1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Aggregate Expr nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenFunction.h"
14 #include "CGCXXABI.h"
15 #include "CGObjCRuntime.h"
16 #include "CodeGenModule.h"
17 #include "ConstantEmitter.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/DeclCXX.h"
20 #include "clang/AST/DeclTemplate.h"
21 #include "clang/AST/StmtVisitor.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/Function.h"
24 #include "llvm/IR/GlobalVariable.h"
25 #include "llvm/IR/Intrinsics.h"
26 #include "llvm/IR/IntrinsicInst.h"
27 using namespace clang;
28 using namespace CodeGen;
29 
30 //===----------------------------------------------------------------------===//
31 //                        Aggregate Expression Emitter
32 //===----------------------------------------------------------------------===//
33 
34 namespace  {
35 class AggExprEmitter : public StmtVisitor<AggExprEmitter> {
36   CodeGenFunction &CGF;
37   CGBuilderTy &Builder;
38   AggValueSlot Dest;
39   bool IsResultUnused;
40 
41   AggValueSlot EnsureSlot(QualType T) {
42     if (!Dest.isIgnored()) return Dest;
43     return CGF.CreateAggTemp(T, "agg.tmp.ensured");
44   }
45   void EnsureDest(QualType T) {
46     if (!Dest.isIgnored()) return;
47     Dest = CGF.CreateAggTemp(T, "agg.tmp.ensured");
48   }
49 
50   // Calls `Fn` with a valid return value slot, potentially creating a temporary
51   // to do so. If a temporary is created, an appropriate copy into `Dest` will
52   // be emitted, as will lifetime markers.
53   //
54   // The given function should take a ReturnValueSlot, and return an RValue that
55   // points to said slot.
56   void withReturnValueSlot(const Expr *E,
57                            llvm::function_ref<RValue(ReturnValueSlot)> Fn);
58 
59 public:
60   AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest, bool IsResultUnused)
61     : CGF(cgf), Builder(CGF.Builder), Dest(Dest),
62     IsResultUnused(IsResultUnused) { }
63 
64   //===--------------------------------------------------------------------===//
65   //                               Utilities
66   //===--------------------------------------------------------------------===//
67 
68   /// EmitAggLoadOfLValue - Given an expression with aggregate type that
69   /// represents a value lvalue, this method emits the address of the lvalue,
70   /// then loads the result into DestPtr.
71   void EmitAggLoadOfLValue(const Expr *E);
72 
73   enum ExprValueKind {
74     EVK_RValue,
75     EVK_NonRValue
76   };
77 
78   /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
79   /// SrcIsRValue is true if source comes from an RValue.
80   void EmitFinalDestCopy(QualType type, const LValue &src,
81                          ExprValueKind SrcValueKind = EVK_NonRValue);
82   void EmitFinalDestCopy(QualType type, RValue src);
83   void EmitCopy(QualType type, const AggValueSlot &dest,
84                 const AggValueSlot &src);
85 
86   void EmitMoveFromReturnSlot(const Expr *E, RValue Src);
87 
88   void EmitArrayInit(Address DestPtr, llvm::ArrayType *AType,
89                      QualType ArrayQTy, InitListExpr *E);
90 
91   AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) {
92     if (CGF.getLangOpts().getGC() && TypeRequiresGCollection(T))
93       return AggValueSlot::NeedsGCBarriers;
94     return AggValueSlot::DoesNotNeedGCBarriers;
95   }
96 
97   bool TypeRequiresGCollection(QualType T);
98 
99   //===--------------------------------------------------------------------===//
100   //                            Visitor Methods
101   //===--------------------------------------------------------------------===//
102 
103   void Visit(Expr *E) {
104     ApplyDebugLocation DL(CGF, E);
105     StmtVisitor<AggExprEmitter>::Visit(E);
106   }
107 
108   void VisitStmt(Stmt *S) {
109     CGF.ErrorUnsupported(S, "aggregate expression");
110   }
111   void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
112   void VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
113     Visit(GE->getResultExpr());
114   }
115   void VisitCoawaitExpr(CoawaitExpr *E) {
116     CGF.EmitCoawaitExpr(*E, Dest, IsResultUnused);
117   }
118   void VisitCoyieldExpr(CoyieldExpr *E) {
119     CGF.EmitCoyieldExpr(*E, Dest, IsResultUnused);
120   }
121   void VisitUnaryCoawait(UnaryOperator *E) { Visit(E->getSubExpr()); }
122   void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
123   void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
124     return Visit(E->getReplacement());
125   }
126 
127   void VisitConstantExpr(ConstantExpr *E) {
128     return Visit(E->getSubExpr());
129   }
130 
131   // l-values.
132   void VisitDeclRefExpr(DeclRefExpr *E) { EmitAggLoadOfLValue(E); }
133   void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
134   void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
135   void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
136   void VisitCompoundLiteralExpr(CompoundLiteralExpr *E);
137   void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
138     EmitAggLoadOfLValue(E);
139   }
140   void VisitPredefinedExpr(const PredefinedExpr *E) {
141     EmitAggLoadOfLValue(E);
142   }
143 
144   // Operators.
145   void VisitCastExpr(CastExpr *E);
146   void VisitCallExpr(const CallExpr *E);
147   void VisitStmtExpr(const StmtExpr *E);
148   void VisitBinaryOperator(const BinaryOperator *BO);
149   void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO);
150   void VisitBinAssign(const BinaryOperator *E);
151   void VisitBinComma(const BinaryOperator *E);
152   void VisitBinCmp(const BinaryOperator *E);
153 
154   void VisitObjCMessageExpr(ObjCMessageExpr *E);
155   void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
156     EmitAggLoadOfLValue(E);
157   }
158 
159   void VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E);
160   void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
161   void VisitChooseExpr(const ChooseExpr *CE);
162   void VisitInitListExpr(InitListExpr *E);
163   void VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E,
164                               llvm::Value *outerBegin = nullptr);
165   void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E);
166   void VisitNoInitExpr(NoInitExpr *E) { } // Do nothing.
167   void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
168     CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE);
169     Visit(DAE->getExpr());
170   }
171   void VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
172     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE);
173     Visit(DIE->getExpr());
174   }
175   void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E);
176   void VisitCXXConstructExpr(const CXXConstructExpr *E);
177   void VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E);
178   void VisitLambdaExpr(LambdaExpr *E);
179   void VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E);
180   void VisitExprWithCleanups(ExprWithCleanups *E);
181   void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E);
182   void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); }
183   void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E);
184   void VisitOpaqueValueExpr(OpaqueValueExpr *E);
185 
186   void VisitPseudoObjectExpr(PseudoObjectExpr *E) {
187     if (E->isGLValue()) {
188       LValue LV = CGF.EmitPseudoObjectLValue(E);
189       return EmitFinalDestCopy(E->getType(), LV);
190     }
191 
192     CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType()));
193   }
194 
195   void VisitVAArgExpr(VAArgExpr *E);
196 
197   void EmitInitializationToLValue(Expr *E, LValue Address);
198   void EmitNullInitializationToLValue(LValue Address);
199   //  case Expr::ChooseExprClass:
200   void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); }
201   void VisitAtomicExpr(AtomicExpr *E) {
202     RValue Res = CGF.EmitAtomicExpr(E);
203     EmitFinalDestCopy(E->getType(), Res);
204   }
205 };
206 }  // end anonymous namespace.
207 
208 //===----------------------------------------------------------------------===//
209 //                                Utilities
210 //===----------------------------------------------------------------------===//
211 
212 /// EmitAggLoadOfLValue - Given an expression with aggregate type that
213 /// represents a value lvalue, this method emits the address of the lvalue,
214 /// then loads the result into DestPtr.
215 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
216   LValue LV = CGF.EmitLValue(E);
217 
218   // If the type of the l-value is atomic, then do an atomic load.
219   if (LV.getType()->isAtomicType() || CGF.LValueIsSuitableForInlineAtomic(LV)) {
220     CGF.EmitAtomicLoad(LV, E->getExprLoc(), Dest);
221     return;
222   }
223 
224   EmitFinalDestCopy(E->getType(), LV);
225 }
226 
227 /// True if the given aggregate type requires special GC API calls.
228 bool AggExprEmitter::TypeRequiresGCollection(QualType T) {
229   // Only record types have members that might require garbage collection.
230   const RecordType *RecordTy = T->getAs<RecordType>();
231   if (!RecordTy) return false;
232 
233   // Don't mess with non-trivial C++ types.
234   RecordDecl *Record = RecordTy->getDecl();
235   if (isa<CXXRecordDecl>(Record) &&
236       (cast<CXXRecordDecl>(Record)->hasNonTrivialCopyConstructor() ||
237        !cast<CXXRecordDecl>(Record)->hasTrivialDestructor()))
238     return false;
239 
240   // Check whether the type has an object member.
241   return Record->hasObjectMember();
242 }
243 
244 void AggExprEmitter::withReturnValueSlot(
245     const Expr *E, llvm::function_ref<RValue(ReturnValueSlot)> EmitCall) {
246   QualType RetTy = E->getType();
247   bool RequiresDestruction =
248       Dest.isIgnored() &&
249       RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct;
250 
251   // If it makes no observable difference, save a memcpy + temporary.
252   //
253   // We need to always provide our own temporary if destruction is required.
254   // Otherwise, EmitCall will emit its own, notice that it's "unused", and end
255   // its lifetime before we have the chance to emit a proper destructor call.
