1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Aggregate Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "CGObjCRuntime.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/StmtVisitor.h"
20 #include "llvm/Constants.h"
21 #include "llvm/Function.h"
22 #include "llvm/GlobalVariable.h"
23 #include "llvm/Intrinsics.h"
24 using namespace clang;
25 using namespace CodeGen;
26 
27 //===----------------------------------------------------------------------===//
28 //                        Aggregate Expression Emitter
29 //===----------------------------------------------------------------------===//
30 
31 namespace  {
32 class AggExprEmitter : public StmtVisitor<AggExprEmitter> {
33   CodeGenFunction &CGF;
34   CGBuilderTy &Builder;
35   AggValueSlot Dest;
36   bool IgnoreResult;
37 
38   ReturnValueSlot getReturnValueSlot() const {
39     // If the destination slot requires garbage collection, we can't
40     // use the real return value slot, because we have to use the GC
41     // API.
42     if (Dest.requiresGCollection()) return ReturnValueSlot();
43 
44     return ReturnValueSlot(Dest.getAddr(), Dest.isVolatile());
45   }
46 
47   AggValueSlot EnsureSlot(QualType T) {
48     if (!Dest.isIgnored()) return Dest;
49     return CGF.CreateAggTemp(T, "agg.tmp.ensured");
50   }
51 
52 public:
53   AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest,
54                  bool ignore)
55     : CGF(cgf), Builder(CGF.Builder), Dest(Dest),
56       IgnoreResult(ignore) {
57   }
58 
59   //===--------------------------------------------------------------------===//
60   //                               Utilities
61   //===--------------------------------------------------------------------===//
62 
63   /// EmitAggLoadOfLValue - Given an expression with aggregate type that
64   /// represents a value lvalue, this method emits the address of the lvalue,
65   /// then loads the result into DestPtr.
66   void EmitAggLoadOfLValue(const Expr *E);
67 
68   /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
69   void EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore = false);
70   void EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore = false);
71 
72   void EmitGCMove(const Expr *E, RValue Src);
73 
74   AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) {
75     if (CGF.getLangOptions().getGCMode() && TypeRequiresGCollection(T))
76       return AggValueSlot::NeedsGCBarriers;
77     return AggValueSlot::DoesNotNeedGCBarriers;
78   }
79 
80   bool TypeRequiresGCollection(QualType T);
81 
82   //===--------------------------------------------------------------------===//
83   //                            Visitor Methods
84   //===--------------------------------------------------------------------===//
85 
86   void VisitStmt(Stmt *S) {
87     CGF.ErrorUnsupported(S, "aggregate expression");
88   }
89   void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
90   void VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
91     Visit(GE->getResultExpr());
92   }
93   void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
94   void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
95     return Visit(E->getReplacement());
96   }
97 
98   // l-values.
99   void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); }
100   void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
101   void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
102   void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
103   void VisitCompoundLiteralExpr(CompoundLiteralExpr *E);
104   void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
105     EmitAggLoadOfLValue(E);
106   }
107   void VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
108     EmitAggLoadOfLValue(E);
109   }
110   void VisitPredefinedExpr(const PredefinedExpr *E) {
111     EmitAggLoadOfLValue(E);
112   }
113 
114   // Operators.
115   void VisitCastExpr(CastExpr *E);
116   void VisitCallExpr(const CallExpr *E);
117   void VisitStmtExpr(const StmtExpr *E);
118   void VisitBinaryOperator(const BinaryOperator *BO);
119   void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO);
120   void VisitBinAssign(const BinaryOperator *E);
121   void VisitBinComma(const BinaryOperator *E);
122 
123   void VisitObjCMessageExpr(ObjCMessageExpr *E);
124   void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
125     EmitAggLoadOfLValue(E);
126   }
127   void VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E);
128 
129   void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
130   void VisitChooseExpr(const ChooseExpr *CE);
131   void VisitInitListExpr(InitListExpr *E);
132   void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E);
133   void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
134     Visit(DAE->getExpr());
135   }
136   void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E);
137   void VisitCXXConstructExpr(const CXXConstructExpr *E);
138   void VisitExprWithCleanups(ExprWithCleanups *E);
139   void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E);
140   void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); }
141   void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E);
142   void VisitOpaqueValueExpr(OpaqueValueExpr *E);
143 
144   void VisitVAArgExpr(VAArgExpr *E);
145 
146   void EmitInitializationToLValue(Expr *E, LValue Address);
147   void EmitNullInitializationToLValue(LValue Address);
148   //  case Expr::ChooseExprClass:
149   void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); }
150 };
151 }  // end anonymous namespace.
152 
153 //===----------------------------------------------------------------------===//
154 //                                Utilities
155 //===----------------------------------------------------------------------===//
156 
157 /// EmitAggLoadOfLValue - Given an expression with aggregate type that
158 /// represents a value lvalue, this method emits the address of the lvalue,
159 /// then loads the result into DestPtr.
160 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
161   LValue LV = CGF.EmitLValue(E);
162   EmitFinalDestCopy(E, LV);
163 }
164 
165 /// \brief True if the given aggregate type requires special GC API calls.
166 bool AggExprEmitter::TypeRequiresGCollection(QualType T) {
167   // Only record types have members that might require garbage collection.
