1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Aggregate Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "CGObjCRuntime.h" 17 #include "clang/AST/ASTContext.h" 18 #include "clang/AST/DeclCXX.h" 19 #include "clang/AST/StmtVisitor.h" 20 #include "llvm/Constants.h" 21 #include "llvm/Function.h" 22 #include "llvm/GlobalVariable.h" 23 #include "llvm/Intrinsics.h" 24 using namespace clang; 25 using namespace CodeGen; 26 27 //===----------------------------------------------------------------------===// 28 // Aggregate Expression Emitter 29 //===----------------------------------------------------------------------===// 30 31 namespace { 32 class AggExprEmitter : public StmtVisitor<AggExprEmitter> { 33 CodeGenFunction &CGF; 34 CGBuilderTy &Builder; 35 AggValueSlot Dest; 36 bool IgnoreResult; 37 38 ReturnValueSlot getReturnValueSlot() const { 39 // If the destination slot requires garbage collection, we can't 40 // use the real return value slot, because we have to use the GC 41 // API. 42 if (Dest.requiresGCollection()) return ReturnValueSlot(); 43 44 return ReturnValueSlot(Dest.getAddr(), Dest.isVolatile()); 45 } 46 47 AggValueSlot EnsureSlot(QualType T) { 48 if (!Dest.isIgnored()) return Dest; 49 return CGF.CreateAggTemp(T, "agg.tmp.ensured"); 50 } 51 52 public: 53 AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest, 54 bool ignore) 55 : CGF(cgf), Builder(CGF.Builder), Dest(Dest), 56 IgnoreResult(ignore) { 57 } 58 59 //===--------------------------------------------------------------------===// 60 // Utilities 61 //===--------------------------------------------------------------------===// 62 63 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 64 /// represents a value lvalue, this method emits the address of the lvalue, 65 /// then loads the result into DestPtr. 66 void EmitAggLoadOfLValue(const Expr *E); 67 68 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 69 void EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore = false); 70 void EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore = false); 71 72 void EmitGCMove(const Expr *E, RValue Src); 73 74 bool TypeRequiresGCollection(QualType T); 75 76 //===--------------------------------------------------------------------===// 77 // Visitor Methods 78 //===--------------------------------------------------------------------===// 79 80 void VisitStmt(Stmt *S) { 81 CGF.ErrorUnsupported(S, "aggregate expression"); 82 } 83 void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); } 84 void VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 85 Visit(GE->getResultExpr()); 86 } 87 void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); } 88 89 // l-values. 90 void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); } 91 void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); } 92 void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); } 93 void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); } 94 void VisitCompoundLiteralExpr(CompoundLiteralExpr *E); 95 void VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 96 EmitAggLoadOfLValue(E); 97 } 98 void VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) { 99 EmitAggLoadOfLValue(E); 100 } 101 void VisitPredefinedExpr(const PredefinedExpr *E) { 102 EmitAggLoadOfLValue(E); 103 } 104 105 // Operators. 106 void VisitCastExpr(CastExpr *E); 107 void VisitCallExpr(const CallExpr *E); 108 void VisitStmtExpr(const StmtExpr *E); 109 void VisitBinaryOperator(const BinaryOperator *BO); 110 void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO); 111 void VisitBinAssign(const BinaryOperator *E); 112 void VisitBinComma(const BinaryOperator *E); 113 114 void VisitObjCMessageExpr(ObjCMessageExpr *E); 115 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 116 EmitAggLoadOfLValue(E); 117 } 118 void VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E); 119 120 void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO); 121 void VisitChooseExpr(const ChooseExpr *CE); 122 void VisitInitListExpr(InitListExpr *E); 123 void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E); 124 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 125 Visit(DAE->getExpr()); 126 } 127 void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E); 128 void VisitCXXConstructExpr(const CXXConstructExpr *E); 129 void VisitExprWithCleanups(ExprWithCleanups *E); 130 void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E); 131 void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); } 132 void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E); 133 void VisitOpaqueValueExpr(OpaqueValueExpr *E); 134 135 void VisitVAArgExpr(VAArgExpr *E); 136 137 void EmitInitializationToLValue(Expr *E, LValue Address); 138 void EmitNullInitializationToLValue(LValue Address); 139 // case Expr::ChooseExprClass: 140 void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); } 141 }; 142 } // end anonymous namespace. 143 144 //===----------------------------------------------------------------------===// 145 // Utilities 146 //===----------------------------------------------------------------------===// 147 148 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 149 /// represents a value lvalue, this method emits the address of the lvalue, 150 /// then loads the result into DestPtr. 