1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Aggregate Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "CGObjCRuntime.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/StmtVisitor.h"
20 #include "llvm/Constants.h"
21 #include "llvm/Function.h"
22 #include "llvm/GlobalVariable.h"
23 #include "llvm/Intrinsics.h"
24 using namespace clang;
25 using namespace CodeGen;
26 
27 //===----------------------------------------------------------------------===//
28 //                        Aggregate Expression Emitter
29 //===----------------------------------------------------------------------===//
30 
31 namespace  {
32 class AggExprEmitter : public StmtVisitor<AggExprEmitter> {
33   CodeGenFunction &CGF;
34   CGBuilderTy &Builder;
35   AggValueSlot Dest;
36   bool IgnoreResult;
37 
38   ReturnValueSlot getReturnValueSlot() const {
39     // If the destination slot requires garbage collection, we can't
40     // use the real return value slot, because we have to use the GC
41     // API.
42     if (Dest.requiresGCollection()) return ReturnValueSlot();
43 
44     return ReturnValueSlot(Dest.getAddr(), Dest.isVolatile());
45   }
46 
47   AggValueSlot EnsureSlot(QualType T) {
48     if (!Dest.isIgnored()) return Dest;
49     return CGF.CreateAggTemp(T, "agg.tmp.ensured");
50   }
51 
52 public:
53   AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest,
54                  bool ignore)
55     : CGF(cgf), Builder(CGF.Builder), Dest(Dest),
56       IgnoreResult(ignore) {
57   }
58 
59   //===--------------------------------------------------------------------===//
60   //                               Utilities
61   //===--------------------------------------------------------------------===//
62 
63   /// EmitAggLoadOfLValue - Given an expression with aggregate type that
64   /// represents a value lvalue, this method emits the address of the lvalue,
65   /// then loads the result into DestPtr.
66   void EmitAggLoadOfLValue(const Expr *E);
67 
68   /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
69   void EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore = false);
70   void EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore = false);
71 
72   void EmitGCMove(const Expr *E, RValue Src);
73 
74   bool TypeRequiresGCollection(QualType T);
75 
76   //===--------------------------------------------------------------------===//
77   //                            Visitor Methods
78   //===--------------------------------------------------------------------===//
79 
80   void VisitStmt(Stmt *S) {
81     CGF.ErrorUnsupported(S, "aggregate expression");
82   }
83   void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
84   void VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
85     Visit(GE->getResultExpr());
86   }
87   void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
88 
89   // l-values.
90   void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); }
91   void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
92   void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
93   void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
94   void VisitCompoundLiteralExpr(CompoundLiteralExpr *E);
95   void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
96     EmitAggLoadOfLValue(E);
97   }
98   void VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
99     EmitAggLoadOfLValue(E);
100   }
101   void VisitPredefinedExpr(const PredefinedExpr *E) {
102     EmitAggLoadOfLValue(E);
103   }
104 
105   // Operators.
106   void VisitCastExpr(CastExpr *E);
107   void VisitCallExpr(const CallExpr *E);
108   void VisitStmtExpr(const StmtExpr *E);
109   void VisitBinaryOperator(const BinaryOperator *BO);
110   void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO);
111   void VisitBinAssign(const BinaryOperator *E);
112   void VisitBinComma(const BinaryOperator *E);
113 
114   void VisitObjCMessageExpr(ObjCMessageExpr *E);
115   void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
116     EmitAggLoadOfLValue(E);
117   }
118   void VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E);
119 
120   void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
121   void VisitChooseExpr(const ChooseExpr *CE);
122   void VisitInitListExpr(InitListExpr *E);
123   void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E);
124   void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
125     Visit(DAE->getExpr());
126   }
127   void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E);
128   void VisitCXXConstructExpr(const CXXConstructExpr *E);
129   void VisitExprWithCleanups(ExprWithCleanups *E);
130   void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E);
131   void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); }
132   void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E);
133   void VisitOpaqueValueExpr(OpaqueValueExpr *E);
134 
135   void VisitVAArgExpr(VAArgExpr *E);
136 
137   void EmitInitializationToLValue(Expr *E, LValue Address);
138   void EmitNullInitializationToLValue(LValue Address);
139   //  case Expr::ChooseExprClass:
140   void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); }
141 };
142 }  // end anonymous namespace.
143 
144 //===----------------------------------------------------------------------===//
145 //                                Utilities
146 //===----------------------------------------------------------------------===//
147 
148 /// EmitAggLoadOfLValue - Given an expression with aggregate type that
149 /// represents a value lvalue, this method emits the address of the lvalue,
150 /// then loads the result into DestPtr.
151 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
152   LValue LV = CGF.EmitLValue(E);
153   EmitFinalDestCopy(E, LV);
154 }
155 
156 /// \brief True if the given aggregate type requires special GC API calls.
157 bool AggExprEmitter::TypeRequiresGCollection(QualType T) {
158   // Only record types have members that might require garbage collection.
159   const RecordType *RecordTy = T->getAs<RecordType>();
160   if (!RecordTy) return false;
161 
162   // Don't mess with non-trivial C++ types.
