1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Aggregate Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "CGObjCRuntime.h" 17 #include "clang/AST/ASTContext.h" 18 #include "clang/AST/DeclCXX.h" 19 #include "clang/AST/StmtVisitor.h" 20 #include "llvm/Constants.h" 21 #include "llvm/Function.h" 22 #include "llvm/GlobalVariable.h" 23 #include "llvm/Intrinsics.h" 24 using namespace clang; 25 using namespace CodeGen; 26 27 //===----------------------------------------------------------------------===// 28 // Aggregate Expression Emitter 29 //===----------------------------------------------------------------------===// 30 31 namespace { 32 class AggExprEmitter : public StmtVisitor<AggExprEmitter> { 33 CodeGenFunction &CGF; 34 CGBuilderTy &Builder; 35 AggValueSlot Dest; 36 bool IgnoreResult; 37 38 ReturnValueSlot getReturnValueSlot() const { 39 // If the destination slot requires garbage collection, we can't 40 // use the real return value slot, because we have to use the GC 41 // API. 42 if (Dest.requiresGCollection()) return ReturnValueSlot(); 43 44 return ReturnValueSlot(Dest.getAddr(), Dest.isVolatile()); 45 } 46 47 AggValueSlot EnsureSlot(QualType T) { 48 if (!Dest.isIgnored()) return Dest; 49 return CGF.CreateAggTemp(T, "agg.tmp.ensured"); 50 } 51 52 public: 53 AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest, 54 bool ignore) 55 : CGF(cgf), Builder(CGF.Builder), Dest(Dest), 56 IgnoreResult(ignore) { 57 } 58 59 //===--------------------------------------------------------------------===// 60 // Utilities 61 //===--------------------------------------------------------------------===// 62 63 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 64 /// represents a value lvalue, this method emits the address of the lvalue, 65 /// then loads the result into DestPtr. 66 void EmitAggLoadOfLValue(const Expr *E); 67 68 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 69 void EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore = false); 70 void EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore = false); 71 72 void EmitGCMove(const Expr *E, RValue Src); 73 74 bool TypeRequiresGCollection(QualType T); 75 76 //===--------------------------------------------------------------------===// 77 // Visitor Methods 78 //===--------------------------------------------------------------------===// 79 80 void VisitStmt(Stmt *S) { 81 CGF.ErrorUnsupported(S, "aggregate expression"); 82 } 83 void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); } 84 void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); } 85 86 // l-values. 87 void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); } 88 void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); } 89 void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); } 90 void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); } 91 void VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 92 EmitAggLoadOfLValue(E); 93 } 94 void VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 95 EmitAggLoadOfLValue(E); 96 } 97 void VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) { 98 EmitAggLoadOfLValue(E); 99 } 100 void VisitPredefinedExpr(const PredefinedExpr *E) { 101 EmitAggLoadOfLValue(E); 102 } 103 104 // Operators. 105 void VisitCastExpr(CastExpr *E); 106 void VisitCallExpr(const CallExpr *E); 107 void VisitStmtExpr(const StmtExpr *E); 108 void VisitBinaryOperator(const BinaryOperator *BO); 109 void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO); 110 void VisitBinAssign(const BinaryOperator *E); 111 void VisitBinComma(const BinaryOperator *E); 112 113 void VisitObjCMessageExpr(ObjCMessageExpr *E); 114 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 115 EmitAggLoadOfLValue(E); 116 } 117 void VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E); 118 void VisitObjCImplicitSetterGetterRefExpr(ObjCImplicitSetterGetterRefExpr *E); 119 120 void VisitConditionalOperator(const ConditionalOperator *CO); 121 void VisitChooseExpr(const ChooseExpr *CE); 122 void VisitInitListExpr(InitListExpr *E); 123 void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E); 