1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Aggregate Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "CGObjCRuntime.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/StmtVisitor.h"
20 #include "llvm/Constants.h"
21 #include "llvm/Function.h"
22 #include "llvm/GlobalVariable.h"
23 #include "llvm/Intrinsics.h"
24 using namespace clang;
25 using namespace CodeGen;
26 
27 //===----------------------------------------------------------------------===//
28 //                        Aggregate Expression Emitter
29 //===----------------------------------------------------------------------===//
30 
31 namespace  {
32 class AggExprEmitter : public StmtVisitor<AggExprEmitter> {
33   CodeGenFunction &CGF;
34   CGBuilderTy &Builder;
35   AggValueSlot Dest;
36   bool IgnoreResult;
37 
38   ReturnValueSlot getReturnValueSlot() const {
39     // If the destination slot requires garbage collection, we can't
40     // use the real return value slot, because we have to use the GC
41     // API.
42     if (Dest.requiresGCollection()) return ReturnValueSlot();
43 
44     return ReturnValueSlot(Dest.getAddr(), Dest.isVolatile());
45   }
46 
47   AggValueSlot EnsureSlot(QualType T) {
48     if (!Dest.isIgnored()) return Dest;
49     return CGF.CreateAggTemp(T, "agg.tmp.ensured");
50   }
51 
52 public:
53   AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest,
54                  bool ignore)
55     : CGF(cgf), Builder(CGF.Builder), Dest(Dest),
56       IgnoreResult(ignore) {
57   }
58 
59   //===--------------------------------------------------------------------===//
60   //                               Utilities
61   //===--------------------------------------------------------------------===//
62 
63   /// EmitAggLoadOfLValue - Given an expression with aggregate type that
64   /// represents a value lvalue, this method emits the address of the lvalue,
65   /// then loads the result into DestPtr.
66   void EmitAggLoadOfLValue(const Expr *E);
67 
68   /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
69   void EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore = false);
70   void EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore = false);
71 
72   void EmitGCMove(const Expr *E, RValue Src);
73 
74   bool TypeRequiresGCollection(QualType T);
75 
76   //===--------------------------------------------------------------------===//
77   //                            Visitor Methods
78   //===--------------------------------------------------------------------===//
79 
80   void VisitStmt(Stmt *S) {
81     CGF.ErrorUnsupported(S, "aggregate expression");
82   }
83   void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
84   void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
85 
86   // l-values.
87   void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); }
88   void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
89   void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
90   void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
91   void VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
92     EmitAggLoadOfLValue(E);
93   }
94   void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
95     EmitAggLoadOfLValue(E);
96   }
97   void VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
98     EmitAggLoadOfLValue(E);
99   }
100   void VisitPredefinedExpr(const PredefinedExpr *E) {
101     EmitAggLoadOfLValue(E);
102   }
103 
104   // Operators.
105   void VisitCastExpr(CastExpr *E);
106   void VisitCallExpr(const CallExpr *E);
107   void VisitStmtExpr(const StmtExpr *E);
108   void VisitBinaryOperator(const BinaryOperator *BO);
109   void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO);
110   void VisitBinAssign(const BinaryOperator *E);
111   void VisitBinComma(const BinaryOperator *E);
112 
113   void VisitObjCMessageExpr(ObjCMessageExpr *E);
114   void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
115     EmitAggLoadOfLValue(E);
116   }
117   void VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E);
118   void VisitObjCImplicitSetterGetterRefExpr(ObjCImplicitSetterGetterRefExpr *E);
119 
120   void VisitConditionalOperator(const ConditionalOperator *CO);
121   void VisitChooseExpr(const ChooseExpr *CE);
122   void VisitInitListExpr(InitListExpr *E);
123   void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E);
124   void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
125     Visit(DAE->getExpr());
126   }
127   void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E);
128   void VisitCXXConstructExpr(const CXXConstructExpr *E);
129   void VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E);
130   void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E);
131   void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); }
132 
133   void VisitVAArgExpr(VAArgExpr *E);
134 
135   void EmitInitializationToLValue(Expr *E, LValue Address, QualType T);
136   void EmitNullInitializationToLValue(LValue Address, QualType T);
137   //  case Expr::ChooseExprClass:
138   void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); }
139 };
140 }  // end anonymous namespace.
