1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Aggregate Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "CGObjCRuntime.h" 17 #include "clang/AST/ASTContext.h" 18 #include "clang/AST/DeclCXX.h" 19 #include "clang/AST/StmtVisitor.h" 20 #include "llvm/Constants.h" 21 #include "llvm/Function.h" 22 #include "llvm/GlobalVariable.h" 23 #include "llvm/Intrinsics.h" 24 using namespace clang; 25 using namespace CodeGen; 26 27 //===----------------------------------------------------------------------===// 28 // Aggregate Expression Emitter 29 //===----------------------------------------------------------------------===// 30 31 namespace { 32 class AggExprEmitter : public StmtVisitor<AggExprEmitter> { 33 CodeGenFunction &CGF; 34 CGBuilderTy &Builder; 35 AggValueSlot Dest; 36 bool IgnoreResult; 37 38 ReturnValueSlot getReturnValueSlot() const { 39 // If the destination slot requires garbage collection, we can't 40 // use the real return value slot, because we have to use the GC 41 // API. 42 if (Dest.requiresGCollection()) return ReturnValueSlot(); 43 44 return ReturnValueSlot(Dest.getAddr(), Dest.isVolatile()); 45 } 46 47 AggValueSlot EnsureSlot(QualType T) { 48 if (!Dest.isIgnored()) return Dest; 49 return CGF.CreateAggTemp(T, "agg.tmp.ensured"); 50 } 51 52 public: 53 AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest, 54 bool ignore) 55 : CGF(cgf), Builder(CGF.Builder), Dest(Dest), 56 IgnoreResult(ignore) { 57 } 58 59 //===--------------------------------------------------------------------===// 60 // Utilities 61 //===--------------------------------------------------------------------===// 62 63 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 64 /// represents a value lvalue, this method emits the address of the lvalue, 65 /// then loads the result into DestPtr. 66 void EmitAggLoadOfLValue(const Expr *E); 67 68 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 69 void EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore = false); 70 void EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore = false); 71 72 void EmitGCMove(const Expr *E, RValue Src); 73 74 AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) { 75 if (CGF.getLangOptions().getGCMode() && TypeRequiresGCollection(T)) 76 return AggValueSlot::NeedsGCBarriers; 77 return AggValueSlot::DoesNotNeedGCBarriers; 78 } 79 80 bool TypeRequiresGCollection(QualType T); 81 82 //===--------------------------------------------------------------------===// 83 // Visitor Methods 84 //===--------------------------------------------------------------------===// 85 86 void VisitStmt(Stmt *S) { 87 CGF.ErrorUnsupported(S, "aggregate expression"); 88 } 89 void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); } 90 void VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 91 Visit(GE->getResultExpr()); 92 } 93 void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); } 94 void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 95 return Visit(E->getReplacement()); 96 } 97 98 // l-values. 99 void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); } 100 void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); } 101 void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); } 102 void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); } 103 void VisitCompoundLiteralExpr(CompoundLiteralExpr *E); 104 void VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 105 EmitAggLoadOfLValue(E); 106 } 107 void VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) { 108 EmitAggLoadOfLValue(E); 109 } 110 void VisitPredefinedExpr(const PredefinedExpr *E) { 111 EmitAggLoadOfLValue(E); 112 } 113 114 // Operators. 115 void VisitCastExpr(CastExpr *E); 116 void VisitCallExpr(const CallExpr *E); 117 void VisitStmtExpr(const StmtExpr *E); 118 void VisitBinaryOperator(const BinaryOperator *BO); 119 void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO); 120 void VisitBinAssign(const BinaryOperator *E); 121 void VisitBinComma(const BinaryOperator *E); 122 123 void VisitObjCMessageExpr(ObjCMessageExpr *E); 124 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 125 EmitAggLoadOfLValue(E); 126 } 127 void VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E); 128 129 void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO); 130 void VisitChooseExpr(const ChooseExpr *CE); 131 void VisitInitListExpr(InitListExpr *E); 132 void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E); 133 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 134 Visit(DAE->getExpr()); 135 } 136 void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E); 137 void VisitCXXConstructExpr(const CXXConstructExpr *E); 138 void VisitExprWithCleanups(ExprWithCleanups *E); 139 void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E); 140 void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); } 141 void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E); 142 void VisitOpaqueValueExpr(OpaqueValueExpr *E); 143 144 void VisitVAArgExpr(VAArgExpr *E); 145 146 void EmitInitializationToLValue(Expr *E, LValue Address); 147 void EmitNullInitializationToLValue(LValue Address); 148 // case Expr::ChooseExprClass: 149 void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); } 150 }; 151 } // end anonymous namespace. 