151 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) { 152 LValue LV = CGF.EmitLValue(E); 153 EmitFinalDestCopy(E, LV); 154 } 155 156 /// \brief True if the given aggregate type requires special GC API calls. 157 bool AggExprEmitter::TypeRequiresGCollection(QualType T) { 158 // Only record types have members that might require garbage collection. 159 const RecordType *RecordTy = T->getAs<RecordType>(); 160 if (!RecordTy) return false; 161 162 // Don't mess with non-trivial C++ types. 163 RecordDecl *Record = RecordTy->getDecl(); 164 if (isa<CXXRecordDecl>(Record) && 165 (!cast<CXXRecordDecl>(Record)->hasTrivialCopyConstructor() || 166 !cast<CXXRecordDecl>(Record)->hasTrivialDestructor())) 167 return false; 168 169 // Check whether the type has an object member. 170 return Record->hasObjectMember(); 171 } 172 173 /// \brief Perform the final move to DestPtr if RequiresGCollection is set. 174 /// 175 /// The idea is that you do something like this: 176 /// RValue Result = EmitSomething(..., getReturnValueSlot()); 177 /// EmitGCMove(E, Result); 178 /// If GC doesn't interfere, this will cause the result to be emitted 179 /// directly into the return value slot. If GC does interfere, a final 180 /// move will be performed. 181 void AggExprEmitter::EmitGCMove(const Expr *E, RValue Src) { 182 if (Dest.requiresGCollection()) { 183 CharUnits size = CGF.getContext().getTypeSizeInChars(E->getType()); 184 const llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType()); 185 llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity()); 186 CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, Dest.getAddr(), 187 Src.getAggregateAddr(), 188 SizeVal); 189 } 190 } 191 192 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 193 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore) { 194 assert(Src.isAggregate() && "value must be aggregate value!"); 195 196 // If Dest is ignored, then we're evaluating an aggregate expression 197 // in a context (like an expression statement) that doesn't care 198 // about the result. C says that an lvalue-to-rvalue conversion is 199 // performed in these cases; C++ says that it is not. In either 200 // case, we don't actually need to do anything unless the value is 201 // volatile. 202 if (Dest.isIgnored()) { 203 if (!Src.isVolatileQualified() || 204 CGF.CGM.getLangOptions().CPlusPlus || 205 (IgnoreResult && Ignore)) 206 return; 207 208 // If the source is volatile, we must read from it; to do that, we need 209 // some place to put it. 210 Dest = CGF.CreateAggTemp(E->getType(), "agg.tmp"); 211 } 212 213 if (Dest.requiresGCollection()) { 214 CharUnits size = CGF.getContext().getTypeSizeInChars(E->getType()); 215 const llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType()); 216 llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity()); 217 CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, 218 Dest.getAddr(), 219 Src.getAggregateAddr(), 220 SizeVal); 221 return; 222 } 223 // If the result of the assignment is used, copy the LHS there also. 224 // FIXME: Pass VolatileDest as well. I think we also need to merge volatile 225 // from the source as well, as we can't eliminate it if either operand 226 // is volatile, unless copy has volatile for both source and destination.. 227 CGF.EmitAggregateCopy(Dest.getAddr(), Src.getAggregateAddr(), E->getType(), 228 Dest.isVolatile()|Src.isVolatileQualified()); 229 } 230 231 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 232 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore) { 233 assert(Src.isSimple() && "Can't have aggregate bitfield, vector, etc"); 234 235 EmitFinalDestCopy(E, RValue::getAggregate(Src.getAddress(), 236 Src.isVolatileQualified()), 237 Ignore); 238 } 239 240 //===----------------------------------------------------------------------===// 241 // Visitor Methods 242 //===----------------------------------------------------------------------===// 243 244 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){ 245 Visit(E->GetTemporaryExpr()); 246 } 247 248 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) { 249 EmitFinalDestCopy(e, CGF.getOpaqueLValueMapping(e)); 250 } 251 252 void 253 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 254 if (E->getType().isPODType(CGF.getContext())) { 255 // For a POD type, just emit a load of the lvalue + a copy, because our 256 // compound literal might alias the destination. 257 // FIXME: This is a band-aid; the real problem appears to be in our handling 258 // of assignments, where we store directly into the LHS without checking 259 // whether anything in the RHS aliases. 