163   RecordDecl *Record = RecordTy->getDecl();
164   if (isa<CXXRecordDecl>(Record) &&
165       (!cast<CXXRecordDecl>(Record)->hasTrivialCopyConstructor() ||
166        !cast<CXXRecordDecl>(Record)->hasTrivialDestructor()))
167     return false;
168 
169   // Check whether the type has an object member.
170   return Record->hasObjectMember();
171 }
172 
173 /// \brief Perform the final move to DestPtr if RequiresGCollection is set.
174 ///
175 /// The idea is that you do something like this:
176 ///   RValue Result = EmitSomething(..., getReturnValueSlot());
177 ///   EmitGCMove(E, Result);
178 /// If GC doesn't interfere, this will cause the result to be emitted
179 /// directly into the return value slot.  If GC does interfere, a final
180 /// move will be performed.
181 void AggExprEmitter::EmitGCMove(const Expr *E, RValue Src) {
182   if (Dest.requiresGCollection()) {
183     CharUnits size = CGF.getContext().getTypeSizeInChars(E->getType());
184     const llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType());
185     llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity());
186     CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, Dest.getAddr(),
187                                                     Src.getAggregateAddr(),
188                                                     SizeVal);
189   }
190 }
191 
192 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
193 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore) {
194   assert(Src.isAggregate() && "value must be aggregate value!");
195 
196   // If Dest is ignored, then we're evaluating an aggregate expression
197   // in a context (like an expression statement) that doesn't care
198   // about the result.  C says that an lvalue-to-rvalue conversion is
199   // performed in these cases; C++ says that it is not.  In either
200   // case, we don't actually need to do anything unless the value is
201   // volatile.
202   if (Dest.isIgnored()) {
203     if (!Src.isVolatileQualified() ||
204         CGF.CGM.getLangOptions().CPlusPlus ||
205         (IgnoreResult && Ignore))
206       return;
207 
208     // If the source is volatile, we must read from it; to do that, we need
209     // some place to put it.
210     Dest = CGF.CreateAggTemp(E->getType(), "agg.tmp");
211   }
212 
213   if (Dest.requiresGCollection()) {
214     CharUnits size = CGF.getContext().getTypeSizeInChars(E->getType());
215     const llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType());
216     llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity());
217     CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF,
218                                                       Dest.getAddr(),
219                                                       Src.getAggregateAddr(),
220                                                       SizeVal);
221     return;
222   }
223   // If the result of the assignment is used, copy the LHS there also.
224   // FIXME: Pass VolatileDest as well.  I think we also need to merge volatile
225   // from the source as well, as we can't eliminate it if either operand
226   // is volatile, unless copy has volatile for both source and destination..
227   CGF.EmitAggregateCopy(Dest.getAddr(), Src.getAggregateAddr(), E->getType(),
228                         Dest.isVolatile()|Src.isVolatileQualified());
229 }
230 
231 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
232 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore) {
233   assert(Src.isSimple() && "Can't have aggregate bitfield, vector, etc");
234 
235   EmitFinalDestCopy(E, RValue::getAggregate(Src.getAddress(),
236                                             Src.isVolatileQualified()),
237                     Ignore);
238 }
239 
240 //===----------------------------------------------------------------------===//
241 //                            Visitor Methods
242 //===----------------------------------------------------------------------===//
243 
244 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){
245   Visit(E->GetTemporaryExpr());
246 }
247 
248 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) {
249   EmitFinalDestCopy(e, CGF.getOpaqueLValueMapping(e));
250 }
251 
252 void
253 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
254   if (E->getType().isPODType(CGF.getContext())) {
255     // For a POD type, just emit a load of the lvalue + a copy, because our
256     // compound literal might alias the destination.
257     // FIXME: This is a band-aid; the real problem appears to be in our handling
258     // of assignments, where we store directly into the LHS without checking
259     // whether anything in the RHS aliases.
260     EmitAggLoadOfLValue(E);
261     return;
262   }
263 
264   AggValueSlot Slot = EnsureSlot(E->getType());
265   CGF.EmitAggExpr(E->getInitializer(), Slot);
266 }
267 
268 
269 void AggExprEmitter::VisitCastExpr(CastExpr *E) {
270   switch (E->getCastKind()) {
271   case CK_Dynamic: {
272     assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?");
273     LValue LV = CGF.EmitCheckedLValue(E->getSubExpr());
274     // FIXME: Do we also need to handle property references here?