152 153 //===----------------------------------------------------------------------===// 154 // Utilities 155 //===----------------------------------------------------------------------===// 156 157 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 158 /// represents a value lvalue, this method emits the address of the lvalue, 159 /// then loads the result into DestPtr. 160 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) { 161 LValue LV = CGF.EmitLValue(E); 162 EmitFinalDestCopy(E, LV); 163 } 164 165 /// \brief True if the given aggregate type requires special GC API calls. 166 bool AggExprEmitter::TypeRequiresGCollection(QualType T) { 167 // Only record types have members that might require garbage collection. 168 const RecordType *RecordTy = T->getAs<RecordType>(); 169 if (!RecordTy) return false; 170 171 // Don't mess with non-trivial C++ types. 172 RecordDecl *Record = RecordTy->getDecl(); 173 if (isa<CXXRecordDecl>(Record) && 174 (!cast<CXXRecordDecl>(Record)->hasTrivialCopyConstructor() || 175 !cast<CXXRecordDecl>(Record)->hasTrivialDestructor())) 176 return false; 177 178 // Check whether the type has an object member. 179 return Record->hasObjectMember(); 180 } 181 182 /// \brief Perform the final move to DestPtr if RequiresGCollection is set. 183 /// 184 /// The idea is that you do something like this: 185 /// RValue Result = EmitSomething(..., getReturnValueSlot()); 186 /// EmitGCMove(E, Result); 187 /// If GC doesn't interfere, this will cause the result to be emitted 188 /// directly into the return value slot. If GC does interfere, a final 189 /// move will be performed. 190 void AggExprEmitter::EmitGCMove(const Expr *E, RValue Src) { 191 if (Dest.requiresGCollection()) { 192 CharUnits size = CGF.getContext().getTypeSizeInChars(E->getType()); 193 llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType()); 194 llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity()); 195 CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, Dest.getAddr(), 196 Src.getAggregateAddr(), 197 SizeVal); 198 } 199 } 200 201 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 202 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore) { 203 assert(Src.isAggregate() && "value must be aggregate value!"); 204 205 // If Dest is ignored, then we're evaluating an aggregate expression 206 // in a context (like an expression statement) that doesn't care 207 // about the result. C says that an lvalue-to-rvalue conversion is 208 // performed in these cases; C++ says that it is not. In either 209 // case, we don't actually need to do anything unless the value is 210 // volatile. 211 if (Dest.isIgnored()) { 212 if (!Src.isVolatileQualified() || 213 CGF.CGM.getLangOptions().CPlusPlus || 214 (IgnoreResult && Ignore)) 215 return; 216 217 // If the source is volatile, we must read from it; to do that, we need 218 // some place to put it. 219 Dest = CGF.CreateAggTemp(E->getType(), "agg.tmp"); 220 } 221 222 if (Dest.requiresGCollection()) { 223 CharUnits size = CGF.getContext().getTypeSizeInChars(E->getType()); 224 llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType()); 225 llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity()); 226 CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, 227 Dest.getAddr(), 228 Src.getAggregateAddr(), 229 SizeVal); 230 return; 231 } 232 // If the result of the assignment is used, copy the LHS there also. 233 // FIXME: Pass VolatileDest as well. I think we also need to merge volatile 234 // from the source as well, as we can't eliminate it if either operand 235 // is volatile, unless copy has volatile for both source and destination.. 236 CGF.EmitAggregateCopy(Dest.getAddr(), Src.getAggregateAddr(), E->getType(), 237 Dest.isVolatile()|Src.isVolatileQualified()); 238 } 239 240 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 241 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore) { 242 assert(Src.isSimple() && "Can't have aggregate bitfield, vector, etc"); 243 244 EmitFinalDestCopy(E, RValue::getAggregate(Src.getAddress(), 245 Src.isVolatileQualified()), 246 Ignore); 247 } 248 249 //===----------------------------------------------------------------------===// 250 // Visitor Methods 251 //===----------------------------------------------------------------------===// 252 253 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){ 254 Visit(E->GetTemporaryExpr()); 255 } 256 257 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) { 258 EmitFinalDestCopy(e, CGF.getOpaqueLValueMapping(e)); 259 } 260 261 void 262 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 263 if (E->getType().isPODType(CGF.getContext())) { 264 // For a POD type, just emit a load of the lvalue + a copy, because our 265 // compound literal might alias the destination. 266 // FIXME: This is a band-aid; the real problem appears to be in our handling 267 // of assignments, where we store directly into the LHS without checking 268 // whether anything in the RHS aliases. 