141 
142 //===----------------------------------------------------------------------===//
143 //                                Utilities
144 //===----------------------------------------------------------------------===//
145 
146 /// EmitAggLoadOfLValue - Given an expression with aggregate type that
147 /// represents a value lvalue, this method emits the address of the lvalue,
148 /// then loads the result into DestPtr.
149 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
150   LValue LV = CGF.EmitLValue(E);
151   EmitFinalDestCopy(E, LV);
152 }
153 
154 /// \brief True if the given aggregate type requires special GC API calls.
155 bool AggExprEmitter::TypeRequiresGCollection(QualType T) {
156   // Only record types have members that might require garbage collection.
157   const RecordType *RecordTy = T->getAs<RecordType>();
158   if (!RecordTy) return false;
159 
160   // Don't mess with non-trivial C++ types.
161   RecordDecl *Record = RecordTy->getDecl();
162   if (isa<CXXRecordDecl>(Record) &&
163       (!cast<CXXRecordDecl>(Record)->hasTrivialCopyConstructor() ||
164        !cast<CXXRecordDecl>(Record)->hasTrivialDestructor()))
165     return false;
166 
167   // Check whether the type has an object member.
168   return Record->hasObjectMember();
169 }
170 
171 /// \brief Perform the final move to DestPtr if RequiresGCollection is set.
172 ///
173 /// The idea is that you do something like this:
174 ///   RValue Result = EmitSomething(..., getReturnValueSlot());
175 ///   EmitGCMove(E, Result);
176 /// If GC doesn't interfere, this will cause the result to be emitted
177 /// directly into the return value slot.  If GC does interfere, a final
178 /// move will be performed.
179 void AggExprEmitter::EmitGCMove(const Expr *E, RValue Src) {
180   if (Dest.requiresGCollection()) {
181     std::pair<uint64_t, unsigned> TypeInfo =
182       CGF.getContext().getTypeInfo(E->getType());
183     unsigned long size = TypeInfo.first/8;
184     const llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType());
185     llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size);
186     CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, Dest.getAddr(),
187                                                     Src.getAggregateAddr(),
188                                                     SizeVal);
189   }
190 }
191 
192 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
193 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore) {
194   assert(Src.isAggregate() && "value must be aggregate value!");
195 
196   // If Dest is ignored, then we're evaluating an aggregate expression
197   // in a context (like an expression statement) that doesn't care
198   // about the result.  C says that an lvalue-to-rvalue conversion is
199   // performed in these cases; C++ says that it is not.  In either
200   // case, we don't actually need to do anything unless the value is
201   // volatile.
202   if (Dest.isIgnored()) {
203     if (!Src.isVolatileQualified() ||
204         CGF.CGM.getLangOptions().CPlusPlus ||
205         (IgnoreResult && Ignore))
206       return;
207 
208     // If the source is volatile, we must read from it; to do that, we need
209     // some place to put it.
210     Dest = CGF.CreateAggTemp(E->getType(), "agg.tmp");
211   }
212 
213   if (Dest.requiresGCollection()) {
214     std::pair<uint64_t, unsigned> TypeInfo =
215     CGF.getContext().getTypeInfo(E->getType());
216     unsigned long size = TypeInfo.first/8;
217     const llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType());
218     llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size);
219     CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF,
220                                                       Dest.getAddr(),
221                                                       Src.getAggregateAddr(),
222                                                       SizeVal);
223     return;
224   }
225   // If the result of the assignment is used, copy the LHS there also.
226   // FIXME: Pass VolatileDest as well.  I think we also need to merge volatile
227   // from the source as well, as we can't eliminate it if either operand
228   // is volatile, unless copy has volatile for both source and destination..
