1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Aggregate Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/StmtVisitor.h"
18 #include "llvm/Constants.h"
19 #include "llvm/Function.h"
20 #include "llvm/GlobalVariable.h"
21 #include "llvm/Support/Compiler.h"
22 #include "llvm/Intrinsics.h"
23 using namespace clang;
24 using namespace CodeGen;
25 
26 //===----------------------------------------------------------------------===//
27 //                        Aggregate Expression Emitter
28 //===----------------------------------------------------------------------===//
29 
30 namespace  {
31 class VISIBILITY_HIDDEN AggExprEmitter : public StmtVisitor<AggExprEmitter> {
32   CodeGenFunction &CGF;
33   CGBuilderTy &Builder;
34   llvm::Value *DestPtr;
35   bool VolatileDest;
36 public:
37   AggExprEmitter(CodeGenFunction &cgf, llvm::Value *destPtr, bool volatileDest)
38     : CGF(cgf), Builder(CGF.Builder),
39       DestPtr(destPtr), VolatileDest(volatileDest) {
40   }
41 
42   //===--------------------------------------------------------------------===//
43   //                               Utilities
44   //===--------------------------------------------------------------------===//
45 
46   /// EmitAggLoadOfLValue - Given an expression with aggregate type that
47   /// represents a value lvalue, this method emits the address of the lvalue,
48   /// then loads the result into DestPtr.
49   void EmitAggLoadOfLValue(const Expr *E);
50 
51   void EmitNonConstInit(InitListExpr *E);
52 
53   //===--------------------------------------------------------------------===//
54   //                            Visitor Methods
55   //===--------------------------------------------------------------------===//
56 
57   void VisitStmt(Stmt *S) {
58     CGF.ErrorUnsupported(S, "aggregate expression");
59   }
60   void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
61 
62   // l-values.
63   void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); }
64   void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
65   void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
66   void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
67   void VisitCompoundLiteralExpr(CompoundLiteralExpr *E)
68       { EmitAggLoadOfLValue(E); }
69 
70   void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
71     EmitAggLoadOfLValue(E);
72   }
73 
74   // Operators.
75   //  case Expr::UnaryOperatorClass:
76   //  case Expr::CastExprClass:
77   void VisitCStyleCastExpr(CStyleCastExpr *E);
78   void VisitImplicitCastExpr(ImplicitCastExpr *E);
79   void VisitCallExpr(const CallExpr *E);
80   void VisitStmtExpr(const StmtExpr *E);
81   void VisitBinaryOperator(const BinaryOperator *BO);
82   void VisitBinAssign(const BinaryOperator *E);
83   void VisitOverloadExpr(const OverloadExpr *E);
84   void VisitBinComma(const BinaryOperator *E);
85 
86   void VisitObjCMessageExpr(ObjCMessageExpr *E);
87   void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
88     EmitAggLoadOfLValue(E);
89   }
90   void VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E);
91   void VisitObjCKVCRefExpr(ObjCKVCRefExpr *E);
92 
93   void VisitConditionalOperator(const ConditionalOperator *CO);
94   void VisitInitListExpr(InitListExpr *E);
95   void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
96     Visit(DAE->getExpr());
97   }
98   void VisitVAArgExpr(VAArgExpr *E);
99 
100   void EmitInitializationToLValue(Expr *E, LValue Address);
101   void EmitNullInitializationToLValue(LValue Address, QualType T);
102   //  case Expr::ChooseExprClass:
103 
104 };
105 }  // end anonymous namespace.
106 
107 //===----------------------------------------------------------------------===//
108 //                                Utilities
109 //===----------------------------------------------------------------------===//
110 
111 /// EmitAggLoadOfLValue - Given an expression with aggregate type that
112 /// represents a value lvalue, this method emits the address of the lvalue,
113 /// then loads the result into DestPtr.
114 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
115   LValue LV = CGF.EmitLValue(E);
116   assert(LV.isSimple() && "Can't have aggregate bitfield, vector, etc");
117   llvm::Value *SrcPtr = LV.getAddress();
118 
119   // If the result is ignored, don't copy from the value.
120   if (DestPtr == 0)
121     // FIXME: If the source is volatile, we must read from it.