256   bool UseTemp = Dest.isPotentiallyAliased() || Dest.requiresGCollection() ||
257                  (RequiresDestruction && !Dest.getAddress().isValid());
258 
259   Address RetAddr = Address::invalid();
260   Address RetAllocaAddr = Address::invalid();
261 
262   EHScopeStack::stable_iterator LifetimeEndBlock;
263   llvm::Value *LifetimeSizePtr = nullptr;
264   llvm::IntrinsicInst *LifetimeStartInst = nullptr;
265   if (!UseTemp) {
266     RetAddr = Dest.getAddress();
267   } else {
268     RetAddr = CGF.CreateMemTemp(RetTy, "tmp", &RetAllocaAddr);
269     uint64_t Size =
270         CGF.CGM.getDataLayout().getTypeAllocSize(CGF.ConvertTypeForMem(RetTy));
271     LifetimeSizePtr = CGF.EmitLifetimeStart(Size, RetAllocaAddr.getPointer());
272     if (LifetimeSizePtr) {
273       LifetimeStartInst =
274           cast<llvm::IntrinsicInst>(std::prev(Builder.GetInsertPoint()));
275       assert(LifetimeStartInst->getIntrinsicID() ==
276                  llvm::Intrinsic::lifetime_start &&
277              "Last insertion wasn't a lifetime.start?");
278 
279       CGF.pushFullExprCleanup<CodeGenFunction::CallLifetimeEnd>(
280           NormalEHLifetimeMarker, RetAllocaAddr, LifetimeSizePtr);
281       LifetimeEndBlock = CGF.EHStack.stable_begin();
282     }
283   }
284 
285   RValue Src =
286       EmitCall(ReturnValueSlot(RetAddr, Dest.isVolatile(), IsResultUnused));
287 
288   if (RequiresDestruction)
289     CGF.pushDestroy(RetTy.isDestructedType(), Src.getAggregateAddress(), RetTy);
290 
291   if (!UseTemp)
292     return;
293 
294   assert(Dest.getPointer() != Src.getAggregatePointer());
295   EmitFinalDestCopy(E->getType(), Src);
296 
297   if (!RequiresDestruction && LifetimeStartInst) {
298     // If there's no dtor to run, the copy was the last use of our temporary.
299     // Since we're not guaranteed to be in an ExprWithCleanups, clean up
300     // eagerly.
301     CGF.DeactivateCleanupBlock(LifetimeEndBlock, LifetimeStartInst);
302     CGF.EmitLifetimeEnd(LifetimeSizePtr, RetAllocaAddr.getPointer());
303   }
304 }
305 
306 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
307 void AggExprEmitter::EmitFinalDestCopy(QualType type, RValue src) {
308   assert(src.isAggregate() && "value must be aggregate value!");
309   LValue srcLV = CGF.MakeAddrLValue(src.getAggregateAddress(), type);
310   EmitFinalDestCopy(type, srcLV, EVK_RValue);
311 }
312 
313 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
314 void AggExprEmitter::EmitFinalDestCopy(QualType type, const LValue &src,
315                                        ExprValueKind SrcValueKind) {
316   // If Dest is ignored, then we're evaluating an aggregate expression
317   // in a context that doesn't care about the result.  Note that loads
318   // from volatile l-values force the existence of a non-ignored
319   // destination.
320   if (Dest.isIgnored())
321     return;
322 
323   // Copy non-trivial C structs here.
324   LValue DstLV = CGF.MakeAddrLValue(
325       Dest.getAddress(), Dest.isVolatile() ? type.withVolatile() : type);
326 
327   if (SrcValueKind == EVK_RValue) {
328     if (type.isNonTrivialToPrimitiveDestructiveMove() == QualType::PCK_Struct) {
329       if (Dest.isPotentiallyAliased())
330         CGF.callCStructMoveAssignmentOperator(DstLV, src);
331       else
332         CGF.callCStructMoveConstructor(DstLV, src);
333       return;
334     }
335   } else {
336     if (type.isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) {
337       if (Dest.isPotentiallyAliased())
338         CGF.callCStructCopyAssignmentOperator(DstLV, src);
339       else
340         CGF.callCStructCopyConstructor(DstLV, src);
341       return;
342     }
343   }
344 
345   AggValueSlot srcAgg =
346     AggValueSlot::forLValue(src, AggValueSlot::IsDestructed,
347                             needsGC(type), AggValueSlot::IsAliased,
348                             AggValueSlot::MayOverlap);
349   EmitCopy(type, Dest, srcAgg);
350 }
351 
352 /// Perform a copy from the source into the destination.
353 ///
354 /// \param type - the type of the aggregate being copied; qualifiers are
355 ///   ignored
356 void AggExprEmitter::EmitCopy(QualType type, const AggValueSlot &dest,
357                               const AggValueSlot &src) {
358   if (dest.requiresGCollection()) {
359     CharUnits sz = dest.getPreferredSize(CGF.getContext(), type);
360     llvm::Value *size = llvm::ConstantInt::get(CGF.SizeTy, sz.getQuantity());
361     CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF,
362                                                       dest.getAddress(),
363                                                       src.getAddress(),
364                                                       size);
365     return;
366   }
367 
368   // If the result of the assignment is used, copy the LHS there also.
369   // It's volatile if either side is.  Use the minimum alignment of
370   // the two sides.
371   LValue DestLV = CGF.MakeAddrLValue(dest.getAddress(), type);
372   LValue SrcLV = CGF.MakeAddrLValue(src.getAddress(), type);
373   CGF.EmitAggregateCopy(DestLV, SrcLV, type, dest.mayOverlap(),
374                         dest.isVolatile() || src.isVolatile());
375 }
376 
377 /// Emit the initializer for a std::initializer_list initialized with a
378 /// real initializer list.
379 void
380 AggExprEmitter::VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E) {
381   // Emit an array containing the elements.  The array is externally destructed
382   // if the std::initializer_list object is.
383   ASTContext &Ctx = CGF.getContext();
384   LValue Array = CGF.EmitLValue(E->getSubExpr());
385   assert(Array.isSimple() && "initializer_list array not a simple lvalue");
386   Address ArrayPtr = Array.getAddress();
387 
388   const ConstantArrayType *ArrayType =
389       Ctx.getAsConstantArrayType(E->getSubExpr()->getType());
390   assert(ArrayType && "std::initializer_list constructed from non-array");
391 
392   // FIXME: Perform the checks on the field types in SemaInit.
393   RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl();
394   RecordDecl::field_iterator Field = Record->field_begin();
395   if (Field == Record->field_end()) {
396     CGF.ErrorUnsupported(E, "weird std::initializer_list");
397     return;
398   }
399 
400   // Start pointer.
401   if (!Field->getType()->isPointerType() ||
402       !Ctx.hasSameType(Field->getType()->getPointeeType(),
403                        ArrayType->getElementType())) {
404     CGF.ErrorUnsupported(E, "weird std::initializer_list");
405     return;
406   }
407 
408   AggValueSlot Dest = EnsureSlot(E->getType());
409   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
410   LValue Start = CGF.EmitLValueForFieldInitialization(DestLV, *Field);
411   llvm::Value *Zero = llvm::ConstantInt::get(CGF.PtrDiffTy, 0);
412   llvm::Value *IdxStart[] = { Zero, Zero };
413   llvm::Value *ArrayStart =
414       Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxStart, "arraystart");
415   CGF.EmitStoreThroughLValue(RValue::get(ArrayStart), Start);
416   ++Field;
417 
418   if (Field == Record->field_end()) {
419     CGF.ErrorUnsupported(E, "weird std::initializer_list");
420     return;
421   }
422 
423   llvm::Value *Size = Builder.getInt(ArrayType->getSize());
424   LValue EndOrLength = CGF.EmitLValueForFieldInitialization(DestLV, *Field);
425   if (Field->getType()->isPointerType() &&
426       Ctx.hasSameType(Field->getType()->getPointeeType(),
427                       ArrayType->getElementType())) {
428     // End pointer.
429     llvm::Value *IdxEnd[] = { Zero, Size };
430     llvm::Value *ArrayEnd =
431         Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxEnd, "arrayend");
432     CGF.EmitStoreThroughLValue(RValue::get(ArrayEnd), EndOrLength);
433   } else if (Ctx.hasSameType(Field->getType(), Ctx.getSizeType())) {
434     // Length.
435     CGF.EmitStoreThroughLValue(RValue::get(Size), EndOrLength);
436   } else {
437     CGF.ErrorUnsupported(E, "weird std::initializer_list");
438     return;
439   }
440 }
441 
442 /// Determine if E is a trivial array filler, that is, one that is
443 /// equivalent to zero-initialization.
444 static bool isTrivialFiller(Expr *E) {
445   if (!E)
446     return true;
447 
448   if (isa<ImplicitValueInitExpr>(E))
449     return true;
450 
451   if (auto *ILE = dyn_cast<InitListExpr>(E)) {
452     if (ILE->getNumInits())
453       return false;
454     return isTrivialFiller(ILE->getArrayFiller());
455   }
456 
457   if (auto *Cons = dyn_cast_or_null<CXXConstructExpr>(E))
458     return Cons->getConstructor()->isDefaultConstructor() &&
459            Cons->getConstructor()->isTrivial();
460 
461   // FIXME: Are there other cases where we can avoid emitting an initializer?
462   return false;
463 }
464 
465 /// Emit initialization of an array from an initializer list.
466 void AggExprEmitter::EmitArrayInit(Address DestPtr, llvm::ArrayType *AType,
467                                    QualType ArrayQTy, InitListExpr *E) {
468   uint64_t NumInitElements = E->getNumInits();
469 
470   uint64_t NumArrayElements = AType->getNumElements();
471   assert(NumInitElements <= NumArrayElements);
472 
473   QualType elementType =
474       CGF.getContext().getAsArrayType(ArrayQTy)->getElementType();
475 
476   // DestPtr is an array*.  Construct an elementType* by drilling
477   // down a level.
478   llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
479   llvm::Value *indices[] = { zero, zero };
480   llvm::Value *begin =
481     Builder.CreateInBoundsGEP(DestPtr.getPointer(), indices, "arrayinit.begin");
482 
483   CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
484   CharUnits elementAlign =
485     DestPtr.getAlignment().alignmentOfArrayElement(elementSize);
486 
487   // Consider initializing the array by copying from a global. For this to be
488   // more efficient than per-element initialization, the size of the elements
489   // with explicit initializers should be large enough.
490   if (NumInitElements * elementSize.getQuantity() > 16 &&
491       elementType.isTriviallyCopyableType(CGF.getContext())) {
492     CodeGen::CodeGenModule &CGM = CGF.CGM;
493     ConstantEmitter Emitter(CGM);
494     LangAS AS = ArrayQTy.getAddressSpace();
495     if (llvm::Constant *C = Emitter.tryEmitForInitializer(E, AS, ArrayQTy)) {
496       auto GV = new llvm::GlobalVariable(
497           CGM.getModule(), C->getType(),
498           CGM.isTypeConstant(ArrayQTy, /* ExcludeCtorDtor= */ true),
499           llvm::GlobalValue::PrivateLinkage, C, "constinit",
500           /* InsertBefore= */ nullptr, llvm::GlobalVariable::NotThreadLocal,
501           CGM.getContext().getTargetAddressSpace(AS));
502       Emitter.finalize(GV);
503       CharUnits Align = CGM.getContext().getTypeAlignInChars(ArrayQTy);
504       GV->setAlignment(Align.getQuantity());
505       EmitFinalDestCopy(ArrayQTy, CGF.MakeAddrLValue(GV, ArrayQTy, Align));
506       return;
507     }
508   }
509 
510   // Exception safety requires us to destroy all the
511   // already-constructed members if an initializer throws.
