1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Aggregate Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "CGObjCRuntime.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/DeclTemplate.h"
20 #include "clang/AST/StmtVisitor.h"
21 #include "llvm/Constants.h"
22 #include "llvm/Function.h"
23 #include "llvm/GlobalVariable.h"
24 #include "llvm/Intrinsics.h"
25 using namespace clang;
26 using namespace CodeGen;
27 
28 //===----------------------------------------------------------------------===//
29 //                        Aggregate Expression Emitter
30 //===----------------------------------------------------------------------===//
31 
32 namespace  {
33 class AggExprEmitter : public StmtVisitor<AggExprEmitter> {
34   CodeGenFunction &CGF;
35   CGBuilderTy &Builder;
36   AggValueSlot Dest;
37   bool IgnoreResult;
38 
39   /// We want to use 'dest' as the return slot except under two
40   /// conditions:
41   ///   - The destination slot requires garbage collection, so we
42   ///     need to use the GC API.
43   ///   - The destination slot is potentially aliased.
44   bool shouldUseDestForReturnSlot() const {
45     return !(Dest.requiresGCollection() || Dest.isPotentiallyAliased());
46   }
47 
48   ReturnValueSlot getReturnValueSlot() const {
49     if (!shouldUseDestForReturnSlot())
50       return ReturnValueSlot();
51 
52     return ReturnValueSlot(Dest.getAddr(), Dest.isVolatile());
53   }
54 
55   AggValueSlot EnsureSlot(QualType T) {
56     if (!Dest.isIgnored()) return Dest;
57     return CGF.CreateAggTemp(T, "agg.tmp.ensured");
58   }
59 
60 public:
61   AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest,
62                  bool ignore)
63     : CGF(cgf), Builder(CGF.Builder), Dest(Dest),
64       IgnoreResult(ignore) {
65   }
66 
67   //===--------------------------------------------------------------------===//
68   //                               Utilities
69   //===--------------------------------------------------------------------===//
70 
71   /// EmitAggLoadOfLValue - Given an expression with aggregate type that
72   /// represents a value lvalue, this method emits the address of the lvalue,
73   /// then loads the result into DestPtr.
74   void EmitAggLoadOfLValue(const Expr *E);
75 
76   /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
77   void EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore = false);
78   void EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore = false,
79                          unsigned Alignment = 0);
80 
81   void EmitMoveFromReturnSlot(const Expr *E, RValue Src);
82 
83   void EmitStdInitializerList(llvm::Value *DestPtr, InitListExpr *InitList);
84   void EmitArrayInit(llvm::Value *DestPtr, llvm::ArrayType *AType,
85                      QualType elementType, InitListExpr *E);
86 
87   AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) {
88     if (CGF.getLangOpts().getGC() && TypeRequiresGCollection(T))
89       return AggValueSlot::NeedsGCBarriers;
90     return AggValueSlot::DoesNotNeedGCBarriers;
91   }
92 
93   bool TypeRequiresGCollection(QualType T);
94 
95   //===--------------------------------------------------------------------===//
96   //                            Visitor Methods
97   //===--------------------------------------------------------------------===//
98 
99   void VisitStmt(Stmt *S) {
100     CGF.ErrorUnsupported(S, "aggregate expression");
101   }
102   void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
103   void VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
104     Visit(GE->getResultExpr());
105   }
106   void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
107   void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
108     return Visit(E->getReplacement());
109   }
110 
111   // l-values.
112   void VisitDeclRefExpr(DeclRefExpr *E) {
113     // For aggregates, we should always be able to emit the variable
114     // as an l-value unless it's a reference.  This is due to the fact
115     // that we can't actually ever see a normal l2r conversion on an
116     // aggregate in C++, and in C there's no language standard
117     // actively preventing us from listing variables in the captures
118     // list of a block.
119     if (E->getDecl()->getType()->isReferenceType()) {
120       if (CodeGenFunction::ConstantEmission result
121             = CGF.tryEmitAsConstant(E)) {
122         EmitFinalDestCopy(E, result.getReferenceLValue(CGF, E));
123         return;
124       }
125     }
126 
127     EmitAggLoadOfLValue(E);
128   }
129 
130   void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
131   void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
132   void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
133   void VisitCompoundLiteralExpr(CompoundLiteralExpr *E);
134   void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
135     EmitAggLoadOfLValue(E);
136   }
137   void VisitPredefinedExpr(const PredefinedExpr *E) {
138     EmitAggLoadOfLValue(E);
139   }
140 
141   // Operators.