122     return;
123 
124   CGF.EmitAggregateCopy(DestPtr, SrcPtr, E->getType());
125 }
126 
127 //===----------------------------------------------------------------------===//
128 //                            Visitor Methods
129 //===----------------------------------------------------------------------===//
130 
131 void AggExprEmitter::VisitCStyleCastExpr(CStyleCastExpr *E) {
132   // GCC union extension
133   if (E->getType()->isUnionType()) {
134     RecordDecl *SD = E->getType()->getAsRecordType()->getDecl();
135     LValue FieldLoc = CGF.EmitLValueForField(DestPtr, *SD->field_begin(), true, 0);
136     EmitInitializationToLValue(E->getSubExpr(), FieldLoc);
137     return;
138   }
139 
140   Visit(E->getSubExpr());
141 }
142 
143 void AggExprEmitter::VisitImplicitCastExpr(ImplicitCastExpr *E) {
144   assert(CGF.getContext().typesAreCompatible(
145                           E->getSubExpr()->getType().getUnqualifiedType(),
146                           E->getType().getUnqualifiedType()) &&
147          "Implicit cast types must be compatible");
148   Visit(E->getSubExpr());
149 }
150 
151 void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
152   RValue RV = CGF.EmitCallExpr(E);
153   assert(RV.isAggregate() && "Return value must be aggregate value!");
154 
155   // If the result is ignored, don't copy from the value.
156   if (DestPtr == 0)
157     // FIXME: If the source is volatile, we must read from it.
158     return;
159 
160   CGF.EmitAggregateCopy(DestPtr, RV.getAggregateAddr(), E->getType());
161 }
162 
163 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
164   RValue RV = CGF.EmitObjCMessageExpr(E);
165   assert(RV.isAggregate() && "Return value must be aggregate value!");
166 
167   // If the result is ignored, don't copy from the value.
168   if (DestPtr == 0)
169     // FIXME: If the source is volatile, we must read from it.
170     return;
171 
172   CGF.EmitAggregateCopy(DestPtr, RV.getAggregateAddr(), E->getType());
173 }
174 
175 void AggExprEmitter::VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
176   RValue RV = CGF.EmitObjCPropertyGet(E);
177   assert(RV.isAggregate() && "Return value must be aggregate value!");
178 
179   // If the result is ignored, don't copy from the value.
180   if (DestPtr == 0)
181     // FIXME: If the source is volatile, we must read from it.
182     return;
183 
184   CGF.EmitAggregateCopy(DestPtr, RV.getAggregateAddr(), E->getType());
185 }
186 
187 void AggExprEmitter::VisitObjCKVCRefExpr(ObjCKVCRefExpr *E) {
188   RValue RV = CGF.EmitObjCPropertyGet(E);
189   assert(RV.isAggregate() && "Return value must be aggregate value!");
190 
191   // If the result is ignored, don't copy from the value.
192   if (DestPtr == 0)
193     // FIXME: If the source is volatile, we must read from it.
194     return;
195 
196   CGF.EmitAggregateCopy(DestPtr, RV.getAggregateAddr(), E->getType());
197 }
198 
199 void AggExprEmitter::VisitOverloadExpr(const OverloadExpr *E) {
200   RValue RV = CGF.EmitCallExpr(E->getFn(), E->arg_begin(),
201                                E->arg_end(CGF.getContext()));
202 
203   assert(RV.isAggregate() && "Return value must be aggregate value!");
204 
205   // If the result is ignored, don't copy from the value.
206   if (DestPtr == 0)
207     // FIXME: If the source is volatile, we must read from it.
208     return;
209 
210   CGF.EmitAggregateCopy(DestPtr, RV.getAggregateAddr(), E->getType());
211 }
212 
213 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
214   CGF.EmitAnyExpr(E->getLHS());
215   CGF.EmitAggExpr(E->getRHS(), DestPtr, false);
216 }
217 
218 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
219   CGF.EmitCompoundStmt(*E->getSubStmt(), true, DestPtr, VolatileDest);
220 }
221 
222 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
223   CGF.ErrorUnsupported(E, "aggregate binary expression");
224 }
225 
226 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
227   // For an assignment to work, the value on the right has
228   // to be compatible with the value on the left.
229   assert(CGF.getContext().typesAreCompatible(
230              E->getLHS()->getType().getUnqualifiedType(),
231              E->getRHS()->getType().getUnqualifiedType())
232          && "Invalid assignment");
233   LValue LHS = CGF.EmitLValue(E->getLHS());
234 
235   // We have to special case property setters, otherwise we must have
236   // a simple lvalue (no aggregates inside vectors, bitfields).