512   // For that, we'll need an EH cleanup.
513   QualType::DestructionKind dtorKind = elementType.isDestructedType();
514   Address endOfInit = Address::invalid();
515   EHScopeStack::stable_iterator cleanup;
516   llvm::Instruction *cleanupDominator = nullptr;
517   if (CGF.needsEHCleanup(dtorKind)) {
518     // In principle we could tell the cleanup where we are more
519     // directly, but the control flow can get so varied here that it
520     // would actually be quite complex.  Therefore we go through an
521     // alloca.
522     endOfInit = CGF.CreateTempAlloca(begin->getType(), CGF.getPointerAlign(),
523                                      "arrayinit.endOfInit");
524     cleanupDominator = Builder.CreateStore(begin, endOfInit);
525     CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType,
526                                          elementAlign,
527                                          CGF.getDestroyer(dtorKind));
528     cleanup = CGF.EHStack.stable_begin();
529 
530   // Otherwise, remember that we didn't need a cleanup.
531   } else {
532     dtorKind = QualType::DK_none;
533   }
534 
535   llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1);
536 
537   // The 'current element to initialize'.  The invariants on this
538   // variable are complicated.  Essentially, after each iteration of
539   // the loop, it points to the last initialized element, except
540   // that it points to the beginning of the array before any
541   // elements have been initialized.
542   llvm::Value *element = begin;
543 
544   // Emit the explicit initializers.
545   for (uint64_t i = 0; i != NumInitElements; ++i) {
546     // Advance to the next element.
547     if (i > 0) {
548       element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element");
549 
550       // Tell the cleanup that it needs to destroy up to this
551       // element.  TODO: some of these stores can be trivially
552       // observed to be unnecessary.
553       if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit);
554     }
555 
556     LValue elementLV =
557       CGF.MakeAddrLValue(Address(element, elementAlign), elementType);
558     EmitInitializationToLValue(E->getInit(i), elementLV);
559   }
560 
561   // Check whether there's a non-trivial array-fill expression.
562   Expr *filler = E->getArrayFiller();
563   bool hasTrivialFiller = isTrivialFiller(filler);
564 
565   // Any remaining elements need to be zero-initialized, possibly
566   // using the filler expression.  We can skip this if the we're
567   // emitting to zeroed memory.
568   if (NumInitElements != NumArrayElements &&
569       !(Dest.isZeroed() && hasTrivialFiller &&
570         CGF.getTypes().isZeroInitializable(elementType))) {
571 
572     // Use an actual loop.  This is basically
573     //   do { *array++ = filler; } while (array != end);
574 
575     // Advance to the start of the rest of the array.
576     if (NumInitElements) {
577       element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start");
578       if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit);
579     }
580 
581     // Compute the end of the array.
582     llvm::Value *end = Builder.CreateInBoundsGEP(begin,
583                       llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements),
584                                                  "arrayinit.end");
585 
586     llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
587     llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
588 
589     // Jump into the body.
590     CGF.EmitBlock(bodyBB);
591     llvm::PHINode *currentElement =
592       Builder.CreatePHI(element->getType(), 2, "arrayinit.cur");
593     currentElement->addIncoming(element, entryBB);
594 
595     // Emit the actual filler expression.
596     {
597       // C++1z [class.temporary]p5:
598       //   when a default constructor is called to initialize an element of
599       //   an array with no corresponding initializer [...] the destruction of
600       //   every temporary created in a default argument is sequenced before
601       //   the construction of the next array element, if any
602       CodeGenFunction::RunCleanupsScope CleanupsScope(CGF);
603       LValue elementLV =
604         CGF.MakeAddrLValue(Address(currentElement, elementAlign), elementType);
605       if (filler)
606         EmitInitializationToLValue(filler, elementLV);
607       else
608         EmitNullInitializationToLValue(elementLV);
609     }
610 
611     // Move on to the next element.
612     llvm::Value *nextElement =
613       Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next");
614 
615     // Tell the EH cleanup that we finished with the last element.
616     if (endOfInit.isValid()) Builder.CreateStore(nextElement, endOfInit);
617 
618     // Leave the loop if we're done.
619     llvm::Value *done = Builder.CreateICmpEQ(nextElement, end,
620                                              "arrayinit.done");
621     llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
622     Builder.CreateCondBr(done, endBB, bodyBB);
623     currentElement->addIncoming(nextElement, Builder.GetInsertBlock());
624 
625     CGF.EmitBlock(endBB);
626   }
627 
628   // Leave the partial-array cleanup if we entered one.
629   if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator);
630 }
631 
632 //===----------------------------------------------------------------------===//
633 //                            Visitor Methods
634 //===----------------------------------------------------------------------===//
635 
636 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){
637   Visit(E->GetTemporaryExpr());
638 }
639 
640 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) {
641   // If this is a unique OVE, just visit its source expression.
642   if (e->isUnique())
643     Visit(e->getSourceExpr());
644   else
645     EmitFinalDestCopy(e->getType(), CGF.getOrCreateOpaqueLValueMapping(e));
646 }
647 
648 void
649 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
650   if (Dest.isPotentiallyAliased() &&
651       E->getType().isPODType(CGF.getContext())) {
652     // For a POD type, just emit a load of the lvalue + a copy, because our
653     // compound literal might alias the destination.
654     EmitAggLoadOfLValue(E);
655     return;
656   }
657 
658   AggValueSlot Slot = EnsureSlot(E->getType());
659   CGF.EmitAggExpr(E->getInitializer(), Slot);
660 }
661 
662 /// Attempt to look through various unimportant expressions to find a
663 /// cast of the given kind.
664 static Expr *findPeephole(Expr *op, CastKind kind) {
665   while (true) {
666     op = op->IgnoreParens();
667     if (CastExpr *castE = dyn_cast<CastExpr>(op)) {
668       if (castE->getCastKind() == kind)
669         return castE->getSubExpr();
670       if (castE->getCastKind() == CK_NoOp)
671         continue;
672     }
673     return nullptr;
674   }
675 }
676 
677 void AggExprEmitter::VisitCastExpr(CastExpr *E) {
678   if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E))
679     CGF.CGM.EmitExplicitCastExprType(ECE, &CGF);
680   switch (E->getCastKind()) {
681   case CK_Dynamic: {
682     // FIXME: Can this actually happen? We have no test coverage for it.
683     assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?");
684     LValue LV = CGF.EmitCheckedLValue(E->getSubExpr(),
685                                       CodeGenFunction::TCK_Load);
686     // FIXME: Do we also need to handle property references here?
687     if (LV.isSimple())
688       CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E));
689     else
690       CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast");
691 
692     if (!Dest.isIgnored())
693       CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination");
694     break;
695   }
696 
697   case CK_ToUnion: {
698     // Evaluate even if the destination is ignored.
699     if (Dest.isIgnored()) {
700       CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(),
701                       /*ignoreResult=*/true);
702       break;
703     }
704 
705     // GCC union extension
706     QualType Ty = E->getSubExpr()->getType();
707     Address CastPtr =
708       Builder.CreateElementBitCast(Dest.getAddress(), CGF.ConvertType(Ty));
709     EmitInitializationToLValue(E->getSubExpr(),
710                                CGF.MakeAddrLValue(CastPtr, Ty));
711     break;
712   }
713 
714   case CK_DerivedToBase:
715   case CK_BaseToDerived:
716   case CK_UncheckedDerivedToBase: {
717     llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: "
718                 "should have been unpacked before we got here");
719   }
720 
721   case CK_NonAtomicToAtomic:
722   case CK_AtomicToNonAtomic: {
723     bool isToAtomic = (E->getCastKind() == CK_NonAtomicToAtomic);
724 
725     // Determine the atomic and value types.
726     QualType atomicType = E->getSubExpr()->getType();
727     QualType valueType = E->getType();
728     if (isToAtomic) std::swap(atomicType, valueType);
729 
730     assert(atomicType->isAtomicType());
731     assert(CGF.getContext().hasSameUnqualifiedType(valueType,
732                           atomicType->castAs<AtomicType>()->getValueType()));
733 
734     // Just recurse normally if we're ignoring the result or the
735     // atomic type doesn't change representation.
736     if (Dest.isIgnored() || !CGF.CGM.isPaddedAtomicType(atomicType)) {
737       return Visit(E->getSubExpr());
738     }
739 
740     CastKind peepholeTarget =
741       (isToAtomic ? CK_AtomicToNonAtomic : CK_NonAtomicToAtomic);
742 
743     // These two cases are reverses of each other; try to peephole them.
744     if (Expr *op = findPeephole(E->getSubExpr(), peepholeTarget)) {
745       assert(CGF.getContext().hasSameUnqualifiedType(op->getType(),
746                                                      E->getType()) &&
747            "peephole significantly changed types?");
748       return Visit(op);
749     }
750 
751     // If we're converting an r-value of non-atomic type to an r-value
752     // of atomic type, just emit directly into the relevant sub-object.
753     if (isToAtomic) {
754       AggValueSlot valueDest = Dest;
755       if (!valueDest.isIgnored() && CGF.CGM.isPaddedAtomicType(atomicType)) {
756         // Zero-initialize.  (Strictly speaking, we only need to initialize
757         // the padding at the end, but this is simpler.)
758         if (!Dest.isZeroed())
759           CGF.EmitNullInitialization(Dest.getAddress(), atomicType);
760 
761         // Build a GEP to refer to the subobject.
762         Address valueAddr =
763             CGF.Builder.CreateStructGEP(valueDest.getAddress(), 0);
764         valueDest = AggValueSlot::forAddr(valueAddr,
765                                           valueDest.getQualifiers(),
766                                           valueDest.isExternallyDestructed(),
767                                           valueDest.requiresGCollection(),
768                                           valueDest.isPotentiallyAliased(),
769                                           AggValueSlot::DoesNotOverlap,
770                                           AggValueSlot::IsZeroed);
771       }
772 
773       CGF.EmitAggExpr(E->getSubExpr(), valueDest);
774       return;
775     }
776 
777     // Otherwise, we're converting an atomic type to a non-atomic type.