168   const RecordType *RecordTy = T->getAs<RecordType>();
169   if (!RecordTy) return false;
170 
171   // Don't mess with non-trivial C++ types.
172   RecordDecl *Record = RecordTy->getDecl();
173   if (isa<CXXRecordDecl>(Record) &&
174       (!cast<CXXRecordDecl>(Record)->hasTrivialCopyConstructor() ||
175        !cast<CXXRecordDecl>(Record)->hasTrivialDestructor()))
176     return false;
177 
178   // Check whether the type has an object member.
179   return Record->hasObjectMember();
180 }
181 
182 /// \brief Perform the final move to DestPtr if RequiresGCollection is set.
183 ///
184 /// The idea is that you do something like this:
185 ///   RValue Result = EmitSomething(..., getReturnValueSlot());
186 ///   EmitGCMove(E, Result);
187 /// If GC doesn't interfere, this will cause the result to be emitted
188 /// directly into the return value slot.  If GC does interfere, a final
189 /// move will be performed.
190 void AggExprEmitter::EmitGCMove(const Expr *E, RValue Src) {
191   if (Dest.requiresGCollection()) {
192     CharUnits size = CGF.getContext().getTypeSizeInChars(E->getType());
193     llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType());
194     llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity());
195     CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, Dest.getAddr(),
196                                                     Src.getAggregateAddr(),
197                                                     SizeVal);
198   }
199 }
200 
201 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
202 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore) {
203   assert(Src.isAggregate() && "value must be aggregate value!");
204 
205   // If Dest is ignored, then we're evaluating an aggregate expression
206   // in a context (like an expression statement) that doesn't care
207   // about the result.  C says that an lvalue-to-rvalue conversion is
208   // performed in these cases; C++ says that it is not.  In either
209   // case, we don't actually need to do anything unless the value is
210   // volatile.
211   if (Dest.isIgnored()) {
212     if (!Src.isVolatileQualified() ||
213         CGF.CGM.getLangOptions().CPlusPlus ||
214         (IgnoreResult && Ignore))
215       return;
216 
217     // If the source is volatile, we must read from it; to do that, we need
218     // some place to put it.
219     Dest = CGF.CreateAggTemp(E->getType(), "agg.tmp");
220   }
221 
222   if (Dest.requiresGCollection()) {
223     CharUnits size = CGF.getContext().getTypeSizeInChars(E->getType());
224     llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType());
225     llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity());
226     CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF,
227                                                       Dest.getAddr(),
228                                                       Src.getAggregateAddr(),
229                                                       SizeVal);
230     return;
231   }
232   // If the result of the assignment is used, copy the LHS there also.
233   // FIXME: Pass VolatileDest as well.  I think we also need to merge volatile
234   // from the source as well, as we can't eliminate it if either operand
235   // is volatile, unless copy has volatile for both source and destination..
236   CGF.EmitAggregateCopy(Dest.getAddr(), Src.getAggregateAddr(), E->getType(),
237                         Dest.isVolatile()|Src.isVolatileQualified());
238 }
239 
240 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
241 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore) {
242   assert(Src.isSimple() && "Can't have aggregate bitfield, vector, etc");
243 
244   EmitFinalDestCopy(E, RValue::getAggregate(Src.getAddress(),
245                                             Src.isVolatileQualified()),
246                     Ignore);
247 }
248 
249 //===----------------------------------------------------------------------===//
250 //                            Visitor Methods
251 //===----------------------------------------------------------------------===//
252 
253 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){
254   Visit(E->GetTemporaryExpr());
255 }
256 
257 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) {
258   EmitFinalDestCopy(e, CGF.getOpaqueLValueMapping(e));
259 }
260 
261 void
262 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
263   if (E->getType().isPODType(CGF.getContext())) {
264     // For a POD type, just emit a load of the lvalue + a copy, because our
265     // compound literal might alias the destination.
266     // FIXME: This is a band-aid; the real problem appears to be in our handling
267     // of assignments, where we store directly into the LHS without checking
268     // whether anything in the RHS aliases.
269     EmitAggLoadOfLValue(E);
270     return;
271   }
272 
273   AggValueSlot Slot = EnsureSlot(E->getType());
274   CGF.EmitAggExpr(E->getInitializer(), Slot);
275 }
276 
277 
278 void AggExprEmitter::VisitCastExpr(CastExpr *E) {
279   switch (E->getCastKind()) {
280   case CK_Dynamic: {
281     assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?");
282     LValue LV = CGF.EmitCheckedLValue(E->getSubExpr());
283     // FIXME: Do we also need to handle property references here?
