1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Aggregate Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "clang/AST/ASTContext.h" 17 #include "clang/AST/DeclCXX.h" 18 #include "clang/AST/StmtVisitor.h" 19 #include "llvm/Constants.h" 20 #include "llvm/Function.h" 21 #include "llvm/GlobalVariable.h" 22 #include "llvm/Support/Compiler.h" 23 #include "llvm/Intrinsics.h" 24 using namespace clang; 25 using namespace CodeGen; 26 27 //===----------------------------------------------------------------------===// 28 // Aggregate Expression Emitter 29 //===----------------------------------------------------------------------===// 30 31 namespace { 32 class VISIBILITY_HIDDEN AggExprEmitter : public StmtVisitor<AggExprEmitter> { 33 CodeGenFunction &CGF; 34 CGBuilderTy &Builder; 35 llvm::Value *DestPtr; 36 bool VolatileDest; 37 public: 38 AggExprEmitter(CodeGenFunction &cgf, llvm::Value *destPtr, bool volatileDest) 39 : CGF(cgf), Builder(CGF.Builder), 40 DestPtr(destPtr), VolatileDest(volatileDest) { 41 } 42 43 //===--------------------------------------------------------------------===// 44 // Utilities 45 //===--------------------------------------------------------------------===// 46 47 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 48 /// represents a value lvalue, this method emits the address of the lvalue, 49 /// then loads the result into DestPtr. 50 void EmitAggLoadOfLValue(const Expr *E); 51 52 //===--------------------------------------------------------------------===// 53 // Visitor Methods 54 //===--------------------------------------------------------------------===// 55 56 void VisitStmt(Stmt *S) { 57 CGF.ErrorUnsupported(S, "aggregate expression"); 58 } 59 void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); } 60 void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); } 61 62 // l-values. 63 void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); } 64 void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); } 65 void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); } 66 void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); } 67 void VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 68 EmitAggLoadOfLValue(E); 69 } 70 void VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 71 EmitAggLoadOfLValue(E); 72 } 73 void VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) { 74 EmitAggLoadOfLValue(E); 75 } 76 void VisitPredefinedExpr(const PredefinedExpr *E) { 77 EmitAggLoadOfLValue(E); 78 } 79 80 // Operators. 81 void VisitCStyleCastExpr(CStyleCastExpr *E); 82 void VisitImplicitCastExpr(ImplicitCastExpr *E); 83 void VisitCallExpr(const CallExpr *E); 84 void VisitStmtExpr(const StmtExpr *E); 85 void VisitBinaryOperator(const BinaryOperator *BO); 86 void VisitBinAssign(const BinaryOperator *E); 87 void VisitBinComma(const BinaryOperator *E); 88 89 void VisitObjCMessageExpr(ObjCMessageExpr *E); 90 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 91 EmitAggLoadOfLValue(E); 92 } 93 void VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E); 94 void VisitObjCKVCRefExpr(ObjCKVCRefExpr *E); 95 96 void VisitConditionalOperator(const ConditionalOperator *CO); 97 void VisitInitListExpr(InitListExpr *E); 98 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 99 Visit(DAE->getExpr()); 100 } 101 void VisitCXXConstructExpr(const CXXConstructExpr *E); 102 void VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E); 103 104 void VisitVAArgExpr(VAArgExpr *E); 105 106 void EmitInitializationToLValue(Expr *E, LValue Address); 107 void EmitNullInitializationToLValue(LValue Address, QualType T); 108 // case Expr::ChooseExprClass: 109 110 }; 111 } // end anonymous namespace. 112 113 //===----------------------------------------------------------------------===// 114 // Utilities 115 //===----------------------------------------------------------------------===// 116 117 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 118 /// represents a value lvalue, this method emits the address of the lvalue, 119 /// then loads the result into DestPtr. 