142   void VisitCastExpr(CastExpr *E);
143   void VisitCallExpr(const CallExpr *E);
144   void VisitStmtExpr(const StmtExpr *E);
145   void VisitBinaryOperator(const BinaryOperator *BO);
146   void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO);
147   void VisitBinAssign(const BinaryOperator *E);
148   void VisitBinComma(const BinaryOperator *E);
149 
150   void VisitObjCMessageExpr(ObjCMessageExpr *E);
151   void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
152     EmitAggLoadOfLValue(E);
153   }
154 
155   void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
156   void VisitChooseExpr(const ChooseExpr *CE);
157   void VisitInitListExpr(InitListExpr *E);
158   void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E);
159   void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
160     Visit(DAE->getExpr());
161   }
162   void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E);
163   void VisitCXXConstructExpr(const CXXConstructExpr *E);
164   void VisitLambdaExpr(LambdaExpr *E);
165   void VisitExprWithCleanups(ExprWithCleanups *E);
166   void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E);
167   void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); }
168   void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E);
169   void VisitOpaqueValueExpr(OpaqueValueExpr *E);
170 
171   void VisitPseudoObjectExpr(PseudoObjectExpr *E) {
172     if (E->isGLValue()) {
173       LValue LV = CGF.EmitPseudoObjectLValue(E);
174       return EmitFinalDestCopy(E, LV);
175     }
176 
177     CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType()));
178   }
179 
180   void VisitVAArgExpr(VAArgExpr *E);
181 
182   void EmitInitializationToLValue(Expr *E, LValue Address);
183   void EmitNullInitializationToLValue(LValue Address);
184   //  case Expr::ChooseExprClass:
185   void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); }
186   void VisitAtomicExpr(AtomicExpr *E) {
187     CGF.EmitAtomicExpr(E, EnsureSlot(E->getType()).getAddr());
188   }
189 };
190 }  // end anonymous namespace.
191 
192 //===----------------------------------------------------------------------===//
193 //                                Utilities
194 //===----------------------------------------------------------------------===//
195 
196 /// EmitAggLoadOfLValue - Given an expression with aggregate type that
197 /// represents a value lvalue, this method emits the address of the lvalue,
198 /// then loads the result into DestPtr.
199 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
200   LValue LV = CGF.EmitLValue(E);
201   EmitFinalDestCopy(E, LV);
202 }
203 
204 /// \brief True if the given aggregate type requires special GC API calls.
205 bool AggExprEmitter::TypeRequiresGCollection(QualType T) {
206   // Only record types have members that might require garbage collection.
207   const RecordType *RecordTy = T->getAs<RecordType>();
208   if (!RecordTy) return false;
209 
210   // Don't mess with non-trivial C++ types.
211   RecordDecl *Record = RecordTy->getDecl();
212   if (isa<CXXRecordDecl>(Record) &&
213       (!cast<CXXRecordDecl>(Record)->hasTrivialCopyConstructor() ||
214        !cast<CXXRecordDecl>(Record)->hasTrivialDestructor()))
215     return false;
216 
217   // Check whether the type has an object member.
218   return Record->hasObjectMember();
219 }
220 
221 /// \brief Perform the final move to DestPtr if for some reason
222 /// getReturnValueSlot() didn't use it directly.
223 ///
224 /// The idea is that you do something like this:
225 ///   RValue Result = EmitSomething(..., getReturnValueSlot());
226 ///   EmitMoveFromReturnSlot(E, Result);
227 ///
228 /// If nothing interferes, this will cause the result to be emitted
229 /// directly into the return value slot.  Otherwise, a final move
230 /// will be performed.
231 void AggExprEmitter::EmitMoveFromReturnSlot(const Expr *E, RValue Src) {
232   if (shouldUseDestForReturnSlot()) {
233     // Logically, Dest.getAddr() should equal Src.getAggregateAddr().
234     // The possibility of undef rvalues complicates that a lot,
235     // though, so we can't really assert.
236     return;
237   }
238 
239   // Otherwise, do a final copy,
240   assert(Dest.getAddr() != Src.getAggregateAddr());
241   EmitFinalDestCopy(E, Src, /*Ignore*/ true);
242 }
243 
244 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
245 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore,
246                                        unsigned Alignment) {
247   assert(Src.isAggregate() && "value must be aggregate value!");
248 
249   // If Dest is ignored, then we're evaluating an aggregate expression
250   // in a context (like an expression statement) that doesn't care
251   // about the result.  C says that an lvalue-to-rvalue conversion is
252   // performed in these cases; C++ says that it is not.  In either
253   // case, we don't actually need to do anything unless the value is
254   // volatile.
255   if (Dest.isIgnored()) {
256     if (!Src.isVolatileQualified() ||
257         CGF.CGM.getLangOpts().CPlusPlus ||
258         (IgnoreResult && Ignore))
259       return;
260 
261     // If the source is volatile, we must read from it; to do that, we need
262     // some place to put it.
263     Dest = CGF.CreateAggTemp(E->getType(), "agg.tmp");
264   }
265 
266   if (Dest.requiresGCollection()) {
267     CharUnits size = CGF.getContext().getTypeSizeInChars(E->getType());
268     llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType());
269     llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity());
270     CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF,
271                                                       Dest.getAddr(),
272                                                       Src.getAggregateAddr(),
273                                                       SizeVal);
274     return;
275   }
276   // If the result of the assignment is used, copy the LHS there also.
277   // FIXME: Pass VolatileDest as well.  I think we also need to merge volatile
278   // from the source as well, as we can't eliminate it if either operand
279   // is volatile, unless copy has volatile for both source and destination..
280   CGF.EmitAggregateCopy(Dest.getAddr(), Src.getAggregateAddr(), E->getType(),
281                         Dest.isVolatile()|Src.isVolatileQualified(),
282                         Alignment);
283 }
284 
285 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
286 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore) {
287   assert(Src.isSimple() && "Can't have aggregate bitfield, vector, etc");
288 
289   CharUnits Alignment = std::min(Src.getAlignment(), Dest.getAlignment());
290   EmitFinalDestCopy(E, Src.asAggregateRValue(), Ignore, Alignment.getQuantity());
291 }
292 
293 static QualType GetStdInitializerListElementType(QualType T) {
294   // Just assume that this is really std::initializer_list.