778     // Make an atomic temporary, emit into that, and then copy the value out.
779     AggValueSlot atomicSlot =
780       CGF.CreateAggTemp(atomicType, "atomic-to-nonatomic.temp");
781     CGF.EmitAggExpr(E->getSubExpr(), atomicSlot);
782 
783     Address valueAddr = Builder.CreateStructGEP(atomicSlot.getAddress(), 0);
784     RValue rvalue = RValue::getAggregate(valueAddr, atomicSlot.isVolatile());
785     return EmitFinalDestCopy(valueType, rvalue);
786   }
787   case CK_AddressSpaceConversion:
788      return Visit(E->getSubExpr());
789 
790   case CK_LValueToRValue:
791     // If we're loading from a volatile type, force the destination
792     // into existence.
793     if (E->getSubExpr()->getType().isVolatileQualified()) {
794       EnsureDest(E->getType());
795       return Visit(E->getSubExpr());
796     }
797 
798     LLVM_FALLTHROUGH;
799 
800 
801   case CK_NoOp:
802   case CK_UserDefinedConversion:
803   case CK_ConstructorConversion:
804     assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(),
805                                                    E->getType()) &&
806            "Implicit cast types must be compatible");
807     Visit(E->getSubExpr());
808     break;
809 
810   case CK_LValueBitCast:
811     llvm_unreachable("should not be emitting lvalue bitcast as rvalue");
812 
813   case CK_Dependent:
814   case CK_BitCast:
815   case CK_ArrayToPointerDecay:
816   case CK_FunctionToPointerDecay:
817   case CK_NullToPointer:
818   case CK_NullToMemberPointer:
819   case CK_BaseToDerivedMemberPointer:
820   case CK_DerivedToBaseMemberPointer:
821   case CK_MemberPointerToBoolean:
822   case CK_ReinterpretMemberPointer:
823   case CK_IntegralToPointer:
824   case CK_PointerToIntegral:
825   case CK_PointerToBoolean:
826   case CK_ToVoid:
827   case CK_VectorSplat:
828   case CK_IntegralCast:
829   case CK_BooleanToSignedIntegral:
830   case CK_IntegralToBoolean:
831   case CK_IntegralToFloating:
832   case CK_FloatingToIntegral:
833   case CK_FloatingToBoolean:
834   case CK_FloatingCast:
835   case CK_CPointerToObjCPointerCast:
836   case CK_BlockPointerToObjCPointerCast:
837   case CK_AnyPointerToBlockPointerCast:
838   case CK_ObjCObjectLValueCast:
839   case CK_FloatingRealToComplex:
840   case CK_FloatingComplexToReal:
841   case CK_FloatingComplexToBoolean:
842   case CK_FloatingComplexCast:
843   case CK_FloatingComplexToIntegralComplex:
844   case CK_IntegralRealToComplex:
845   case CK_IntegralComplexToReal:
846   case CK_IntegralComplexToBoolean:
847   case CK_IntegralComplexCast:
848   case CK_IntegralComplexToFloatingComplex:
849   case CK_ARCProduceObject:
850   case CK_ARCConsumeObject:
851   case CK_ARCReclaimReturnedObject:
852   case CK_ARCExtendBlockObject:
853   case CK_CopyAndAutoreleaseBlockObject:
854   case CK_BuiltinFnToFnPtr:
855   case CK_ZeroToOCLOpaqueType:
856 
857   case CK_IntToOCLSampler:
858   case CK_FixedPointCast:
859   case CK_FixedPointToBoolean:
860   case CK_FixedPointToIntegral:
861   case CK_IntegralToFixedPoint:
862     llvm_unreachable("cast kind invalid for aggregate types");
863   }
864 }
865 
866 void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
867   if (E->getCallReturnType(CGF.getContext())->isReferenceType()) {
868     EmitAggLoadOfLValue(E);
869     return;
870   }
871 
872   withReturnValueSlot(E, [&](ReturnValueSlot Slot) {
873     return CGF.EmitCallExpr(E, Slot);
874   });
875 }
876 
877 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
878   withReturnValueSlot(E, [&](ReturnValueSlot Slot) {
879     return CGF.EmitObjCMessageExpr(E, Slot);
880   });
881 }
882 
883 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
884   CGF.EmitIgnoredExpr(E->getLHS());
885   Visit(E->getRHS());
886 }
887 
888 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
889   CodeGenFunction::StmtExprEvaluation eval(CGF);
890   CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest);
891 }
892 
893 enum CompareKind {
894   CK_Less,
895   CK_Greater,
896   CK_Equal,
897 };
898 
899 static llvm::Value *EmitCompare(CGBuilderTy &Builder, CodeGenFunction &CGF,
900                                 const BinaryOperator *E, llvm::Value *LHS,
901                                 llvm::Value *RHS, CompareKind Kind,
902                                 const char *NameSuffix = "") {
903   QualType ArgTy = E->getLHS()->getType();
904   if (const ComplexType *CT = ArgTy->getAs<ComplexType>())
905     ArgTy = CT->getElementType();
906 
907   if (const auto *MPT = ArgTy->getAs<MemberPointerType>()) {
908     assert(Kind == CK_Equal &&
909            "member pointers may only be compared for equality");
910     return CGF.CGM.getCXXABI().EmitMemberPointerComparison(
911         CGF, LHS, RHS, MPT, /*IsInequality*/ false);
912   }
913 
914   // Compute the comparison instructions for the specified comparison kind.
915   struct CmpInstInfo {
916     const char *Name;
917     llvm::CmpInst::Predicate FCmp;
918     llvm::CmpInst::Predicate SCmp;
919     llvm::CmpInst::Predicate UCmp;
920   };
921   CmpInstInfo InstInfo = [&]() -> CmpInstInfo {
922     using FI = llvm::FCmpInst;
923     using II = llvm::ICmpInst;
924     switch (Kind) {
925     case CK_Less:
926       return {"cmp.lt", FI::FCMP_OLT, II::ICMP_SLT, II::ICMP_ULT};
927     case CK_Greater:
928       return {"cmp.gt", FI::FCMP_OGT, II::ICMP_SGT, II::ICMP_UGT};
929     case CK_Equal:
930       return {"cmp.eq", FI::FCMP_OEQ, II::ICMP_EQ, II::ICMP_EQ};
931     }
932     llvm_unreachable("Unrecognised CompareKind enum");
933   }();
934 
935   if (ArgTy->hasFloatingRepresentation())
936     return Builder.CreateFCmp(InstInfo.FCmp, LHS, RHS,
937                               llvm::Twine(InstInfo.Name) + NameSuffix);
938   if (ArgTy->isIntegralOrEnumerationType() || ArgTy->isPointerType()) {
939     auto Inst =
940         ArgTy->hasSignedIntegerRepresentation() ? InstInfo.SCmp : InstInfo.UCmp;
941     return Builder.CreateICmp(Inst, LHS, RHS,
942                               llvm::Twine(InstInfo.Name) + NameSuffix);
943   }
944 
945   llvm_unreachable("unsupported aggregate binary expression should have "
946                    "already been handled");
947 }
948 
949 void AggExprEmitter::VisitBinCmp(const BinaryOperator *E) {
950   using llvm::BasicBlock;
951   using llvm::PHINode;
952   using llvm::Value;
953   assert(CGF.getContext().hasSameType(E->getLHS()->getType(),
954                                       E->getRHS()->getType()));
955   const ComparisonCategoryInfo &CmpInfo =
956       CGF.getContext().CompCategories.getInfoForType(E->getType());
957   assert(CmpInfo.Record->isTriviallyCopyable() &&
958          "cannot copy non-trivially copyable aggregate");
959 
960   QualType ArgTy = E->getLHS()->getType();
961 
962   // TODO: Handle comparing these types.
963   if (ArgTy->isVectorType())
964     return CGF.ErrorUnsupported(
965         E, "aggregate three-way comparison with vector arguments");
966   if (!ArgTy->isIntegralOrEnumerationType() && !ArgTy->isRealFloatingType() &&
967       !ArgTy->isNullPtrType() && !ArgTy->isPointerType() &&
968       !ArgTy->isMemberPointerType() && !ArgTy->isAnyComplexType()) {
969     return CGF.ErrorUnsupported(E, "aggregate three-way comparison");
970   }
971   bool IsComplex = ArgTy->isAnyComplexType();
972 
973   // Evaluate the operands to the expression and extract their values.
974   auto EmitOperand = [&](Expr *E) -> std::pair<Value *, Value *> {
975     RValue RV = CGF.EmitAnyExpr(E);
976     if (RV.isScalar())
977       return {RV.getScalarVal(), nullptr};
978     if (RV.isAggregate())
979       return {RV.getAggregatePointer(), nullptr};
980     assert(RV.isComplex());
981     return RV.getComplexVal();
982   };
983   auto LHSValues = EmitOperand(E->getLHS()),
984        RHSValues = EmitOperand(E->getRHS());
985 
986   auto EmitCmp = [&](CompareKind K) {
987     Value *Cmp = EmitCompare(Builder, CGF, E, LHSValues.first, RHSValues.first,
988                              K, IsComplex ? ".r" : "");
989     if (!IsComplex)
990       return Cmp;
991     assert(K == CompareKind::CK_Equal);
992     Value *CmpImag = EmitCompare(Builder, CGF, E, LHSValues.second,
993                                  RHSValues.second, K, ".i");
994     return Builder.CreateAnd(Cmp, CmpImag, "and.eq");
995   };
996   auto EmitCmpRes = [&](const ComparisonCategoryInfo::ValueInfo *VInfo) {
997     return Builder.getInt(VInfo->getIntValue());
998   };
999 
1000   Value *Select;
1001   if (ArgTy->isNullPtrType()) {
1002     Select = EmitCmpRes(CmpInfo.getEqualOrEquiv());
1003   } else if (CmpInfo.isEquality()) {
1004     Select = Builder.CreateSelect(
1005         EmitCmp(CK_Equal), EmitCmpRes(CmpInfo.getEqualOrEquiv()),
1006         EmitCmpRes(CmpInfo.getNonequalOrNonequiv()), "sel.eq");
1007   } else if (!CmpInfo.isPartial()) {
1008     Value *SelectOne =
1009         Builder.CreateSelect(EmitCmp(CK_Less), EmitCmpRes(CmpInfo.getLess()),
1010                              EmitCmpRes(CmpInfo.getGreater()), "sel.lt");
1011     Select = Builder.CreateSelect(EmitCmp(CK_Equal),
1012                                   EmitCmpRes(CmpInfo.getEqualOrEquiv()),
1013                                   SelectOne, "sel.eq");
1014   } else {
1015     Value *SelectEq = Builder.CreateSelect(
1016         EmitCmp(CK_Equal), EmitCmpRes(CmpInfo.getEqualOrEquiv()),
1017         EmitCmpRes(CmpInfo.getUnordered()), "sel.eq");
1018     Value *SelectGT = Builder.CreateSelect(EmitCmp(CK_Greater),
1019                                            EmitCmpRes(CmpInfo.getGreater()),
1020                                            SelectEq, "sel.gt");
1021     Select = Builder.CreateSelect(
1022         EmitCmp(CK_Less), EmitCmpRes(CmpInfo.getLess()), SelectGT, "sel.lt");
1023   }
1024   // Create the return value in the destination slot.