120 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) { 121 LValue LV = CGF.EmitLValue(E); 122 assert(LV.isSimple() && "Can't have aggregate bitfield, vector, etc"); 123 llvm::Value *SrcPtr = LV.getAddress(); 124 125 // If the result is ignored, don't copy from the value. 126 if (DestPtr == 0) 127 // FIXME: If the source is volatile, we must read from it. 128 return; 129 130 CGF.EmitAggregateCopy(DestPtr, SrcPtr, E->getType()); 131 } 132 133 //===----------------------------------------------------------------------===// 134 // Visitor Methods 135 //===----------------------------------------------------------------------===// 136 137 void AggExprEmitter::VisitCStyleCastExpr(CStyleCastExpr *E) { 138 // GCC union extension 139 if (E->getType()->isUnionType()) { 140 RecordDecl *SD = E->getType()->getAsRecordType()->getDecl(); 141 LValue FieldLoc = CGF.EmitLValueForField(DestPtr, 142 *SD->field_begin(CGF.getContext()), 143 true, 0); 144 EmitInitializationToLValue(E->getSubExpr(), FieldLoc); 145 return; 146 } 147 148 Visit(E->getSubExpr()); 149 } 150 151 void AggExprEmitter::VisitImplicitCastExpr(ImplicitCastExpr *E) { 152 assert(CGF.getContext().typesAreCompatible( 153 E->getSubExpr()->getType().getUnqualifiedType(), 154 E->getType().getUnqualifiedType()) && 155 "Implicit cast types must be compatible"); 156 Visit(E->getSubExpr()); 157 } 158 159 void AggExprEmitter::VisitCallExpr(const CallExpr *E) { 160 RValue RV = CGF.EmitCallExpr(E); 161 assert(RV.isAggregate() && "Return value must be aggregate value!"); 162 163 // If the result is ignored, don't copy from the value. 164 if (DestPtr == 0) 165 // FIXME: If the source is volatile, we must read from it. 166 return; 167 168 CGF.EmitAggregateCopy(DestPtr, RV.getAggregateAddr(), E->getType()); 169 } 170 171 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) { 172 RValue RV = CGF.EmitObjCMessageExpr(E); 173 assert(RV.isAggregate() && "Return value must be aggregate value!"); 174 175 // If the result is ignored, don't copy from the value. 176 if (DestPtr == 0) 177 // FIXME: If the source is volatile, we must read from it. 178 return; 179 180 CGF.EmitAggregateCopy(DestPtr, RV.getAggregateAddr(), E->getType()); 181 } 182 183 void AggExprEmitter::VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) { 184 RValue RV = CGF.EmitObjCPropertyGet(E); 185 assert(RV.isAggregate() && "Return value must be aggregate value!"); 186 187 // If the result is ignored, don't copy from the value. 188 if (DestPtr == 0) 189 // FIXME: If the source is volatile, we must read from it. 190 return; 191 192 CGF.EmitAggregateCopy(DestPtr, RV.getAggregateAddr(), E->getType()); 193 } 194 195 void AggExprEmitter::VisitObjCKVCRefExpr(ObjCKVCRefExpr *E) { 196 RValue RV = CGF.EmitObjCPropertyGet(E); 197 assert(RV.isAggregate() && "Return value must be aggregate value!"); 198 199 // If the result is ignored, don't copy from the value. 200 if (DestPtr == 0) 201 // FIXME: If the source is volatile, we must read from it. 202 return; 203 204 CGF.EmitAggregateCopy(DestPtr, RV.getAggregateAddr(), E->getType()); 205 } 206 207 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) { 208 CGF.EmitAnyExpr(E->getLHS()); 209 CGF.EmitAggExpr(E->getRHS(), DestPtr, false); 210 } 211 212 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) { 213 CGF.EmitCompoundStmt(*E->getSubStmt(), true, DestPtr, VolatileDest); 214 } 215 216 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) { 217 CGF.ErrorUnsupported(E, "aggregate binary expression"); 218 } 219 220 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) { 221 // For an assignment to work, the value on the right has 222 // to be compatible with the value on the left. 223 assert(CGF.getContext().typesAreCompatible( 224 E->getLHS()->getType().getUnqualifiedType(), 225 E->getRHS()->getType().getUnqualifiedType()) 226 && "Invalid assignment"); 227 LValue LHS = CGF.EmitLValue(E->getLHS()); 228 229 // We have to special case property setters, otherwise we must have 230 // a simple lvalue (no aggregates inside vectors, bitfields). 