295   ClassTemplateSpecializationDecl *specialization =
296       cast<ClassTemplateSpecializationDecl>(T->castAs<RecordType>()->getDecl());
297   return specialization->getTemplateArgs()[0].getAsType();
298 }
299 
300 /// \brief Prepare cleanup for the temporary array.
301 static void EmitStdInitializerListCleanup(CodeGenFunction &CGF,
302                                           QualType arrayType,
303                                           llvm::Value *addr,
304                                           const InitListExpr *initList) {
305   QualType::DestructionKind dtorKind = arrayType.isDestructedType();
306   if (!dtorKind)
307     return; // Type doesn't need destroying.
308   if (dtorKind != QualType::DK_cxx_destructor) {
309     CGF.ErrorUnsupported(initList, "ObjC ARC type in initializer_list");
310     return;
311   }
312 
313   CodeGenFunction::Destroyer *destroyer = CGF.getDestroyer(dtorKind);
314   CGF.pushDestroy(NormalAndEHCleanup, addr, arrayType, destroyer,
315                   /*EHCleanup=*/true);
316 }
317 
318 /// \brief Emit the initializer for a std::initializer_list initialized with a
319 /// real initializer list.
320 void AggExprEmitter::EmitStdInitializerList(llvm::Value *destPtr,
321                                             InitListExpr *initList) {
322   // We emit an array containing the elements, then have the init list point
323   // at the array.
324   ASTContext &ctx = CGF.getContext();
325   unsigned numInits = initList->getNumInits();
326   QualType element = GetStdInitializerListElementType(initList->getType());
327   llvm::APInt size(ctx.getTypeSize(ctx.getSizeType()), numInits);
328   QualType array = ctx.getConstantArrayType(element, size, ArrayType::Normal,0);
329   llvm::Type *LTy = CGF.ConvertTypeForMem(array);
330   llvm::AllocaInst *alloc = CGF.CreateTempAlloca(LTy);
331   alloc->setAlignment(ctx.getTypeAlignInChars(array).getQuantity());
332   alloc->setName(".initlist.");
333 
334   EmitArrayInit(alloc, cast<llvm::ArrayType>(LTy), element, initList);
335 
336   // FIXME: The diagnostics are somewhat out of place here.
337   RecordDecl *record = initList->getType()->castAs<RecordType>()->getDecl();
338   RecordDecl::field_iterator field = record->field_begin();
339   if (field == record->field_end()) {
340     CGF.ErrorUnsupported(initList, "weird std::initializer_list");
341     return;
342   }
343 
344   QualType elementPtr = ctx.getPointerType(element.withConst());
345 
346   // Start pointer.
347   if (!ctx.hasSameType(field->getType(), elementPtr)) {
348     CGF.ErrorUnsupported(initList, "weird std::initializer_list");
349     return;
350   }
351   LValue DestLV = CGF.MakeNaturalAlignAddrLValue(destPtr, initList->getType());
352   LValue start = CGF.EmitLValueForFieldInitialization(DestLV, *field);
353   llvm::Value *arrayStart = Builder.CreateStructGEP(alloc, 0, "arraystart");
354   CGF.EmitStoreThroughLValue(RValue::get(arrayStart), start);
355   ++field;
356 
357   if (field == record->field_end()) {
358     CGF.ErrorUnsupported(initList, "weird std::initializer_list");
359     return;
360   }
361   LValue endOrLength = CGF.EmitLValueForFieldInitialization(DestLV, *field);
362   if (ctx.hasSameType(field->getType(), elementPtr)) {
363     // End pointer.
364     llvm::Value *arrayEnd = Builder.CreateStructGEP(alloc,numInits, "arrayend");
365     CGF.EmitStoreThroughLValue(RValue::get(arrayEnd), endOrLength);
366   } else if(ctx.hasSameType(field->getType(), ctx.getSizeType())) {
367     // Length.
368     CGF.EmitStoreThroughLValue(RValue::get(Builder.getInt(size)), endOrLength);
369   } else {
370     CGF.ErrorUnsupported(initList, "weird std::initializer_list");
371     return;
372   }
373 
374   if (!Dest.isExternallyDestructed())
375     EmitStdInitializerListCleanup(CGF, array, alloc, initList);
376 }
377 
378 /// \brief Emit initialization of an array from an initializer list.
379 void AggExprEmitter::EmitArrayInit(llvm::Value *DestPtr, llvm::ArrayType *AType,
380                                    QualType elementType, InitListExpr *E) {
381   uint64_t NumInitElements = E->getNumInits();
382 
383   uint64_t NumArrayElements = AType->getNumElements();
384   assert(NumInitElements <= NumArrayElements);
385 
386   // DestPtr is an array*.  Construct an elementType* by drilling
387   // down a level.
388   llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
389   llvm::Value *indices[] = { zero, zero };
390   llvm::Value *begin =
391     Builder.CreateInBoundsGEP(DestPtr, indices, "arrayinit.begin");
392 
393   // Exception safety requires us to destroy all the
394   // already-constructed members if an initializer throws.
395   // For that, we'll need an EH cleanup.
396   QualType::DestructionKind dtorKind = elementType.isDestructedType();
397   llvm::AllocaInst *endOfInit = 0;
398   EHScopeStack::stable_iterator cleanup;
399   llvm::Instruction *cleanupDominator = 0;
400   if (CGF.needsEHCleanup(dtorKind)) {
401     // In principle we could tell the cleanup where we are more
402     // directly, but the control flow can get so varied here that it
403     // would actually be quite complex.  Therefore we go through an
404     // alloca.