124 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 125 Visit(DAE->getExpr()); 126 } 127 void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E); 128 void VisitCXXConstructExpr(const CXXConstructExpr *E); 129 void VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E); 130 void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E); 131 void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); } 132 133 void VisitVAArgExpr(VAArgExpr *E); 134 135 void EmitInitializationToLValue(Expr *E, LValue Address, QualType T); 136 void EmitNullInitializationToLValue(LValue Address, QualType T); 137 // case Expr::ChooseExprClass: 138 void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); } 139 }; 140 } // end anonymous namespace. 141 142 //===----------------------------------------------------------------------===// 143 // Utilities 144 //===----------------------------------------------------------------------===// 145 146 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 147 /// represents a value lvalue, this method emits the address of the lvalue, 148 /// then loads the result into DestPtr. 149 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) { 150 LValue LV = CGF.EmitLValue(E); 151 EmitFinalDestCopy(E, LV); 152 } 153 154 /// \brief True if the given aggregate type requires special GC API calls. 155 bool AggExprEmitter::TypeRequiresGCollection(QualType T) { 156 // Only record types have members that might require garbage collection. 157 const RecordType *RecordTy = T->getAs<RecordType>(); 158 if (!RecordTy) return false; 159 160 // Don't mess with non-trivial C++ types. 161 RecordDecl *Record = RecordTy->getDecl(); 162 if (isa<CXXRecordDecl>(Record) && 163 (!cast<CXXRecordDecl>(Record)->hasTrivialCopyConstructor() || 164 !cast<CXXRecordDecl>(Record)->hasTrivialDestructor())) 165 return false; 166 167 // Check whether the type has an object member. 168 return Record->hasObjectMember(); 169 } 170 171 /// \brief Perform the final move to DestPtr if RequiresGCollection is set. 172 /// 173 /// The idea is that you do something like this: 174 /// RValue Result = EmitSomething(..., getReturnValueSlot()); 175 /// EmitGCMove(E, Result); 176 /// If GC doesn't interfere, this will cause the result to be emitted 177 /// directly into the return value slot. If GC does interfere, a final 178 /// move will be performed. 179 void AggExprEmitter::EmitGCMove(const Expr *E, RValue Src) { 180 if (Dest.requiresGCollection()) { 181 std::pair<uint64_t, unsigned> TypeInfo = 182 CGF.getContext().getTypeInfo(E->getType()); 183 unsigned long size = TypeInfo.first/8; 184 const llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType()); 185 llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size); 186 CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, Dest.getAddr(), 187 Src.getAggregateAddr(), 188 SizeVal); 189 } 190 } 191 192 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 193 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore) { 194 assert(Src.isAggregate() && "value must be aggregate value!"); 195 196 // If Dest is ignored, then we're evaluating an aggregate expression 197 // in a context (like an expression statement) that doesn't care 198 // about the result. C says that an lvalue-to-rvalue conversion is 199 // performed in these cases; C++ says that it is not. In either 200 // case, we don't actually need to do anything unless the value is 201 // volatile. 202 if (Dest.isIgnored()) { 203 if (!Src.isVolatileQualified() || 204 CGF.CGM.getLangOptions().CPlusPlus || 205 (IgnoreResult && Ignore)) 206 return; 207 208 // If the source is volatile, we must read from it; to do that, we need 209 // some place to put it. 210 Dest = CGF.CreateAggTemp(E->getType(), "agg.tmp"); 211 } 212 213 if (Dest.requiresGCollection()) { 214 std::pair<uint64_t, unsigned> TypeInfo = 215 CGF.getContext().getTypeInfo(E->getType()); 216 unsigned long size = TypeInfo.first/8; 217 const llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType()); 218 llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size); 219 CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, 220 Dest.getAddr(), 221 Src.getAggregateAddr(), 222 SizeVal); 223 return; 224 } 225 // If the result of the assignment is used, copy the LHS there also. 226 // FIXME: Pass VolatileDest as well. I think we also need to merge volatile 227 // from the source as well, as we can't eliminate it if either operand 228 // is volatile, unless copy has volatile for both source and destination.. 