260 EmitAggLoadOfLValue(E); 261 return; 262 } 263 264 AggValueSlot Slot = EnsureSlot(E->getType()); 265 CGF.EmitAggExpr(E->getInitializer(), Slot); 266 } 267 268 269 void AggExprEmitter::VisitCastExpr(CastExpr *E) { 270 switch (E->getCastKind()) { 271 case CK_Dynamic: { 272 assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?"); 273 LValue LV = CGF.EmitCheckedLValue(E->getSubExpr()); 274 // FIXME: Do we also need to handle property references here? 275 if (LV.isSimple()) 276 CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E)); 277 else 278 CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast"); 279 280 if (!Dest.isIgnored()) 281 CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination"); 282 break; 283 } 284 285 case CK_ToUnion: { 286 if (Dest.isIgnored()) break; 287 288 // GCC union extension 289 QualType Ty = E->getSubExpr()->getType(); 290 QualType PtrTy = CGF.getContext().getPointerType(Ty); 291 llvm::Value *CastPtr = Builder.CreateBitCast(Dest.getAddr(), 292 CGF.ConvertType(PtrTy)); 293 EmitInitializationToLValue(E->getSubExpr(), 294 CGF.MakeAddrLValue(CastPtr, Ty)); 295 break; 296 } 297 298 case CK_DerivedToBase: 299 case CK_BaseToDerived: 300 case CK_UncheckedDerivedToBase: { 301 assert(0 && "cannot perform hierarchy conversion in EmitAggExpr: " 302 "should have been unpacked before we got here"); 303 break; 304 } 305 306 case CK_GetObjCProperty: { 307 LValue LV = CGF.EmitLValue(E->getSubExpr()); 308 assert(LV.isPropertyRef()); 309 RValue RV = CGF.EmitLoadOfPropertyRefLValue(LV, getReturnValueSlot()); 310 EmitGCMove(E, RV); 311 break; 312 } 313 314 case CK_LValueToRValue: // hope for downstream optimization 315 case CK_NoOp: 316 case CK_UserDefinedConversion: 317 case CK_ConstructorConversion: 318 assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(), 319 E->getType()) && 320 "Implicit cast types must be compatible"); 321 Visit(E->getSubExpr()); 322 break; 323 324 case CK_LValueBitCast: 325 llvm_unreachable("should not be emitting lvalue bitcast as rvalue"); 326 break; 327 328 case CK_Dependent: 329 case CK_BitCast: 330 case CK_ArrayToPointerDecay: 331 case CK_FunctionToPointerDecay: 332 case CK_NullToPointer: 333 case CK_NullToMemberPointer: 334 case CK_BaseToDerivedMemberPointer: 335 case CK_DerivedToBaseMemberPointer: 336 case CK_MemberPointerToBoolean: 337 case CK_IntegralToPointer: 338 case CK_PointerToIntegral: 339 case CK_PointerToBoolean: 340 case CK_ToVoid: 341 case CK_VectorSplat: 342 case CK_IntegralCast: 343 case CK_IntegralToBoolean: 344 case CK_IntegralToFloating: 345 case CK_FloatingToIntegral: 346 case CK_FloatingToBoolean: 347 case CK_FloatingCast: 348 case CK_AnyPointerToObjCPointerCast: 349 case CK_AnyPointerToBlockPointerCast: 350 case CK_ObjCObjectLValueCast: 351 case CK_FloatingRealToComplex: 352 case CK_FloatingComplexToReal: 353 case CK_FloatingComplexToBoolean: 354 case CK_FloatingComplexCast: 355 case CK_FloatingComplexToIntegralComplex: 356 case CK_IntegralRealToComplex: 357 case CK_IntegralComplexToReal: 358 case CK_IntegralComplexToBoolean: 359 case CK_IntegralComplexCast: 360 case CK_IntegralComplexToFloatingComplex: 361 case CK_ObjCProduceObject: 362 case CK_ObjCConsumeObject: 363 case CK_ObjCReclaimReturnedObject: 364 llvm_unreachable("cast kind invalid for aggregate types"); 365 } 366 } 367 368 void AggExprEmitter::VisitCallExpr(const CallExpr *E) { 369 if (E->getCallReturnType()->isReferenceType()) { 370 EmitAggLoadOfLValue(E); 371 return; 372 } 373 374 RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot()); 375 EmitGCMove(E, RV); 376 } 377 378 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) { 379 RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot()); 380 EmitGCMove(E, RV); 381 } 382 383 void AggExprEmitter::VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) { 384 llvm_unreachable("direct property access not surrounded by " 385 "lvalue-to-rvalue cast"); 386 } 387 388 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) { 389 CGF.EmitIgnoredExpr(E->getLHS()); 390 Visit(E->getRHS()); 391 } 392 393 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) { 394 CodeGenFunction::StmtExprEvaluation eval(CGF); 395 CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest); 396 } 397 398 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) { 399 if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI) 400 VisitPointerToDataMemberBinaryOperator(E); 401 else 402 CGF.ErrorUnsupported(E, "aggregate binary expression"); 403 } 404 405 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator( 406 const BinaryOperator *E) { 407 LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E); 408 EmitFinalDestCopy(E, LV); 409 } 410 411 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) { 412 // For an assignment to work, the value on the right has 413 // to be compatible with the value on the left. 414 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), 415 E->getRHS()->getType()) 416 && "Invalid assignment"); 417 418 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->getLHS())) 419 if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) 420 if (VD->hasAttr<BlocksAttr>() && 421 E->getRHS()->HasSideEffects(CGF.getContext())) { 422 // When __block variable on LHS, the RHS must be evaluated first 423 // as it may change the 'forwarding' field via call to Block_copy. 424 LValue RHS = CGF.EmitLValue(E->getRHS()); 425 LValue LHS = CGF.EmitLValue(E->getLHS()); 426 bool GCollection = false; 427 if (CGF.getContext().getLangOptions().getGCMode()) 428 GCollection = TypeRequiresGCollection(E->getLHS()->getType()); 429 Dest = AggValueSlot::forLValue(LHS, true, GCollection); 430 EmitFinalDestCopy(E, RHS, true); 431 return; 432 } 433 434 LValue LHS = CGF.EmitLValue(E->getLHS()); 435 436 // We have to special case property setters, otherwise we must have 437 // a simple lvalue (no aggregates inside vectors, bitfields). 