1025   EnsureDest(E->getType());
1026   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
1027 
1028   // Emit the address of the first (and only) field in the comparison category
1029   // type, and initialize it from the constant integer value selected above.
1030   LValue FieldLV = CGF.EmitLValueForFieldInitialization(
1031       DestLV, *CmpInfo.Record->field_begin());
1032   CGF.EmitStoreThroughLValue(RValue::get(Select), FieldLV, /*IsInit*/ true);
1033 
1034   // All done! The result is in the Dest slot.
1035 }
1036 
1037 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
1038   if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI)
1039     VisitPointerToDataMemberBinaryOperator(E);
1040   else
1041     CGF.ErrorUnsupported(E, "aggregate binary expression");
1042 }
1043 
1044 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator(
1045                                                     const BinaryOperator *E) {
1046   LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E);
1047   EmitFinalDestCopy(E->getType(), LV);
1048 }
1049 
1050 /// Is the value of the given expression possibly a reference to or
1051 /// into a __block variable?
1052 static bool isBlockVarRef(const Expr *E) {
1053   // Make sure we look through parens.
1054   E = E->IgnoreParens();
1055 
1056   // Check for a direct reference to a __block variable.
1057   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
1058     const VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
1059     return (var && var->hasAttr<BlocksAttr>());
1060   }
1061 
1062   // More complicated stuff.
1063 
1064   // Binary operators.
1065   if (const BinaryOperator *op = dyn_cast<BinaryOperator>(E)) {
1066     // For an assignment or pointer-to-member operation, just care
1067     // about the LHS.
1068     if (op->isAssignmentOp() || op->isPtrMemOp())
1069       return isBlockVarRef(op->getLHS());
1070 
1071     // For a comma, just care about the RHS.
1072     if (op->getOpcode() == BO_Comma)
1073       return isBlockVarRef(op->getRHS());
1074 
1075     // FIXME: pointer arithmetic?
1076     return false;
1077 
1078   // Check both sides of a conditional operator.
1079   } else if (const AbstractConditionalOperator *op
1080                = dyn_cast<AbstractConditionalOperator>(E)) {
1081     return isBlockVarRef(op->getTrueExpr())
1082         || isBlockVarRef(op->getFalseExpr());
1083 
1084   // OVEs are required to support BinaryConditionalOperators.
1085   } else if (const OpaqueValueExpr *op
1086                = dyn_cast<OpaqueValueExpr>(E)) {
1087     if (const Expr *src = op->getSourceExpr())
1088       return isBlockVarRef(src);
1089 
1090   // Casts are necessary to get things like (*(int*)&var) = foo().
1091   // We don't really care about the kind of cast here, except
1092   // we don't want to look through l2r casts, because it's okay
1093   // to get the *value* in a __block variable.
1094   } else if (const CastExpr *cast = dyn_cast<CastExpr>(E)) {
1095     if (cast->getCastKind() == CK_LValueToRValue)
1096       return false;
1097     return isBlockVarRef(cast->getSubExpr());
1098 
1099   // Handle unary operators.  Again, just aggressively look through
1100   // it, ignoring the operation.
1101   } else if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E)) {
1102     return isBlockVarRef(uop->getSubExpr());
1103 
1104   // Look into the base of a field access.
1105   } else if (const MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
1106     return isBlockVarRef(mem->getBase());
1107 
1108   // Look into the base of a subscript.
1109   } else if (const ArraySubscriptExpr *sub = dyn_cast<ArraySubscriptExpr>(E)) {
1110     return isBlockVarRef(sub->getBase());
1111   }
1112 
1113   return false;
1114 }
1115 
1116 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
1117   // For an assignment to work, the value on the right has
1118   // to be compatible with the value on the left.
1119   assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
1120                                                  E->getRHS()->getType())
1121          && "Invalid assignment");
1122 
1123   // If the LHS might be a __block variable, and the RHS can
1124   // potentially cause a block copy, we need to evaluate the RHS first
1125   // so that the assignment goes the right place.
1126   // This is pretty semantically fragile.
1127   if (isBlockVarRef(E->getLHS()) &&
1128       E->getRHS()->HasSideEffects(CGF.getContext())) {
1129     // Ensure that we have a destination, and evaluate the RHS into that.
1130     EnsureDest(E->getRHS()->getType());
1131     Visit(E->getRHS());
1132 
1133     // Now emit the LHS and copy into it.
1134     LValue LHS = CGF.EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
1135 
1136     // That copy is an atomic copy if the LHS is atomic.
1137     if (LHS.getType()->isAtomicType() ||
1138         CGF.LValueIsSuitableForInlineAtomic(LHS)) {
1139       CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false);
1140       return;
1141     }
1142 
1143     EmitCopy(E->getLHS()->getType(),
1144              AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed,
1145                                      needsGC(E->getLHS()->getType()),
1146                                      AggValueSlot::IsAliased,
1147                                      AggValueSlot::MayOverlap),
1148              Dest);
1149     return;
1150   }
1151 
1152   LValue LHS = CGF.EmitLValue(E->getLHS());
1153 
1154   // If we have an atomic type, evaluate into the destination and then
1155   // do an atomic copy.
1156   if (LHS.getType()->isAtomicType() ||
1157       CGF.LValueIsSuitableForInlineAtomic(LHS)) {
1158     EnsureDest(E->getRHS()->getType());
1159     Visit(E->getRHS());
1160     CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false);
1161     return;
1162   }
1163 
1164   // Codegen the RHS so that it stores directly into the LHS.
1165   AggValueSlot LHSSlot =
1166     AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed,
1167                             needsGC(E->getLHS()->getType()),
1168                             AggValueSlot::IsAliased,
1169                             AggValueSlot::MayOverlap);
1170   // A non-volatile aggregate destination might have volatile member.
1171   if (!LHSSlot.isVolatile() &&
1172       CGF.hasVolatileMember(E->getLHS()->getType()))
1173     LHSSlot.setVolatile(true);
1174 
1175   CGF.EmitAggExpr(E->getRHS(), LHSSlot);
1176 
1177   // Copy into the destination if the assignment isn't ignored.
1178   EmitFinalDestCopy(E->getType(), LHS);
1179 }
1180 
1181 void AggExprEmitter::
1182 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
1183   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
1184   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
1185   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
1186 
1187   // Bind the common expression if necessary.
1188   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
1189 
1190   CodeGenFunction::ConditionalEvaluation eval(CGF);
1191   CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock,
1192                            CGF.getProfileCount(E));
1193 
1194   // Save whether the destination's lifetime is externally managed.
1195   bool isExternallyDestructed = Dest.isExternallyDestructed();
1196 
1197   eval.begin(CGF);
1198   CGF.EmitBlock(LHSBlock);
1199   CGF.incrementProfileCounter(E);
1200   Visit(E->getTrueExpr());
1201   eval.end(CGF);
1202 
1203   assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!");
1204   CGF.Builder.CreateBr(ContBlock);
1205 
1206   // If the result of an agg expression is unused, then the emission
1207   // of the LHS might need to create a destination slot.  That's fine
1208   // with us, and we can safely emit the RHS into the same slot, but
1209   // we shouldn't claim that it's already being destructed.
1210   Dest.setExternallyDestructed(isExternallyDestructed);
1211 
1212   eval.begin(CGF);
1213   CGF.EmitBlock(RHSBlock);
1214   Visit(E->getFalseExpr());
1215   eval.end(CGF);
1216 
1217   CGF.EmitBlock(ContBlock);
1218 }
1219 
1220 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) {
1221   Visit(CE->getChosenSubExpr());
1222 }
1223 
1224 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
1225   Address ArgValue = Address::invalid();
1226   Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
1227 
1228   // If EmitVAArg fails, emit an error.
1229   if (!ArgPtr.isValid()) {
1230     CGF.ErrorUnsupported(VE, "aggregate va_arg expression");
1231     return;
1232   }
1233 
1234   EmitFinalDestCopy(VE->getType(), CGF.MakeAddrLValue(ArgPtr, VE->getType()));
1235 }
1236 
1237 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
1238   // Ensure that we have a slot, but if we already do, remember
1239   // whether it was externally destructed.
1240   bool wasExternallyDestructed = Dest.isExternallyDestructed();
1241   EnsureDest(E->getType());
1242 
1243   // We're going to push a destructor if there isn't already one.
1244   Dest.setExternallyDestructed();
1245 
1246   Visit(E->getSubExpr());
1247 
1248   // Push that destructor we promised.
1249   if (!wasExternallyDestructed)
1250     CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddress());
1251 }
1252 
1253 void
1254 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) {
1255   AggValueSlot Slot = EnsureSlot(E->getType());
1256   CGF.EmitCXXConstructExpr(E, Slot);
1257 }
1258 
1259 void AggExprEmitter::VisitCXXInheritedCtorInitExpr(
1260     const CXXInheritedCtorInitExpr *E) {
1261   AggValueSlot Slot = EnsureSlot(E->getType());
1262   CGF.EmitInheritedCXXConstructorCall(
1263       E->getConstructor(), E->constructsVBase(), Slot.getAddress(),
1264       E->inheritedFromVBase(), E);
1265 }
1266 
1267 void
1268 AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) {
1269   AggValueSlot Slot = EnsureSlot(E->getType());
1270   LValue SlotLV = CGF.MakeAddrLValue(Slot.getAddress(), E->getType());
1271 
1272   // We'll need to enter cleanup scopes in case any of the element
1273   // initializers throws an exception.