229 CGF.EmitAggregateCopy(Dest.getAddr(), Src.getAggregateAddr(), E->getType(), 230 Dest.isVolatile()|Src.isVolatileQualified()); 231 } 232 233 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 234 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore) { 235 assert(Src.isSimple() && "Can't have aggregate bitfield, vector, etc"); 236 237 EmitFinalDestCopy(E, RValue::getAggregate(Src.getAddress(), 238 Src.isVolatileQualified()), 239 Ignore); 240 } 241 242 //===----------------------------------------------------------------------===// 243 // Visitor Methods 244 //===----------------------------------------------------------------------===// 245 246 void AggExprEmitter::VisitCastExpr(CastExpr *E) { 247 if (Dest.isIgnored() && E->getCastKind() != CK_Dynamic) { 248 Visit(E->getSubExpr()); 249 return; 250 } 251 252 switch (E->getCastKind()) { 253 case CK_Dynamic: { 254 assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?"); 255 LValue LV = CGF.EmitCheckedLValue(E->getSubExpr()); 256 // FIXME: Do we also need to handle property references here? 257 if (LV.isSimple()) 258 CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E)); 259 else 260 CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast"); 261 262 if (!Dest.isIgnored()) 263 CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination"); 264 break; 265 } 266 267 case CK_ToUnion: { 268 // GCC union extension 269 QualType Ty = E->getSubExpr()->getType(); 270 QualType PtrTy = CGF.getContext().getPointerType(Ty); 271 llvm::Value *CastPtr = Builder.CreateBitCast(Dest.getAddr(), 272 CGF.ConvertType(PtrTy)); 273 EmitInitializationToLValue(E->getSubExpr(), CGF.MakeAddrLValue(CastPtr, Ty), 274 Ty); 275 break; 276 } 277 278 case CK_DerivedToBase: 279 case CK_BaseToDerived: 280 case CK_UncheckedDerivedToBase: { 281 assert(0 && "cannot perform hierarchy conversion in EmitAggExpr: " 282 "should have been unpacked before we got here"); 283 break; 284 } 285 286 case CK_NoOp: 287 case CK_LValueToRValue: 288 case CK_UserDefinedConversion: 289 case CK_ConstructorConversion: 290 assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(), 291 E->getType()) && 292 "Implicit cast types must be compatible"); 293 Visit(E->getSubExpr()); 294 break; 295 296 case CK_LValueBitCast: 297 llvm_unreachable("should not be emitting lvalue bitcast as rvalue"); 298 break; 299 300 case CK_Dependent: 301 case CK_BitCast: 302 case CK_ArrayToPointerDecay: 303 case CK_FunctionToPointerDecay: 304 case CK_NullToPointer: 305 case CK_NullToMemberPointer: 306 case CK_BaseToDerivedMemberPointer: 307 case CK_DerivedToBaseMemberPointer: 308 case CK_MemberPointerToBoolean: 309 case CK_IntegralToPointer: 310 case CK_PointerToIntegral: 311 case CK_PointerToBoolean: 312 case CK_ToVoid: 313 case CK_VectorSplat: 314 case CK_IntegralCast: 315 case CK_IntegralToBoolean: 316 case CK_IntegralToFloating: 317 case CK_FloatingToIntegral: 318 case CK_FloatingToBoolean: 319 case CK_FloatingCast: 320 case CK_AnyPointerToObjCPointerCast: 321 case CK_AnyPointerToBlockPointerCast: 322 case CK_ObjCObjectLValueCast: 323 case CK_FloatingRealToComplex: 324 case CK_FloatingComplexToReal: 325 case CK_FloatingComplexToBoolean: 326 case CK_FloatingComplexCast: 327 case CK_FloatingComplexToIntegralComplex: 328 case CK_IntegralRealToComplex: 329 case CK_IntegralComplexToReal: 330 case CK_IntegralComplexToBoolean: 331 case CK_IntegralComplexCast: 332 case CK_IntegralComplexToFloatingComplex: 333 llvm_unreachable("cast kind invalid for aggregate types"); 334 } 335 } 336 337 void AggExprEmitter::VisitCallExpr(const CallExpr *E) { 338 if (E->getCallReturnType()->isReferenceType()) { 339 EmitAggLoadOfLValue(E); 340 return; 341 } 342 343 RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot()); 