229   CGF.EmitAggregateCopy(Dest.getAddr(), Src.getAggregateAddr(), E->getType(),
230                         Dest.isVolatile()|Src.isVolatileQualified());
231 }
232 
233 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
234 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore) {
235   assert(Src.isSimple() && "Can't have aggregate bitfield, vector, etc");
236 
237   EmitFinalDestCopy(E, RValue::getAggregate(Src.getAddress(),
238                                             Src.isVolatileQualified()),
239                     Ignore);
240 }
241 
242 //===----------------------------------------------------------------------===//
243 //                            Visitor Methods
244 //===----------------------------------------------------------------------===//
245 
246 void AggExprEmitter::VisitCastExpr(CastExpr *E) {
247   if (Dest.isIgnored() && E->getCastKind() != CK_Dynamic) {
248     Visit(E->getSubExpr());
249     return;
250   }
251 
252   switch (E->getCastKind()) {
253   case CK_Dynamic: {
254     assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?");
255     LValue LV = CGF.EmitCheckedLValue(E->getSubExpr());
256     // FIXME: Do we also need to handle property references here?
257     if (LV.isSimple())
258       CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E));
259     else
260       CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast");
261 
262     if (!Dest.isIgnored())
263       CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination");
264     break;
265   }
266 
267   case CK_ToUnion: {
268     // GCC union extension
269     QualType Ty = E->getSubExpr()->getType();
270     QualType PtrTy = CGF.getContext().getPointerType(Ty);
271     llvm::Value *CastPtr = Builder.CreateBitCast(Dest.getAddr(),
272                                                  CGF.ConvertType(PtrTy));
273     EmitInitializationToLValue(E->getSubExpr(), CGF.MakeAddrLValue(CastPtr, Ty),
274                                Ty);
275     break;
276   }
277 
278   case CK_DerivedToBase:
279   case CK_BaseToDerived:
280   case CK_UncheckedDerivedToBase: {
281     assert(0 && "cannot perform hierarchy conversion in EmitAggExpr: "
282                 "should have been unpacked before we got here");
283     break;
284   }
285 
286   case CK_NoOp:
287   case CK_LValueToRValue:
288   case CK_UserDefinedConversion:
289   case CK_ConstructorConversion:
290     assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(),
291                                                    E->getType()) &&
292            "Implicit cast types must be compatible");
293     Visit(E->getSubExpr());
294     break;
295 
296   case CK_LValueBitCast:
297     llvm_unreachable("should not be emitting lvalue bitcast as rvalue");
298     break;
299 
300   case CK_Dependent:
301   case CK_BitCast:
302   case CK_ArrayToPointerDecay:
303   case CK_FunctionToPointerDecay:
304   case CK_NullToPointer:
305   case CK_NullToMemberPointer:
306   case CK_BaseToDerivedMemberPointer:
307   case CK_DerivedToBaseMemberPointer:
308   case CK_MemberPointerToBoolean:
309   case CK_IntegralToPointer:
310   case CK_PointerToIntegral:
311   case CK_PointerToBoolean:
312   case CK_ToVoid:
313   case CK_VectorSplat:
314   case CK_IntegralCast:
315   case CK_IntegralToBoolean:
316   case CK_IntegralToFloating:
317   case CK_FloatingToIntegral:
318   case CK_FloatingToBoolean:
319   case CK_FloatingCast:
320   case CK_AnyPointerToObjCPointerCast:
321   case CK_AnyPointerToBlockPointerCast:
322   case CK_ObjCObjectLValueCast:
323   case CK_FloatingRealToComplex:
324   case CK_FloatingComplexToReal:
325   case CK_FloatingComplexToBoolean:
326   case CK_FloatingComplexCast:
327   case CK_FloatingComplexToIntegralComplex:
328   case CK_IntegralRealToComplex:
329   case CK_IntegralComplexToReal:
330   case CK_IntegralComplexToBoolean:
331   case CK_IntegralComplexCast:
332   case CK_IntegralComplexToFloatingComplex:
333     llvm_unreachable("cast kind invalid for aggregate types");
334   }
335 }
336 
337 void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
338   if (E->getCallReturnType()->isReferenceType()) {
339     EmitAggLoadOfLValue(E);
340     return;
341   }
342 
343   RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot());
344   EmitGCMove(E, RV);
345 }
346 
347 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
348   RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot());
349   EmitGCMove(E, RV);
350 }
351 
352 void AggExprEmitter::VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
353   RValue RV = CGF.EmitObjCPropertyGet(E, getReturnValueSlot());
354   EmitGCMove(E, RV);
355 }
356 
357 void AggExprEmitter::VisitObjCImplicitSetterGetterRefExpr(
358                                    ObjCImplicitSetterGetterRefExpr *E) {
359   RValue RV = CGF.EmitObjCPropertyGet(E, getReturnValueSlot());
360   EmitGCMove(E, RV);
361 }
362 
363 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
364   CGF.EmitAnyExpr(E->getLHS(), AggValueSlot::ignored(), true);
365   Visit(E->getRHS());
366 }
367 
368 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
369   CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest);
370 }
371 
372 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
373   if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI)
374     VisitPointerToDataMemberBinaryOperator(E);
375   else
376     CGF.ErrorUnsupported(E, "aggregate binary expression");
377 }
378 
379 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator(
380                                                     const BinaryOperator *E) {
381   LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E);
382   EmitFinalDestCopy(E, LV);
383 }
384 
385 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
386   // For an assignment to work, the value on the right has
387   // to be compatible with the value on the left.