269 EmitAggLoadOfLValue(E); 270 return; 271 } 272 273 AggValueSlot Slot = EnsureSlot(E->getType()); 274 CGF.EmitAggExpr(E->getInitializer(), Slot); 275 } 276 277 278 void AggExprEmitter::VisitCastExpr(CastExpr *E) { 279 switch (E->getCastKind()) { 280 case CK_Dynamic: { 281 assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?"); 282 LValue LV = CGF.EmitCheckedLValue(E->getSubExpr()); 283 // FIXME: Do we also need to handle property references here? 284 if (LV.isSimple()) 285 CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E)); 286 else 287 CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast"); 288 289 if (!Dest.isIgnored()) 290 CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination"); 291 break; 292 } 293 294 case CK_ToUnion: { 295 if (Dest.isIgnored()) break; 296 297 // GCC union extension 298 QualType Ty = E->getSubExpr()->getType(); 299 QualType PtrTy = CGF.getContext().getPointerType(Ty); 300 llvm::Value *CastPtr = Builder.CreateBitCast(Dest.getAddr(), 301 CGF.ConvertType(PtrTy)); 302 EmitInitializationToLValue(E->getSubExpr(), 303 CGF.MakeAddrLValue(CastPtr, Ty)); 304 break; 305 } 306 307 case CK_DerivedToBase: 308 case CK_BaseToDerived: 309 case CK_UncheckedDerivedToBase: { 310 assert(0 && "cannot perform hierarchy conversion in EmitAggExpr: " 311 "should have been unpacked before we got here"); 312 break; 313 } 314 315 case CK_GetObjCProperty: { 316 LValue LV = CGF.EmitLValue(E->getSubExpr()); 317 assert(LV.isPropertyRef()); 318 RValue RV = CGF.EmitLoadOfPropertyRefLValue(LV, getReturnValueSlot()); 319 EmitGCMove(E, RV); 320 break; 321 } 322 323 case CK_LValueToRValue: // hope for downstream optimization 324 case CK_NoOp: 325 case CK_UserDefinedConversion: 326 case CK_ConstructorConversion: 327 assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(), 328 E->getType()) && 329 "Implicit cast types must be compatible"); 330 Visit(E->getSubExpr()); 331 break; 332 333 case CK_LValueBitCast: 334 llvm_unreachable("should not be emitting lvalue bitcast as rvalue"); 335 break; 336 337 case CK_Dependent: 338 case CK_BitCast: 339 case CK_ArrayToPointerDecay: 340 case CK_FunctionToPointerDecay: 341 case CK_NullToPointer: 342 case CK_NullToMemberPointer: 343 case CK_BaseToDerivedMemberPointer: 344 case CK_DerivedToBaseMemberPointer: 345 case CK_MemberPointerToBoolean: 346 case CK_IntegralToPointer: 347 case CK_PointerToIntegral: 348 case CK_PointerToBoolean: 349 case CK_ToVoid: 350 case CK_VectorSplat: 351 case CK_IntegralCast: 352 case CK_IntegralToBoolean: 353 case CK_IntegralToFloating: 354 case CK_FloatingToIntegral: 355 case CK_FloatingToBoolean: 356 case CK_FloatingCast: 357 case CK_AnyPointerToObjCPointerCast: 358 case CK_AnyPointerToBlockPointerCast: 359 case CK_ObjCObjectLValueCast: 360 case CK_FloatingRealToComplex: 361 case CK_FloatingComplexToReal: 362 case CK_FloatingComplexToBoolean: 363 case CK_FloatingComplexCast: 364 case CK_FloatingComplexToIntegralComplex: 365 case CK_IntegralRealToComplex: 366 case CK_IntegralComplexToReal: 367 case CK_IntegralComplexToBoolean: 368 case CK_IntegralComplexCast: 369 case CK_IntegralComplexToFloatingComplex: 370 case CK_ObjCProduceObject: 371 case CK_ObjCConsumeObject: 372 case CK_ObjCReclaimReturnedObject: 373 llvm_unreachable("cast kind invalid for aggregate types"); 374 } 375 } 376 377 void AggExprEmitter::VisitCallExpr(const CallExpr *E) { 378 if (E->getCallReturnType()->isReferenceType()) { 379 EmitAggLoadOfLValue(E); 380 return; 381 } 382 383 RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot()); 384 EmitGCMove(E, RV); 385 } 386 387 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) { 388 RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot()); 389 EmitGCMove(E, RV); 390 } 391 392 void AggExprEmitter::VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) { 393 llvm_unreachable("direct property access not surrounded by " 394 "lvalue-to-rvalue cast"); 395 } 396 397 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) { 398 CGF.EmitIgnoredExpr(E->getLHS()); 399 Visit(E->getRHS()); 400 } 401 402 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) { 403 CodeGenFunction::StmtExprEvaluation eval(CGF); 404 CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest); 405 } 406 407 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) { 408 if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI) 409 VisitPointerToDataMemberBinaryOperator(E); 410 else 411 CGF.ErrorUnsupported(E, "aggregate binary expression"); 412 } 413 414 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator( 415 const BinaryOperator *E) { 416 LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E); 417 EmitFinalDestCopy(E, LV); 418 } 419 420 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) { 421 // For an assignment to work, the value on the right has 422 // to be compatible with the value on the left. 423 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), 424 E->getRHS()->getType()) 425 && "Invalid assignment"); 426 427 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->getLHS())) 428 if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) 429 if (VD->hasAttr<BlocksAttr>() && 430 E->getRHS()->HasSideEffects(CGF.getContext())) { 431 // When __block variable on LHS, the RHS must be evaluated first 432 // as it may change the 'forwarding' field via call to Block_copy. 433 LValue RHS = CGF.EmitLValue(E->getRHS()); 434 LValue LHS = CGF.EmitLValue(E->getLHS()); 435 Dest = AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed, 436 needsGC(E->getLHS()->getType())); 437 EmitFinalDestCopy(E, RHS, true); 438 return; 439 } 440 441 LValue LHS = CGF.EmitLValue(E->getLHS()); 442 443 // We have to special case property setters, otherwise we must have 444 // a simple lvalue (no aggregates inside vectors, bitfields). 