344 EmitGCMove(E, RV); 345 } 346 347 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) { 348 RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot()); 349 EmitGCMove(E, RV); 350 } 351 352 void AggExprEmitter::VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) { 353 RValue RV = CGF.EmitObjCPropertyGet(E, getReturnValueSlot()); 354 EmitGCMove(E, RV); 355 } 356 357 void AggExprEmitter::VisitObjCImplicitSetterGetterRefExpr( 358 ObjCImplicitSetterGetterRefExpr *E) { 359 RValue RV = CGF.EmitObjCPropertyGet(E, getReturnValueSlot()); 360 EmitGCMove(E, RV); 361 } 362 363 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) { 364 CGF.EmitAnyExpr(E->getLHS(), AggValueSlot::ignored(), true); 365 Visit(E->getRHS()); 366 } 367 368 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) { 369 CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest); 370 } 371 372 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) { 373 if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI) 374 VisitPointerToDataMemberBinaryOperator(E); 375 else 376 CGF.ErrorUnsupported(E, "aggregate binary expression"); 377 } 378 379 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator( 380 const BinaryOperator *E) { 381 LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E); 382 EmitFinalDestCopy(E, LV); 383 } 384 385 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) { 386 // For an assignment to work, the value on the right has 387 // to be compatible with the value on the left. 388 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), 389 E->getRHS()->getType()) 390 && "Invalid assignment"); 391 LValue LHS = CGF.EmitLValue(E->getLHS()); 392 393 // We have to special case property setters, otherwise we must have 394 // a simple lvalue (no aggregates inside vectors, bitfields). 395 if (LHS.isPropertyRef()) { 396 AggValueSlot Slot = EnsureSlot(E->getRHS()->getType()); 397 CGF.EmitAggExpr(E->getRHS(), Slot); 398 CGF.EmitObjCPropertySet(LHS.getPropertyRefExpr(), Slot.asRValue()); 399 } else if (LHS.isKVCRef()) { 400 AggValueSlot Slot = EnsureSlot(E->getRHS()->getType()); 401 CGF.EmitAggExpr(E->getRHS(), Slot); 402 CGF.EmitObjCPropertySet(LHS.getKVCRefExpr(), Slot.asRValue()); 403 } else { 404 bool GCollection = false; 405 if (CGF.getContext().getLangOptions().getGCMode()) 406 GCollection = TypeRequiresGCollection(E->getLHS()->getType()); 407 408 // Codegen the RHS so that it stores directly into the LHS. 409 AggValueSlot LHSSlot = AggValueSlot::forLValue(LHS, true, 410 GCollection); 411 CGF.EmitAggExpr(E->getRHS(), LHSSlot, false); 412 EmitFinalDestCopy(E, LHS, true); 413 } 414 } 415 416 void AggExprEmitter::VisitConditionalOperator(const ConditionalOperator *E) { 417 if (!E->getLHS()) { 418 CGF.ErrorUnsupported(E, "conditional operator with missing LHS"); 419 return; 420 } 421 422 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 423 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 424 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 425 426 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock); 427 428 CGF.BeginConditionalBranch(); 429 CGF.EmitBlock(LHSBlock); 430 431 // Save whether the destination's lifetime is externally managed. 432 bool DestLifetimeManaged = Dest.isLifetimeExternallyManaged(); 433 434 Visit(E->getLHS()); 435 CGF.EndConditionalBranch(); 436 CGF.EmitBranch(ContBlock); 437 438 CGF.BeginConditionalBranch(); 439 CGF.EmitBlock(RHSBlock); 440 441 // If the result of an agg expression is unused, then the emission 442 // of the LHS might need to create a destination slot. That's fine 443 // with us, and we can safely emit the RHS into the same slot, but 444 // we shouldn't claim that its lifetime is externally managed. 