237   if (LHS.isPropertyRef()) {
238     // FIXME: Volatility?
239     llvm::Value *AggLoc = DestPtr;
240     if (!AggLoc)
241       AggLoc = CGF.CreateTempAlloca(CGF.ConvertType(E->getRHS()->getType()));
242     CGF.EmitAggExpr(E->getRHS(), AggLoc, false);
243     CGF.EmitObjCPropertySet(LHS.getPropertyRefExpr(),
244                             RValue::getAggregate(AggLoc));
245   }
246   else if (LHS.isKVCRef()) {
247     // FIXME: Volatility?
248     llvm::Value *AggLoc = DestPtr;
249     if (!AggLoc)
250       AggLoc = CGF.CreateTempAlloca(CGF.ConvertType(E->getRHS()->getType()));
251     CGF.EmitAggExpr(E->getRHS(), AggLoc, false);
252     CGF.EmitObjCPropertySet(LHS.getKVCRefExpr(),
253                             RValue::getAggregate(AggLoc));
254   } else {
255     // Codegen the RHS so that it stores directly into the LHS.
256     CGF.EmitAggExpr(E->getRHS(), LHS.getAddress(), false /*FIXME: VOLATILE LHS*/);
257 
258     if (DestPtr == 0)
259       return;
260 
261     // If the result of the assignment is used, copy the RHS there also.
262     CGF.EmitAggregateCopy(DestPtr, LHS.getAddress(), E->getType());
263   }
264 }
265 
266 void AggExprEmitter::VisitConditionalOperator(const ConditionalOperator *E) {
267   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
268   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
269   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
270 
271   llvm::Value *Cond = CGF.EvaluateExprAsBool(E->getCond());
272   Builder.CreateCondBr(Cond, LHSBlock, RHSBlock);
273 
274   CGF.EmitBlock(LHSBlock);
275 
276   // Handle the GNU extension for missing LHS.
277   assert(E->getLHS() && "Must have LHS for aggregate value");
278 
279   Visit(E->getLHS());
280   CGF.EmitBranch(ContBlock);
281 
282   CGF.EmitBlock(RHSBlock);
283 
284   Visit(E->getRHS());
285   CGF.EmitBranch(ContBlock);
286 
287   CGF.EmitBlock(ContBlock);
288 }
289 
290 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
291   llvm::Value *ArgValue = CGF.EmitLValue(VE->getSubExpr()).getAddress();
292   llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
293 
294   if (!ArgPtr) {
295     CGF.ErrorUnsupported(VE, "aggregate va_arg expression");
296     return;
297   }
298 
299   if (DestPtr)
300     // FIXME: volatility
301     CGF.EmitAggregateCopy(DestPtr, ArgPtr, VE->getType());
302 }
303 
304 void AggExprEmitter::EmitNonConstInit(InitListExpr *E) {
305   if (E->hadDesignators()) {
306     CGF.ErrorUnsupported(E, "initializer list with designators");
307     return;
308   }
309 
310   const llvm::PointerType *APType =
311     cast<llvm::PointerType>(DestPtr->getType());
312   const llvm::Type *DestType = APType->getElementType();
313 
314   if (const llvm::ArrayType *AType = dyn_cast<llvm::ArrayType>(DestType)) {
315     unsigned NumInitElements = E->getNumInits();
316 
317     unsigned i;
318     for (i = 0; i != NumInitElements; ++i) {
319       llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array");
320       Expr *Init = E->getInit(i);
321       if (isa<InitListExpr>(Init))
322         CGF.EmitAggExpr(Init, NextVal, VolatileDest);
323       else
324         // FIXME: volatility
325         Builder.CreateStore(CGF.EmitScalarExpr(Init), NextVal);
326     }
327 
328     // Emit remaining default initializers
329     unsigned NumArrayElements = AType->getNumElements();
330     QualType QType = E->getInit(0)->getType();
331     const llvm::Type *EType = AType->getElementType();
332     for (/*Do not initialize i*/; i < NumArrayElements; ++i) {
333       llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array");
334       if (EType->isSingleValueType())
335         // FIXME: volatility
336         Builder.CreateStore(llvm::Constant::getNullValue(EType), NextVal);
337       else
338         CGF.EmitAggregateClear(NextVal, QType);
339     }
340   } else
341     assert(false && "Invalid initializer");
342 }
343 
344 void AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV) {
345   // FIXME: Are initializers affected by volatile?