275     if (LV.isSimple())
276       CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E));
277     else
278       CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast");
279 
280     if (!Dest.isIgnored())
281       CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination");
282     break;
283   }
284 
285   case CK_ToUnion: {
286     if (Dest.isIgnored()) break;
287 
288     // GCC union extension
289     QualType Ty = E->getSubExpr()->getType();
290     QualType PtrTy = CGF.getContext().getPointerType(Ty);
291     llvm::Value *CastPtr = Builder.CreateBitCast(Dest.getAddr(),
292                                                  CGF.ConvertType(PtrTy));
293     EmitInitializationToLValue(E->getSubExpr(),
294                                CGF.MakeAddrLValue(CastPtr, Ty));
295     break;
296   }
297 
298   case CK_DerivedToBase:
299   case CK_BaseToDerived:
300   case CK_UncheckedDerivedToBase: {
301     assert(0 && "cannot perform hierarchy conversion in EmitAggExpr: "
302                 "should have been unpacked before we got here");
303     break;
304   }
305 
306   case CK_GetObjCProperty: {
307     LValue LV = CGF.EmitLValue(E->getSubExpr());
308     assert(LV.isPropertyRef());
309     RValue RV = CGF.EmitLoadOfPropertyRefLValue(LV, getReturnValueSlot());
310     EmitGCMove(E, RV);
311     break;
312   }
313 
314   case CK_LValueToRValue: // hope for downstream optimization
315   case CK_NoOp:
316   case CK_UserDefinedConversion:
317   case CK_ConstructorConversion:
318     assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(),
319                                                    E->getType()) &&
320            "Implicit cast types must be compatible");
321     Visit(E->getSubExpr());
322     break;
323 
324   case CK_LValueBitCast:
325     llvm_unreachable("should not be emitting lvalue bitcast as rvalue");
326     break;
327 
328   case CK_Dependent:
329   case CK_BitCast:
330   case CK_ArrayToPointerDecay:
331   case CK_FunctionToPointerDecay:
332   case CK_NullToPointer:
333   case CK_NullToMemberPointer:
334   case CK_BaseToDerivedMemberPointer:
335   case CK_DerivedToBaseMemberPointer:
336   case CK_MemberPointerToBoolean:
337   case CK_IntegralToPointer:
338   case CK_PointerToIntegral:
339   case CK_PointerToBoolean:
340   case CK_ToVoid:
341   case CK_VectorSplat:
342   case CK_IntegralCast:
343   case CK_IntegralToBoolean:
344   case CK_IntegralToFloating:
345   case CK_FloatingToIntegral:
346   case CK_FloatingToBoolean:
347   case CK_FloatingCast:
348   case CK_AnyPointerToObjCPointerCast:
349   case CK_AnyPointerToBlockPointerCast:
350   case CK_ObjCObjectLValueCast:
351   case CK_FloatingRealToComplex:
352   case CK_FloatingComplexToReal:
353   case CK_FloatingComplexToBoolean:
354   case CK_FloatingComplexCast:
355   case CK_FloatingComplexToIntegralComplex:
356   case CK_IntegralRealToComplex:
357   case CK_IntegralComplexToReal:
358   case CK_IntegralComplexToBoolean:
359   case CK_IntegralComplexCast:
360   case CK_IntegralComplexToFloatingComplex:
361   case CK_ObjCProduceObject:
362   case CK_ObjCConsumeObject:
363   case CK_ObjCReclaimReturnedObject:
364     llvm_unreachable("cast kind invalid for aggregate types");
365   }
366 }
367 
368 void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
369   if (E->getCallReturnType()->isReferenceType()) {
370     EmitAggLoadOfLValue(E);
371     return;
372   }
373 
374   RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot());
375   EmitGCMove(E, RV);
376 }
377 
378 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
379   RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot());
380   EmitGCMove(E, RV);
381 }
382 
383 void AggExprEmitter::VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
384   llvm_unreachable("direct property access not surrounded by "
385                    "lvalue-to-rvalue cast");
386 }
387 
388 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
389   CGF.EmitIgnoredExpr(E->getLHS());
390   Visit(E->getRHS());
391 }
392 
393 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
394   CodeGenFunction::StmtExprEvaluation eval(CGF);
395   CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest);
396 }
397 
398 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
399   if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI)
400     VisitPointerToDataMemberBinaryOperator(E);
401   else
402     CGF.ErrorUnsupported(E, "aggregate binary expression");
403 }
404 
405 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator(
406                                                     const BinaryOperator *E) {
407   LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E);
408   EmitFinalDestCopy(E, LV);
409 }
410 
411 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
412   // For an assignment to work, the value on the right has
413   // to be compatible with the value on the left.
414   assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
415                                                  E->getRHS()->getType())
416          && "Invalid assignment");
417 
418   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->getLHS()))
419     if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
420       if (VD->hasAttr<BlocksAttr>() &&
421           E->getRHS()->HasSideEffects(CGF.getContext())) {
422         // When __block variable on LHS, the RHS must be evaluated first
423         // as it may change the 'forwarding' field via call to Block_copy.
424         LValue RHS = CGF.EmitLValue(E->getRHS());
425         LValue LHS = CGF.EmitLValue(E->getLHS());
426         bool GCollection = false;
427         if (CGF.getContext().getLangOptions().getGCMode())
428           GCollection = TypeRequiresGCollection(E->getLHS()->getType());
429         Dest = AggValueSlot::forLValue(LHS, true, GCollection);
430         EmitFinalDestCopy(E, RHS, true);
431         return;
432       }
433 
434   LValue LHS = CGF.EmitLValue(E->getLHS());
435 
436   // We have to special case property setters, otherwise we must have
437   // a simple lvalue (no aggregates inside vectors, bitfields).