284     if (LV.isSimple())
285       CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E));
286     else
287       CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast");
288 
289     if (!Dest.isIgnored())
290       CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination");
291     break;
292   }
293 
294   case CK_ToUnion: {
295     if (Dest.isIgnored()) break;
296 
297     // GCC union extension
298     QualType Ty = E->getSubExpr()->getType();
299     QualType PtrTy = CGF.getContext().getPointerType(Ty);
300     llvm::Value *CastPtr = Builder.CreateBitCast(Dest.getAddr(),
301                                                  CGF.ConvertType(PtrTy));
302     EmitInitializationToLValue(E->getSubExpr(),
303                                CGF.MakeAddrLValue(CastPtr, Ty));
304     break;
305   }
306 
307   case CK_DerivedToBase:
308   case CK_BaseToDerived:
309   case CK_UncheckedDerivedToBase: {
310     assert(0 && "cannot perform hierarchy conversion in EmitAggExpr: "
311                 "should have been unpacked before we got here");
312     break;
313   }
314 
315   case CK_GetObjCProperty: {
316     LValue LV = CGF.EmitLValue(E->getSubExpr());
317     assert(LV.isPropertyRef());
318     RValue RV = CGF.EmitLoadOfPropertyRefLValue(LV, getReturnValueSlot());
319     EmitGCMove(E, RV);
320     break;
321   }
322 
323   case CK_LValueToRValue: // hope for downstream optimization
324   case CK_NoOp:
325   case CK_UserDefinedConversion:
326   case CK_ConstructorConversion:
327     assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(),
328                                                    E->getType()) &&
329            "Implicit cast types must be compatible");
330     Visit(E->getSubExpr());
331     break;
332 
333   case CK_LValueBitCast:
334     llvm_unreachable("should not be emitting lvalue bitcast as rvalue");
335     break;
336 
337   case CK_Dependent:
338   case CK_BitCast:
339   case CK_ArrayToPointerDecay:
340   case CK_FunctionToPointerDecay:
341   case CK_NullToPointer:
342   case CK_NullToMemberPointer:
343   case CK_BaseToDerivedMemberPointer:
344   case CK_DerivedToBaseMemberPointer:
345   case CK_MemberPointerToBoolean:
346   case CK_IntegralToPointer:
347   case CK_PointerToIntegral:
348   case CK_PointerToBoolean:
349   case CK_ToVoid:
350   case CK_VectorSplat:
351   case CK_IntegralCast:
352   case CK_IntegralToBoolean:
353   case CK_IntegralToFloating:
354   case CK_FloatingToIntegral:
355   case CK_FloatingToBoolean:
356   case CK_FloatingCast:
357   case CK_AnyPointerToObjCPointerCast:
358   case CK_AnyPointerToBlockPointerCast:
359   case CK_ObjCObjectLValueCast:
360   case CK_FloatingRealToComplex:
361   case CK_FloatingComplexToReal:
362   case CK_FloatingComplexToBoolean:
363   case CK_FloatingComplexCast:
364   case CK_FloatingComplexToIntegralComplex:
365   case CK_IntegralRealToComplex:
366   case CK_IntegralComplexToReal:
367   case CK_IntegralComplexToBoolean:
368   case CK_IntegralComplexCast:
369   case CK_IntegralComplexToFloatingComplex:
370   case CK_ObjCProduceObject:
371   case CK_ObjCConsumeObject:
372   case CK_ObjCReclaimReturnedObject:
373     llvm_unreachable("cast kind invalid for aggregate types");
374   }
375 }
376 
377 void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
378   if (E->getCallReturnType()->isReferenceType()) {
379     EmitAggLoadOfLValue(E);
380     return;
381   }
382 
383   RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot());
384   EmitGCMove(E, RV);
385 }
386 
387 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
388   RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot());
389   EmitGCMove(E, RV);
390 }
391 
392 void AggExprEmitter::VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
393   llvm_unreachable("direct property access not surrounded by "
394                    "lvalue-to-rvalue cast");
395 }
396 
397 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
398   CGF.EmitIgnoredExpr(E->getLHS());
399   Visit(E->getRHS());
400 }
401 
402 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
403   CodeGenFunction::StmtExprEvaluation eval(CGF);
404   CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest);
405 }
406 
407 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
408   if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI)
409     VisitPointerToDataMemberBinaryOperator(E);
410   else
411     CGF.ErrorUnsupported(E, "aggregate binary expression");
412 }
413 
414 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator(
415                                                     const BinaryOperator *E) {
416   LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E);
417   EmitFinalDestCopy(E, LV);
418 }
419 
420 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
421   // For an assignment to work, the value on the right has
422   // to be compatible with the value on the left.
423   assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
424                                                  E->getRHS()->getType())
425          && "Invalid assignment");
426 
427   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->getLHS()))
428     if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
429       if (VD->hasAttr<BlocksAttr>() &&
430           E->getRHS()->HasSideEffects(CGF.getContext())) {
431         // When __block variable on LHS, the RHS must be evaluated first
432         // as it may change the 'forwarding' field via call to Block_copy.
433         LValue RHS = CGF.EmitLValue(E->getRHS());
434         LValue LHS = CGF.EmitLValue(E->getLHS());
435         Dest = AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed,
436                                        needsGC(E->getLHS()->getType()));
437         EmitFinalDestCopy(E, RHS, true);
438         return;
439       }
440 
441   LValue LHS = CGF.EmitLValue(E->getLHS());
442 
443   // We have to special case property setters, otherwise we must have
444   // a simple lvalue (no aggregates inside vectors, bitfields).
445   if (LHS.isPropertyRef()) {
446     const ObjCPropertyRefExpr *RE = LHS.getPropertyRefExpr();
447     QualType ArgType = RE->getSetterArgType();
448     RValue Src;
449     if (ArgType->isReferenceType())
450       Src = CGF.EmitReferenceBindingToExpr(E->getRHS(), 0);
451     else {
452       AggValueSlot Slot = EnsureSlot(E->getRHS()->getType());
453       CGF.EmitAggExpr(E->getRHS(), Slot);
454       Src = Slot.asRValue();
455     }
456     CGF.EmitStoreThroughPropertyRefLValue(Src, LHS);
457   } else {
458     // Codegen the RHS so that it stores directly into the LHS.