388   assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
389                                                  E->getRHS()->getType())
390          && "Invalid assignment");
391   LValue LHS = CGF.EmitLValue(E->getLHS());
392 
393   // We have to special case property setters, otherwise we must have
394   // a simple lvalue (no aggregates inside vectors, bitfields).
395   if (LHS.isPropertyRef()) {
396     AggValueSlot Slot = EnsureSlot(E->getRHS()->getType());
397     CGF.EmitAggExpr(E->getRHS(), Slot);
398     CGF.EmitObjCPropertySet(LHS.getPropertyRefExpr(), Slot.asRValue());
399   } else if (LHS.isKVCRef()) {
400     AggValueSlot Slot = EnsureSlot(E->getRHS()->getType());
401     CGF.EmitAggExpr(E->getRHS(), Slot);
402     CGF.EmitObjCPropertySet(LHS.getKVCRefExpr(), Slot.asRValue());
403   } else {
404     bool GCollection = false;
405     if (CGF.getContext().getLangOptions().getGCMode())
406       GCollection = TypeRequiresGCollection(E->getLHS()->getType());
407 
408     // Codegen the RHS so that it stores directly into the LHS.
409     AggValueSlot LHSSlot = AggValueSlot::forLValue(LHS, true,
410                                                    GCollection);
411     CGF.EmitAggExpr(E->getRHS(), LHSSlot, false);
412     EmitFinalDestCopy(E, LHS, true);
413   }
414 }
415 
416 void AggExprEmitter::VisitConditionalOperator(const ConditionalOperator *E) {
417   if (!E->getLHS()) {
418     CGF.ErrorUnsupported(E, "conditional operator with missing LHS");
419     return;
420   }
421 
422   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
423   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
424   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
425 
426   CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock);
427 
428   CGF.BeginConditionalBranch();
429   CGF.EmitBlock(LHSBlock);
430 
431   // Save whether the destination's lifetime is externally managed.
432   bool DestLifetimeManaged = Dest.isLifetimeExternallyManaged();
433 
434   Visit(E->getLHS());
435   CGF.EndConditionalBranch();
436   CGF.EmitBranch(ContBlock);
437 
438   CGF.BeginConditionalBranch();
439   CGF.EmitBlock(RHSBlock);
440 
441   // If the result of an agg expression is unused, then the emission
442   // of the LHS might need to create a destination slot.  That's fine
443   // with us, and we can safely emit the RHS into the same slot, but
444   // we shouldn't claim that its lifetime is externally managed.
445   Dest.setLifetimeExternallyManaged(DestLifetimeManaged);
446 
447   Visit(E->getRHS());
448   CGF.EndConditionalBranch();
449   CGF.EmitBranch(ContBlock);
450 
451   CGF.EmitBlock(ContBlock);
452 }
453 
454 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) {
455   Visit(CE->getChosenSubExpr(CGF.getContext()));
456 }
457 
458 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
459   llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
460   llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
461 
462   if (!ArgPtr) {
463     CGF.ErrorUnsupported(VE, "aggregate va_arg expression");
464     return;
465   }
466 
467   EmitFinalDestCopy(VE, CGF.MakeAddrLValue(ArgPtr, VE->getType()));
468 }
469 
470 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
471   // Ensure that we have a slot, but if we already do, remember
472   // whether its lifetime was externally managed.