438   if (LHS.isPropertyRef()) {
439     const ObjCPropertyRefExpr *RE = LHS.getPropertyRefExpr();
440     QualType ArgType = RE->getSetterArgType();
441     RValue Src;
442     if (ArgType->isReferenceType())
443       Src = CGF.EmitReferenceBindingToExpr(E->getRHS(), 0);
444     else {
445       AggValueSlot Slot = EnsureSlot(E->getRHS()->getType());
446       CGF.EmitAggExpr(E->getRHS(), Slot);
447       Src = Slot.asRValue();
448     }
449     CGF.EmitStoreThroughPropertyRefLValue(Src, LHS);
450   } else {
451     bool GCollection = false;
452     if (CGF.getContext().getLangOptions().getGCMode())
453       GCollection = TypeRequiresGCollection(E->getLHS()->getType());
454 
455     // Codegen the RHS so that it stores directly into the LHS.
456     AggValueSlot LHSSlot = AggValueSlot::forLValue(LHS, true,
457                                                    GCollection);
458     CGF.EmitAggExpr(E->getRHS(), LHSSlot, false);
459     EmitFinalDestCopy(E, LHS, true);
460   }
461 }
462 
463 void AggExprEmitter::
464 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
465   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
466   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
467   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
468 
469   // Bind the common expression if necessary.
470   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
471 
472   CodeGenFunction::ConditionalEvaluation eval(CGF);
473   CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock);
474 
475   // Save whether the destination's lifetime is externally managed.
476   bool DestLifetimeManaged = Dest.isLifetimeExternallyManaged();
477 
478   eval.begin(CGF);
479   CGF.EmitBlock(LHSBlock);
480   Visit(E->getTrueExpr());
481   eval.end(CGF);
482 
483   assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!");
484   CGF.Builder.CreateBr(ContBlock);
485 
486   // If the result of an agg expression is unused, then the emission
487   // of the LHS might need to create a destination slot.  That's fine
488   // with us, and we can safely emit the RHS into the same slot, but
489   // we shouldn't claim that its lifetime is externally managed.
490   Dest.setLifetimeExternallyManaged(DestLifetimeManaged);
491 
492   eval.begin(CGF);
493   CGF.EmitBlock(RHSBlock);
494   Visit(E->getFalseExpr());
495   eval.end(CGF);
496 
497   CGF.EmitBlock(ContBlock);
498 }
499 
500 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) {
501   Visit(CE->getChosenSubExpr(CGF.getContext()));
502 }
503 
504 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
505   llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
506   llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
507 
508   if (!ArgPtr) {
509     CGF.ErrorUnsupported(VE, "aggregate va_arg expression");
510     return;
511   }
512 
513   EmitFinalDestCopy(VE, CGF.MakeAddrLValue(ArgPtr, VE->getType()));
514 }
515 
516 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
517   // Ensure that we have a slot, but if we already do, remember
518   // whether its lifetime was externally managed.
519   bool WasManaged = Dest.isLifetimeExternallyManaged();
520   Dest = EnsureSlot(E->getType());
521   Dest.setLifetimeExternallyManaged();
522 
523   Visit(E->getSubExpr());
524 
525   // Set up the temporary's destructor if its lifetime wasn't already
526   // being managed.
527   if (!WasManaged)
528     CGF.EmitCXXTemporary(E->getTemporary(), Dest.getAddr());
529 }
530 
531 void
532 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) {
533   AggValueSlot Slot = EnsureSlot(E->getType());
534   CGF.EmitCXXConstructExpr(E, Slot);
535 }
536 
537 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
538   CGF.EmitExprWithCleanups(E, Dest);
539 }
540 
541 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
542   QualType T = E->getType();
543   AggValueSlot Slot = EnsureSlot(T);
544   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T));
545 }
546 
547 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
548   QualType T = E->getType();
549   AggValueSlot Slot = EnsureSlot(T);
550   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T));
551 }
552 
553 /// isSimpleZero - If emitting this value will obviously just cause a store of
554 /// zero to memory, return true.  This can return false if uncertain, so it just
555 /// handles simple cases.
556 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) {
557   E = E->IgnoreParens();
558 
559   // 0
560   if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E))
561     return IL->getValue() == 0;
562   // +0.0
563   if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E))
564     return FL->getValue().isPosZero();
565   // int()
566   if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) &&
567       CGF.getTypes().isZeroInitializable(E->getType()))
568     return true;
569   // (int*)0 - Null pointer expressions.
570   if (const CastExpr *ICE = dyn_cast<CastExpr>(E))
571     return ICE->getCastKind() == CK_NullToPointer;
572   // '\0'
573   if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E))
574     return CL->getValue() == 0;
575 
576   // Otherwise, hard case: conservatively return false.
577   return false;
578 }
579 
580 
581 void
582 AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV) {
583   QualType type = LV.getType();
584   // FIXME: Ignore result?
585   // FIXME: Are initializers affected by volatile?
586   if (Dest.isZeroed() && isSimpleZero(E, CGF)) {
587     // Storing "i32 0" to a zero'd memory location is a noop.