445 if (LHS.isPropertyRef()) { 446 const ObjCPropertyRefExpr *RE = LHS.getPropertyRefExpr(); 447 QualType ArgType = RE->getSetterArgType(); 448 RValue Src; 449 if (ArgType->isReferenceType()) 450 Src = CGF.EmitReferenceBindingToExpr(E->getRHS(), 0); 451 else { 452 AggValueSlot Slot = EnsureSlot(E->getRHS()->getType()); 453 CGF.EmitAggExpr(E->getRHS(), Slot); 454 Src = Slot.asRValue(); 455 } 456 CGF.EmitStoreThroughPropertyRefLValue(Src, LHS); 457 } else { 458 // Codegen the RHS so that it stores directly into the LHS. 459 AggValueSlot LHSSlot = 460 AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed, 461 needsGC(E->getLHS()->getType())); 462 CGF.EmitAggExpr(E->getRHS(), LHSSlot, false); 463 EmitFinalDestCopy(E, LHS, true); 464 } 465 } 466 467 void AggExprEmitter:: 468 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 469 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 470 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 471 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 472 473 // Bind the common expression if necessary. 474 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 475 476 CodeGenFunction::ConditionalEvaluation eval(CGF); 477 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock); 478 479 // Save whether the destination's lifetime is externally managed. 480 bool DestLifetimeManaged = Dest.isLifetimeExternallyManaged(); 481 482 eval.begin(CGF); 483 CGF.EmitBlock(LHSBlock); 484 Visit(E->getTrueExpr()); 485 eval.end(CGF); 486 487 assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!"); 488 CGF.Builder.CreateBr(ContBlock); 489 490 // If the result of an agg expression is unused, then the emission 491 // of the LHS might need to create a destination slot. That's fine 492 // with us, and we can safely emit the RHS into the same slot, but 493 // we shouldn't claim that its lifetime is externally managed. 494 Dest.setLifetimeExternallyManaged(DestLifetimeManaged); 495 496 eval.begin(CGF); 497 CGF.EmitBlock(RHSBlock); 498 Visit(E->getFalseExpr()); 499 eval.end(CGF); 500 501 CGF.EmitBlock(ContBlock); 502 } 503 504 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) { 505 Visit(CE->getChosenSubExpr(CGF.getContext())); 506 } 507 508 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 509 llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr()); 510 llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType()); 511 512 if (!ArgPtr) { 513 CGF.ErrorUnsupported(VE, "aggregate va_arg expression"); 514 return; 515 } 516 517 EmitFinalDestCopy(VE, CGF.MakeAddrLValue(ArgPtr, VE->getType())); 518 } 519 520 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 521 // Ensure that we have a slot, but if we already do, remember 522 // whether its lifetime was externally managed. 523 bool WasManaged = Dest.isLifetimeExternallyManaged(); 524 Dest = EnsureSlot(E->getType()); 525 Dest.setLifetimeExternallyManaged(); 526 527 Visit(E->getSubExpr()); 528 529 // Set up the temporary's destructor if its lifetime wasn't already 530 // being managed. 531 if (!WasManaged) 532 CGF.EmitCXXTemporary(E->getTemporary(), Dest.getAddr()); 533 } 534 535 void 536 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) { 537 AggValueSlot Slot = EnsureSlot(E->getType()); 538 CGF.EmitCXXConstructExpr(E, Slot); 539 } 540 541 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) { 542 CGF.EmitExprWithCleanups(E, Dest); 543 } 544 545 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) { 546 QualType T = E->getType(); 547 AggValueSlot Slot = EnsureSlot(T); 548 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T)); 549 } 550 551 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) { 552 QualType T = E->getType(); 553 AggValueSlot Slot = EnsureSlot(T); 554 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T)); 555 } 556 557 /// isSimpleZero - If emitting this value will obviously just cause a store of 558 /// zero to memory, return true. This can return false if uncertain, so it just 559 /// handles simple cases. 560 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) { 561 E = E->IgnoreParens(); 562 563 // 0 564 if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) 565 return IL->getValue() == 0; 566 // +0.0 567 if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E)) 568 return FL->getValue().isPosZero(); 569 // int() 570 if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) && 571 CGF.getTypes().isZeroInitializable(E->getType())) 572 return true; 573 // (int*)0 - Null pointer expressions. 574 if (const CastExpr *ICE = dyn_cast<CastExpr>(E)) 575 return ICE->getCastKind() == CK_NullToPointer; 576 // '\0' 577 if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) 578 return CL->getValue() == 0; 579 580 // Otherwise, hard case: conservatively return false. 581 return false; 582 } 583 584 585 void 586 AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV) { 587 QualType type = LV.getType(); 588 // FIXME: Ignore result? 589 // FIXME: Are initializers affected by volatile? 