438 if (LHS.isPropertyRef()) { 439 const ObjCPropertyRefExpr *RE = LHS.getPropertyRefExpr(); 440 QualType ArgType = RE->getSetterArgType(); 441 RValue Src; 442 if (ArgType->isReferenceType()) 443 Src = CGF.EmitReferenceBindingToExpr(E->getRHS(), 0); 444 else { 445 AggValueSlot Slot = EnsureSlot(E->getRHS()->getType()); 446 CGF.EmitAggExpr(E->getRHS(), Slot); 447 Src = Slot.asRValue(); 448 } 449 CGF.EmitStoreThroughPropertyRefLValue(Src, LHS); 450 } else { 451 bool GCollection = false; 452 if (CGF.getContext().getLangOptions().getGCMode()) 453 GCollection = TypeRequiresGCollection(E->getLHS()->getType()); 454 455 // Codegen the RHS so that it stores directly into the LHS. 456 AggValueSlot LHSSlot = AggValueSlot::forLValue(LHS, true, 457 GCollection); 458 CGF.EmitAggExpr(E->getRHS(), LHSSlot, false); 459 EmitFinalDestCopy(E, LHS, true); 460 } 461 } 462 463 void AggExprEmitter:: 464 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 465 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 466 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 467 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 468 469 // Bind the common expression if necessary. 470 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 471 472 CodeGenFunction::ConditionalEvaluation eval(CGF); 473 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock); 474 475 // Save whether the destination's lifetime is externally managed. 476 bool DestLifetimeManaged = Dest.isLifetimeExternallyManaged(); 477 478 eval.begin(CGF); 479 CGF.EmitBlock(LHSBlock); 480 Visit(E->getTrueExpr()); 481 eval.end(CGF); 482 483 assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!"); 484 CGF.Builder.CreateBr(ContBlock); 485 486 // If the result of an agg expression is unused, then the emission 487 // of the LHS might need to create a destination slot. That's fine 488 // with us, and we can safely emit the RHS into the same slot, but 489 // we shouldn't claim that its lifetime is externally managed. 490 Dest.setLifetimeExternallyManaged(DestLifetimeManaged); 491 492 eval.begin(CGF); 493 CGF.EmitBlock(RHSBlock); 494 Visit(E->getFalseExpr()); 495 eval.end(CGF); 496 497 CGF.EmitBlock(ContBlock); 498 } 499 500 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) { 501 Visit(CE->getChosenSubExpr(CGF.getContext())); 502 } 503 504 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 505 llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr()); 506 llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType()); 507 508 if (!ArgPtr) { 509 CGF.ErrorUnsupported(VE, "aggregate va_arg expression"); 510 return; 511 } 512 513 EmitFinalDestCopy(VE, CGF.MakeAddrLValue(ArgPtr, VE->getType())); 514 } 515 516 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 517 // Ensure that we have a slot, but if we already do, remember 518 // whether its lifetime was externally managed. 519 bool WasManaged = Dest.isLifetimeExternallyManaged(); 520 Dest = EnsureSlot(E->getType()); 521 Dest.setLifetimeExternallyManaged(); 522 523 Visit(E->getSubExpr()); 524 525 // Set up the temporary's destructor if its lifetime wasn't already 526 // being managed. 527 if (!WasManaged) 528 CGF.EmitCXXTemporary(E->getTemporary(), Dest.getAddr()); 529 } 530 531 void 532 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) { 533 AggValueSlot Slot = EnsureSlot(E->getType()); 534 CGF.EmitCXXConstructExpr(E, Slot); 535 } 536 537 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) { 538 CGF.EmitExprWithCleanups(E, Dest); 539 } 540 541 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) { 542 QualType T = E->getType(); 543 AggValueSlot Slot = EnsureSlot(T); 544 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T)); 545 } 546 547 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) { 548 QualType T = E->getType(); 549 AggValueSlot Slot = EnsureSlot(T); 550 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T)); 551 } 552 553 /// isSimpleZero - If emitting this value will obviously just cause a store of 554 /// zero to memory, return true. This can return false if uncertain, so it just 555 /// handles simple cases. 556 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) { 557 E = E->IgnoreParens(); 558 559 // 0 560 if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) 561 return IL->getValue() == 0; 562 // +0.0 563 if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E)) 564 return FL->getValue().isPosZero(); 565 // int() 566 if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) && 567 CGF.getTypes().isZeroInitializable(E->getType())) 568 return true; 569 // (int*)0 - Null pointer expressions. 570 if (const CastExpr *ICE = dyn_cast<CastExpr>(E)) 571 return ICE->getCastKind() == CK_NullToPointer; 572 // '\0' 573 if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) 574 return CL->getValue() == 0; 575 576 // Otherwise, hard case: conservatively return false. 