346   if (E->getType()->isComplexType()) {
347     CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false);
348   } else if (CGF.hasAggregateLLVMType(E->getType())) {
349     CGF.EmitAnyExpr(E, LV.getAddress(), false);
350   } else {
351     CGF.EmitStoreThroughLValue(CGF.EmitAnyExpr(E), LV, E->getType());
352   }
353 }
354 
355 void AggExprEmitter::EmitNullInitializationToLValue(LValue LV, QualType T) {
356   if (!CGF.hasAggregateLLVMType(T)) {
357     // For non-aggregates, we can store zero
358     llvm::Value *Null = llvm::Constant::getNullValue(CGF.ConvertType(T));
359     CGF.EmitStoreThroughLValue(RValue::get(Null), LV, T);
360   } else {
361     // Otherwise, just memset the whole thing to zero.  This is legal
362     // because in LLVM, all default initializers are guaranteed to have a
363     // bit pattern of all zeros.
364     // There's a potential optimization opportunity in combining
365     // memsets; that would be easy for arrays, but relatively
366     // difficult for structures with the current code.
367     const llvm::Type *SizeTy = llvm::Type::Int64Ty;
368     llvm::Value *MemSet = CGF.CGM.getIntrinsic(llvm::Intrinsic::memset,
369                                                &SizeTy, 1);
370     uint64_t Size = CGF.getContext().getTypeSize(T);
371 
372     const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
373     llvm::Value* DestPtr = Builder.CreateBitCast(LV.getAddress(), BP, "tmp");
374     Builder.CreateCall4(MemSet, DestPtr,
375                         llvm::ConstantInt::get(llvm::Type::Int8Ty, 0),
376                         llvm::ConstantInt::get(SizeTy, Size/8),
377                         llvm::ConstantInt::get(llvm::Type::Int32Ty, 0));
378   }
379 }
380 
381 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
382   if (E->hadDesignators()) {
383     CGF.ErrorUnsupported(E, "initializer list with designators");
384     return;
385   }
386 
387 #if 0
388   // FIXME: Disabled while we figure out what to do about
389   // test/CodeGen/bitfield.c
390   //
391   // If we can, prefer a copy from a global; this is a lot less
392   // code for long globals, and it's easier for the current optimizers
393   // to analyze.
394   // FIXME: Should we really be doing this? Should we try to avoid
395   // cases where we emit a global with a lot of zeros?  Should
396   // we try to avoid short globals?
397   if (E->isConstantExpr(CGF.getContext(), 0)) {
398     llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, &CGF);
399     llvm::GlobalVariable* GV =
400     new llvm::GlobalVariable(C->getType(), true,
401                              llvm::GlobalValue::InternalLinkage,
402                              C, "", &CGF.CGM.getModule(), 0);
403     CGF.EmitAggregateCopy(DestPtr, GV, E->getType());
404     return;
405   }
406 #endif
407   // Handle initialization of an array.
408   if (E->getType()->isArrayType()) {
409     const llvm::PointerType *APType =
410       cast<llvm::PointerType>(DestPtr->getType());
411     const llvm::ArrayType *AType =
412       cast<llvm::ArrayType>(APType->getElementType());
413 
414     uint64_t NumInitElements = E->getNumInits();
415 
416     if (E->getNumInits() > 0) {
417       QualType T1 = E->getType();
418       QualType T2 = E->getInit(0)->getType();
419       if (CGF.getContext().getCanonicalType(T1).getUnqualifiedType() ==
420           CGF.getContext().getCanonicalType(T2).getUnqualifiedType()) {
421         EmitAggLoadOfLValue(E->getInit(0));
422         return;
423       }
424     }
425 
426     uint64_t NumArrayElements = AType->getNumElements();
427     QualType ElementType = CGF.getContext().getCanonicalType(E->getType());
428     ElementType =CGF.getContext().getAsArrayType(ElementType)->getElementType();
429 
430     unsigned CVRqualifier = ElementType.getCVRQualifiers();
431 
432     for (uint64_t i = 0; i != NumArrayElements; ++i) {
433       llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array");
434       if (i < NumInitElements)
435         EmitInitializationToLValue(E->getInit(i),
436                                    LValue::MakeAddr(NextVal, CVRqualifier));
437       else
438         EmitNullInitializationToLValue(LValue::MakeAddr(NextVal, CVRqualifier),
439                                        ElementType);
440     }
441     return;
442   }
443 
444   assert(E->getType()->isRecordType() && "Only support structs/unions here!");
445 
446   // Do struct initialization; this code just sets each individual member
447   // to the approprate value.  This makes bitfield support automatic;
448   // the disadvantage is that the generated code is more difficult for
449   // the optimizer, especially with bitfields.