473   bool WasManaged = Dest.isLifetimeExternallyManaged();
474   Dest = EnsureSlot(E->getType());
475   Dest.setLifetimeExternallyManaged();
476 
477   Visit(E->getSubExpr());
478 
479   // Set up the temporary's destructor if its lifetime wasn't already
480   // being managed.
481   if (!WasManaged)
482     CGF.EmitCXXTemporary(E->getTemporary(), Dest.getAddr());
483 }
484 
485 void
486 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) {
487   AggValueSlot Slot = EnsureSlot(E->getType());
488   CGF.EmitCXXConstructExpr(E, Slot);
489 }
490 
491 void AggExprEmitter::VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E) {
492   CGF.EmitCXXExprWithTemporaries(E, Dest);
493 }
494 
495 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
496   QualType T = E->getType();
497   AggValueSlot Slot = EnsureSlot(T);
498   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T), T);
499 }
500 
501 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
502   QualType T = E->getType();
503   AggValueSlot Slot = EnsureSlot(T);
504   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T), T);
505 }
506 
507 void
508 AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV, QualType T) {
509   // FIXME: Ignore result?
510   // FIXME: Are initializers affected by volatile?
511   if (isa<ImplicitValueInitExpr>(E)) {
512     EmitNullInitializationToLValue(LV, T);
513   } else if (T->isReferenceType()) {
514     RValue RV = CGF.EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0);
515     CGF.EmitStoreThroughLValue(RV, LV, T);
516   } else if (T->isAnyComplexType()) {
517     CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false);
518   } else if (CGF.hasAggregateLLVMType(T)) {
519     CGF.EmitAggExpr(E, AggValueSlot::forAddr(LV.getAddress(), false, true));
520   } else {
521     CGF.EmitStoreThroughLValue(CGF.EmitAnyExpr(E), LV, T);
522   }
523 }
524 
525 void AggExprEmitter::EmitNullInitializationToLValue(LValue LV, QualType T) {
526   if (!CGF.hasAggregateLLVMType(T)) {
527     // For non-aggregates, we can store zero
528     llvm::Value *Null = llvm::Constant::getNullValue(CGF.ConvertType(T));
529     CGF.EmitStoreThroughLValue(RValue::get(Null), LV, T);
530   } else {
531     // There's a potential optimization opportunity in combining
532     // memsets; that would be easy for arrays, but relatively
533     // difficult for structures with the current code.
534     CGF.EmitNullInitialization(LV.getAddress(), T);
535   }
536 }
537 
538 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
539 #if 0
540   // FIXME: Assess perf here?  Figure out what cases are worth optimizing here
541   // (Length of globals? Chunks of zeroed-out space?).
542   //
543   // If we can, prefer a copy from a global; this is a lot less code for long
544   // globals, and it's easier for the current optimizers to analyze.
545   if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) {
546     llvm::GlobalVariable* GV =
547     new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true,
548                              llvm::GlobalValue::InternalLinkage, C, "");
549     EmitFinalDestCopy(E, CGF.MakeAddrLValue(GV, E->getType()));
550     return;
551   }
552 #endif
553   if (E->hadArrayRangeDesignator())
554     CGF.ErrorUnsupported(E, "GNU array range designator extension");
555 
556   llvm::Value *DestPtr = Dest.getAddr();
557 
558   // Handle initialization of an array.
559   if (E->getType()->isArrayType()) {
560     const llvm::PointerType *APType =
561       cast<llvm::PointerType>(DestPtr->getType());
562     const llvm::ArrayType *AType =
563       cast<llvm::ArrayType>(APType->getElementType());
564 
565     uint64_t NumInitElements = E->getNumInits();
566 
567     if (E->getNumInits() > 0) {
568       QualType T1 = E->getType();
569       QualType T2 = E->getInit(0)->getType();
570       if (CGF.getContext().hasSameUnqualifiedType(T1, T2)) {
571         EmitAggLoadOfLValue(E->getInit(0));
572         return;
573       }
574     }
575 
576     uint64_t NumArrayElements = AType->getNumElements();
577     QualType ElementType = CGF.getContext().getCanonicalType(E->getType());
578     ElementType = CGF.getContext().getAsArrayType(ElementType)->getElementType();
579 
580     // FIXME: were we intentionally ignoring address spaces and GC attributes?