1274   SmallVector<EHScopeStack::stable_iterator, 16> Cleanups;
1275   llvm::Instruction *CleanupDominator = nullptr;
1276 
1277   CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin();
1278   for (LambdaExpr::const_capture_init_iterator i = E->capture_init_begin(),
1279                                                e = E->capture_init_end();
1280        i != e; ++i, ++CurField) {
1281     // Emit initialization
1282     LValue LV = CGF.EmitLValueForFieldInitialization(SlotLV, *CurField);
1283     if (CurField->hasCapturedVLAType()) {
1284       CGF.EmitLambdaVLACapture(CurField->getCapturedVLAType(), LV);
1285       continue;
1286     }
1287 
1288     EmitInitializationToLValue(*i, LV);
1289 
1290     // Push a destructor if necessary.
1291     if (QualType::DestructionKind DtorKind =
1292             CurField->getType().isDestructedType()) {
1293       assert(LV.isSimple());
1294       if (CGF.needsEHCleanup(DtorKind)) {
1295         if (!CleanupDominator)
1296           CleanupDominator = CGF.Builder.CreateAlignedLoad(
1297               CGF.Int8Ty,
1298               llvm::Constant::getNullValue(CGF.Int8PtrTy),
1299               CharUnits::One()); // placeholder
1300 
1301         CGF.pushDestroy(EHCleanup, LV.getAddress(), CurField->getType(),
1302                         CGF.getDestroyer(DtorKind), false);
1303         Cleanups.push_back(CGF.EHStack.stable_begin());
1304       }
1305     }
1306   }
1307 
1308   // Deactivate all the partial cleanups in reverse order, which
1309   // generally means popping them.
1310   for (unsigned i = Cleanups.size(); i != 0; --i)
1311     CGF.DeactivateCleanupBlock(Cleanups[i-1], CleanupDominator);
1312 
1313   // Destroy the placeholder if we made one.
1314   if (CleanupDominator)
1315     CleanupDominator->eraseFromParent();
1316 }
1317 
1318 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
1319   CGF.enterFullExpression(E);
1320   CodeGenFunction::RunCleanupsScope cleanups(CGF);
1321   Visit(E->getSubExpr());
1322 }
1323 
1324 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
1325   QualType T = E->getType();
1326   AggValueSlot Slot = EnsureSlot(T);
1327   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T));
1328 }
1329 
1330 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
1331   QualType T = E->getType();
1332   AggValueSlot Slot = EnsureSlot(T);
1333   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T));
1334 }
1335 
1336 /// isSimpleZero - If emitting this value will obviously just cause a store of
1337 /// zero to memory, return true.  This can return false if uncertain, so it just
1338 /// handles simple cases.
1339 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) {
1340   E = E->IgnoreParens();
1341 
1342   // 0
1343   if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E))
1344     return IL->getValue() == 0;
1345   // +0.0
1346   if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E))
1347     return FL->getValue().isPosZero();
1348   // int()
1349   if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) &&
1350       CGF.getTypes().isZeroInitializable(E->getType()))
1351     return true;
1352   // (int*)0 - Null pointer expressions.
1353   if (const CastExpr *ICE = dyn_cast<CastExpr>(E))
1354     return ICE->getCastKind() == CK_NullToPointer &&
1355            CGF.getTypes().isPointerZeroInitializable(E->getType()) &&
1356            !E->HasSideEffects(CGF.getContext());
1357   // '\0'
1358   if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E))
1359     return CL->getValue() == 0;
1360 
1361   // Otherwise, hard case: conservatively return false.
1362   return false;
1363 }
1364 
1365 
1366 void
1367 AggExprEmitter::EmitInitializationToLValue(Expr *E, LValue LV) {
1368   QualType type = LV.getType();
1369   // FIXME: Ignore result?
1370   // FIXME: Are initializers affected by volatile?
1371   if (Dest.isZeroed() && isSimpleZero(E, CGF)) {
1372     // Storing "i32 0" to a zero'd memory location is a noop.
1373     return;
1374   } else if (isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) {
1375     return EmitNullInitializationToLValue(LV);
1376   } else if (isa<NoInitExpr>(E)) {
1377     // Do nothing.
1378     return;
1379   } else if (type->isReferenceType()) {
1380     RValue RV = CGF.EmitReferenceBindingToExpr(E);
1381     return CGF.EmitStoreThroughLValue(RV, LV);
1382   }
1383 
1384   switch (CGF.getEvaluationKind(type)) {
1385   case TEK_Complex:
1386     CGF.EmitComplexExprIntoLValue(E, LV, /*isInit*/ true);
1387     return;
1388   case TEK_Aggregate:
1389     CGF.EmitAggExpr(E, AggValueSlot::forLValue(LV,
1390                                                AggValueSlot::IsDestructed,
1391                                       AggValueSlot::DoesNotNeedGCBarriers,
1392                                                AggValueSlot::IsNotAliased,
1393                                                AggValueSlot::MayOverlap,
1394                                                Dest.isZeroed()));
1395     return;
1396   case TEK_Scalar:
1397     if (LV.isSimple()) {
1398       CGF.EmitScalarInit(E, /*D=*/nullptr, LV, /*Captured=*/false);
1399     } else {
1400       CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV);
1401     }
1402     return;
1403   }
1404   llvm_unreachable("bad evaluation kind");
1405 }
1406 
1407 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) {
1408   QualType type = lv.getType();
1409 
1410   // If the destination slot is already zeroed out before the aggregate is
1411   // copied into it, we don't have to emit any zeros here.
1412   if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type))
1413     return;
1414 
1415   if (CGF.hasScalarEvaluationKind(type)) {
1416     // For non-aggregates, we can store the appropriate null constant.
1417     llvm::Value *null = CGF.CGM.EmitNullConstant(type);
1418     // Note that the following is not equivalent to
1419     // EmitStoreThroughBitfieldLValue for ARC types.
1420     if (lv.isBitField()) {
1421       CGF.EmitStoreThroughBitfieldLValue(RValue::get(null), lv);
1422     } else {
1423       assert(lv.isSimple());
1424       CGF.EmitStoreOfScalar(null, lv, /* isInitialization */ true);
1425     }
1426   } else {
1427     // There's a potential optimization opportunity in combining
1428     // memsets; that would be easy for arrays, but relatively
1429     // difficult for structures with the current code.
1430     CGF.EmitNullInitialization(lv.getAddress(), lv.getType());
1431   }
1432 }
1433 
1434 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
1435 #if 0
1436   // FIXME: Assess perf here?  Figure out what cases are worth optimizing here
1437   // (Length of globals? Chunks of zeroed-out space?).
1438   //
1439   // If we can, prefer a copy from a global; this is a lot less code for long
1440   // globals, and it's easier for the current optimizers to analyze.
1441   if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) {
1442     llvm::GlobalVariable* GV =
1443     new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true,
1444                              llvm::GlobalValue::InternalLinkage, C, "");
1445     EmitFinalDestCopy(E->getType(), CGF.MakeAddrLValue(GV, E->getType()));
1446     return;
1447   }
1448 #endif
1449   if (E->hadArrayRangeDesignator())
1450     CGF.ErrorUnsupported(E, "GNU array range designator extension");
1451 
1452   if (E->isTransparent())
1453     return Visit(E->getInit(0));
1454 
1455   AggValueSlot Dest = EnsureSlot(E->getType());
1456 
1457   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
1458 
1459   // Handle initialization of an array.
1460   if (E->getType()->isArrayType()) {
1461     auto AType = cast<llvm::ArrayType>(Dest.getAddress().getElementType());
1462     EmitArrayInit(Dest.getAddress(), AType, E->getType(), E);
1463     return;
1464   }
1465 
1466   assert(E->getType()->isRecordType() && "Only support structs/unions here!");
1467 
1468   // Do struct initialization; this code just sets each individual member
1469   // to the approprate value.  This makes bitfield support automatic;
1470   // the disadvantage is that the generated code is more difficult for
1471   // the optimizer, especially with bitfields.
1472   unsigned NumInitElements = E->getNumInits();
1473   RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl();
1474 
1475   // We'll need to enter cleanup scopes in case any of the element
1476   // initializers throws an exception.
1477   SmallVector<EHScopeStack::stable_iterator, 16> cleanups;
1478   llvm::Instruction *cleanupDominator = nullptr;
1479 
1480   unsigned curInitIndex = 0;
1481 
1482   // Emit initialization of base classes.
1483   if (auto *CXXRD = dyn_cast<CXXRecordDecl>(record)) {
1484     assert(E->getNumInits() >= CXXRD->getNumBases() &&
1485            "missing initializer for base class");
1486     for (auto &Base : CXXRD->bases()) {
1487       assert(!Base.isVirtual() && "should not see vbases here");
1488       auto *BaseRD = Base.getType()->getAsCXXRecordDecl();
1489       Address V = CGF.GetAddressOfDirectBaseInCompleteClass(
1490           Dest.getAddress(), CXXRD, BaseRD,
1491           /*isBaseVirtual*/ false);
1492       AggValueSlot AggSlot = AggValueSlot::forAddr(
1493           V, Qualifiers(),
1494           AggValueSlot::IsDestructed,
1495           AggValueSlot::DoesNotNeedGCBarriers,
1496           AggValueSlot::IsNotAliased,
1497           CGF.getOverlapForBaseInit(CXXRD, BaseRD, Base.isVirtual()));
1498       CGF.EmitAggExpr(E->getInit(curInitIndex++), AggSlot);
1499 
1500       if (QualType::DestructionKind dtorKind =
1501               Base.getType().isDestructedType()) {
1502         CGF.pushDestroy(dtorKind, V, Base.getType());
1503         cleanups.push_back(CGF.EHStack.stable_begin());
1504       }
1505     }
1506   }
1507 
1508   // Prepare a 'this' for CXXDefaultInitExprs.
1509   CodeGenFunction::FieldConstructionScope FCS(CGF, Dest.getAddress());
1510 
1511   if (record->isUnion()) {
1512     // Only initialize one field of a union. The field itself is
1513     // specified by the initializer list.
1514     if (!E->getInitializedFieldInUnion()) {
1515       // Empty union; we have nothing to do.
1516 
1517 #ifndef NDEBUG
1518       // Make sure that it's really an empty and not a failure of
1519       // semantic analysis.