590 if (Dest.isZeroed() && isSimpleZero(E, CGF)) { 591 // Storing "i32 0" to a zero'd memory location is a noop. 592 } else if (isa<ImplicitValueInitExpr>(E)) { 593 EmitNullInitializationToLValue(LV); 594 } else if (type->isReferenceType()) { 595 RValue RV = CGF.EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0); 596 CGF.EmitStoreThroughLValue(RV, LV); 597 } else if (type->isAnyComplexType()) { 598 CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false); 599 } else if (CGF.hasAggregateLLVMType(type)) { 600 CGF.EmitAggExpr(E, AggValueSlot::forLValue(LV, 601 AggValueSlot::IsDestructed, 602 AggValueSlot::DoesNotNeedGCBarriers, 603 Dest.isZeroed())); 604 } else if (LV.isSimple()) { 605 CGF.EmitScalarInit(E, /*D=*/0, LV, /*Captured=*/false); 606 } else { 607 CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV); 608 } 609 } 610 611 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) { 612 QualType type = lv.getType(); 613 614 // If the destination slot is already zeroed out before the aggregate is 615 // copied into it, we don't have to emit any zeros here. 616 if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type)) 617 return; 618 619 if (!CGF.hasAggregateLLVMType(type)) { 620 // For non-aggregates, we can store zero 621 llvm::Value *null = llvm::Constant::getNullValue(CGF.ConvertType(type)); 622 CGF.EmitStoreThroughLValue(RValue::get(null), lv); 623 } else { 624 // There's a potential optimization opportunity in combining 625 // memsets; that would be easy for arrays, but relatively 626 // difficult for structures with the current code. 627 CGF.EmitNullInitialization(lv.getAddress(), lv.getType()); 628 } 629 } 630 631 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) { 632 #if 0 633 // FIXME: Assess perf here? Figure out what cases are worth optimizing here 634 // (Length of globals? Chunks of zeroed-out space?). 635 // 636 // If we can, prefer a copy from a global; this is a lot less code for long 637 // globals, and it's easier for the current optimizers to analyze. 638 if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) { 639 llvm::GlobalVariable* GV = 640 new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true, 641 llvm::GlobalValue::InternalLinkage, C, ""); 642 EmitFinalDestCopy(E, CGF.MakeAddrLValue(GV, E->getType())); 643 return; 644 } 645 #endif 646 if (E->hadArrayRangeDesignator()) 647 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 648 649 llvm::Value *DestPtr = Dest.getAddr(); 650 651 // Handle initialization of an array. 652 if (E->getType()->isArrayType()) { 653 llvm::PointerType *APType = 654 cast<llvm::PointerType>(DestPtr->getType()); 655 llvm::ArrayType *AType = 656 cast<llvm::ArrayType>(APType->getElementType()); 657 658 uint64_t NumInitElements = E->getNumInits(); 659 660 if (E->getNumInits() > 0) { 661 QualType T1 = E->getType(); 662 QualType T2 = E->getInit(0)->getType(); 663 if (CGF.getContext().hasSameUnqualifiedType(T1, T2)) { 664 EmitAggLoadOfLValue(E->getInit(0)); 665 return; 666 } 667 } 668 669 uint64_t NumArrayElements = AType->getNumElements(); 670 assert(NumInitElements <= NumArrayElements); 671 672 QualType elementType = E->getType().getCanonicalType(); 673 elementType = CGF.getContext().getQualifiedType( 674 cast<ArrayType>(elementType)->getElementType(), 675 elementType.getQualifiers() + Dest.getQualifiers()); 676 677 // DestPtr is an array*. Construct an elementType* by drilling 678 // down a level. 679 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 680 llvm::Value *indices[] = { zero, zero }; 681 llvm::Value *begin = 682 Builder.CreateInBoundsGEP(DestPtr, indices, "arrayinit.begin"); 683 684 // Exception safety requires us to destroy all the 685 // already-constructed members if an initializer throws. 686 // For that, we'll need an EH cleanup. 687 QualType::DestructionKind dtorKind = elementType.isDestructedType(); 688 llvm::AllocaInst *endOfInit = 0; 689 EHScopeStack::stable_iterator cleanup; 690 if (CGF.needsEHCleanup(dtorKind)) { 691 // In principle we could tell the cleanup where we are more 692 // directly, but the control flow can get so varied here that it 693 // would actually be quite complex. Therefore we go through an 694 // alloca. 695 endOfInit = CGF.CreateTempAlloca(begin->getType(), 696 "arrayinit.endOfInit"); 697 Builder.CreateStore(begin, endOfInit); 698 CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType, 699 CGF.getDestroyer(dtorKind)); 700 cleanup = CGF.EHStack.stable_begin(); 701 702 // Otherwise, remember that we didn't need a cleanup. 703 } else { 704 dtorKind = QualType::DK_none; 705 } 706 707 llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1); 708 709 // The 'current element to initialize'. The invariants on this 710 // variable are complicated. Essentially, after each iteration of 711 // the loop, it points to the last initialized element, except 712 // that it points to the beginning of the array before any 713 // elements have been initialized. 714 llvm::Value *element = begin; 715 716 // Emit the explicit initializers. 717 for (uint64_t i = 0; i != NumInitElements; ++i) { 718 // Advance to the next element. 719 if (i > 0) { 720 element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element"); 721 722 // Tell the cleanup that it needs to destroy up to this 723 // element. TODO: some of these stores can be trivially 724 // observed to be unnecessary. 725 if (endOfInit) Builder.CreateStore(element, endOfInit); 726 } 727 728 LValue elementLV = CGF.MakeAddrLValue(element, elementType); 729 EmitInitializationToLValue(E->getInit(i), elementLV); 730 } 731 732 // Check whether there's a non-trivial array-fill expression. 