588   } else if (isa<ImplicitValueInitExpr>(E)) {
589     EmitNullInitializationToLValue(LV);
590   } else if (type->isReferenceType()) {
591     RValue RV = CGF.EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0);
592     CGF.EmitStoreThroughLValue(RV, LV);
593   } else if (type->isAnyComplexType()) {
594     CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false);
595   } else if (CGF.hasAggregateLLVMType(type)) {
596     CGF.EmitAggExpr(E, AggValueSlot::forLValue(LV, true, false,
597                                                Dest.isZeroed()));
598   } else if (LV.isSimple()) {
599     CGF.EmitScalarInit(E, /*D=*/0, LV, /*Captured=*/false);
600   } else {
601     CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV);
602   }
603 }
604 
605 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) {
606   QualType type = lv.getType();
607 
608   // If the destination slot is already zeroed out before the aggregate is
609   // copied into it, we don't have to emit any zeros here.
610   if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type))
611     return;
612 
613   if (!CGF.hasAggregateLLVMType(type)) {
614     // For non-aggregates, we can store zero
615     llvm::Value *null = llvm::Constant::getNullValue(CGF.ConvertType(type));
616     CGF.EmitStoreThroughLValue(RValue::get(null), lv);
617   } else {
618     // There's a potential optimization opportunity in combining
619     // memsets; that would be easy for arrays, but relatively
620     // difficult for structures with the current code.
621     CGF.EmitNullInitialization(lv.getAddress(), lv.getType());
622   }
623 }
624 
625 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
626 #if 0
627   // FIXME: Assess perf here?  Figure out what cases are worth optimizing here
628   // (Length of globals? Chunks of zeroed-out space?).
629   //
630   // If we can, prefer a copy from a global; this is a lot less code for long
631   // globals, and it's easier for the current optimizers to analyze.
632   if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) {
633     llvm::GlobalVariable* GV =
634     new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true,
635                              llvm::GlobalValue::InternalLinkage, C, "");
636     EmitFinalDestCopy(E, CGF.MakeAddrLValue(GV, E->getType()));
637     return;
638   }
639 #endif
640   if (E->hadArrayRangeDesignator())
641     CGF.ErrorUnsupported(E, "GNU array range designator extension");
642 
643   llvm::Value *DestPtr = Dest.getAddr();
644 
645   // Handle initialization of an array.
646   if (E->getType()->isArrayType()) {
647     const llvm::PointerType *APType =
648       cast<llvm::PointerType>(DestPtr->getType());
649     const llvm::ArrayType *AType =
650       cast<llvm::ArrayType>(APType->getElementType());
651 
652     uint64_t NumInitElements = E->getNumInits();
653 
654     if (E->getNumInits() > 0) {
655       QualType T1 = E->getType();
656       QualType T2 = E->getInit(0)->getType();
657       if (CGF.getContext().hasSameUnqualifiedType(T1, T2)) {
658         EmitAggLoadOfLValue(E->getInit(0));
659         return;
660       }
661     }
662 
663     uint64_t NumArrayElements = AType->getNumElements();
664     assert(NumInitElements <= NumArrayElements);
665 
666     QualType elementType = E->getType().getCanonicalType();
667     elementType = CGF.getContext().getQualifiedType(
668                     cast<ArrayType>(elementType)->getElementType(),
669                     elementType.getQualifiers() + Dest.getQualifiers());
670 
671     // DestPtr is an array*.  Construct an elementType* by drilling
672     // down a level.
673     llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
674     llvm::Value *indices[] = { zero, zero };
675     llvm::Value *begin =
676       Builder.CreateInBoundsGEP(DestPtr, indices, indices+2, "arrayinit.begin");
677 
678     // Exception safety requires us to destroy all the
679     // already-constructed members if an initializer throws.
680     // For that, we'll need an EH cleanup.
681     QualType::DestructionKind dtorKind = elementType.isDestructedType();
682     llvm::AllocaInst *endOfInit = 0;
683     EHScopeStack::stable_iterator cleanup;
684     if (CGF.needsEHCleanup(dtorKind)) {
685       // In principle we could tell the cleanup where we are more
686       // directly, but the control flow can get so varied here that it
687       // would actually be quite complex.  Therefore we go through an
688       // alloca.
689       endOfInit = CGF.CreateTempAlloca(begin->getType(),
690                                        "arrayinit.endOfInit");
691       Builder.CreateStore(begin, endOfInit);
692       CGF.pushPartialArrayCleanup(begin, elementType,
693                                   CGF.getDestroyer(dtorKind), endOfInit);
694       cleanup = CGF.EHStack.stable_begin();
695 
696     // Otherwise, remember that we didn't need a cleanup.
697     } else {
698       dtorKind = QualType::DK_none;
699     }
700 
701     llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1);
702 
703     // The 'current element to initialize'.  The invariants on this
704     // variable are complicated.  Essentially, after each iteration of
705     // the loop, it points to the last initialized element, except
706     // that it points to the beginning of the array before any
707     // elements have been initialized.
708     llvm::Value *element = begin;
709 
710     // Emit the explicit initializers.