231 if (LHS.isPropertyRef()) { 232 // FIXME: Volatility? 233 llvm::Value *AggLoc = DestPtr; 234 if (!AggLoc) 235 AggLoc = CGF.CreateTempAlloca(CGF.ConvertType(E->getRHS()->getType())); 236 CGF.EmitAggExpr(E->getRHS(), AggLoc, false); 237 CGF.EmitObjCPropertySet(LHS.getPropertyRefExpr(), 238 RValue::getAggregate(AggLoc)); 239 } 240 else if (LHS.isKVCRef()) { 241 // FIXME: Volatility? 242 llvm::Value *AggLoc = DestPtr; 243 if (!AggLoc) 244 AggLoc = CGF.CreateTempAlloca(CGF.ConvertType(E->getRHS()->getType())); 245 CGF.EmitAggExpr(E->getRHS(), AggLoc, false); 246 CGF.EmitObjCPropertySet(LHS.getKVCRefExpr(), 247 RValue::getAggregate(AggLoc)); 248 } else { 249 // Codegen the RHS so that it stores directly into the LHS. 250 CGF.EmitAggExpr(E->getRHS(), LHS.getAddress(), LHS.isVolatileQualified()); 251 252 if (DestPtr == 0) 253 return; 254 255 // If the result of the assignment is used, copy the LHS there also. 256 CGF.EmitAggregateCopy(DestPtr, LHS.getAddress(), E->getType()); 257 } 258 } 259 260 void AggExprEmitter::VisitConditionalOperator(const ConditionalOperator *E) { 261 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 262 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 263 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 264 265 llvm::Value *Cond = CGF.EvaluateExprAsBool(E->getCond()); 266 Builder.CreateCondBr(Cond, LHSBlock, RHSBlock); 267 268 CGF.EmitBlock(LHSBlock); 269 270 // Handle the GNU extension for missing LHS. 271 assert(E->getLHS() && "Must have LHS for aggregate value"); 272 273 Visit(E->getLHS()); 274 CGF.EmitBranch(ContBlock); 275 276 CGF.EmitBlock(RHSBlock); 277 278 Visit(E->getRHS()); 279 CGF.EmitBranch(ContBlock); 280 281 CGF.EmitBlock(ContBlock); 282 } 283 284 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 285 llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr()); 286 llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType()); 287 288 if (!ArgPtr) { 289 CGF.ErrorUnsupported(VE, "aggregate va_arg expression"); 290 return; 291 } 292 293 if (DestPtr) 294 // FIXME: volatility 295 CGF.EmitAggregateCopy(DestPtr, ArgPtr, VE->getType()); 296 } 297 298 void 299 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) { 300 llvm::Value *V = DestPtr; 301 302 if (!V) { 303 assert(isa<CXXTempVarDecl>(E->getVarDecl()) && 304 "Must have a temp var decl when there's no destination!"); 305 306 V = CGF.CreateTempAlloca(CGF.ConvertType(E->getVarDecl()->getType()), 307 "tmpvar"); 308 } 309 310 CGF.EmitCXXConstructExpr(V, E); 311 } 312 313 void AggExprEmitter::VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E) { 314 // FIXME: Do something with the temporaries! 315 Visit(E->getSubExpr()); 316 } 317 318 void AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV) { 319 // FIXME: Are initializers affected by volatile? 320 if (isa<ImplicitValueInitExpr>(E)) { 321 EmitNullInitializationToLValue(LV, E->getType()); 322 } else if (E->getType()->isComplexType()) { 323 CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false); 324 } else if (CGF.hasAggregateLLVMType(E->getType())) { 325 CGF.EmitAnyExpr(E, LV.getAddress(), false); 326 } else { 327 CGF.EmitStoreThroughLValue(CGF.EmitAnyExpr(E), LV, E->getType()); 328 } 329 } 330 331 void AggExprEmitter::EmitNullInitializationToLValue(LValue LV, QualType T) { 332 if (!CGF.hasAggregateLLVMType(T)) { 333 // For non-aggregates, we can store zero 334 llvm::Value *Null = llvm::Constant::getNullValue(CGF.ConvertType(T)); 335 CGF.EmitStoreThroughLValue(RValue::get(Null), LV, T); 336 } else { 337 // Otherwise, just memset the whole thing to zero. This is legal 338 // because in LLVM, all default initializers are guaranteed to have a 339 // bit pattern of all zeros. 