445 Dest.setLifetimeExternallyManaged(DestLifetimeManaged); 446 447 Visit(E->getRHS()); 448 CGF.EndConditionalBranch(); 449 CGF.EmitBranch(ContBlock); 450 451 CGF.EmitBlock(ContBlock); 452 } 453 454 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) { 455 Visit(CE->getChosenSubExpr(CGF.getContext())); 456 } 457 458 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 459 llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr()); 460 llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType()); 461 462 if (!ArgPtr) { 463 CGF.ErrorUnsupported(VE, "aggregate va_arg expression"); 464 return; 465 } 466 467 EmitFinalDestCopy(VE, CGF.MakeAddrLValue(ArgPtr, VE->getType())); 468 } 469 470 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 471 // Ensure that we have a slot, but if we already do, remember 472 // whether its lifetime was externally managed. 473 bool WasManaged = Dest.isLifetimeExternallyManaged(); 474 Dest = EnsureSlot(E->getType()); 475 Dest.setLifetimeExternallyManaged(); 476 477 Visit(E->getSubExpr()); 478 479 // Set up the temporary's destructor if its lifetime wasn't already 480 // being managed. 481 if (!WasManaged) 482 CGF.EmitCXXTemporary(E->getTemporary(), Dest.getAddr()); 483 } 484 485 void 486 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) { 487 AggValueSlot Slot = EnsureSlot(E->getType()); 488 CGF.EmitCXXConstructExpr(E, Slot); 489 } 490 491 void AggExprEmitter::VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E) { 492 CGF.EmitCXXExprWithTemporaries(E, Dest); 493 } 494 495 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) { 496 QualType T = E->getType(); 497 AggValueSlot Slot = EnsureSlot(T); 498 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T), T); 499 } 500 501 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) { 502 QualType T = E->getType(); 503 AggValueSlot Slot = EnsureSlot(T); 504 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T), T); 505 } 506 507 void 508 AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV, QualType T) { 509 // FIXME: Ignore result? 510 // FIXME: Are initializers affected by volatile? 511 if (isa<ImplicitValueInitExpr>(E)) { 512 EmitNullInitializationToLValue(LV, T); 513 } else if (T->isReferenceType()) { 514 RValue RV = CGF.EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0); 515 CGF.EmitStoreThroughLValue(RV, LV, T); 516 } else if (T->isAnyComplexType()) { 517 CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false); 518 } else if (CGF.hasAggregateLLVMType(T)) { 519 CGF.EmitAggExpr(E, AggValueSlot::forAddr(LV.getAddress(), false, true)); 520 } else { 521 CGF.EmitStoreThroughLValue(CGF.EmitAnyExpr(E), LV, T); 522 } 523 } 524 525 void AggExprEmitter::EmitNullInitializationToLValue(LValue LV, QualType T) { 526 if (!CGF.hasAggregateLLVMType(T)) { 527 // For non-aggregates, we can store zero 528 llvm::Value *Null = llvm::Constant::getNullValue(CGF.ConvertType(T)); 529 CGF.EmitStoreThroughLValue(RValue::get(Null), LV, T); 530 } else { 531 // There's a potential optimization opportunity in combining 532 // memsets; that would be easy for arrays, but relatively 533 // difficult for structures with the current code. 534 CGF.EmitNullInitialization(LV.getAddress(), T); 535 } 536 } 537 538 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) { 539 #if 0 540 // FIXME: Assess perf here? Figure out what cases are worth optimizing here 541 // (Length of globals? Chunks of zeroed-out space?). 542 // 543 // If we can, prefer a copy from a global; this is a lot less code for long 544 // globals, and it's easier for the current optimizers to analyze. 545 if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) { 546 llvm::GlobalVariable* GV = 547 new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true, 548 llvm::GlobalValue::InternalLinkage, C, ""); 549 EmitFinalDestCopy(E, CGF.MakeAddrLValue(GV, E->getType())); 550 return; 551 } 552 #endif 553 if (E->hadArrayRangeDesignator()) 554 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 555 556 llvm::Value *DestPtr = Dest.getAddr(); 557 558 // Handle initialization of an array. 559 if (E->getType()->isArrayType()) { 560 const llvm::PointerType *APType = 561 cast<llvm::PointerType>(DestPtr->getType()); 562 const llvm::ArrayType *AType = 563 cast<llvm::ArrayType>(APType->getElementType()); 564 565 uint64_t NumInitElements = E->getNumInits(); 566 567 if (E->getNumInits() > 0) { 568 QualType T1 = E->getType(); 569 QualType T2 = E->getInit(0)->getType(); 570 if (CGF.getContext().hasSameUnqualifiedType(T1, T2)) { 571 EmitAggLoadOfLValue(E->getInit(0)); 572 return; 573 } 574 } 575 576 uint64_t NumArrayElements = AType->getNumElements(); 577 QualType ElementType = CGF.getContext().getCanonicalType(E->getType()); 578 ElementType = CGF.getContext().getAsArrayType(ElementType)->getElementType(); 579 580 // FIXME: were we intentionally ignoring address spaces and GC attributes? 