711     for (uint64_t i = 0; i != NumInitElements; ++i) {
712       // Advance to the next element.
713       if (i > 0)
714         element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element");
715 
716       LValue elementLV = CGF.MakeAddrLValue(element, elementType);
717       EmitInitializationToLValue(E->getInit(i), elementLV);
718 
719       // Tell the cleanup that it needs to destroy this element.
720       // TODO: some of these stores can be trivially observed to be
721       // unnecessary.
722       if (endOfInit) Builder.CreateStore(element, endOfInit);
723     }
724 
725     // Check whether there's a non-trivial array-fill expression.
726     // Note that this will be a CXXConstructExpr even if the element
727     // type is an array (or array of array, etc.) of class type.
728     Expr *filler = E->getArrayFiller();
729     bool hasTrivialFiller = true;
730     if (CXXConstructExpr *cons = dyn_cast_or_null<CXXConstructExpr>(filler)) {
731       assert(cons->getConstructor()->isDefaultConstructor());
732       hasTrivialFiller = cons->getConstructor()->isTrivial();
733     }
734 
735     // Any remaining elements need to be zero-initialized, possibly
736     // using the filler expression.  We can skip this if the we're
737     // emitting to zeroed memory.
738     if (NumInitElements != NumArrayElements &&
739         !(Dest.isZeroed() && hasTrivialFiller &&
740           CGF.getTypes().isZeroInitializable(elementType))) {
741 
742       // Use an actual loop.  This is basically
743       //   do { *array++ = filler; } while (array != end);
744 
745       // Advance to the start of the rest of the array.
746       if (NumInitElements)
747         element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start");
748 
749       // Compute the end of the array.
750       llvm::Value *end = Builder.CreateInBoundsGEP(begin,
751                         llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements),
752                                                    "arrayinit.end");
753 
754       llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
755       llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
756 
757       // Jump into the body.
758       CGF.EmitBlock(bodyBB);
759       llvm::PHINode *currentElement =
760         Builder.CreatePHI(element->getType(), 2, "arrayinit.cur");
761       currentElement->addIncoming(element, entryBB);
762 
763       // Emit the actual filler expression.
764       LValue elementLV = CGF.MakeAddrLValue(currentElement, elementType);
765       if (filler)
766         EmitInitializationToLValue(filler, elementLV);
767       else
768         EmitNullInitializationToLValue(elementLV);
769 
770       // Tell the EH cleanup that we finished with that element.
771       if (endOfInit) Builder.CreateStore(element, endOfInit);
772 
773       // Move on to the next element.
774       llvm::Value *nextElement =
775         Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next");
776 
777       // Leave the loop if we're done.
778       llvm::Value *done = Builder.CreateICmpEQ(nextElement, end,
779                                                "arrayinit.done");
780       llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
781       Builder.CreateCondBr(done, endBB, bodyBB);
782       currentElement->addIncoming(nextElement, Builder.GetInsertBlock());
783 
784       CGF.EmitBlock(endBB);
785     }
786 
787     // Leave the partial-array cleanup if we entered one.
788     if (dtorKind) CGF.DeactivateCleanupBlock(cleanup);
789 
790     return;
791   }
792 
793   assert(E->getType()->isRecordType() && "Only support structs/unions here!");
794 
795   // Do struct initialization; this code just sets each individual member
796   // to the approprate value.  This makes bitfield support automatic;
797   // the disadvantage is that the generated code is more difficult for
798   // the optimizer, especially with bitfields.
799   unsigned NumInitElements = E->getNumInits();
800   RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl();
801 
802   if (E->getType()->isUnionType()) {
803     // Only initialize one field of a union. The field itself is
804     // specified by the initializer list.
805     if (!E->getInitializedFieldInUnion()) {
806       // Empty union; we have nothing to do.
807 
808 #ifndef NDEBUG
809       // Make sure that it's really an empty and not a failure of
810       // semantic analysis.
811       for (RecordDecl::field_iterator Field = SD->field_begin(),
812                                    FieldEnd = SD->field_end();
813            Field != FieldEnd; ++Field)
814         assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed");
815 #endif
816       return;
817     }
818 
819     // FIXME: volatility
820     FieldDecl *Field = E->getInitializedFieldInUnion();
821 
822     LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestPtr, Field, 0);
823     if (NumInitElements) {
824       // Store the initializer into the field
825       EmitInitializationToLValue(E->getInit(0), FieldLoc);
826     } else {
827       // Default-initialize to null.
828       EmitNullInitializationToLValue(FieldLoc);
829     }
830 
831     return;
832   }
833 
834   // Here we iterate over the fields; this makes it simpler to both
835   // default-initialize fields and skip over unnamed fields.
836   unsigned CurInitVal = 0;
837   for (RecordDecl::field_iterator Field = SD->field_begin(),
838                                FieldEnd = SD->field_end();
839        Field != FieldEnd; ++Field) {
840     // We're done once we hit the flexible array member
841     if (Field->getType()->isIncompleteArrayType())
842       break;
843 
844     if (Field->isUnnamedBitfield())
845       continue;
846 
847     // Don't emit GEP before a noop store of zero.