1520       for (const auto *Field : record->fields())
1521         assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed");
1522 #endif
1523       return;
1524     }
1525 
1526     // FIXME: volatility
1527     FieldDecl *Field = E->getInitializedFieldInUnion();
1528 
1529     LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestLV, Field);
1530     if (NumInitElements) {
1531       // Store the initializer into the field
1532       EmitInitializationToLValue(E->getInit(0), FieldLoc);
1533     } else {
1534       // Default-initialize to null.
1535       EmitNullInitializationToLValue(FieldLoc);
1536     }
1537 
1538     return;
1539   }
1540 
1541   // Here we iterate over the fields; this makes it simpler to both
1542   // default-initialize fields and skip over unnamed fields.
1543   for (const auto *field : record->fields()) {
1544     // We're done once we hit the flexible array member.
1545     if (field->getType()->isIncompleteArrayType())
1546       break;
1547 
1548     // Always skip anonymous bitfields.
1549     if (field->isUnnamedBitfield())
1550       continue;
1551 
1552     // We're done if we reach the end of the explicit initializers, we
1553     // have a zeroed object, and the rest of the fields are
1554     // zero-initializable.
1555     if (curInitIndex == NumInitElements && Dest.isZeroed() &&
1556         CGF.getTypes().isZeroInitializable(E->getType()))
1557       break;
1558 
1559 
1560     LValue LV = CGF.EmitLValueForFieldInitialization(DestLV, field);
1561     // We never generate write-barries for initialized fields.
1562     LV.setNonGC(true);
1563 
1564     if (curInitIndex < NumInitElements) {
1565       // Store the initializer into the field.
1566       EmitInitializationToLValue(E->getInit(curInitIndex++), LV);
1567     } else {
1568       // We're out of initializers; default-initialize to null
1569       EmitNullInitializationToLValue(LV);
1570     }
1571 
1572     // Push a destructor if necessary.
1573     // FIXME: if we have an array of structures, all explicitly
1574     // initialized, we can end up pushing a linear number of cleanups.
1575     bool pushedCleanup = false;
1576     if (QualType::DestructionKind dtorKind
1577           = field->getType().isDestructedType()) {
1578       assert(LV.isSimple());
1579       if (CGF.needsEHCleanup(dtorKind)) {
1580         if (!cleanupDominator)
1581           cleanupDominator = CGF.Builder.CreateAlignedLoad(
1582               CGF.Int8Ty,
1583               llvm::Constant::getNullValue(CGF.Int8PtrTy),
1584               CharUnits::One()); // placeholder
1585 
1586         CGF.pushDestroy(EHCleanup, LV.getAddress(), field->getType(),
1587                         CGF.getDestroyer(dtorKind), false);
1588         cleanups.push_back(CGF.EHStack.stable_begin());
1589         pushedCleanup = true;
1590       }
1591     }
1592 
1593     // If the GEP didn't get used because of a dead zero init or something
1594     // else, clean it up for -O0 builds and general tidiness.
1595     if (!pushedCleanup && LV.isSimple())
1596       if (llvm::GetElementPtrInst *GEP =
1597             dyn_cast<llvm::GetElementPtrInst>(LV.getPointer()))
1598         if (GEP->use_empty())
1599           GEP->eraseFromParent();
1600   }
1601 
1602   // Deactivate all the partial cleanups in reverse order, which
1603   // generally means popping them.
1604   for (unsigned i = cleanups.size(); i != 0; --i)
1605     CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator);
1606 
1607   // Destroy the placeholder if we made one.
1608   if (cleanupDominator)
1609     cleanupDominator->eraseFromParent();
1610 }
1611 
1612 void AggExprEmitter::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E,
1613                                             llvm::Value *outerBegin) {
1614   // Emit the common subexpression.
1615   CodeGenFunction::OpaqueValueMapping binding(CGF, E->getCommonExpr());
1616 
1617   Address destPtr = EnsureSlot(E->getType()).getAddress();
1618   uint64_t numElements = E->getArraySize().getZExtValue();
1619 
1620   if (!numElements)
1621     return;
1622 
1623   // destPtr is an array*. Construct an elementType* by drilling down a level.
1624   llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
1625   llvm::Value *indices[] = {zero, zero};
1626   llvm::Value *begin = Builder.CreateInBoundsGEP(destPtr.getPointer(), indices,
1627                                                  "arrayinit.begin");
1628 
1629   // Prepare to special-case multidimensional array initialization: we avoid
1630   // emitting multiple destructor loops in that case.
1631   if (!outerBegin)
1632     outerBegin = begin;
1633   ArrayInitLoopExpr *InnerLoop = dyn_cast<ArrayInitLoopExpr>(E->getSubExpr());
1634 
1635   QualType elementType =
1636       CGF.getContext().getAsArrayType(E->getType())->getElementType();
1637   CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
1638   CharUnits elementAlign =
1639       destPtr.getAlignment().alignmentOfArrayElement(elementSize);
1640 
1641   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1642   llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
1643 
1644   // Jump into the body.
1645   CGF.EmitBlock(bodyBB);
1646   llvm::PHINode *index =
1647       Builder.CreatePHI(zero->getType(), 2, "arrayinit.index");
1648   index->addIncoming(zero, entryBB);
1649   llvm::Value *element = Builder.CreateInBoundsGEP(begin, index);
1650 
1651   // Prepare for a cleanup.
1652   QualType::DestructionKind dtorKind = elementType.isDestructedType();
1653   EHScopeStack::stable_iterator cleanup;
1654   if (CGF.needsEHCleanup(dtorKind) && !InnerLoop) {
1655     if (outerBegin->getType() != element->getType())
1656       outerBegin = Builder.CreateBitCast(outerBegin, element->getType());
1657     CGF.pushRegularPartialArrayCleanup(outerBegin, element, elementType,
1658                                        elementAlign,
1659                                        CGF.getDestroyer(dtorKind));
1660     cleanup = CGF.EHStack.stable_begin();
1661   } else {
1662     dtorKind = QualType::DK_none;
1663   }
1664 
1665   // Emit the actual filler expression.
1666   {
1667     // Temporaries created in an array initialization loop are destroyed
1668     // at the end of each iteration.
1669     CodeGenFunction::RunCleanupsScope CleanupsScope(CGF);
1670     CodeGenFunction::ArrayInitLoopExprScope Scope(CGF, index);
1671     LValue elementLV =
1672         CGF.MakeAddrLValue(Address(element, elementAlign), elementType);
1673 
1674     if (InnerLoop) {
1675       // If the subexpression is an ArrayInitLoopExpr, share its cleanup.
1676       auto elementSlot = AggValueSlot::forLValue(
1677           elementLV, AggValueSlot::IsDestructed,
1678           AggValueSlot::DoesNotNeedGCBarriers,
1679           AggValueSlot::IsNotAliased,
1680           AggValueSlot::DoesNotOverlap);
1681       AggExprEmitter(CGF, elementSlot, false)
1682           .VisitArrayInitLoopExpr(InnerLoop, outerBegin);
1683     } else
1684       EmitInitializationToLValue(E->getSubExpr(), elementLV);
1685   }
1686 
1687   // Move on to the next element.
1688   llvm::Value *nextIndex = Builder.CreateNUWAdd(
1689       index, llvm::ConstantInt::get(CGF.SizeTy, 1), "arrayinit.next");
1690   index->addIncoming(nextIndex, Builder.GetInsertBlock());
1691 
1692   // Leave the loop if we're done.
1693   llvm::Value *done = Builder.CreateICmpEQ(
1694       nextIndex, llvm::ConstantInt::get(CGF.SizeTy, numElements),
1695       "arrayinit.done");
1696   llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
1697   Builder.CreateCondBr(done, endBB, bodyBB);
1698 
1699   CGF.EmitBlock(endBB);
1700 
1701   // Leave the partial-array cleanup if we entered one.
1702   if (dtorKind)
1703     CGF.DeactivateCleanupBlock(cleanup, index);
1704 }
1705 
1706 void AggExprEmitter::VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E) {
1707   AggValueSlot Dest = EnsureSlot(E->getType());
1708 
1709   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
1710   EmitInitializationToLValue(E->getBase(), DestLV);
1711   VisitInitListExpr(E->getUpdater());
1712 }
1713 
1714 //===----------------------------------------------------------------------===//
1715 //                        Entry Points into this File
1716 //===----------------------------------------------------------------------===//
1717 
1718 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of
1719 /// non-zero bytes that will be stored when outputting the initializer for the
1720 /// specified initializer expression.
1721 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) {
1722   E = E->IgnoreParens();
1723 
1724   // 0 and 0.0 won't require any non-zero stores!
1725   if (isSimpleZero(E, CGF)) return CharUnits::Zero();
1726 
1727   // If this is an initlist expr, sum up the size of sizes of the (present)
1728   // elements.  If this is something weird, assume the whole thing is non-zero.
1729   const InitListExpr *ILE = dyn_cast<InitListExpr>(E);
1730   while (ILE && ILE->isTransparent())
1731     ILE = dyn_cast<InitListExpr>(ILE->getInit(0));
1732   if (!ILE || !CGF.getTypes().isZeroInitializable(ILE->getType()))
1733     return CGF.getContext().getTypeSizeInChars(E->getType());
1734 
1735   // InitListExprs for structs have to be handled carefully.  If there are
1736   // reference members, we need to consider the size of the reference, not the
1737   // referencee.  InitListExprs for unions and arrays can't have references.
1738   if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
1739     if (!RT->isUnionType()) {
1740       RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl();
1741       CharUnits NumNonZeroBytes = CharUnits::Zero();
1742 
1743       unsigned ILEElement = 0;
1744       if (auto *CXXRD = dyn_cast<CXXRecordDecl>(SD))
1745         while (ILEElement != CXXRD->getNumBases())
1746           NumNonZeroBytes +=
1747               GetNumNonZeroBytesInInit(ILE->getInit(ILEElement++), CGF);
1748       for (const auto *Field : SD->fields()) {
1749         // We're done once we hit the flexible array member or run out of
1750         // InitListExpr elements.
1751         if (Field->getType()->isIncompleteArrayType() ||
1752             ILEElement == ILE->getNumInits())
1753           break;
1754         if (Field->isUnnamedBitfield())
1755           continue;
1756 
1757         const Expr *E = ILE->getInit(ILEElement++);
1758 
1759         // Reference values are always non-null and have the width of a pointer.