405     endOfInit = CGF.CreateTempAlloca(begin->getType(),
406                                      "arrayinit.endOfInit");
407     cleanupDominator = Builder.CreateStore(begin, endOfInit);
408     CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType,
409                                          CGF.getDestroyer(dtorKind));
410     cleanup = CGF.EHStack.stable_begin();
411 
412   // Otherwise, remember that we didn't need a cleanup.
413   } else {
414     dtorKind = QualType::DK_none;
415   }
416 
417   llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1);
418 
419   // The 'current element to initialize'.  The invariants on this
420   // variable are complicated.  Essentially, after each iteration of
421   // the loop, it points to the last initialized element, except
422   // that it points to the beginning of the array before any
423   // elements have been initialized.
424   llvm::Value *element = begin;
425 
426   // Emit the explicit initializers.
427   for (uint64_t i = 0; i != NumInitElements; ++i) {
428     // Advance to the next element.
429     if (i > 0) {
430       element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element");
431 
432       // Tell the cleanup that it needs to destroy up to this
433       // element.  TODO: some of these stores can be trivially
434       // observed to be unnecessary.
435       if (endOfInit) Builder.CreateStore(element, endOfInit);
436     }
437 
438     // If these are nested std::initializer_list inits, do them directly,
439     // because they are conceptually the same "location".
440     InitListExpr *initList = dyn_cast<InitListExpr>(E->getInit(i));
441     if (initList && initList->initializesStdInitializerList()) {
442       EmitStdInitializerList(element, initList);
443     } else {
444       LValue elementLV = CGF.MakeAddrLValue(element, elementType);
445       EmitInitializationToLValue(E->getInit(i), elementLV);
446     }
447   }
448 
449   // Check whether there's a non-trivial array-fill expression.
450   // Note that this will be a CXXConstructExpr even if the element
451   // type is an array (or array of array, etc.) of class type.
452   Expr *filler = E->getArrayFiller();
453   bool hasTrivialFiller = true;
454   if (CXXConstructExpr *cons = dyn_cast_or_null<CXXConstructExpr>(filler)) {
455     assert(cons->getConstructor()->isDefaultConstructor());
456     hasTrivialFiller = cons->getConstructor()->isTrivial();
457   }
458 
459   // Any remaining elements need to be zero-initialized, possibly
460   // using the filler expression.  We can skip this if the we're
461   // emitting to zeroed memory.
462   if (NumInitElements != NumArrayElements &&
463       !(Dest.isZeroed() && hasTrivialFiller &&
464         CGF.getTypes().isZeroInitializable(elementType))) {
465 
466     // Use an actual loop.  This is basically
467     //   do { *array++ = filler; } while (array != end);
468 
469     // Advance to the start of the rest of the array.
470     if (NumInitElements) {
471       element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start");
472       if (endOfInit) Builder.CreateStore(element, endOfInit);
473     }
474 
475     // Compute the end of the array.
476     llvm::Value *end = Builder.CreateInBoundsGEP(begin,
477                       llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements),
478                                                  "arrayinit.end");
479 
480     llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
481     llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
482 
483     // Jump into the body.
484     CGF.EmitBlock(bodyBB);
485     llvm::PHINode *currentElement =
486       Builder.CreatePHI(element->getType(), 2, "arrayinit.cur");
487     currentElement->addIncoming(element, entryBB);
488 
489     // Emit the actual filler expression.
490     LValue elementLV = CGF.MakeAddrLValue(currentElement, elementType);
491     if (filler)
492       EmitInitializationToLValue(filler, elementLV);
493     else
494       EmitNullInitializationToLValue(elementLV);
495 
496     // Move on to the next element.
497     llvm::Value *nextElement =
498       Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next");
499 
500     // Tell the EH cleanup that we finished with the last element.
501     if (endOfInit) Builder.CreateStore(nextElement, endOfInit);
502 
503     // Leave the loop if we're done.
504     llvm::Value *done = Builder.CreateICmpEQ(nextElement, end,
505                                              "arrayinit.done");
506     llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
507     Builder.CreateCondBr(done, endBB, bodyBB);
508     currentElement->addIncoming(nextElement, Builder.GetInsertBlock());
509 
510     CGF.EmitBlock(endBB);
511   }
512 
513   // Leave the partial-array cleanup if we entered one.
514   if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator);
515 }
516 
517 //===----------------------------------------------------------------------===//
518 //                            Visitor Methods
519 //===----------------------------------------------------------------------===//
520 
521 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){
522   Visit(E->GetTemporaryExpr());
523 }
524 
525 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) {
526   EmitFinalDestCopy(e, CGF.getOpaqueLValueMapping(e));
527 }
528 
529 void
530 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
531   if (E->getType().isPODType(CGF.getContext())) {
532     // For a POD type, just emit a load of the lvalue + a copy, because our
533     // compound literal might alias the destination.
534     // FIXME: This is a band-aid; the real problem appears to be in our handling
535     // of assignments, where we store directly into the LHS without checking
536     // whether anything in the RHS aliases.
537     EmitAggLoadOfLValue(E);
538     return;
539   }
540 
541   AggValueSlot Slot = EnsureSlot(E->getType());
542   CGF.EmitAggExpr(E->getInitializer(), Slot);
543 }
544 
545 
546 void AggExprEmitter::VisitCastExpr(CastExpr *E) {
547   switch (E->getCastKind()) {
548   case CK_Dynamic: {
549     assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?");
550     LValue LV = CGF.EmitCheckedLValue(E->getSubExpr());
551     // FIXME: Do we also need to handle property references here?