581 
582     for (uint64_t i = 0; i != NumArrayElements; ++i) {
583       llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array");
584       LValue LV = CGF.MakeAddrLValue(NextVal, ElementType);
585       if (i < NumInitElements)
586         EmitInitializationToLValue(E->getInit(i), LV, ElementType);
587 
588       else
589         EmitNullInitializationToLValue(LV, ElementType);
590     }
591     return;
592   }
593 
594   assert(E->getType()->isRecordType() && "Only support structs/unions here!");
595 
596   // Do struct initialization; this code just sets each individual member
597   // to the approprate value.  This makes bitfield support automatic;
598   // the disadvantage is that the generated code is more difficult for
599   // the optimizer, especially with bitfields.
600   unsigned NumInitElements = E->getNumInits();
601   RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl();
602 
603   if (E->getType()->isUnionType()) {
604     // Only initialize one field of a union. The field itself is
605     // specified by the initializer list.
606     if (!E->getInitializedFieldInUnion()) {
607       // Empty union; we have nothing to do.
608 
609 #ifndef NDEBUG
610       // Make sure that it's really an empty and not a failure of
611       // semantic analysis.
612       for (RecordDecl::field_iterator Field = SD->field_begin(),
613                                    FieldEnd = SD->field_end();
614            Field != FieldEnd; ++Field)
615         assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed");
616 #endif
617       return;
618     }
619 
620     // FIXME: volatility
621     FieldDecl *Field = E->getInitializedFieldInUnion();
622     LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestPtr, Field, 0);
623 
624     if (NumInitElements) {
625       // Store the initializer into the field
626       EmitInitializationToLValue(E->getInit(0), FieldLoc, Field->getType());
627     } else {
628       // Default-initialize to null
629       EmitNullInitializationToLValue(FieldLoc, Field->getType());
630     }
631 
632     return;
633   }
634 
635   // Here we iterate over the fields; this makes it simpler to both
636   // default-initialize fields and skip over unnamed fields.
637   unsigned CurInitVal = 0;
638   for (RecordDecl::field_iterator Field = SD->field_begin(),
639                                FieldEnd = SD->field_end();
640        Field != FieldEnd; ++Field) {
641     // We're done once we hit the flexible array member
642     if (Field->getType()->isIncompleteArrayType())
643       break;
644 
645     if (Field->isUnnamedBitfield())
646       continue;
647 
648     // FIXME: volatility
649     LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestPtr, *Field, 0);
650     // We never generate write-barries for initialized fields.
651     FieldLoc.setNonGC(true);
652     if (CurInitVal < NumInitElements) {
653       // Store the initializer into the field.
654       EmitInitializationToLValue(E->getInit(CurInitVal++), FieldLoc,
655                                  Field->getType());
656     } else {
657       // We're out of initalizers; default-initialize to null
658       EmitNullInitializationToLValue(FieldLoc, Field->getType());
659     }
660   }
661 }
662 
663 //===----------------------------------------------------------------------===//
664 //                        Entry Points into this File
665 //===----------------------------------------------------------------------===//
666 
667 /// EmitAggExpr - Emit the computation of the specified expression of aggregate
668 /// type.  The result is computed into DestPtr.  Note that if DestPtr is null,
669 /// the value of the aggregate expression is not needed.  If VolatileDest is
670 /// true, DestPtr cannot be 0.
671 ///
672 /// \param IsInitializer - true if this evaluation is initializing an
673 /// object whose lifetime is already being managed.
674 //
675 // FIXME: Take Qualifiers object.