848     if (CurInitVal == NumInitElements && Dest.isZeroed() &&
849         CGF.getTypes().isZeroInitializable(E->getType()))
850       break;
851 
852     // FIXME: volatility
853     LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestPtr, *Field, 0);
854     // We never generate write-barries for initialized fields.
855     FieldLoc.setNonGC(true);
856 
857     if (CurInitVal < NumInitElements) {
858       // Store the initializer into the field.
859       EmitInitializationToLValue(E->getInit(CurInitVal++), FieldLoc);
860     } else {
861       // We're out of initalizers; default-initialize to null
862       EmitNullInitializationToLValue(FieldLoc);
863     }
864 
865     // If the GEP didn't get used because of a dead zero init or something
866     // else, clean it up for -O0 builds and general tidiness.
867     if (FieldLoc.isSimple())
868       if (llvm::GetElementPtrInst *GEP =
869             dyn_cast<llvm::GetElementPtrInst>(FieldLoc.getAddress()))
870         if (GEP->use_empty())
871           GEP->eraseFromParent();
872   }
873 }
874 
875 //===----------------------------------------------------------------------===//
876 //                        Entry Points into this File
877 //===----------------------------------------------------------------------===//
878 
879 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of
880 /// non-zero bytes that will be stored when outputting the initializer for the
881 /// specified initializer expression.
882 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) {
883   E = E->IgnoreParens();
884 
885   // 0 and 0.0 won't require any non-zero stores!
886   if (isSimpleZero(E, CGF)) return CharUnits::Zero();
887 
888   // If this is an initlist expr, sum up the size of sizes of the (present)
889   // elements.  If this is something weird, assume the whole thing is non-zero.
890   const InitListExpr *ILE = dyn_cast<InitListExpr>(E);
891   if (ILE == 0 || !CGF.getTypes().isZeroInitializable(ILE->getType()))
892     return CGF.getContext().getTypeSizeInChars(E->getType());
893 
894   // InitListExprs for structs have to be handled carefully.  If there are
895   // reference members, we need to consider the size of the reference, not the
896   // referencee.  InitListExprs for unions and arrays can't have references.
897   if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
898     if (!RT->isUnionType()) {
899       RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl();
900       CharUnits NumNonZeroBytes = CharUnits::Zero();
901 
902       unsigned ILEElement = 0;
903       for (RecordDecl::field_iterator Field = SD->field_begin(),
904            FieldEnd = SD->field_end(); Field != FieldEnd; ++Field) {
905         // We're done once we hit the flexible array member or run out of
906         // InitListExpr elements.
907         if (Field->getType()->isIncompleteArrayType() ||
908             ILEElement == ILE->getNumInits())
909           break;
910         if (Field->isUnnamedBitfield())
911           continue;
912 
913         const Expr *E = ILE->getInit(ILEElement++);
914 
915         // Reference values are always non-null and have the width of a pointer.
916         if (Field->getType()->isReferenceType())
917           NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits(
918               CGF.getContext().Target.getPointerWidth(0));
919         else
920           NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF);
921       }
922 
923       return NumNonZeroBytes;
924     }
925   }
926 
927 
928   CharUnits NumNonZeroBytes = CharUnits::Zero();
929   for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
930     NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF);
931   return NumNonZeroBytes;
932 }
933 
934 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of
935 /// zeros in it, emit a memset and avoid storing the individual zeros.
936 ///
937 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E,
938                                      CodeGenFunction &CGF) {
939   // If the slot is already known to be zeroed, nothing to do.  Don't mess with
940   // volatile stores.
941   if (Slot.isZeroed() || Slot.isVolatile() || Slot.getAddr() == 0) return;
942 
943   // C++ objects with a user-declared constructor don't need zero'ing.
944   if (CGF.getContext().getLangOptions().CPlusPlus)
945     if (const RecordType *RT = CGF.getContext()
946                        .getBaseElementType(E->getType())->getAs<RecordType>()) {
947       const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
948       if (RD->hasUserDeclaredConstructor())
949         return;
950     }
951 
952   // If the type is 16-bytes or smaller, prefer individual stores over memset.
953   std::pair<CharUnits, CharUnits> TypeInfo =
954     CGF.getContext().getTypeInfoInChars(E->getType());
955   if (TypeInfo.first <= CharUnits::fromQuantity(16))
956     return;
957 
958   // Check to see if over 3/4 of the initializer are known to be zero.  If so,
959   // we prefer to emit memset + individual stores for the rest.
960   CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF);
961   if (NumNonZeroBytes*4 > TypeInfo.first)
962     return;
963 
964   // Okay, it seems like a good idea to use an initial memset, emit the call.
965   llvm::Constant *SizeVal = CGF.Builder.getInt64(TypeInfo.first.getQuantity());
966   CharUnits Align = TypeInfo.second;
967 
968   llvm::Value *Loc = Slot.getAddr();
969   const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
970 
971   Loc = CGF.Builder.CreateBitCast(Loc, BP);
972   CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal,
973                            Align.getQuantity(), false);
974 
975   // Tell the AggExprEmitter that the slot is known zero.