552     if (LV.isSimple())
553       CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E));
554     else
555       CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast");
556 
557     if (!Dest.isIgnored())
558       CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination");
559     break;
560   }
561 
562   case CK_ToUnion: {
563     if (Dest.isIgnored()) break;
564 
565     // GCC union extension
566     QualType Ty = E->getSubExpr()->getType();
567     QualType PtrTy = CGF.getContext().getPointerType(Ty);
568     llvm::Value *CastPtr = Builder.CreateBitCast(Dest.getAddr(),
569                                                  CGF.ConvertType(PtrTy));
570     EmitInitializationToLValue(E->getSubExpr(),
571                                CGF.MakeAddrLValue(CastPtr, Ty));
572     break;
573   }
574 
575   case CK_DerivedToBase:
576   case CK_BaseToDerived:
577   case CK_UncheckedDerivedToBase: {
578     llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: "
579                 "should have been unpacked before we got here");
580   }
581 
582   case CK_LValueToRValue: // hope for downstream optimization
583   case CK_NoOp:
584   case CK_AtomicToNonAtomic:
585   case CK_NonAtomicToAtomic:
586   case CK_UserDefinedConversion:
587   case CK_ConstructorConversion:
588     assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(),
589                                                    E->getType()) &&
590            "Implicit cast types must be compatible");
591     Visit(E->getSubExpr());
592     break;
593 
594   case CK_LValueBitCast:
595     llvm_unreachable("should not be emitting lvalue bitcast as rvalue");
596 
597   case CK_Dependent:
598   case CK_BitCast:
599   case CK_ArrayToPointerDecay:
600   case CK_FunctionToPointerDecay:
601   case CK_NullToPointer:
602   case CK_NullToMemberPointer:
603   case CK_BaseToDerivedMemberPointer:
604   case CK_DerivedToBaseMemberPointer:
605   case CK_MemberPointerToBoolean:
606   case CK_ReinterpretMemberPointer:
607   case CK_IntegralToPointer:
608   case CK_PointerToIntegral:
609   case CK_PointerToBoolean:
610   case CK_ToVoid:
611   case CK_VectorSplat:
612   case CK_IntegralCast:
613   case CK_IntegralToBoolean:
614   case CK_IntegralToFloating:
615   case CK_FloatingToIntegral:
616   case CK_FloatingToBoolean:
617   case CK_FloatingCast:
618   case CK_CPointerToObjCPointerCast:
619   case CK_BlockPointerToObjCPointerCast:
620   case CK_AnyPointerToBlockPointerCast:
621   case CK_ObjCObjectLValueCast:
622   case CK_FloatingRealToComplex:
623   case CK_FloatingComplexToReal:
624   case CK_FloatingComplexToBoolean:
625   case CK_FloatingComplexCast:
626   case CK_FloatingComplexToIntegralComplex:
627   case CK_IntegralRealToComplex:
628   case CK_IntegralComplexToReal:
629   case CK_IntegralComplexToBoolean:
630   case CK_IntegralComplexCast:
631   case CK_IntegralComplexToFloatingComplex:
632   case CK_ARCProduceObject:
633   case CK_ARCConsumeObject:
634   case CK_ARCReclaimReturnedObject:
635   case CK_ARCExtendBlockObject:
636   case CK_CopyAndAutoreleaseBlockObject:
637     llvm_unreachable("cast kind invalid for aggregate types");
638   }
639 }
640 
641 void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
642   if (E->getCallReturnType()->isReferenceType()) {
643     EmitAggLoadOfLValue(E);
644     return;
645   }
646 
647   RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot());
648   EmitMoveFromReturnSlot(E, RV);
649 }
650 
651 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
652   RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot());
653   EmitMoveFromReturnSlot(E, RV);
654 }
655 
656 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
657   CGF.EmitIgnoredExpr(E->getLHS());
658   Visit(E->getRHS());
659 }
660 
661 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
662   CodeGenFunction::StmtExprEvaluation eval(CGF);
663   CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest);
664 }
665 
666 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
667   if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI)
668     VisitPointerToDataMemberBinaryOperator(E);
669   else
670     CGF.ErrorUnsupported(E, "aggregate binary expression");
671 }
672 
673 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator(
674                                                     const BinaryOperator *E) {
675   LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E);
676   EmitFinalDestCopy(E, LV);
677 }
678 
679 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
680   // For an assignment to work, the value on the right has
681   // to be compatible with the value on the left.
682   assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
683                                                  E->getRHS()->getType())
684          && "Invalid assignment");
685 
686   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->getLHS()))
687     if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
688       if (VD->hasAttr<BlocksAttr>() &&
689           E->getRHS()->HasSideEffects(CGF.getContext())) {
690         // When __block variable on LHS, the RHS must be evaluated first
691         // as it may change the 'forwarding' field via call to Block_copy.
692         LValue RHS = CGF.EmitLValue(E->getRHS());
693         LValue LHS = CGF.EmitLValue(E->getLHS());
694         Dest = AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed,
695                                        needsGC(E->getLHS()->getType()),
696                                        AggValueSlot::IsAliased);
697         EmitFinalDestCopy(E, RHS, true);
698         return;
699       }
700 
701   LValue LHS = CGF.EmitLValue(E->getLHS());
702 
703   // Codegen the RHS so that it stores directly into the LHS.