676 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot,
677                                   bool IgnoreResult) {
678   assert(E && hasAggregateLLVMType(E->getType()) &&
679          "Invalid aggregate expression to emit");
680   assert((Slot.getAddr() != 0 || Slot.isIgnored())
681          && "slot has bits but no address");
682 
683   AggExprEmitter(*this, Slot, IgnoreResult)
684     .Visit(const_cast<Expr*>(E));
685 }
686 
687 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) {
688   assert(hasAggregateLLVMType(E->getType()) && "Invalid argument!");
689   llvm::Value *Temp = CreateMemTemp(E->getType());
690   LValue LV = MakeAddrLValue(Temp, E->getType());
691   AggValueSlot Slot
692     = AggValueSlot::forAddr(Temp, LV.isVolatileQualified(), false);
693   EmitAggExpr(E, Slot);
694   return LV;
695 }
696 
697 void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr,
698                                         llvm::Value *SrcPtr, QualType Ty,
699                                         bool isVolatile) {
700   assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
701 
702   if (getContext().getLangOptions().CPlusPlus) {
703     if (const RecordType *RT = Ty->getAs<RecordType>()) {
704       CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
705       assert((Record->hasTrivialCopyConstructor() ||
706               Record->hasTrivialCopyAssignment()) &&
707              "Trying to aggregate-copy a type without a trivial copy "
708              "constructor or assignment operator");
709       // Ignore empty classes in C++.
710       if (Record->isEmpty())
711         return;
712     }
713   }
714 
715   // Aggregate assignment turns into llvm.memcpy.  This is almost valid per
716   // C99 6.5.16.1p3, which states "If the value being stored in an object is
717   // read from another object that overlaps in anyway the storage of the first
718   // object, then the overlap shall be exact and the two objects shall have
719   // qualified or unqualified versions of a compatible type."
720   //
721   // memcpy is not defined if the source and destination pointers are exactly
722   // equal, but other compilers do this optimization, and almost every memcpy
723   // implementation handles this case safely.  If there is a libc that does not
724   // safely handle this, we can add a target hook.
725 
726   // Get size and alignment info for this aggregate.
727   std::pair<uint64_t, unsigned> TypeInfo = getContext().getTypeInfo(Ty);
728 
729   // FIXME: Handle variable sized types.
730 
731   // FIXME: If we have a volatile struct, the optimizer can remove what might
732   // appear to be `extra' memory ops:
733   //
734   // volatile struct { int i; } a, b;
735   //
736   // int main() {
737   //   a = b;
738   //   a = b;
739   // }
740   //
741   // we need to use a different call here.  We use isVolatile to indicate when
742   // either the source or the destination is volatile.
743 
744   const llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType());
745   const llvm::Type *DBP =
746     llvm::Type::getInt8PtrTy(VMContext, DPT->getAddressSpace());
747   DestPtr = Builder.CreateBitCast(DestPtr, DBP, "tmp");
748 
749   const llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType());
750   const llvm::Type *SBP =
751     llvm::Type::getInt8PtrTy(VMContext, SPT->getAddressSpace());
752   SrcPtr = Builder.CreateBitCast(SrcPtr, SBP, "tmp");
753 
754   if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
755     RecordDecl *Record = RecordTy->getDecl();
756     if (Record->hasObjectMember()) {
757       unsigned long size = TypeInfo.first/8;
758       const llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
759       llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size);
760       CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
761                                                     SizeVal);
762       return;
763     }
764   } else if (getContext().getAsArrayType(Ty)) {
765     QualType BaseType = getContext().getBaseElementType(Ty);
766     if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
767       if (RecordTy->getDecl()->hasObjectMember()) {
768         unsigned long size = TypeInfo.first/8;
769         const llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
770         llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size);
771         CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
772                                                       SizeVal);
773         return;
774       }
775     }
776   }
777 
778   Builder.CreateCall5(CGM.getMemCpyFn(DestPtr->getType(), SrcPtr->getType(),
779                                       IntPtrTy),
780                       DestPtr, SrcPtr,
781                       // TypeInfo.first describes size in bits.
782                       llvm::ConstantInt::get(IntPtrTy, TypeInfo.first/8),
783                       Builder.getInt32(TypeInfo.second/8),
784                       Builder.getInt1(isVolatile));
785 }
786