581 582 for (uint64_t i = 0; i != NumArrayElements; ++i) { 583 llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array"); 584 LValue LV = CGF.MakeAddrLValue(NextVal, ElementType); 585 if (i < NumInitElements) 586 EmitInitializationToLValue(E->getInit(i), LV, ElementType); 587 588 else 589 EmitNullInitializationToLValue(LV, ElementType); 590 } 591 return; 592 } 593 594 assert(E->getType()->isRecordType() && "Only support structs/unions here!"); 595 596 // Do struct initialization; this code just sets each individual member 597 // to the approprate value. This makes bitfield support automatic; 598 // the disadvantage is that the generated code is more difficult for 599 // the optimizer, especially with bitfields. 600 unsigned NumInitElements = E->getNumInits(); 601 RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl(); 602 603 if (E->getType()->isUnionType()) { 604 // Only initialize one field of a union. The field itself is 605 // specified by the initializer list. 606 if (!E->getInitializedFieldInUnion()) { 607 // Empty union; we have nothing to do. 608 609 #ifndef NDEBUG 610 // Make sure that it's really an empty and not a failure of 611 // semantic analysis. 612 for (RecordDecl::field_iterator Field = SD->field_begin(), 613 FieldEnd = SD->field_end(); 614 Field != FieldEnd; ++Field) 615 assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed"); 616 #endif 617 return; 618 } 619 620 // FIXME: volatility 621 FieldDecl *Field = E->getInitializedFieldInUnion(); 622 LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestPtr, Field, 0); 623 624 if (NumInitElements) { 625 // Store the initializer into the field 626 EmitInitializationToLValue(E->getInit(0), FieldLoc, Field->getType()); 627 } else { 628 // Default-initialize to null 629 EmitNullInitializationToLValue(FieldLoc, Field->getType()); 630 } 631 632 return; 633 } 634 635 // Here we iterate over the fields; this makes it simpler to both 636 // default-initialize fields and skip over unnamed fields. 637 unsigned CurInitVal = 0; 638 for (RecordDecl::field_iterator Field = SD->field_begin(), 639 FieldEnd = SD->field_end(); 640 Field != FieldEnd; ++Field) { 641 // We're done once we hit the flexible array member 642 if (Field->getType()->isIncompleteArrayType()) 643 break; 644 645 if (Field->isUnnamedBitfield()) 646 continue; 647 648 // FIXME: volatility 649 LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestPtr, *Field, 0); 650 // We never generate write-barries for initialized fields. 651 FieldLoc.setNonGC(true); 652 if (CurInitVal < NumInitElements) { 653 // Store the initializer into the field. 654 EmitInitializationToLValue(E->getInit(CurInitVal++), FieldLoc, 655 Field->getType()); 656 } else { 657 // We're out of initalizers; default-initialize to null 658 EmitNullInitializationToLValue(FieldLoc, Field->getType()); 659 } 660 } 661 } 662 663 //===----------------------------------------------------------------------===// 664 // Entry Points into this File 665 //===----------------------------------------------------------------------===// 666 667 /// EmitAggExpr - Emit the computation of the specified expression of aggregate 668 /// type. The result is computed into DestPtr. Note that if DestPtr is null, 669 /// the value of the aggregate expression is not needed. If VolatileDest is 670 /// true, DestPtr cannot be 0. 671 /// 672 /// \param IsInitializer - true if this evaluation is initializing an 673 /// object whose lifetime is already being managed. 674 // 675 // FIXME: Take Qualifiers object. 