704   AggValueSlot LHSSlot =
705     AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed,
706                             needsGC(E->getLHS()->getType()),
707                             AggValueSlot::IsAliased);
708   CGF.EmitAggExpr(E->getRHS(), LHSSlot, false);
709   EmitFinalDestCopy(E, LHS, true);
710 }
711 
712 void AggExprEmitter::
713 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
714   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
715   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
716   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
717 
718   // Bind the common expression if necessary.
719   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
720 
721   CodeGenFunction::ConditionalEvaluation eval(CGF);
722   CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock);
723 
724   // Save whether the destination's lifetime is externally managed.
725   bool isExternallyDestructed = Dest.isExternallyDestructed();
726 
727   eval.begin(CGF);
728   CGF.EmitBlock(LHSBlock);
729   Visit(E->getTrueExpr());
730   eval.end(CGF);
731 
732   assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!");
733   CGF.Builder.CreateBr(ContBlock);
734 
735   // If the result of an agg expression is unused, then the emission
736   // of the LHS might need to create a destination slot.  That's fine
737   // with us, and we can safely emit the RHS into the same slot, but
738   // we shouldn't claim that it's already being destructed.
739   Dest.setExternallyDestructed(isExternallyDestructed);
740 
741   eval.begin(CGF);
742   CGF.EmitBlock(RHSBlock);
743   Visit(E->getFalseExpr());
744   eval.end(CGF);
745 
746   CGF.EmitBlock(ContBlock);
747 }
748 
749 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) {
750   Visit(CE->getChosenSubExpr(CGF.getContext()));
751 }
752 
753 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
754   llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
755   llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
756 
757   if (!ArgPtr) {
758     CGF.ErrorUnsupported(VE, "aggregate va_arg expression");
759     return;
760   }
761 
762   EmitFinalDestCopy(VE, CGF.MakeAddrLValue(ArgPtr, VE->getType()));
763 }
764 
765 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
766   // Ensure that we have a slot, but if we already do, remember
767   // whether it was externally destructed.
768   bool wasExternallyDestructed = Dest.isExternallyDestructed();
769   Dest = EnsureSlot(E->getType());
770 
771   // We're going to push a destructor if there isn't already one.
772   Dest.setExternallyDestructed();
773 
774   Visit(E->getSubExpr());
775 
776   // Push that destructor we promised.
777   if (!wasExternallyDestructed)
778     CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddr());
779 }
780 
781 void
782 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) {
783   AggValueSlot Slot = EnsureSlot(E->getType());
784   CGF.EmitCXXConstructExpr(E, Slot);
785 }
786 
787 void
788 AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) {
789   AggValueSlot Slot = EnsureSlot(E->getType());
790   CGF.EmitLambdaExpr(E, Slot);
791 }
792 
793 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
794   CGF.enterFullExpression(E);
795   CodeGenFunction::RunCleanupsScope cleanups(CGF);
796   Visit(E->getSubExpr());
797 }
798 
799 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
800   QualType T = E->getType();
801   AggValueSlot Slot = EnsureSlot(T);
802   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T));
803 }
804 
805 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
806   QualType T = E->getType();
807   AggValueSlot Slot = EnsureSlot(T);
808   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T));
809 }
810 
811 /// isSimpleZero - If emitting this value will obviously just cause a store of
812 /// zero to memory, return true.  This can return false if uncertain, so it just
813 /// handles simple cases.
814 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) {
815   E = E->IgnoreParens();
816 
817   // 0
818   if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E))
819     return IL->getValue() == 0;
820   // +0.0
821   if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E))
822     return FL->getValue().isPosZero();
823   // int()
824   if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) &&
825       CGF.getTypes().isZeroInitializable(E->getType()))
826     return true;
827   // (int*)0 - Null pointer expressions.
828   if (const CastExpr *ICE = dyn_cast<CastExpr>(E))
829     return ICE->getCastKind() == CK_NullToPointer;
830   // '\0'
831   if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E))
832     return CL->getValue() == 0;
833 
834   // Otherwise, hard case: conservatively return false.
835   return false;
836 }
837 
838 
839 void
840 AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV) {
841   QualType type = LV.getType();
842   // FIXME: Ignore result?
843   // FIXME: Are initializers affected by volatile?
844   if (Dest.isZeroed() && isSimpleZero(E, CGF)) {
845     // Storing "i32 0" to a zero'd memory location is a noop.
846   } else if (isa<ImplicitValueInitExpr>(E)) {
847     EmitNullInitializationToLValue(LV);
848   } else if (type->isReferenceType()) {
849     RValue RV = CGF.EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0);
850     CGF.EmitStoreThroughLValue(RV, LV);
851   } else if (type->isAnyComplexType()) {
852     CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false);
853   } else if (CGF.hasAggregateLLVMType(type)) {
854     CGF.EmitAggExpr(E, AggValueSlot::forLValue(LV,
855                                                AggValueSlot::IsDestructed,
856                                       AggValueSlot::DoesNotNeedGCBarriers,
857                                                AggValueSlot::IsNotAliased,
858                                                Dest.isZeroed()));
859   } else if (LV.isSimple()) {
860     CGF.EmitScalarInit(E, /*D=*/0, LV, /*Captured=*/false);
861   } else {
862     CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV);
863   }
864 }
865 
866 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) {
867   QualType type = lv.getType();
868 
869   // If the destination slot is already zeroed out before the aggregate is
870   // copied into it, we don't have to emit any zeros here.