733 // Note that this will be a CXXConstructExpr even if the element 734 // type is an array (or array of array, etc.) of class type. 735 Expr *filler = E->getArrayFiller(); 736 bool hasTrivialFiller = true; 737 if (CXXConstructExpr *cons = dyn_cast_or_null<CXXConstructExpr>(filler)) { 738 assert(cons->getConstructor()->isDefaultConstructor()); 739 hasTrivialFiller = cons->getConstructor()->isTrivial(); 740 } 741 742 // Any remaining elements need to be zero-initialized, possibly 743 // using the filler expression. We can skip this if the we're 744 // emitting to zeroed memory. 745 if (NumInitElements != NumArrayElements && 746 !(Dest.isZeroed() && hasTrivialFiller && 747 CGF.getTypes().isZeroInitializable(elementType))) { 748 749 // Use an actual loop. This is basically 750 // do { *array++ = filler; } while (array != end); 751 752 // Advance to the start of the rest of the array. 753 if (NumInitElements) { 754 element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start"); 755 if (endOfInit) Builder.CreateStore(element, endOfInit); 756 } 757 758 // Compute the end of the array. 759 llvm::Value *end = Builder.CreateInBoundsGEP(begin, 760 llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements), 761 "arrayinit.end"); 762 763 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 764 llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body"); 765 766 // Jump into the body. 767 CGF.EmitBlock(bodyBB); 768 llvm::PHINode *currentElement = 769 Builder.CreatePHI(element->getType(), 2, "arrayinit.cur"); 770 currentElement->addIncoming(element, entryBB); 771 772 // Emit the actual filler expression. 773 LValue elementLV = CGF.MakeAddrLValue(currentElement, elementType); 774 if (filler) 775 EmitInitializationToLValue(filler, elementLV); 776 else 777 EmitNullInitializationToLValue(elementLV); 778 779 // Move on to the next element. 780 llvm::Value *nextElement = 781 Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next"); 782 783 // Tell the EH cleanup that we finished with the last element. 784 if (endOfInit) Builder.CreateStore(nextElement, endOfInit); 785 786 // Leave the loop if we're done. 787 llvm::Value *done = Builder.CreateICmpEQ(nextElement, end, 788 "arrayinit.done"); 789 llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end"); 790 Builder.CreateCondBr(done, endBB, bodyBB); 791 currentElement->addIncoming(nextElement, Builder.GetInsertBlock()); 792 793 CGF.EmitBlock(endBB); 794 } 795 796 // Leave the partial-array cleanup if we entered one. 797 if (dtorKind) CGF.DeactivateCleanupBlock(cleanup); 798 799 return; 800 } 801 802 assert(E->getType()->isRecordType() && "Only support structs/unions here!"); 803 804 // Do struct initialization; this code just sets each individual member 805 // to the approprate value. This makes bitfield support automatic; 806 // the disadvantage is that the generated code is more difficult for 807 // the optimizer, especially with bitfields. 808 unsigned NumInitElements = E->getNumInits(); 809 RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl(); 810 811 if (record->isUnion()) { 812 // Only initialize one field of a union. The field itself is 813 // specified by the initializer list. 814 if (!E->getInitializedFieldInUnion()) { 815 // Empty union; we have nothing to do. 816 817 #ifndef NDEBUG 818 // Make sure that it's really an empty and not a failure of 819 // semantic analysis. 820 for (RecordDecl::field_iterator Field = record->field_begin(), 821 FieldEnd = record->field_end(); 822 Field != FieldEnd; ++Field) 823 assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed"); 824 #endif 825 return; 826 } 827 828 // FIXME: volatility 829 FieldDecl *Field = E->getInitializedFieldInUnion(); 830 831 LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestPtr, Field, 0); 832 if (NumInitElements) { 833 // Store the initializer into the field 834 EmitInitializationToLValue(E->getInit(0), FieldLoc); 835 } else { 836 // Default-initialize to null. 837 EmitNullInitializationToLValue(FieldLoc); 838 } 839 840 return; 841 } 842 843 // We'll need to enter cleanup scopes in case any of the member 844 // initializers throw an exception. 845 SmallVector<EHScopeStack::stable_iterator, 16> cleanups; 846 847 // Here we iterate over the fields; this makes it simpler to both 848 // default-initialize fields and skip over unnamed fields. 849 unsigned curInitIndex = 0; 850 for (RecordDecl::field_iterator field = record->field_begin(), 851 fieldEnd = record->field_end(); 852 field != fieldEnd; ++field) { 853 // We're done once we hit the flexible array member. 854 if (field->getType()->isIncompleteArrayType()) 855 break; 856 857 // Always skip anonymous bitfields. 858 if (field->isUnnamedBitfield()) 859 continue; 860 861 // We're done if we reach the end of the explicit initializers, we 862 // have a zeroed object, and the rest of the fields are 863 // zero-initializable. 864 if (curInitIndex == NumInitElements && Dest.isZeroed() && 865 CGF.getTypes().isZeroInitializable(E->getType())) 866 break; 867 868 // FIXME: volatility 869 LValue LV = CGF.EmitLValueForFieldInitialization(DestPtr, *field, 0); 870 // We never generate write-barries for initialized fields. 