577 return false; 578 } 579 580 581 void 582 AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV) { 583 QualType type = LV.getType(); 584 // FIXME: Ignore result? 585 // FIXME: Are initializers affected by volatile? 586 if (Dest.isZeroed() && isSimpleZero(E, CGF)) { 587 // Storing "i32 0" to a zero'd memory location is a noop. 588 } else if (isa<ImplicitValueInitExpr>(E)) { 589 EmitNullInitializationToLValue(LV); 590 } else if (type->isReferenceType()) { 591 RValue RV = CGF.EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0); 592 CGF.EmitStoreThroughLValue(RV, LV); 593 } else if (type->isAnyComplexType()) { 594 CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false); 595 } else if (CGF.hasAggregateLLVMType(type)) { 596 CGF.EmitAggExpr(E, AggValueSlot::forLValue(LV, true, false, 597 Dest.isZeroed())); 598 } else if (LV.isSimple()) { 599 CGF.EmitScalarInit(E, /*D=*/0, LV, /*Captured=*/false); 600 } else { 601 CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV); 602 } 603 } 604 605 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) { 606 QualType type = lv.getType(); 607 608 // If the destination slot is already zeroed out before the aggregate is 609 // copied into it, we don't have to emit any zeros here. 610 if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type)) 611 return; 612 613 if (!CGF.hasAggregateLLVMType(type)) { 614 // For non-aggregates, we can store zero 615 llvm::Value *null = llvm::Constant::getNullValue(CGF.ConvertType(type)); 616 CGF.EmitStoreThroughLValue(RValue::get(null), lv); 617 } else { 618 // There's a potential optimization opportunity in combining 619 // memsets; that would be easy for arrays, but relatively 620 // difficult for structures with the current code. 621 CGF.EmitNullInitialization(lv.getAddress(), lv.getType()); 622 } 623 } 624 625 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) { 626 #if 0 627 // FIXME: Assess perf here? Figure out what cases are worth optimizing here 628 // (Length of globals? Chunks of zeroed-out space?). 629 // 630 // If we can, prefer a copy from a global; this is a lot less code for long 631 // globals, and it's easier for the current optimizers to analyze. 632 if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) { 633 llvm::GlobalVariable* GV = 634 new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true, 635 llvm::GlobalValue::InternalLinkage, C, ""); 636 EmitFinalDestCopy(E, CGF.MakeAddrLValue(GV, E->getType())); 637 return; 638 } 639 #endif 640 if (E->hadArrayRangeDesignator()) 641 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 642 643 llvm::Value *DestPtr = Dest.getAddr(); 644 645 // Handle initialization of an array. 646 if (E->getType()->isArrayType()) { 647 const llvm::PointerType *APType = 648 cast<llvm::PointerType>(DestPtr->getType()); 649 const llvm::ArrayType *AType = 650 cast<llvm::ArrayType>(APType->getElementType()); 651 652 uint64_t NumInitElements = E->getNumInits(); 653 654 if (E->getNumInits() > 0) { 655 QualType T1 = E->getType(); 656 QualType T2 = E->getInit(0)->getType(); 657 if (CGF.getContext().hasSameUnqualifiedType(T1, T2)) { 658 EmitAggLoadOfLValue(E->getInit(0)); 659 return; 660 } 661 } 662 663 uint64_t NumArrayElements = AType->getNumElements(); 664 assert(NumInitElements <= NumArrayElements); 665 666 QualType elementType = E->getType().getCanonicalType(); 667 elementType = CGF.getContext().getQualifiedType( 668 cast<ArrayType>(elementType)->getElementType(), 669 elementType.getQualifiers() + Dest.getQualifiers()); 670 671 // DestPtr is an array*. Construct an elementType* by drilling 672 // down a level. 673 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 674 llvm::Value *indices[] = { zero, zero }; 675 llvm::Value *begin = 676 Builder.CreateInBoundsGEP(DestPtr, indices, indices+2, "arrayinit.begin"); 677 678 // Exception safety requires us to destroy all the 679 // already-constructed members if an initializer throws. 680 // For that, we'll need an EH cleanup. 681 QualType::DestructionKind dtorKind = elementType.isDestructedType(); 682 llvm::AllocaInst *endOfInit = 0; 683 EHScopeStack::stable_iterator cleanup; 684 if (CGF.needsEHCleanup(dtorKind)) { 685 // In principle we could tell the cleanup where we are more 686 // directly, but the control flow can get so varied here that it 687 // would actually be quite complex. Therefore we go through an 688 // alloca. 689 endOfInit = CGF.CreateTempAlloca(begin->getType(), 690 "arrayinit.endOfInit"); 691 Builder.CreateStore(begin, endOfInit); 692 CGF.pushPartialArrayCleanup(begin, elementType, 693 CGF.getDestroyer(dtorKind), endOfInit); 694 cleanup = CGF.EHStack.stable_begin(); 695 696 // Otherwise, remember that we didn't need a cleanup. 697 } else { 698 dtorKind = QualType::DK_none; 699 } 700 701 llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1); 702 703 // The 'current element to initialize'. The invariants on this 704 // variable are complicated. Essentially, after each iteration of 705 // the loop, it points to the last initialized element, except 706 // that it points to the beginning of the array before any 707 // elements have been initialized. 