459     AggValueSlot LHSSlot =
460       AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed,
461                               needsGC(E->getLHS()->getType()));
462     CGF.EmitAggExpr(E->getRHS(), LHSSlot, false);
463     EmitFinalDestCopy(E, LHS, true);
464   }
465 }
466 
467 void AggExprEmitter::
468 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
469   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
470   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
471   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
472 
473   // Bind the common expression if necessary.
474   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
475 
476   CodeGenFunction::ConditionalEvaluation eval(CGF);
477   CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock);
478 
479   // Save whether the destination's lifetime is externally managed.
480   bool DestLifetimeManaged = Dest.isLifetimeExternallyManaged();
481 
482   eval.begin(CGF);
483   CGF.EmitBlock(LHSBlock);
484   Visit(E->getTrueExpr());
485   eval.end(CGF);
486 
487   assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!");
488   CGF.Builder.CreateBr(ContBlock);
489 
490   // If the result of an agg expression is unused, then the emission
491   // of the LHS might need to create a destination slot.  That's fine
492   // with us, and we can safely emit the RHS into the same slot, but
493   // we shouldn't claim that its lifetime is externally managed.
494   Dest.setLifetimeExternallyManaged(DestLifetimeManaged);
495 
496   eval.begin(CGF);
497   CGF.EmitBlock(RHSBlock);
498   Visit(E->getFalseExpr());
499   eval.end(CGF);
500 
501   CGF.EmitBlock(ContBlock);
502 }
503 
504 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) {
505   Visit(CE->getChosenSubExpr(CGF.getContext()));
506 }
507 
508 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
509   llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
510   llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
511 
512   if (!ArgPtr) {
513     CGF.ErrorUnsupported(VE, "aggregate va_arg expression");
514     return;
515   }
516 
517   EmitFinalDestCopy(VE, CGF.MakeAddrLValue(ArgPtr, VE->getType()));
518 }
519 
520 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
521   // Ensure that we have a slot, but if we already do, remember
522   // whether its lifetime was externally managed.
523   bool WasManaged = Dest.isLifetimeExternallyManaged();
524   Dest = EnsureSlot(E->getType());
525   Dest.setLifetimeExternallyManaged();
526 
527   Visit(E->getSubExpr());
528 
529   // Set up the temporary's destructor if its lifetime wasn't already
530   // being managed.
531   if (!WasManaged)
532     CGF.EmitCXXTemporary(E->getTemporary(), Dest.getAddr());
533 }
534 
535 void
536 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) {
537   AggValueSlot Slot = EnsureSlot(E->getType());
538   CGF.EmitCXXConstructExpr(E, Slot);
539 }
540 
541 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
542   CGF.EmitExprWithCleanups(E, Dest);
543 }
544 
545 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
546   QualType T = E->getType();
547   AggValueSlot Slot = EnsureSlot(T);
548   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T));
549 }
550 
551 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
552   QualType T = E->getType();
553   AggValueSlot Slot = EnsureSlot(T);
554   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T));
555 }
556 
557 /// isSimpleZero - If emitting this value will obviously just cause a store of
558 /// zero to memory, return true.  This can return false if uncertain, so it just
559 /// handles simple cases.
560 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) {
561   E = E->IgnoreParens();
562 
563   // 0
564   if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E))
565     return IL->getValue() == 0;
566   // +0.0
567   if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E))
568     return FL->getValue().isPosZero();
569   // int()
570   if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) &&
571       CGF.getTypes().isZeroInitializable(E->getType()))
572     return true;
573   // (int*)0 - Null pointer expressions.
574   if (const CastExpr *ICE = dyn_cast<CastExpr>(E))
575     return ICE->getCastKind() == CK_NullToPointer;
576   // '\0'
577   if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E))
578     return CL->getValue() == 0;
579 
580   // Otherwise, hard case: conservatively return false.
581   return false;
582 }
583 
584 
585 void
586 AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV) {
587   QualType type = LV.getType();
588   // FIXME: Ignore result?
589   // FIXME: Are initializers affected by volatile?
590   if (Dest.isZeroed() && isSimpleZero(E, CGF)) {
591     // Storing "i32 0" to a zero'd memory location is a noop.
592   } else if (isa<ImplicitValueInitExpr>(E)) {
593     EmitNullInitializationToLValue(LV);
594   } else if (type->isReferenceType()) {
595     RValue RV = CGF.EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0);
596     CGF.EmitStoreThroughLValue(RV, LV);
597   } else if (type->isAnyComplexType()) {
598     CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false);
599   } else if (CGF.hasAggregateLLVMType(type)) {
600     CGF.EmitAggExpr(E, AggValueSlot::forLValue(LV,
601                                                AggValueSlot::IsDestructed,
602                                       AggValueSlot::DoesNotNeedGCBarriers,
603                                                Dest.isZeroed()));
604   } else if (LV.isSimple()) {
605     CGF.EmitScalarInit(E, /*D=*/0, LV, /*Captured=*/false);
606   } else {
607     CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV);
608   }
609 }
610 
611 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) {
612   QualType type = lv.getType();
613 
614   // If the destination slot is already zeroed out before the aggregate is
615   // copied into it, we don't have to emit any zeros here.