871   if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type))
872     return;
873 
874   if (!CGF.hasAggregateLLVMType(type)) {
875     // For non-aggregates, we can store zero.
876     llvm::Value *null = llvm::Constant::getNullValue(CGF.ConvertType(type));
877     // Note that the following is not equivalent to
878     // EmitStoreThroughBitfieldLValue for ARC types.
879     if (lv.isBitField()) {
880       CGF.EmitStoreThroughBitfieldLValue(RValue::get(null), lv);
881     } else {
882       assert(lv.isSimple());
883       CGF.EmitStoreOfScalar(null, lv, /* isInitialization */ true);
884     }
885   } else {
886     // There's a potential optimization opportunity in combining
887     // memsets; that would be easy for arrays, but relatively
888     // difficult for structures with the current code.
889     CGF.EmitNullInitialization(lv.getAddress(), lv.getType());
890   }
891 }
892 
893 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
894 #if 0
895   // FIXME: Assess perf here?  Figure out what cases are worth optimizing here
896   // (Length of globals? Chunks of zeroed-out space?).
897   //
898   // If we can, prefer a copy from a global; this is a lot less code for long
899   // globals, and it's easier for the current optimizers to analyze.
900   if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) {
901     llvm::GlobalVariable* GV =
902     new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true,
903                              llvm::GlobalValue::InternalLinkage, C, "");
904     EmitFinalDestCopy(E, CGF.MakeAddrLValue(GV, E->getType()));
905     return;
906   }
907 #endif
908   if (E->hadArrayRangeDesignator())
909     CGF.ErrorUnsupported(E, "GNU array range designator extension");
910 
911   if (E->initializesStdInitializerList()) {
912     EmitStdInitializerList(Dest.getAddr(), E);
913     return;
914   }
915 
916   AggValueSlot Dest = EnsureSlot(E->getType());
917   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddr(), E->getType(),
918                                      Dest.getAlignment());
919 
920   // Handle initialization of an array.
921   if (E->getType()->isArrayType()) {
922     if (E->isStringLiteralInit())
923       return Visit(E->getInit(0));
924 
925     QualType elementType =
926         CGF.getContext().getAsArrayType(E->getType())->getElementType();
927 
928     llvm::PointerType *APType =
929       cast<llvm::PointerType>(Dest.getAddr()->getType());
930     llvm::ArrayType *AType =
931       cast<llvm::ArrayType>(APType->getElementType());
932 
933     EmitArrayInit(Dest.getAddr(), AType, elementType, E);
934     return;
935   }
936 
937   assert(E->getType()->isRecordType() && "Only support structs/unions here!");
938 
939   // Do struct initialization; this code just sets each individual member
940   // to the approprate value.  This makes bitfield support automatic;
941   // the disadvantage is that the generated code is more difficult for
942   // the optimizer, especially with bitfields.
943   unsigned NumInitElements = E->getNumInits();
944   RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl();
945 
946   if (record->isUnion()) {
947     // Only initialize one field of a union. The field itself is
948     // specified by the initializer list.
949     if (!E->getInitializedFieldInUnion()) {
950       // Empty union; we have nothing to do.
951 
952 #ifndef NDEBUG
953       // Make sure that it's really an empty and not a failure of
954       // semantic analysis.
955       for (RecordDecl::field_iterator Field = record->field_begin(),
956                                    FieldEnd = record->field_end();
957            Field != FieldEnd; ++Field)
958         assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed");
959 #endif
960       return;
961     }
962 
963     // FIXME: volatility
964     FieldDecl *Field = E->getInitializedFieldInUnion();
965 
966     LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestLV, Field);
967     if (NumInitElements) {
968       // Store the initializer into the field
969       EmitInitializationToLValue(E->getInit(0), FieldLoc);
970     } else {
971       // Default-initialize to null.
972       EmitNullInitializationToLValue(FieldLoc);
973     }
974 
975     return;
976   }
977 
978   // We'll need to enter cleanup scopes in case any of the member
979   // initializers throw an exception.
980   SmallVector<EHScopeStack::stable_iterator, 16> cleanups;
981   llvm::Instruction *cleanupDominator = 0;
982 
983   // Here we iterate over the fields; this makes it simpler to both
984   // default-initialize fields and skip over unnamed fields.
985   unsigned curInitIndex = 0;
986   for (RecordDecl::field_iterator field = record->field_begin(),
987                                fieldEnd = record->field_end();
988        field != fieldEnd; ++field) {
989     // We're done once we hit the flexible array member.
990     if (field->getType()->isIncompleteArrayType())
991       break;
992 
993     // Always skip anonymous bitfields.
994     if (field->isUnnamedBitfield())
995       continue;
996 
997     // We're done if we reach the end of the explicit initializers, we
998     // have a zeroed object, and the rest of the fields are
999     // zero-initializable.
1000     if (curInitIndex == NumInitElements && Dest.isZeroed() &&
1001         CGF.getTypes().isZeroInitializable(E->getType()))
1002       break;
1003 
1004 
1005     LValue LV = CGF.EmitLValueForFieldInitialization(DestLV, *field);
1006     // We never generate write-barries for initialized fields.
1007     LV.setNonGC(true);
1008 
1009     if (curInitIndex < NumInitElements) {
1010       // Store the initializer into the field.