708 llvm::Value *element = begin; 709 710 // Emit the explicit initializers. 711 for (uint64_t i = 0; i != NumInitElements; ++i) { 712 // Advance to the next element. 713 if (i > 0) 714 element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element"); 715 716 LValue elementLV = CGF.MakeAddrLValue(element, elementType); 717 EmitInitializationToLValue(E->getInit(i), elementLV); 718 719 // Tell the cleanup that it needs to destroy this element. 720 // TODO: some of these stores can be trivially observed to be 721 // unnecessary. 722 if (endOfInit) Builder.CreateStore(element, endOfInit); 723 } 724 725 // Check whether there's a non-trivial array-fill expression. 726 // Note that this will be a CXXConstructExpr even if the element 727 // type is an array (or array of array, etc.) of class type. 728 Expr *filler = E->getArrayFiller(); 729 bool hasTrivialFiller = true; 730 if (CXXConstructExpr *cons = dyn_cast_or_null<CXXConstructExpr>(filler)) { 731 assert(cons->getConstructor()->isDefaultConstructor()); 732 hasTrivialFiller = cons->getConstructor()->isTrivial(); 733 } 734 735 // Any remaining elements need to be zero-initialized, possibly 736 // using the filler expression. We can skip this if the we're 737 // emitting to zeroed memory. 738 if (NumInitElements != NumArrayElements && 739 !(Dest.isZeroed() && hasTrivialFiller && 740 CGF.getTypes().isZeroInitializable(elementType))) { 741 742 // Use an actual loop. This is basically 743 // do { *array++ = filler; } while (array != end); 744 745 // Advance to the start of the rest of the array. 746 if (NumInitElements) 747 element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start"); 748 749 // Compute the end of the array. 750 llvm::Value *end = Builder.CreateInBoundsGEP(begin, 751 llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements), 752 "arrayinit.end"); 753 754 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 755 llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body"); 756 757 // Jump into the body. 758 CGF.EmitBlock(bodyBB); 759 llvm::PHINode *currentElement = 760 Builder.CreatePHI(element->getType(), 2, "arrayinit.cur"); 761 currentElement->addIncoming(element, entryBB); 762 763 // Emit the actual filler expression. 764 LValue elementLV = CGF.MakeAddrLValue(currentElement, elementType); 765 if (filler) 766 EmitInitializationToLValue(filler, elementLV); 767 else 768 EmitNullInitializationToLValue(elementLV); 769 770 // Tell the EH cleanup that we finished with that element. 771 if (endOfInit) Builder.CreateStore(element, endOfInit); 772 773 // Move on to the next element. 774 llvm::Value *nextElement = 775 Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next"); 776 777 // Leave the loop if we're done. 778 llvm::Value *done = Builder.CreateICmpEQ(nextElement, end, 779 "arrayinit.done"); 780 llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end"); 781 Builder.CreateCondBr(done, endBB, bodyBB); 782 currentElement->addIncoming(nextElement, Builder.GetInsertBlock()); 783 784 CGF.EmitBlock(endBB); 785 } 786 787 // Leave the partial-array cleanup if we entered one. 788 if (dtorKind) CGF.DeactivateCleanupBlock(cleanup); 789 790 return; 791 } 792 793 assert(E->getType()->isRecordType() && "Only support structs/unions here!"); 794 795 // Do struct initialization; this code just sets each individual member 796 // to the approprate value. This makes bitfield support automatic; 797 // the disadvantage is that the generated code is more difficult for 798 // the optimizer, especially with bitfields. 799 unsigned NumInitElements = E->getNumInits(); 800 RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl(); 801 802 if (E->getType()->isUnionType()) { 803 // Only initialize one field of a union. The field itself is 804 // specified by the initializer list. 805 if (!E->getInitializedFieldInUnion()) { 806 // Empty union; we have nothing to do. 807 808 #ifndef NDEBUG 809 // Make sure that it's really an empty and not a failure of 810 // semantic analysis. 811 for (RecordDecl::field_iterator Field = SD->field_begin(), 812 FieldEnd = SD->field_end(); 813 Field != FieldEnd; ++Field) 814 assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed"); 815 #endif 816 return; 817 } 818 819 // FIXME: volatility 820 FieldDecl *Field = E->getInitializedFieldInUnion(); 821 822 LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestPtr, Field, 0); 823 if (NumInitElements) { 824 // Store the initializer into the field 825 EmitInitializationToLValue(E->getInit(0), FieldLoc); 826 } else { 827 // Default-initialize to null. 828 EmitNullInitializationToLValue(FieldLoc); 829 } 830 831 return; 832 } 833 834 // Here we iterate over the fields; this makes it simpler to both 835 // default-initialize fields and skip over unnamed fields. 