616   if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type))
617     return;
618 
619   if (!CGF.hasAggregateLLVMType(type)) {
620     // For non-aggregates, we can store zero
621     llvm::Value *null = llvm::Constant::getNullValue(CGF.ConvertType(type));
622     CGF.EmitStoreThroughLValue(RValue::get(null), lv);
623   } else {
624     // There's a potential optimization opportunity in combining
625     // memsets; that would be easy for arrays, but relatively
626     // difficult for structures with the current code.
627     CGF.EmitNullInitialization(lv.getAddress(), lv.getType());
628   }
629 }
630 
631 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
632 #if 0
633   // FIXME: Assess perf here?  Figure out what cases are worth optimizing here
634   // (Length of globals? Chunks of zeroed-out space?).
635   //
636   // If we can, prefer a copy from a global; this is a lot less code for long
637   // globals, and it's easier for the current optimizers to analyze.
638   if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) {
639     llvm::GlobalVariable* GV =
640     new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true,
641                              llvm::GlobalValue::InternalLinkage, C, "");
642     EmitFinalDestCopy(E, CGF.MakeAddrLValue(GV, E->getType()));
643     return;
644   }
645 #endif
646   if (E->hadArrayRangeDesignator())
647     CGF.ErrorUnsupported(E, "GNU array range designator extension");
648 
649   llvm::Value *DestPtr = Dest.getAddr();
650 
651   // Handle initialization of an array.
652   if (E->getType()->isArrayType()) {
653     llvm::PointerType *APType =
654       cast<llvm::PointerType>(DestPtr->getType());
655     llvm::ArrayType *AType =
656       cast<llvm::ArrayType>(APType->getElementType());
657 
658     uint64_t NumInitElements = E->getNumInits();
659 
660     if (E->getNumInits() > 0) {
661       QualType T1 = E->getType();
662       QualType T2 = E->getInit(0)->getType();
663       if (CGF.getContext().hasSameUnqualifiedType(T1, T2)) {
664         EmitAggLoadOfLValue(E->getInit(0));
665         return;
666       }
667     }
668 
669     uint64_t NumArrayElements = AType->getNumElements();
670     assert(NumInitElements <= NumArrayElements);
671 
672     QualType elementType = E->getType().getCanonicalType();
673     elementType = CGF.getContext().getQualifiedType(
674                     cast<ArrayType>(elementType)->getElementType(),
675                     elementType.getQualifiers() + Dest.getQualifiers());
676 
677     // DestPtr is an array*.  Construct an elementType* by drilling
678     // down a level.
679     llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
680     llvm::Value *indices[] = { zero, zero };
681     llvm::Value *begin =
682       Builder.CreateInBoundsGEP(DestPtr, indices, "arrayinit.begin");
683 
684     // Exception safety requires us to destroy all the
685     // already-constructed members if an initializer throws.
686     // For that, we'll need an EH cleanup.
687     QualType::DestructionKind dtorKind = elementType.isDestructedType();
688     llvm::AllocaInst *endOfInit = 0;
689     EHScopeStack::stable_iterator cleanup;
690     if (CGF.needsEHCleanup(dtorKind)) {
691       // In principle we could tell the cleanup where we are more
692       // directly, but the control flow can get so varied here that it
693       // would actually be quite complex.  Therefore we go through an
694       // alloca.
695       endOfInit = CGF.CreateTempAlloca(begin->getType(),
696                                        "arrayinit.endOfInit");
697       Builder.CreateStore(begin, endOfInit);
698       CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType,
699                                            CGF.getDestroyer(dtorKind));
700       cleanup = CGF.EHStack.stable_begin();
701 
702     // Otherwise, remember that we didn't need a cleanup.
703     } else {
704       dtorKind = QualType::DK_none;
705     }
706 
707     llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1);
708 
709     // The 'current element to initialize'.  The invariants on this
710     // variable are complicated.  Essentially, after each iteration of
711     // the loop, it points to the last initialized element, except
712     // that it points to the beginning of the array before any
713     // elements have been initialized.
714     llvm::Value *element = begin;
715 
716     // Emit the explicit initializers.
717     for (uint64_t i = 0; i != NumInitElements; ++i) {
718       // Advance to the next element.
719       if (i > 0) {
720         element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element");
721 
722         // Tell the cleanup that it needs to destroy up to this
723         // element.  TODO: some of these stores can be trivially
724         // observed to be unnecessary.
725         if (endOfInit) Builder.CreateStore(element, endOfInit);
726       }
727 
728       LValue elementLV = CGF.MakeAddrLValue(element, elementType);
729       EmitInitializationToLValue(E->getInit(i), elementLV);
730     }
731 
732     // Check whether there's a non-trivial array-fill expression.
733     // Note that this will be a CXXConstructExpr even if the element
734     // type is an array (or array of array, etc.) of class type.