871 LV.setNonGC(true); 872 873 if (curInitIndex < NumInitElements) { 874 // Store the initializer into the field. 875 EmitInitializationToLValue(E->getInit(curInitIndex++), LV); 876 } else { 877 // We're out of initalizers; default-initialize to null 878 EmitNullInitializationToLValue(LV); 879 } 880 881 // Push a destructor if necessary. 882 // FIXME: if we have an array of structures, all explicitly 883 // initialized, we can end up pushing a linear number of cleanups. 884 bool pushedCleanup = false; 885 if (QualType::DestructionKind dtorKind 886 = field->getType().isDestructedType()) { 887 assert(LV.isSimple()); 888 if (CGF.needsEHCleanup(dtorKind)) { 889 CGF.pushDestroy(EHCleanup, LV.getAddress(), field->getType(), 890 CGF.getDestroyer(dtorKind), false); 891 cleanups.push_back(CGF.EHStack.stable_begin()); 892 pushedCleanup = true; 893 } 894 } 895 896 // If the GEP didn't get used because of a dead zero init or something 897 // else, clean it up for -O0 builds and general tidiness. 898 if (!pushedCleanup && LV.isSimple()) 899 if (llvm::GetElementPtrInst *GEP = 900 dyn_cast<llvm::GetElementPtrInst>(LV.getAddress())) 901 if (GEP->use_empty()) 902 GEP->eraseFromParent(); 903 } 904 905 // Deactivate all the partial cleanups in reverse order, which 906 // generally means popping them. 907 for (unsigned i = cleanups.size(); i != 0; --i) 908 CGF.DeactivateCleanupBlock(cleanups[i-1]); 909 } 910 911 //===----------------------------------------------------------------------===// 912 // Entry Points into this File 913 //===----------------------------------------------------------------------===// 914 915 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of 916 /// non-zero bytes that will be stored when outputting the initializer for the 917 /// specified initializer expression. 918 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) { 919 E = E->IgnoreParens(); 920 921 // 0 and 0.0 won't require any non-zero stores! 922 if (isSimpleZero(E, CGF)) return CharUnits::Zero(); 923 924 // If this is an initlist expr, sum up the size of sizes of the (present) 925 // elements. If this is something weird, assume the whole thing is non-zero. 926 const InitListExpr *ILE = dyn_cast<InitListExpr>(E); 927 if (ILE == 0 || !CGF.getTypes().isZeroInitializable(ILE->getType())) 928 return CGF.getContext().getTypeSizeInChars(E->getType()); 929 930 // InitListExprs for structs have to be handled carefully. If there are 931 // reference members, we need to consider the size of the reference, not the 932 // referencee. InitListExprs for unions and arrays can't have references. 933 if (const RecordType *RT = E->getType()->getAs<RecordType>()) { 934 if (!RT->isUnionType()) { 935 RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl(); 936 CharUnits NumNonZeroBytes = CharUnits::Zero(); 937 938 unsigned ILEElement = 0; 939 for (RecordDecl::field_iterator Field = SD->field_begin(), 940 FieldEnd = SD->field_end(); Field != FieldEnd; ++Field) { 941 // We're done once we hit the flexible array member or run out of 942 // InitListExpr elements. 943 if (Field->getType()->isIncompleteArrayType() || 944 ILEElement == ILE->getNumInits()) 945 break; 946 if (Field->isUnnamedBitfield()) 947 continue; 948 949 const Expr *E = ILE->getInit(ILEElement++); 950 951 // Reference values are always non-null and have the width of a pointer. 952 if (Field->getType()->isReferenceType()) 953 NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits( 954 CGF.getContext().Target.getPointerWidth(0)); 955 else 956 NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF); 957 } 958 959 return NumNonZeroBytes; 960 } 961 } 962 963 964 CharUnits NumNonZeroBytes = CharUnits::Zero(); 965 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) 966 NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF); 967 return NumNonZeroBytes; 968 } 969 970 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of 971 /// zeros in it, emit a memset and avoid storing the individual zeros. 972 /// 973 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E, 974 CodeGenFunction &CGF) { 975 // If the slot is already known to be zeroed, nothing to do. Don't mess with 976 // volatile stores. 977 if (Slot.isZeroed() || Slot.isVolatile() || Slot.getAddr() == 0) return; 978 979 // C++ objects with a user-declared constructor don't need zero'ing. 980 if (CGF.getContext().getLangOptions().CPlusPlus) 981 if (const RecordType *RT = CGF.getContext() 982 .getBaseElementType(E->getType())->getAs<RecordType>()) { 983 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 984 if (RD->hasUserDeclaredConstructor()) 985 return; 986 } 987 988 // If the type is 16-bytes or smaller, prefer individual stores over memset. 989 std::pair<CharUnits, CharUnits> TypeInfo = 990 CGF.getContext().getTypeInfoInChars(E->getType()); 991 if (TypeInfo.first <= CharUnits::fromQuantity(16)) 992 return; 993 994 // Check to see if over 3/4 of the initializer are known to be zero. If so, 995 // we prefer to emit memset + individual stores for the rest. 996 CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF); 997 if (NumNonZeroBytes*4 > TypeInfo.first) 998 return; 999 1000 // Okay, it seems like a good idea to use an initial memset, emit the call. 1001 llvm::Constant *SizeVal = CGF.Builder.getInt64(TypeInfo.first.getQuantity()); 1002 CharUnits Align = TypeInfo.second; 1003 1004 llvm::Value *Loc = Slot.getAddr(); 1005 llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext()); 1006 1007 Loc = CGF.Builder.CreateBitCast(Loc, BP); 1008 CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, 1009 Align.getQuantity(), false); 1010 1011 // Tell the AggExprEmitter that the slot is known zero. 1012 Slot.setZeroed(); 1013 } 1014 1015 1016 1017 1018 /// EmitAggExpr - Emit the computation of the specified expression of aggregate 1019 /// type. The result is computed into DestPtr. Note that if DestPtr is null, 1020 /// the value of the aggregate expression is not needed. If VolatileDest is 1021 /// true, DestPtr cannot be 0. 