340 // FIXME: That isn't true for member pointers! 341 // There's a potential optimization opportunity in combining 342 // memsets; that would be easy for arrays, but relatively 343 // difficult for structures with the current code. 344 CGF.EmitMemSetToZero(LV.getAddress(), T); 345 } 346 } 347 348 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) { 349 #if 0 350 // FIXME: Disabled while we figure out what to do about 351 // test/CodeGen/bitfield.c 352 // 353 // If we can, prefer a copy from a global; this is a lot less code for long 354 // globals, and it's easier for the current optimizers to analyze. 355 // FIXME: Should we really be doing this? Should we try to avoid cases where 356 // we emit a global with a lot of zeros? Should we try to avoid short 357 // globals? 358 if (E->isConstantInitializer(CGF.getContext(), 0)) { 359 llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, &CGF); 360 llvm::GlobalVariable* GV = 361 new llvm::GlobalVariable(C->getType(), true, 362 llvm::GlobalValue::InternalLinkage, 363 C, "", &CGF.CGM.getModule(), 0); 364 CGF.EmitAggregateCopy(DestPtr, GV, E->getType()); 365 return; 366 } 367 #endif 368 if (E->hadArrayRangeDesignator()) { 369 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 370 } 371 372 // Handle initialization of an array. 373 if (E->getType()->isArrayType()) { 374 const llvm::PointerType *APType = 375 cast<llvm::PointerType>(DestPtr->getType()); 376 const llvm::ArrayType *AType = 377 cast<llvm::ArrayType>(APType->getElementType()); 378 379 uint64_t NumInitElements = E->getNumInits(); 380 381 if (E->getNumInits() > 0) { 382 QualType T1 = E->getType(); 383 QualType T2 = E->getInit(0)->getType(); 384 if (CGF.getContext().getCanonicalType(T1).getUnqualifiedType() == 385 CGF.getContext().getCanonicalType(T2).getUnqualifiedType()) { 386 EmitAggLoadOfLValue(E->getInit(0)); 387 return; 388 } 389 } 390 391 uint64_t NumArrayElements = AType->getNumElements(); 392 QualType ElementType = CGF.getContext().getCanonicalType(E->getType()); 393 ElementType = CGF.getContext().getAsArrayType(ElementType)->getElementType(); 394 395 unsigned CVRqualifier = ElementType.getCVRQualifiers(); 396 397 for (uint64_t i = 0; i != NumArrayElements; ++i) { 398 llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array"); 399 if (i < NumInitElements) 400 EmitInitializationToLValue(E->getInit(i), 401 LValue::MakeAddr(NextVal, CVRqualifier)); 402 else 403 EmitNullInitializationToLValue(LValue::MakeAddr(NextVal, CVRqualifier), 404 ElementType); 405 } 406 return; 407 } 408 409 assert(E->getType()->isRecordType() && "Only support structs/unions here!"); 410 411 // Do struct initialization; this code just sets each individual member 412 // to the approprate value. This makes bitfield support automatic; 413 // the disadvantage is that the generated code is more difficult for 414 // the optimizer, especially with bitfields. 415 unsigned NumInitElements = E->getNumInits(); 416 RecordDecl *SD = E->getType()->getAsRecordType()->getDecl(); 417 unsigned CurInitVal = 0; 418 419 if (E->getType()->isUnionType()) { 420 // Only initialize one field of a union. The field itself is 421 // specified by the initializer list. 422 if (!E->getInitializedFieldInUnion()) { 423 // Empty union; we have nothing to do. 424 425 #ifndef NDEBUG 426 // Make sure that it's really an empty and not a failure of 427 // semantic analysis. 428 for (RecordDecl::field_iterator Field = SD->field_begin(CGF.getContext()), 429 FieldEnd = SD->field_end(CGF.getContext()); 430 Field != FieldEnd; ++Field) 431 assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed"); 432 #endif 433 return; 434 } 435 436 // FIXME: volatility 437 FieldDecl *Field = E->getInitializedFieldInUnion(); 438 LValue FieldLoc = CGF.EmitLValueForField(DestPtr, Field, true, 0); 439 440 if (NumInitElements) { 441 // Store the initializer into the field 442 EmitInitializationToLValue(E->getInit(0), FieldLoc); 443 } else { 444 // Default-initialize to null 445 EmitNullInitializationToLValue(FieldLoc, Field->getType()); 446 } 447 448 return; 449 } 450 451 // Here we iterate over the fields; this makes it simpler to both 452 // default-initialize fields and skip over unnamed fields. 