735     Expr *filler = E->getArrayFiller();
736     bool hasTrivialFiller = true;
737     if (CXXConstructExpr *cons = dyn_cast_or_null<CXXConstructExpr>(filler)) {
738       assert(cons->getConstructor()->isDefaultConstructor());
739       hasTrivialFiller = cons->getConstructor()->isTrivial();
740     }
741 
742     // Any remaining elements need to be zero-initialized, possibly
743     // using the filler expression.  We can skip this if the we're
744     // emitting to zeroed memory.
745     if (NumInitElements != NumArrayElements &&
746         !(Dest.isZeroed() && hasTrivialFiller &&
747           CGF.getTypes().isZeroInitializable(elementType))) {
748 
749       // Use an actual loop.  This is basically
750       //   do { *array++ = filler; } while (array != end);
751 
752       // Advance to the start of the rest of the array.
753       if (NumInitElements) {
754         element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start");
755         if (endOfInit) Builder.CreateStore(element, endOfInit);
756       }
757 
758       // Compute the end of the array.
759       llvm::Value *end = Builder.CreateInBoundsGEP(begin,
760                         llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements),
761                                                    "arrayinit.end");
762 
763       llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
764       llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
765 
766       // Jump into the body.
767       CGF.EmitBlock(bodyBB);
768       llvm::PHINode *currentElement =
769         Builder.CreatePHI(element->getType(), 2, "arrayinit.cur");
770       currentElement->addIncoming(element, entryBB);
771 
772       // Emit the actual filler expression.
773       LValue elementLV = CGF.MakeAddrLValue(currentElement, elementType);
774       if (filler)
775         EmitInitializationToLValue(filler, elementLV);
776       else
777         EmitNullInitializationToLValue(elementLV);
778 
779       // Move on to the next element.
780       llvm::Value *nextElement =
781         Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next");
782 
783       // Tell the EH cleanup that we finished with the last element.
784       if (endOfInit) Builder.CreateStore(nextElement, endOfInit);
785 
786       // Leave the loop if we're done.
787       llvm::Value *done = Builder.CreateICmpEQ(nextElement, end,
788                                                "arrayinit.done");
789       llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
790       Builder.CreateCondBr(done, endBB, bodyBB);
791       currentElement->addIncoming(nextElement, Builder.GetInsertBlock());
792 
793       CGF.EmitBlock(endBB);
794     }
795 
796     // Leave the partial-array cleanup if we entered one.
797     if (dtorKind) CGF.DeactivateCleanupBlock(cleanup);
798 
799     return;
800   }
801 
802   assert(E->getType()->isRecordType() && "Only support structs/unions here!");
803 
804   // Do struct initialization; this code just sets each individual member
805   // to the approprate value.  This makes bitfield support automatic;
806   // the disadvantage is that the generated code is more difficult for
807   // the optimizer, especially with bitfields.
808   unsigned NumInitElements = E->getNumInits();
809   RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl();
810 
811   if (record->isUnion()) {
812     // Only initialize one field of a union. The field itself is
813     // specified by the initializer list.
814     if (!E->getInitializedFieldInUnion()) {
815       // Empty union; we have nothing to do.
816 
817 #ifndef NDEBUG
818       // Make sure that it's really an empty and not a failure of
819       // semantic analysis.
820       for (RecordDecl::field_iterator Field = record->field_begin(),
821                                    FieldEnd = record->field_end();
822            Field != FieldEnd; ++Field)
823         assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed");
824 #endif
825       return;
826     }
827 
828     // FIXME: volatility
829     FieldDecl *Field = E->getInitializedFieldInUnion();
830 
831     LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestPtr, Field, 0);
832     if (NumInitElements) {
833       // Store the initializer into the field
834       EmitInitializationToLValue(E->getInit(0), FieldLoc);
835     } else {
836       // Default-initialize to null.
837       EmitNullInitializationToLValue(FieldLoc);
838     }
839 
840     return;
841   }
842 
843   // We'll need to enter cleanup scopes in case any of the member
844   // initializers throw an exception.
845   SmallVector<EHScopeStack::stable_iterator, 16> cleanups;
846 
847   // Here we iterate over the fields; this makes it simpler to both
848   // default-initialize fields and skip over unnamed fields.
849   unsigned curInitIndex = 0;
850   for (RecordDecl::field_iterator field = record->field_begin(),
851                                fieldEnd = record->field_end();
852        field != fieldEnd; ++field) {
853     // We're done once we hit the flexible array member.
854     if (field->getType()->isIncompleteArrayType())
855       break;
856 
857     // Always skip anonymous bitfields.
858     if (field->isUnnamedBitfield())
859       continue;
860 
861     // We're done if we reach the end of the explicit initializers, we
862     // have a zeroed object, and the rest of the fields are
863     // zero-initializable.
864     if (curInitIndex == NumInitElements && Dest.isZeroed() &&
865         CGF.getTypes().isZeroInitializable(E->getType()))
866       break;
867 
868     // FIXME: volatility
869     LValue LV = CGF.EmitLValueForFieldInitialization(DestPtr, *field, 0);
870     // We never generate write-barries for initialized fields.
871     LV.setNonGC(true);
872 
873     if (curInitIndex < NumInitElements) {
874       // Store the initializer into the field.
875       EmitInitializationToLValue(E->getInit(curInitIndex++), LV);
876     } else {
877       // We're out of initalizers; default-initialize to null
878       EmitNullInitializationToLValue(LV);
879     }
880 
881     // Push a destructor if necessary.