1022 /// 1023 /// \param IsInitializer - true if this evaluation is initializing an 1024 /// object whose lifetime is already being managed. 1025 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot, 1026 bool IgnoreResult) { 1027 assert(E && hasAggregateLLVMType(E->getType()) && 1028 "Invalid aggregate expression to emit"); 1029 assert((Slot.getAddr() != 0 || Slot.isIgnored()) && 1030 "slot has bits but no address"); 1031 1032 // Optimize the slot if possible. 1033 CheckAggExprForMemSetUse(Slot, E, *this); 1034 1035 AggExprEmitter(*this, Slot, IgnoreResult).Visit(const_cast<Expr*>(E)); 1036 } 1037 1038 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) { 1039 assert(hasAggregateLLVMType(E->getType()) && "Invalid argument!"); 1040 llvm::Value *Temp = CreateMemTemp(E->getType()); 1041 LValue LV = MakeAddrLValue(Temp, E->getType()); 1042 EmitAggExpr(E, AggValueSlot::forLValue(LV, AggValueSlot::IsNotDestructed, 1043 AggValueSlot::DoesNotNeedGCBarriers)); 1044 return LV; 1045 } 1046 1047 void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr, 1048 llvm::Value *SrcPtr, QualType Ty, 1049 bool isVolatile) { 1050 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 1051 1052 if (getContext().getLangOptions().CPlusPlus) { 1053 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1054 CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl()); 1055 assert((Record->hasTrivialCopyConstructor() || 1056 Record->hasTrivialCopyAssignment()) && 1057 "Trying to aggregate-copy a type without a trivial copy " 1058 "constructor or assignment operator"); 1059 // Ignore empty classes in C++. 1060 if (Record->isEmpty()) 1061 return; 1062 } 1063 } 1064 1065 // Aggregate assignment turns into llvm.memcpy. This is almost valid per 1066 // C99 6.5.16.1p3, which states "If the value being stored in an object is 1067 // read from another object that overlaps in anyway the storage of the first 1068 // object, then the overlap shall be exact and the two objects shall have 1069 // qualified or unqualified versions of a compatible type." 1070 // 1071 // memcpy is not defined if the source and destination pointers are exactly 1072 // equal, but other compilers do this optimization, and almost every memcpy 1073 // implementation handles this case safely. If there is a libc that does not 1074 // safely handle this, we can add a target hook. 1075 1076 // Get size and alignment info for this aggregate. 1077 std::pair<CharUnits, CharUnits> TypeInfo = 1078 getContext().getTypeInfoInChars(Ty); 1079 1080 // FIXME: Handle variable sized types. 1081 1082 // FIXME: If we have a volatile struct, the optimizer can remove what might 1083 // appear to be `extra' memory ops: 1084 // 1085 // volatile struct { int i; } a, b; 1086 // 1087 // int main() { 1088 // a = b; 1089 // a = b; 1090 // } 1091 // 1092 // we need to use a different call here. We use isVolatile to indicate when 1093 // either the source or the destination is volatile. 1094 1095 llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType()); 1096 llvm::Type *DBP = 1097 llvm::Type::getInt8PtrTy(getLLVMContext(), DPT->getAddressSpace()); 1098 DestPtr = Builder.CreateBitCast(DestPtr, DBP, "tmp"); 1099 1100 llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType()); 1101 llvm::Type *SBP = 1102 llvm::Type::getInt8PtrTy(getLLVMContext(), SPT->getAddressSpace()); 1103 SrcPtr = Builder.CreateBitCast(SrcPtr, SBP, "tmp"); 1104 1105 // Don't do any of the memmove_collectable tests if GC isn't set. 1106 if (CGM.getLangOptions().getGCMode() == LangOptions::NonGC) { 1107 // fall through 1108 } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 1109 RecordDecl *Record = RecordTy->getDecl(); 1110 if (Record->hasObjectMember()) { 1111 CharUnits size = TypeInfo.first; 1112 llvm::Type *SizeTy = ConvertType(getContext().getSizeType()); 1113 llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity()); 1114 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 1115 SizeVal); 1116 return; 1117 } 1118 } else if (Ty->isArrayType()) { 1119 QualType BaseType = getContext().getBaseElementType(Ty); 1120 if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) { 1121 if (RecordTy->getDecl()->hasObjectMember()) { 1122 CharUnits size = TypeInfo.first; 1123 llvm::Type *SizeTy = ConvertType(getContext().getSizeType()); 1124 llvm::Value *SizeVal = 1125 llvm::ConstantInt::get(SizeTy, size.getQuantity()); 1126 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 1127 SizeVal); 1128 return; 1129 } 1130 } 1131 } 1132 1133 Builder.CreateMemCpy(DestPtr, SrcPtr, 1134 llvm::ConstantInt::get(IntPtrTy, 1135 TypeInfo.first.getQuantity()), 1136 TypeInfo.second.getQuantity(), isVolatile); 1137 } 1138