836 unsigned CurInitVal = 0; 837 for (RecordDecl::field_iterator Field = SD->field_begin(), 838 FieldEnd = SD->field_end(); 839 Field != FieldEnd; ++Field) { 840 // We're done once we hit the flexible array member 841 if (Field->getType()->isIncompleteArrayType()) 842 break; 843 844 if (Field->isUnnamedBitfield()) 845 continue; 846 847 // Don't emit GEP before a noop store of zero. 848 if (CurInitVal == NumInitElements && Dest.isZeroed() && 849 CGF.getTypes().isZeroInitializable(E->getType())) 850 break; 851 852 // FIXME: volatility 853 LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestPtr, *Field, 0); 854 // We never generate write-barries for initialized fields. 855 FieldLoc.setNonGC(true); 856 857 if (CurInitVal < NumInitElements) { 858 // Store the initializer into the field. 859 EmitInitializationToLValue(E->getInit(CurInitVal++), FieldLoc); 860 } else { 861 // We're out of initalizers; default-initialize to null 862 EmitNullInitializationToLValue(FieldLoc); 863 } 864 865 // If the GEP didn't get used because of a dead zero init or something 866 // else, clean it up for -O0 builds and general tidiness. 867 if (FieldLoc.isSimple()) 868 if (llvm::GetElementPtrInst *GEP = 869 dyn_cast<llvm::GetElementPtrInst>(FieldLoc.getAddress())) 870 if (GEP->use_empty()) 871 GEP->eraseFromParent(); 872 } 873 } 874 875 //===----------------------------------------------------------------------===// 876 // Entry Points into this File 877 //===----------------------------------------------------------------------===// 878 879 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of 880 /// non-zero bytes that will be stored when outputting the initializer for the 881 /// specified initializer expression. 882 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) { 883 E = E->IgnoreParens(); 884 885 // 0 and 0.0 won't require any non-zero stores! 886 if (isSimpleZero(E, CGF)) return CharUnits::Zero(); 887 888 // If this is an initlist expr, sum up the size of sizes of the (present) 889 // elements. If this is something weird, assume the whole thing is non-zero. 890 const InitListExpr *ILE = dyn_cast<InitListExpr>(E); 891 if (ILE == 0 || !CGF.getTypes().isZeroInitializable(ILE->getType())) 892 return CGF.getContext().getTypeSizeInChars(E->getType()); 893 894 // InitListExprs for structs have to be handled carefully. If there are 895 // reference members, we need to consider the size of the reference, not the 896 // referencee. InitListExprs for unions and arrays can't have references. 897 if (const RecordType *RT = E->getType()->getAs<RecordType>()) { 898 if (!RT->isUnionType()) { 899 RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl(); 900 CharUnits NumNonZeroBytes = CharUnits::Zero(); 901 902 unsigned ILEElement = 0; 903 for (RecordDecl::field_iterator Field = SD->field_begin(), 904 FieldEnd = SD->field_end(); Field != FieldEnd; ++Field) { 905 // We're done once we hit the flexible array member or run out of 906 // InitListExpr elements. 907 if (Field->getType()->isIncompleteArrayType() || 908 ILEElement == ILE->getNumInits()) 909 break; 910 if (Field->isUnnamedBitfield()) 911 continue; 912 913 const Expr *E = ILE->getInit(ILEElement++); 914 915 // Reference values are always non-null and have the width of a pointer. 916 if (Field->getType()->isReferenceType()) 917 NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits( 918 CGF.getContext().Target.getPointerWidth(0)); 919 else 920 NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF); 921 } 922 923 return NumNonZeroBytes; 924 } 925 } 926 927 928 CharUnits NumNonZeroBytes = CharUnits::Zero(); 929 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) 930 NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF); 931 return NumNonZeroBytes; 932 } 933 934 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of 935 /// zeros in it, emit a memset and avoid storing the individual zeros. 936 /// 937 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E, 938 CodeGenFunction &CGF) { 939 // If the slot is already known to be zeroed, nothing to do. Don't mess with 940 // volatile stores. 941 if (Slot.isZeroed() || Slot.isVolatile() || Slot.getAddr() == 0) return; 942 943 // C++ objects with a user-declared constructor don't need zero'ing. 944 if (CGF.getContext().getLangOptions().CPlusPlus) 945 if (const RecordType *RT = CGF.getContext() 946 .getBaseElementType(E->getType())->getAs<RecordType>()) { 947 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 948 if (RD->hasUserDeclaredConstructor()) 949 return; 950 } 951 952 // If the type is 16-bytes or smaller, prefer individual stores over memset. 953 std::pair<CharUnits, CharUnits> TypeInfo = 954 CGF.getContext().getTypeInfoInChars(E->getType()); 955 if (TypeInfo.first <= CharUnits::fromQuantity(16)) 956 return; 957 958 // Check to see if over 3/4 of the initializer are known to be zero. If so, 959 // we prefer to emit memset + individual stores for the rest. 960 CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF); 961 if (NumNonZeroBytes*4 > TypeInfo.first) 962 return; 963 964 // Okay, it seems like a good idea to use an initial memset, emit the call. 965 llvm::Constant *SizeVal = CGF.Builder.getInt64(TypeInfo.first.getQuantity()); 966 CharUnits Align = TypeInfo.second; 967 968 llvm::Value *Loc = Slot.getAddr(); 969 const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext()); 970 971 Loc = CGF.Builder.CreateBitCast(Loc, BP); 972 CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, 973 Align.getQuantity(), false); 974 975 // Tell the AggExprEmitter that the slot is known zero. 976 Slot.setZeroed(); 977 } 978 979 980 981 982 /// EmitAggExpr - Emit the computation of the specified expression of aggregate 983 /// type. The result is computed into DestPtr. Note that if DestPtr is null, 984 /// the value of the aggregate expression is not needed. If VolatileDest is 985 /// true, DestPtr cannot be 0. 