882     // FIXME: if we have an array of structures, all explicitly
883     // initialized, we can end up pushing a linear number of cleanups.
884     bool pushedCleanup = false;
885     if (QualType::DestructionKind dtorKind
886           = field->getType().isDestructedType()) {
887       assert(LV.isSimple());
888       if (CGF.needsEHCleanup(dtorKind)) {
889         CGF.pushDestroy(EHCleanup, LV.getAddress(), field->getType(),
890                         CGF.getDestroyer(dtorKind), false);
891         cleanups.push_back(CGF.EHStack.stable_begin());
892         pushedCleanup = true;
893       }
894     }
895 
896     // If the GEP didn't get used because of a dead zero init or something
897     // else, clean it up for -O0 builds and general tidiness.
898     if (!pushedCleanup && LV.isSimple())
899       if (llvm::GetElementPtrInst *GEP =
900             dyn_cast<llvm::GetElementPtrInst>(LV.getAddress()))
901         if (GEP->use_empty())
902           GEP->eraseFromParent();
903   }
904 
905   // Deactivate all the partial cleanups in reverse order, which
906   // generally means popping them.
907   for (unsigned i = cleanups.size(); i != 0; --i)
908     CGF.DeactivateCleanupBlock(cleanups[i-1]);
909 }
910 
911 //===----------------------------------------------------------------------===//
912 //                        Entry Points into this File
913 //===----------------------------------------------------------------------===//
914 
915 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of
916 /// non-zero bytes that will be stored when outputting the initializer for the
917 /// specified initializer expression.
918 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) {
919   E = E->IgnoreParens();
920 
921   // 0 and 0.0 won't require any non-zero stores!
922   if (isSimpleZero(E, CGF)) return CharUnits::Zero();
923 
924   // If this is an initlist expr, sum up the size of sizes of the (present)
925   // elements.  If this is something weird, assume the whole thing is non-zero.
926   const InitListExpr *ILE = dyn_cast<InitListExpr>(E);
927   if (ILE == 0 || !CGF.getTypes().isZeroInitializable(ILE->getType()))
928     return CGF.getContext().getTypeSizeInChars(E->getType());
929 
930   // InitListExprs for structs have to be handled carefully.  If there are
931   // reference members, we need to consider the size of the reference, not the
932   // referencee.  InitListExprs for unions and arrays can't have references.
933   if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
934     if (!RT->isUnionType()) {
935       RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl();
936       CharUnits NumNonZeroBytes = CharUnits::Zero();
937 
938       unsigned ILEElement = 0;
939       for (RecordDecl::field_iterator Field = SD->field_begin(),
940            FieldEnd = SD->field_end(); Field != FieldEnd; ++Field) {
941         // We're done once we hit the flexible array member or run out of
942         // InitListExpr elements.
943         if (Field->getType()->isIncompleteArrayType() ||
944             ILEElement == ILE->getNumInits())
945           break;
946         if (Field->isUnnamedBitfield())
947           continue;
948 
949         const Expr *E = ILE->getInit(ILEElement++);
950 
951         // Reference values are always non-null and have the width of a pointer.
952         if (Field->getType()->isReferenceType())
953           NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits(
954               CGF.getContext().Target.getPointerWidth(0));
955         else
956           NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF);
957       }
958 
959       return NumNonZeroBytes;
960     }
961   }
962 
963 
964   CharUnits NumNonZeroBytes = CharUnits::Zero();
965   for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
966     NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF);
967   return NumNonZeroBytes;
968 }
969 
970 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of
971 /// zeros in it, emit a memset and avoid storing the individual zeros.
972 ///
973 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E,
974                                      CodeGenFunction &CGF) {
975   // If the slot is already known to be zeroed, nothing to do.  Don't mess with
976   // volatile stores.
977   if (Slot.isZeroed() || Slot.isVolatile() || Slot.getAddr() == 0) return;
978 
979   // C++ objects with a user-declared constructor don't need zero'ing.
980   if (CGF.getContext().getLangOptions().CPlusPlus)
981     if (const RecordType *RT = CGF.getContext()
982                        .getBaseElementType(E->getType())->getAs<RecordType>()) {
983       const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
984       if (RD->hasUserDeclaredConstructor())
985         return;
986     }
987 
988   // If the type is 16-bytes or smaller, prefer individual stores over memset.
989   std::pair<CharUnits, CharUnits> TypeInfo =
990     CGF.getContext().getTypeInfoInChars(E->getType());
991   if (TypeInfo.first <= CharUnits::fromQuantity(16))
992     return;
993 
994   // Check to see if over 3/4 of the initializer are known to be zero.  If so,
995   // we prefer to emit memset + individual stores for the rest.
996   CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF);
997   if (NumNonZeroBytes*4 > TypeInfo.first)
998     return;
999 
1000   // Okay, it seems like a good idea to use an initial memset, emit the call.
1001   llvm::Constant *SizeVal = CGF.Builder.getInt64(TypeInfo.first.getQuantity());
1002   CharUnits Align = TypeInfo.second;
1003 
1004   llvm::Value *Loc = Slot.getAddr();
1005   llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
1006 
1007   Loc = CGF.Builder.CreateBitCast(Loc, BP);
1008   CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal,
1009                            Align.getQuantity(), false);
1010 
1011   // Tell the AggExprEmitter that the slot is known zero.
