valid per
1190   // C99 6.5.16.1p3, which states "If the value being stored in an object is
1191   // read from another object that overlaps in anyway the storage of the first
1192   // object, then the overlap shall be exact and the two objects shall have
1193   // qualified or unqualified versions of a compatible type."
1194   //
1195   // memcpy is not defined if the source and destination pointers are exactly
1196   // equal, but other compilers do this optimization, and almost every memcpy
1197   // implementation handles this case safely.  If there is a libc that does not
1198   // safely handle this, we can add a target hook.
1199 
1200   // Get size and alignment info for this aggregate.
1201   std::pair<CharUnits, CharUnits> TypeInfo =
1202     getContext().getTypeInfoInChars(Ty);
1203 
1204   if (!Alignment)
1205     Alignment = TypeInfo.second.getQuantity();
1206 
1207   // FIXME: Handle variable sized types.
1208 
1209   // FIXME: If we have a volatile struct, the optimizer can remove what might
1210   // appear to be `extra' memory ops:
1211   //
1212   // volatile struct { int i; } a, b;
1213   //
1214   // int main() {
1215   //   a = b;
1216   //   a = b;
1217   // }
1218   //
1219   // we need to use a different call here.  We use isVolatile to indicate when
1220   // either the source or the destination is volatile.
1221 
1222   llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType());
1223   llvm::Type *DBP =
1224     llvm::Type::getInt8PtrTy(getLLVMContext(), DPT->getAddressSpace());
1225   DestPtr = Builder.CreateBitCast(DestPtr, DBP);
1226 
1227   llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType());
1228   llvm::Type *SBP =
1229     llvm::Type::getInt8PtrTy(getLLVMContext(), SPT->getAddressSpace());
1230   SrcPtr = Builder.CreateBitCast(SrcPtr, SBP);
1231 
1232   // Don't do any of the memmove_collectable tests if GC isn't set.
1233   if (CGM.getLangOptions().getGC() == LangOptions::NonGC) {
1234     // fall through
1235   } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
1236     RecordDecl *Record = RecordTy->getDecl();
1237     if (Record->hasObjectMember()) {
1238       CharUnits size = TypeInfo.first;
1239       llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
1240       llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity());
1241       CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
1242                                                     SizeVal);
1243       return;
1244     }
1245   } else if (Ty->isArrayType()) {
1246     QualType BaseType = getContext().getBaseElementType(Ty);
1247     if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
1248       if (RecordTy->getDecl()->hasObjectMember()) {
1249         CharUnits size = TypeInfo.first;
1250         llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
1251         llvm::Value *SizeVal =
1252           llvm::ConstantInt::get(SizeTy, size.getQuantity());
1253         CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
1254                                                       SizeVal);
1255         return;
1256       }
1257     }
1258   }
1259 
1260   Builder.CreateMemCpy(DestPtr, SrcPtr,
1261                        llvm::ConstantInt::get(IntPtrTy,
1262                                               TypeInfo.first.getQuantity()),
1263                        Alignment, isVolatile);
1264 }
1265 
1266 void CodeGenFunction::MaybeEmitStdInitializerListCleanup(LValue lvalue,
1267                                                     const Expr *init) {
1268   const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(init);
1269   if (!cleanups)
1270     return; // Nothing interesting here.
1271   init = cleanups->getSubExpr();
1272 
1273   if (isa<InitListExpr>(init) &&
1274       cast<InitListExpr>(init)->initializesStdInitializerList()) {
1275     // We initialized this std::initializer_list with an initializer list.
1276     // A backing array was created. Push a cleanup for it.
1277     EmitStdInitializerListCleanup(lvalue.getAddress(),
1278                                   cast<InitListExpr>(init));
1279   }
1280 }
1281 
1282 static void EmitRecursiveStdInitializerListCleanup(CodeGenFunction &CGF,
1283                                                    llvm::Value *arrayStart,
1284                                                    const InitListExpr *init) {
1285   // Check if there are any recursive cleanups to do, i.e. if we have
1286   //   std::initializer_list<std::initializer_list<obj>> list = {{obj()}};
1287   // then we need to destroy the inner array as well.
1288   for (unsigned i = 0, e = init->getNumInits(); i != e; ++i) {
1289     const InitListExpr *subInit = dyn_cast<InitListExpr>(init->getInit(i));
1290     if (!subInit || !subInit->initializesStdInitializerList())
1291       continue;
1292 
1293     // This one needs to be destroyed. Get the address of the std::init_list.
1294     llvm::Value *offset = llvm::ConstantInt::get(CGF.SizeTy, i);
1295     llvm::Value *loc = CGF.Builder.CreateInBoundsGEP(arrayStart, offset,
1296                                                  "std.initlist");
1297     CGF.EmitStdInitializerListCleanup(loc, subInit);
1298   }
1299 }
1300 
1301 void CodeGenFunction::EmitStdInitializerListCleanup(llvm::Value *loc,
1302                                                     const InitListExpr *init) {
1303   ASTContext &ctx = getContext();
1304   QualType element = GetStdInitializerListElementType(init->getType());
1305   unsigned numInits = init->getNumInits();
1306   llvm::APInt size(ctx.getTypeSize(ctx.getSizeType()), numInits);
1307   QualType array =ctx.getConstantArrayType(element, size, ArrayType::Normal, 0);
1308   QualType arrayPtr = ctx.getPointerType(array);
1309   llvm::Type *arrayPtrType = ConvertType(arrayPtr);
1310 
1311   // lvalue is the location of a std::initializer_list, which as its first
1312   // element has a pointer to the array we want to destroy.
1313   llvm::Value *startPointer = Builder.CreateStructGEP(loc, 0, "startPointer");
1314   llvm::Value *startAddress = Builder.CreateLoad(startPointer, "startAddress");
1315 
1316   ::EmitRecursiveStdInitializerListCleanup(*this, startAddress, init);
1317 
1318   llvm::Value *arrayAddress =
1319       Builder.CreateBitCast(startAddress, arrayPtrType, "arrayAddress");
1320   ::EmitStdInitializerListCleanup(*this, array, arrayAddress, init);
1321 }
1322