676 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot, 677 bool IgnoreResult) { 678 assert(E && hasAggregateLLVMType(E->getType()) && 679 "Invalid aggregate expression to emit"); 680 assert((Slot.getAddr() != 0 || Slot.isIgnored()) 681 && "slot has bits but no address"); 682 683 AggExprEmitter(*this, Slot, IgnoreResult) 684 .Visit(const_cast<Expr*>(E)); 685 } 686 687 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) { 688 assert(hasAggregateLLVMType(E->getType()) && "Invalid argument!"); 689 llvm::Value *Temp = CreateMemTemp(E->getType()); 690 LValue LV = MakeAddrLValue(Temp, E->getType()); 691 AggValueSlot Slot 692 = AggValueSlot::forAddr(Temp, LV.isVolatileQualified(), false); 693 EmitAggExpr(E, Slot); 694 return LV; 695 } 696 697 void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr, 698 llvm::Value *SrcPtr, QualType Ty, 699 bool isVolatile) { 700 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 701 702 if (getContext().getLangOptions().CPlusPlus) { 703 if (const RecordType *RT = Ty->getAs<RecordType>()) { 704 CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl()); 705 assert((Record->hasTrivialCopyConstructor() || 706 Record->hasTrivialCopyAssignment()) && 707 "Trying to aggregate-copy a type without a trivial copy " 708 "constructor or assignment operator"); 709 // Ignore empty classes in C++. 710 if (Record->isEmpty()) 711 return; 712 } 713 } 714 715 // Aggregate assignment turns into llvm.memcpy. This is almost valid per 716 // C99 6.5.16.1p3, which states "If the value being stored in an object is 717 // read from another object that overlaps in anyway the storage of the first 718 // object, then the overlap shall be exact and the two objects shall have 719 // qualified or unqualified versions of a compatible type." 720 // 721 // memcpy is not defined if the source and destination pointers are exactly 722 // equal, but other compilers do this optimization, and almost every memcpy 723 // implementation handles this case safely. If there is a libc that does not 724 // safely handle this, we can add a target hook. 725 726 // Get size and alignment info for this aggregate. 727 std::pair<uint64_t, unsigned> TypeInfo = getContext().getTypeInfo(Ty); 728 729 // FIXME: Handle variable sized types. 730 731 // FIXME: If we have a volatile struct, the optimizer can remove what might 732 // appear to be `extra' memory ops: 733 // 734 // volatile struct { int i; } a, b; 735 // 736 // int main() { 737 // a = b; 738 // a = b; 739 // } 740 // 741 // we need to use a different call here. We use isVolatile to indicate when 742 // either the source or the destination is volatile. 743 744 const llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType()); 745 const llvm::Type *DBP = 746 llvm::Type::getInt8PtrTy(VMContext, DPT->getAddressSpace()); 747 DestPtr = Builder.CreateBitCast(DestPtr, DBP, "tmp"); 748 749 const llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType()); 750 const llvm::Type *SBP = 751 llvm::Type::getInt8PtrTy(VMContext, SPT->getAddressSpace()); 752 SrcPtr = Builder.CreateBitCast(SrcPtr, SBP, "tmp"); 753 754 if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 755 RecordDecl *Record = RecordTy->getDecl(); 756 if (Record->hasObjectMember()) { 757 unsigned long size = TypeInfo.first/8; 758 const llvm::Type *SizeTy = ConvertType(getContext().getSizeType()); 759 llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size); 760 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 761 SizeVal); 762 return; 763 } 764 } else if (getContext().getAsArrayType(Ty)) { 765 QualType BaseType = getContext().getBaseElementType(Ty); 766 if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) { 767 if (RecordTy->getDecl()->hasObjectMember()) { 768 unsigned long size = TypeInfo.first/8; 769 const llvm::Type *SizeTy = ConvertType(getContext().getSizeType()); 770 llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size); 771 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 772 SizeVal); 773 return; 774 } 775 } 776 } 777 778 Builder.CreateCall5(CGM.getMemCpyFn(DestPtr->getType(), SrcPtr->getType(), 779 IntPtrTy), 780 DestPtr, SrcPtr, 781 // TypeInfo.first describes size in bits. 782 llvm::ConstantInt::get(IntPtrTy, TypeInfo.first/8), 783 Builder.getInt32(TypeInfo.second/8), 784 Builder.getInt1(isVolatile)); 785 } 786