1012   Slot.setZeroed();
1013 }
1014 
1015 
1016 
1017 
1018 /// EmitAggExpr - Emit the computation of the specified expression of aggregate
1019 /// type.  The result is computed into DestPtr.  Note that if DestPtr is null,
1020 /// the value of the aggregate expression is not needed.  If VolatileDest is
1021 /// true, DestPtr cannot be 0.
1022 ///
1023 /// \param IsInitializer - true if this evaluation is initializing an
1024 /// object whose lifetime is already being managed.
1025 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot,
1026                                   bool IgnoreResult) {
1027   assert(E && hasAggregateLLVMType(E->getType()) &&
1028          "Invalid aggregate expression to emit");
1029   assert((Slot.getAddr() != 0 || Slot.isIgnored()) &&
1030          "slot has bits but no address");
1031 
1032   // Optimize the slot if possible.
1033   CheckAggExprForMemSetUse(Slot, E, *this);
1034 
1035   AggExprEmitter(*this, Slot, IgnoreResult).Visit(const_cast<Expr*>(E));
1036 }
1037 
1038 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) {
1039   assert(hasAggregateLLVMType(E->getType()) && "Invalid argument!");
1040   llvm::Value *Temp = CreateMemTemp(E->getType());
1041   LValue LV = MakeAddrLValue(Temp, E->getType());
1042   EmitAggExpr(E, AggValueSlot::forLValue(LV, AggValueSlot::IsNotDestructed,
1043                                          AggValueSlot::DoesNotNeedGCBarriers));
1044   return LV;
1045 }
1046 
1047 void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr,
1048                                         llvm::Value *SrcPtr, QualType Ty,
1049                                         bool isVolatile) {
1050   assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
1051 
1052   if (getContext().getLangOptions().CPlusPlus) {
1053     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1054       CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
1055       assert((Record->hasTrivialCopyConstructor() ||
1056               Record->hasTrivialCopyAssignment()) &&
1057              "Trying to aggregate-copy a type without a trivial copy "
1058              "constructor or assignment operator");
1059       // Ignore empty classes in C++.
1060       if (Record->isEmpty())
1061         return;
1062     }
1063   }
1064 
1065   // Aggregate assignment turns into llvm.memcpy.  This is almost valid per
1066   // C99 6.5.16.1p3, which states "If the value being stored in an object is
1067   // read from another object that overlaps in anyway the storage of the first
1068   // object, then the overlap shall be exact and the two objects shall have
1069   // qualified or unqualified versions of a compatible type."
1070   //
1071   // memcpy is not defined if the source and destination pointers are exactly
1072   // equal, but other compilers do this optimization, and almost every memcpy
1073   // implementation handles this case safely.  If there is a libc that does not
1074   // safely handle this, we can add a target hook.
1075 
1076   // Get size and alignment info for this aggregate.
1077   std::pair<CharUnits, CharUnits> TypeInfo =
1078     getContext().getTypeInfoInChars(Ty);
1079 
1080   // FIXME: Handle variable sized types.
1081 
1082   // FIXME: If we have a volatile struct, the optimizer can remove what might
1083   // appear to be `extra' memory ops:
1084   //
1085   // volatile struct { int i; } a, b;
1086   //
1087   // int main() {
1088   //   a = b;
1089   //   a = b;
1090   // }
1091   //
1092   // we need to use a different call here.  We use isVolatile to indicate when
1093   // either the source or the destination is volatile.
1094 
1095   llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType());
1096   llvm::Type *DBP =
1097     llvm::Type::getInt8PtrTy(getLLVMContext(), DPT->getAddressSpace());
1098   DestPtr = Builder.CreateBitCast(DestPtr, DBP, "tmp");
1099 
1100   llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType());
1101   llvm::Type *SBP =
1102     llvm::Type::getInt8PtrTy(getLLVMContext(), SPT->getAddressSpace());
1103   SrcPtr = Builder.CreateBitCast(SrcPtr, SBP, "tmp");
1104 
1105   // Don't do any of the memmove_collectable tests if GC isn't set.
1106   if (CGM.getLangOptions().getGCMode() == LangOptions::NonGC) {
1107     // fall through
1108   } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
1109     RecordDecl *Record = RecordTy->getDecl();
1110     if (Record->hasObjectMember()) {
1111       CharUnits size = TypeInfo.first;
1112       llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
1113       llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity());
1114       CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
1115                                                     SizeVal);
1116       return;
1117     }
1118   } else if (Ty->isArrayType()) {
1119     QualType BaseType = getContext().getBaseElementType(Ty);
1120     if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
1121       if (RecordTy->getDecl()->hasObjectMember()) {
1122         CharUnits size = TypeInfo.first;
1123         llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
1124         llvm::Value *SizeVal =
1125           llvm::ConstantInt::get(SizeTy, size.getQuantity());
1126         CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
1127                                                       SizeVal);
1128         return;
1129       }
1130     }
1131   }
1132 
1133   Builder.CreateMemCpy(DestPtr, SrcPtr,
1134                        llvm::ConstantInt::get(IntPtrTy,
1135                                               TypeInfo.first.getQuantity()),
1136                        TypeInfo.second.getQuantity(), isVolatile);
1137 }
1138