1760         if (Field->getType()->isReferenceType())
1761           NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits(
1762               CGF.getTarget().getPointerWidth(0));
1763         else
1764           NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF);
1765       }
1766 
1767       return NumNonZeroBytes;
1768     }
1769   }
1770 
1771 
1772   CharUnits NumNonZeroBytes = CharUnits::Zero();
1773   for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1774     NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF);
1775   return NumNonZeroBytes;
1776 }
1777 
1778 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of
1779 /// zeros in it, emit a memset and avoid storing the individual zeros.
1780 ///
1781 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E,
1782                                      CodeGenFunction &CGF) {
1783   // If the slot is already known to be zeroed, nothing to do.  Don't mess with
1784   // volatile stores.
1785   if (Slot.isZeroed() || Slot.isVolatile() || !Slot.getAddress().isValid())
1786     return;
1787 
1788   // C++ objects with a user-declared constructor don't need zero'ing.
1789   if (CGF.getLangOpts().CPlusPlus)
1790     if (const RecordType *RT = CGF.getContext()
1791                        .getBaseElementType(E->getType())->getAs<RecordType>()) {
1792       const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1793       if (RD->hasUserDeclaredConstructor())
1794         return;
1795     }
1796 
1797   // If the type is 16-bytes or smaller, prefer individual stores over memset.
1798   CharUnits Size = Slot.getPreferredSize(CGF.getContext(), E->getType());
1799   if (Size <= CharUnits::fromQuantity(16))
1800     return;
1801 
1802   // Check to see if over 3/4 of the initializer are known to be zero.  If so,
1803   // we prefer to emit memset + individual stores for the rest.
1804   CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF);
1805   if (NumNonZeroBytes*4 > Size)
1806     return;
1807 
1808   // Okay, it seems like a good idea to use an initial memset, emit the call.
1809   llvm::Constant *SizeVal = CGF.Builder.getInt64(Size.getQuantity());
1810 
1811   Address Loc = Slot.getAddress();
1812   Loc = CGF.Builder.CreateElementBitCast(Loc, CGF.Int8Ty);
1813   CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, false);
1814 
1815   // Tell the AggExprEmitter that the slot is known zero.
1816   Slot.setZeroed();
1817 }
1818 
1819 
1820 
1821 
1822 /// EmitAggExpr - Emit the computation of the specified expression of aggregate
1823 /// type.  The result is computed into DestPtr.  Note that if DestPtr is null,
1824 /// the value of the aggregate expression is not needed.  If VolatileDest is
1825 /// true, DestPtr cannot be 0.
1826 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot) {
1827   assert(E && hasAggregateEvaluationKind(E->getType()) &&
1828          "Invalid aggregate expression to emit");
1829   assert((Slot.getAddress().isValid() || Slot.isIgnored()) &&
1830          "slot has bits but no address");
1831 
1832   // Optimize the slot if possible.
1833   CheckAggExprForMemSetUse(Slot, E, *this);
1834 
1835   AggExprEmitter(*this, Slot, Slot.isIgnored()).Visit(const_cast<Expr*>(E));
1836 }
1837 
1838 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) {
1839   assert(hasAggregateEvaluationKind(E->getType()) && "Invalid argument!");
1840   Address Temp = CreateMemTemp(E->getType());
1841   LValue LV = MakeAddrLValue(Temp, E->getType());
1842   EmitAggExpr(E, AggValueSlot::forLValue(LV, AggValueSlot::IsNotDestructed,
1843                                          AggValueSlot::DoesNotNeedGCBarriers,
1844                                          AggValueSlot::IsNotAliased,
1845                                          AggValueSlot::DoesNotOverlap));
1846   return LV;
1847 }
1848 
1849 AggValueSlot::Overlap_t
1850 CodeGenFunction::getOverlapForFieldInit(const FieldDecl *FD) {
1851   if (!FD->hasAttr<NoUniqueAddressAttr>() || !FD->getType()->isRecordType())
1852     return AggValueSlot::DoesNotOverlap;
1853 
1854   // If the field lies entirely within the enclosing class's nvsize, its tail
1855   // padding cannot overlap any already-initialized object. (The only subobjects
1856   // with greater addresses that might already be initialized are vbases.)
1857   const RecordDecl *ClassRD = FD->getParent();
1858   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(ClassRD);
1859   if (Layout.getFieldOffset(FD->getFieldIndex()) +
1860           getContext().getTypeSize(FD->getType()) <=
1861       (uint64_t)getContext().toBits(Layout.getNonVirtualSize()))
1862     return AggValueSlot::DoesNotOverlap;
1863 
1864   // The tail padding may contain values we need to preserve.
1865   return AggValueSlot::MayOverlap;
1866 }
1867 
1868 AggValueSlot::Overlap_t CodeGenFunction::getOverlapForBaseInit(
1869     const CXXRecordDecl *RD, const CXXRecordDecl *BaseRD, bool IsVirtual) {
1870   // If the most-derived object is a field declared with [[no_unique_address]],
1871   // the tail padding of any virtual base could be reused for other subobjects
1872   // of that field's class.
1873   if (IsVirtual)
1874     return AggValueSlot::MayOverlap;
1875 
1876   // If the base class is laid out entirely within the nvsize of the derived
1877   // class, its tail padding cannot yet be initialized, so we can issue
1878   // stores at the full width of the base class.
1879   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
1880   if (Layout.getBaseClassOffset(BaseRD) +
1881           getContext().getASTRecordLayout(BaseRD).getSize() <=
1882       Layout.getNonVirtualSize())
1883     return AggValueSlot::DoesNotOverlap;
1884 
1885   // The tail padding may contain values we need to preserve.
1886   return AggValueSlot::MayOverlap;
1887 }
1888 
1889 void CodeGenFunction::EmitAggregateCopy(LValue Dest, LValue Src, QualType Ty,
1890                                         AggValueSlot::Overlap_t MayOverlap,
1891                                         bool isVolatile) {
1892   assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
1893 
1894   Address DestPtr = Dest.getAddress();
1895   Address SrcPtr = Src.getAddress();
1896 
1897   if (getLangOpts().CPlusPlus) {
1898     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1899       CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
1900       assert((Record->hasTrivialCopyConstructor() ||
1901               Record->hasTrivialCopyAssignment() ||
1902               Record->hasTrivialMoveConstructor() ||
1903               Record->hasTrivialMoveAssignment() ||
1904               Record->isUnion()) &&
1905              "Trying to aggregate-copy a type without a trivial copy/move "
1906              "constructor or assignment operator");
1907       // Ignore empty classes in C++.
1908       if (Record->isEmpty())
1909         return;
1910     }
1911   }
1912 
1913   // Aggregate assignment turns into llvm.memcpy.  This is almost valid per
1914   // C99 6.5.16.1p3, which states "If the value being stored in an object is
1915   // read from another object that overlaps in anyway the storage of the first
1916   // object, then the overlap shall be exact and the two objects shall have
1917   // qualified or unqualified versions of a compatible type."
1918   //
1919   // memcpy is not defined if the source and destination pointers are exactly
1920   // equal, but other compilers do this optimization, and almost every memcpy
1921   // implementation handles this case safely.  If there is a libc that does not
1922   // safely handle this, we can add a target hook.
1923 
1924   // Get data size info for this aggregate. Don't copy the tail padding if this
1925   // might be a potentially-overlapping subobject, since the tail padding might
1926   // be occupied by a different object. Otherwise, copying it is fine.
1927   std::pair<CharUnits, CharUnits> TypeInfo;
1928   if (MayOverlap)
1929     TypeInfo = getContext().getTypeInfoDataSizeInChars(Ty);
1930   else
1931     TypeInfo = getContext().getTypeInfoInChars(Ty);
1932 
1933   llvm::Value *SizeVal = nullptr;
1934   if (TypeInfo.first.isZero()) {
1935     // But note that getTypeInfo returns 0 for a VLA.
1936     if (auto *VAT = dyn_cast_or_null<VariableArrayType>(
1937             getContext().getAsArrayType(Ty))) {
1938       QualType BaseEltTy;
1939       SizeVal = emitArrayLength(VAT, BaseEltTy, DestPtr);
1940       TypeInfo = getContext().getTypeInfoInChars(BaseEltTy);
1941       assert(!TypeInfo.first.isZero());
1942       SizeVal = Builder.CreateNUWMul(
1943           SizeVal,
1944           llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity()));
1945     }
1946   }
1947   if (!SizeVal) {
1948     SizeVal = llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity());
1949   }
1950 
1951   // FIXME: If we have a volatile struct, the optimizer can remove what might
1952   // appear to be `extra' memory ops:
1953   //
1954   // volatile struct { int i; } a, b;
1955   //
1956   // int main() {
1957   //   a = b;
1958   //   a = b;
1959   // }
1960   //
1961   // we need to use a different call here.  We use isVolatile to indicate when
1962   // either the source or the destination is volatile.
1963 
1964   DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1965   SrcPtr = Builder.CreateElementBitCast(SrcPtr, Int8Ty);
1966 
1967   // Don't do any of the memmove_collectable tests if GC isn't set.
1968   if (CGM.getLangOpts().getGC() == LangOptions::NonGC) {
1969     // fall through
1970   } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
1971     RecordDecl *Record = RecordTy->getDecl();
1972     if (Record->hasObjectMember()) {
1973       CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
1974                                                     SizeVal);
1975       return;
1976     }
1977   } else if (Ty->isArrayType()) {
1978     QualType BaseType = getContext().getBaseElementType(Ty);
1979     if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
1980       if (RecordTy->getDecl()->hasObjectMember()) {
1981         CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
1982                                                       SizeVal);
1983         return;
1984       }
1985     }
1986   }
1987 
1988   auto Inst = Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, isVolatile);
1989 
1990   // Determine the metadata to describe the position of any padding in this
1991   // memcpy, as well as the TBAA tags for the members of the struct, in case
1992   // the optimizer wishes to expand it in to scalar memory operations.
1993   if (llvm::MDNode *TBAAStructTag = CGM.getTBAAStructInfo(Ty))
1994     Inst->setMetadata(llvm::LLVMContext::MD_tbaa_struct, TBAAStructTag);
1995 
1996   if (CGM.getCodeGenOpts().NewStructPathTBAA) {
1997     TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForMemoryTransfer(
1998         Dest.getTBAAInfo(), Src.getTBAAInfo());
1999     CGM.DecorateInstructionWithTBAA(Inst, TBAAInfo);
2000   }
2001 }
2002