986 /// 987 /// \param IsInitializer - true if this evaluation is initializing an 988 /// object whose lifetime is already being managed. 989 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot, 990 bool IgnoreResult) { 991 assert(E && hasAggregateLLVMType(E->getType()) && 992 "Invalid aggregate expression to emit"); 993 assert((Slot.getAddr() != 0 || Slot.isIgnored()) && 994 "slot has bits but no address"); 995 996 // Optimize the slot if possible. 997 CheckAggExprForMemSetUse(Slot, E, *this); 998 999 AggExprEmitter(*this, Slot, IgnoreResult).Visit(const_cast<Expr*>(E)); 1000 } 1001 1002 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) { 1003 assert(hasAggregateLLVMType(E->getType()) && "Invalid argument!"); 1004 llvm::Value *Temp = CreateMemTemp(E->getType()); 1005 LValue LV = MakeAddrLValue(Temp, E->getType()); 1006 EmitAggExpr(E, AggValueSlot::forLValue(LV, false)); 1007 return LV; 1008 } 1009 1010 void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr, 1011 llvm::Value *SrcPtr, QualType Ty, 1012 bool isVolatile) { 1013 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 1014 1015 if (getContext().getLangOptions().CPlusPlus) { 1016 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1017 CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl()); 1018 assert((Record->hasTrivialCopyConstructor() || 1019 Record->hasTrivialCopyAssignment()) && 1020 "Trying to aggregate-copy a type without a trivial copy " 1021 "constructor or assignment operator"); 1022 // Ignore empty classes in C++. 1023 if (Record->isEmpty()) 1024 return; 1025 } 1026 } 1027 1028 // Aggregate assignment turns into llvm.memcpy. This is almost valid per 1029 // C99 6.5.16.1p3, which states "If the value being stored in an object is 1030 // read from another object that overlaps in anyway the storage of the first 1031 // object, then the overlap shall be exact and the two objects shall have 1032 // qualified or unqualified versions of a compatible type." 1033 // 1034 // memcpy is not defined if the source and destination pointers are exactly 1035 // equal, but other compilers do this optimization, and almost every memcpy 1036 // implementation handles this case safely. If there is a libc that does not 1037 // safely handle this, we can add a target hook. 1038 1039 // Get size and alignment info for this aggregate. 1040 std::pair<CharUnits, CharUnits> TypeInfo = 1041 getContext().getTypeInfoInChars(Ty); 1042 1043 // FIXME: Handle variable sized types. 1044 1045 // FIXME: If we have a volatile struct, the optimizer can remove what might 1046 // appear to be `extra' memory ops: 1047 // 1048 // volatile struct { int i; } a, b; 1049 // 1050 // int main() { 1051 // a = b; 1052 // a = b; 1053 // } 1054 // 1055 // we need to use a different call here. We use isVolatile to indicate when 1056 // either the source or the destination is volatile. 1057 1058 const llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType()); 1059 const llvm::Type *DBP = 1060 llvm::Type::getInt8PtrTy(getLLVMContext(), DPT->getAddressSpace()); 1061 DestPtr = Builder.CreateBitCast(DestPtr, DBP, "tmp"); 1062 1063 const llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType()); 1064 const llvm::Type *SBP = 1065 llvm::Type::getInt8PtrTy(getLLVMContext(), SPT->getAddressSpace()); 1066 SrcPtr = Builder.CreateBitCast(SrcPtr, SBP, "tmp"); 1067 1068 // Don't do any of the memmove_collectable tests if GC isn't set. 1069 if (CGM.getLangOptions().getGCMode() == LangOptions::NonGC) { 1070 // fall through 1071 } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 1072 RecordDecl *Record = RecordTy->getDecl(); 1073 if (Record->hasObjectMember()) { 1074 CharUnits size = TypeInfo.first; 1075 const llvm::Type *SizeTy = ConvertType(getContext().getSizeType()); 1076 llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity()); 1077 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 1078 SizeVal); 1079 return; 1080 } 1081 } else if (Ty->isArrayType()) { 1082 QualType BaseType = getContext().getBaseElementType(Ty); 1083 if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) { 1084 if (RecordTy->getDecl()->hasObjectMember()) { 1085 CharUnits size = TypeInfo.first; 1086 const llvm::Type *SizeTy = ConvertType(getContext().getSizeType()); 1087 llvm::Value *SizeVal = 1088 llvm::ConstantInt::get(SizeTy, size.getQuantity()); 1089 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 1090 SizeVal); 1091 return; 1092 } 1093 } 1094 } 1095 1096 Builder.CreateMemCpy(DestPtr, SrcPtr, 1097 llvm::ConstantInt::get(IntPtrTy, 1098 TypeInfo.first.getQuantity()), 1099 TypeInfo.second.getQuantity(), isVolatile); 1100 } 1101