450   unsigned NumInitElements = E->getNumInits();
451   RecordDecl *SD = E->getType()->getAsRecordType()->getDecl();
452   unsigned CurInitVal = 0;
453   bool isUnion = E->getType()->isUnionType();
454 
455   // Here we iterate over the fields; this makes it simpler to both
456   // default-initialize fields and skip over unnamed fields.
457   for (RecordDecl::field_iterator Field = SD->field_begin(),
458                                FieldEnd = SD->field_end();
459        Field != FieldEnd; ++Field) {
460     // We're done once we hit the flexible array member
461     if (Field->getType()->isIncompleteArrayType())
462       break;
463 
464     if (Field->getIdentifier() == 0) {
465       // Initializers can't initialize unnamed fields, e.g. "int : 20;"
466       continue;
467     }
468     // FIXME: volatility
469     LValue FieldLoc = CGF.EmitLValueForField(DestPtr, *Field, isUnion,0);
470     if (CurInitVal < NumInitElements) {
471       // Store the initializer into the field
472       // This will probably have to get a bit smarter when we support
473       // designators in initializers
474       EmitInitializationToLValue(E->getInit(CurInitVal++), FieldLoc);
475     } else {
476       // We're out of initalizers; default-initialize to null
477       EmitNullInitializationToLValue(FieldLoc, Field->getType());
478     }
479 
480     // Unions only initialize one field.
481     // (things can get weird with designators, but they aren't
482     // supported yet.)
483     if (isUnion)
484       break;
485   }
486 }
487 
488 //===----------------------------------------------------------------------===//
489 //                        Entry Points into this File
490 //===----------------------------------------------------------------------===//
491 
492 /// EmitAggExpr - Emit the computation of the specified expression of
493 /// aggregate type.  The result is computed into DestPtr.  Note that if
494 /// DestPtr is null, the value of the aggregate expression is not needed.
495 void CodeGenFunction::EmitAggExpr(const Expr *E, llvm::Value *DestPtr,
496                                   bool VolatileDest) {
497   assert(E && hasAggregateLLVMType(E->getType()) &&
498          "Invalid aggregate expression to emit");
499 
500   AggExprEmitter(*this, DestPtr, VolatileDest).Visit(const_cast<Expr*>(E));
501 }
502 
503 void CodeGenFunction::EmitAggregateClear(llvm::Value *DestPtr, QualType Ty) {
504   assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
505 
506   EmitMemSetToZero(DestPtr, Ty);
507 }
508 
509 void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr,
510                                         llvm::Value *SrcPtr, QualType Ty) {
511   assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
512 
513   // Aggregate assignment turns into llvm.memmove.
514   const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
515   if (DestPtr->getType() != BP)
516     DestPtr = Builder.CreateBitCast(DestPtr, BP, "tmp");
517   if (SrcPtr->getType() != BP)
518     SrcPtr = Builder.CreateBitCast(SrcPtr, BP, "tmp");
519 
520   // Get size and alignment info for this aggregate.
521   std::pair<uint64_t, unsigned> TypeInfo = getContext().getTypeInfo(Ty);
522 
523   // FIXME: Handle variable sized types.
524   const llvm::Type *IntPtr = llvm::IntegerType::get(LLVMPointerWidth);
525 
526   Builder.CreateCall4(CGM.getMemMoveFn(),
527                       DestPtr, SrcPtr,
528                       // TypeInfo.first describes size in bits.
529                       llvm::ConstantInt::get(IntPtr, TypeInfo.first/8),
530                       llvm::ConstantInt::get(llvm::Type::Int32Ty,
531                                              TypeInfo.second/8));
532 }
533