976   Slot.setZeroed();
977 }
978 
979 
980 
981 
982 /// EmitAggExpr - Emit the computation of the specified expression of aggregate
983 /// type.  The result is computed into DestPtr.  Note that if DestPtr is null,
984 /// the value of the aggregate expression is not needed.  If VolatileDest is
985 /// true, DestPtr cannot be 0.
986 ///
987 /// \param IsInitializer - true if this evaluation is initializing an
988 /// object whose lifetime is already being managed.
989 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot,
990                                   bool IgnoreResult) {
991   assert(E && hasAggregateLLVMType(E->getType()) &&
992          "Invalid aggregate expression to emit");
993   assert((Slot.getAddr() != 0 || Slot.isIgnored()) &&
994          "slot has bits but no address");
995 
996   // Optimize the slot if possible.
997   CheckAggExprForMemSetUse(Slot, E, *this);
998 
999   AggExprEmitter(*this, Slot, IgnoreResult).Visit(const_cast<Expr*>(E));
1000 }
1001 
1002 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) {
1003   assert(hasAggregateLLVMType(E->getType()) && "Invalid argument!");
1004   llvm::Value *Temp = CreateMemTemp(E->getType());
1005   LValue LV = MakeAddrLValue(Temp, E->getType());
1006   EmitAggExpr(E, AggValueSlot::forLValue(LV, false));
1007   return LV;
1008 }
1009 
1010 void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr,
1011                                         llvm::Value *SrcPtr, QualType Ty,
1012                                         bool isVolatile) {
1013   assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
1014 
1015   if (getContext().getLangOptions().CPlusPlus) {
1016     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1017       CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
1018       assert((Record->hasTrivialCopyConstructor() ||
1019               Record->hasTrivialCopyAssignment()) &&
1020              "Trying to aggregate-copy a type without a trivial copy "
1021              "constructor or assignment operator");
1022       // Ignore empty classes in C++.
1023       if (Record->isEmpty())
1024         return;
1025     }
1026   }
1027 
1028   // Aggregate assignment turns into llvm.memcpy.  This is almost valid per
1029   // C99 6.5.16.1p3, which states "If the value being stored in an object is
1030   // read from another object that overlaps in anyway the storage of the first
1031   // object, then the overlap shall be exact and the two objects shall have
1032   // qualified or unqualified versions of a compatible type."
1033   //
1034   // memcpy is not defined if the source and destination pointers are exactly
1035   // equal, but other compilers do this optimization, and almost every memcpy
1036   // implementation handles this case safely.  If there is a libc that does not
1037   // safely handle this, we can add a target hook.
1038 
1039   // Get size and alignment info for this aggregate.
1040   std::pair<CharUnits, CharUnits> TypeInfo =
1041     getContext().getTypeInfoInChars(Ty);
1042 
1043   // FIXME: Handle variable sized types.
1044 
1045   // FIXME: If we have a volatile struct, the optimizer can remove what might
1046   // appear to be `extra' memory ops:
1047   //
1048   // volatile struct { int i; } a, b;
1049   //
1050   // int main() {
1051   //   a = b;
1052   //   a = b;
1053   // }
1054   //
1055   // we need to use a different call here.  We use isVolatile to indicate when
1056   // either the source or the destination is volatile.
1057 
1058   const llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType());
1059   const llvm::Type *DBP =
1060     llvm::Type::getInt8PtrTy(getLLVMContext(), DPT->getAddressSpace());
1061   DestPtr = Builder.CreateBitCast(DestPtr, DBP, "tmp");
1062 
1063   const llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType());
1064   const llvm::Type *SBP =
1065     llvm::Type::getInt8PtrTy(getLLVMContext(), SPT->getAddressSpace());
1066   SrcPtr = Builder.CreateBitCast(SrcPtr, SBP, "tmp");
1067 
1068   // Don't do any of the memmove_collectable tests if GC isn't set.
1069   if (CGM.getLangOptions().getGCMode() == LangOptions::NonGC) {
1070     // fall through
1071   } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
1072     RecordDecl *Record = RecordTy->getDecl();
1073     if (Record->hasObjectMember()) {
1074       CharUnits size = TypeInfo.first;
1075       const llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
1076       llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity());
1077       CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
1078                                                     SizeVal);
1079       return;
1080     }
1081   } else if (Ty->isArrayType()) {
1082     QualType BaseType = getContext().getBaseElementType(Ty);
1083     if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
1084       if (RecordTy->getDecl()->hasObjectMember()) {
1085         CharUnits size = TypeInfo.first;
1086         const llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
1087         llvm::Value *SizeVal =
1088           llvm::ConstantInt::get(SizeTy, size.getQuantity());
1089         CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
1090                                                       SizeVal);
1091         return;
1092       }
1093     }
1094   }
1095 
1096   Builder.CreateMemCpy(DestPtr, SrcPtr,
1097                        llvm::ConstantInt::get(IntPtrTy,
1098                                               TypeInfo.first.getQuantity()),
1099                        TypeInfo.second.getQuantity(), isVolatile);
1100 }
1101