453 for (RecordDecl::field_iterator Field = SD->field_begin(CGF.getContext()), 454 FieldEnd = SD->field_end(CGF.getContext()); 455 Field != FieldEnd; ++Field) { 456 // We're done once we hit the flexible array member 457 if (Field->getType()->isIncompleteArrayType()) 458 break; 459 460 if (Field->isUnnamedBitfield()) 461 continue; 462 463 // FIXME: volatility 464 LValue FieldLoc = CGF.EmitLValueForField(DestPtr, *Field, false, 0); 465 if (CurInitVal < NumInitElements) { 466 // Store the initializer into the field 467 EmitInitializationToLValue(E->getInit(CurInitVal++), FieldLoc); 468 } else { 469 // We're out of initalizers; default-initialize to null 470 EmitNullInitializationToLValue(FieldLoc, Field->getType()); 471 } 472 } 473 } 474 475 //===----------------------------------------------------------------------===// 476 // Entry Points into this File 477 //===----------------------------------------------------------------------===// 478 479 /// EmitAggExpr - Emit the computation of the specified expression of 480 /// aggregate type. The result is computed into DestPtr. Note that if 481 /// DestPtr is null, the value of the aggregate expression is not needed. 482 void CodeGenFunction::EmitAggExpr(const Expr *E, llvm::Value *DestPtr, 483 bool VolatileDest) { 484 assert(E && hasAggregateLLVMType(E->getType()) && 485 "Invalid aggregate expression to emit"); 486 487 AggExprEmitter(*this, DestPtr, VolatileDest).Visit(const_cast<Expr*>(E)); 488 } 489 490 void CodeGenFunction::EmitAggregateClear(llvm::Value *DestPtr, QualType Ty) { 491 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 492 493 EmitMemSetToZero(DestPtr, Ty); 494 } 495 496 void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr, 497 llvm::Value *SrcPtr, QualType Ty) { 498 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 499 500 // Aggregate assignment turns into llvm.memcpy. This is almost valid per 501 // C99 6.5.16.1p3, which states "If the value being stored in an object is 502 // read from another object that overlaps in anyway the storage of the first 503 // object, then the overlap shall be exact and the two objects shall have 504 // qualified or unqualified versions of a compatible type." 505 // 506 // memcpy is not defined if the source and destination pointers are exactly 507 // equal, but other compilers do this optimization, and almost every memcpy 508 // implementation handles this case safely. If there is a libc that does not 509 // safely handle this, we can add a target hook. 510 const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 511 if (DestPtr->getType() != BP) 512 DestPtr = Builder.CreateBitCast(DestPtr, BP, "tmp"); 513 if (SrcPtr->getType() != BP) 514 SrcPtr = Builder.CreateBitCast(SrcPtr, BP, "tmp"); 515 516 // Get size and alignment info for this aggregate. 517 std::pair<uint64_t, unsigned> TypeInfo = getContext().getTypeInfo(Ty); 518 519 // FIXME: Handle variable sized types. 520 const llvm::Type *IntPtr = llvm::IntegerType::get(LLVMPointerWidth); 521 522 // FIXME: If we have a volatile struct, the optimizer can remove what might 523 // appear to be `extra' memory ops: 524 // 525 // volatile struct { int i; } a, b; 526 // 527 // int main() { 528 // a = b; 529 // a = b; 530 // } 531 // 532 // either, we need to use a differnt call here, or the backend needs to be 533 // taught to not do this. 534 Builder.CreateCall4(CGM.getMemCpyFn(), 535 DestPtr, SrcPtr, 536 // TypeInfo.first describes size in bits. 537 llvm::ConstantInt::get(IntPtr, TypeInfo.first/8), 538 llvm::ConstantInt::get(llvm::Type::Int32Ty, 539 TypeInfo.second/8)); 540 } 541