1011       EmitInitializationToLValue(E->getInit(curInitIndex++), LV);
1012     } else {
1013       // We're out of initalizers; default-initialize to null
1014       EmitNullInitializationToLValue(LV);
1015     }
1016 
1017     // Push a destructor if necessary.
1018     // FIXME: if we have an array of structures, all explicitly
1019     // initialized, we can end up pushing a linear number of cleanups.
1020     bool pushedCleanup = false;
1021     if (QualType::DestructionKind dtorKind
1022           = field->getType().isDestructedType()) {
1023       assert(LV.isSimple());
1024       if (CGF.needsEHCleanup(dtorKind)) {
1025         if (!cleanupDominator)
1026           cleanupDominator = CGF.Builder.CreateUnreachable(); // placeholder
1027 
1028         CGF.pushDestroy(EHCleanup, LV.getAddress(), field->getType(),
1029                         CGF.getDestroyer(dtorKind), false);
1030         cleanups.push_back(CGF.EHStack.stable_begin());
1031         pushedCleanup = true;
1032       }
1033     }
1034 
1035     // If the GEP didn't get used because of a dead zero init or something
1036     // else, clean it up for -O0 builds and general tidiness.
1037     if (!pushedCleanup && LV.isSimple())
1038       if (llvm::GetElementPtrInst *GEP =
1039             dyn_cast<llvm::GetElementPtrInst>(LV.getAddress()))
1040         if (GEP->use_empty())
1041           GEP->eraseFromParent();
1042   }
1043 
1044   // Deactivate all the partial cleanups in reverse order, which
1045   // generally means popping them.
1046   for (unsigned i = cleanups.size(); i != 0; --i)
1047     CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator);
1048 
1049   // Destroy the placeholder if we made one.
1050   if (cleanupDominator)
1051     cleanupDominator->eraseFromParent();
1052 }
1053 
1054 //===----------------------------------------------------------------------===//
1055 //                        Entry Points into this File
1056 //===----------------------------------------------------------------------===//
1057 
1058 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of
1059 /// non-zero bytes that will be stored when outputting the initializer for the
1060 /// specified initializer expression.
1061 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) {
1062   E = E->IgnoreParens();
1063 
1064   // 0 and 0.0 won't require any non-zero stores!
1065   if (isSimpleZero(E, CGF)) return CharUnits::Zero();
1066 
1067   // If this is an initlist expr, sum up the size of sizes of the (present)
1068   // elements.  If this is something weird, assume the whole thing is non-zero.
1069   const InitListExpr *ILE = dyn_cast<InitListExpr>(E);
1070   if (ILE == 0 || !CGF.getTypes().isZeroInitializable(ILE->getType()))
1071     return CGF.getContext().getTypeSizeInChars(E->getType());
1072 
1073   // InitListExprs for structs have to be handled carefully.  If there are
1074   // reference members, we need to consider the size of the reference, not the
1075   // referencee.  InitListExprs for unions and arrays can't have references.
1076   if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
1077     if (!RT->isUnionType()) {
1078       RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl();
1079       CharUnits NumNonZeroBytes = CharUnits::Zero();
1080 
1081       unsigned ILEElement = 0;
1082       for (RecordDecl::field_iterator Field = SD->field_begin(),
1083            FieldEnd = SD->field_end(); Field != FieldEnd; ++Field) {
1084         // We're done once we hit the flexible array member or run out of
1085         // InitListExpr elements.
1086         if (Field->getType()->isIncompleteArrayType() ||
1087             ILEElement == ILE->getNumInits())
1088           break;
1089         if (Field->isUnnamedBitfield())
1090           continue;
1091 
1092         const Expr *E = ILE->getInit(ILEElement++);
1093 
1094         // Reference values are always non-null and have the width of a pointer.
1095         if (Field->getType()->isReferenceType())
1096           NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits(
1097               CGF.getContext().getTargetInfo().getPointerWidth(0));
1098         else
1099           NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF);
1100       }
1101 
1102       return NumNonZeroBytes;
1103     }
1104   }
1105 
1106 
1107   CharUnits NumNonZeroBytes = CharUnits::Zero();
1108   for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1109     NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF);
1110   return NumNonZeroBytes;
1111 }
1112 
1113 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of
1114 /// zeros in it, emit a memset and avoid storing the individual zeros.
1115 ///
1116 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E,
1117                                      CodeGenFunction &CGF) {
1118   // If the slot is already known to be zeroed, nothing to do.  Don't mess with
1119   // volatile stores.
1120   if (Slot.isZeroed() || Slot.isVolatile() || Slot.getAddr() == 0) return;
1121 
1122   // C++ objects with a user-declared constructor don't need zero'ing.
1123   if (CGF.getContext().getLangOpts().CPlusPlus)
1124     if (const RecordType *RT = CGF.getContext()
1125                        .getBaseElementType(E->getType())->getAs<RecordType>()) {
1126       const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1127       if (RD->hasUserDeclaredConstructor())
1128         return;
1129     }
1130 
1131   // If the type is 16-bytes or smaller, prefer individual stores over memset.
1132   std::pair<CharUnits, CharUnits> TypeInfo =
1133     CGF.getContext().getTypeInfoInChars(E->getType());
1134   if (TypeInfo.first <= CharUnits::fromQuantity(16))
1135     return;
1136 
1137   // Check to see if over 3/4 of the initializer are known to be zero.  If so,
1138   // we prefer to emit memset + individual stores for the rest.
1139   CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF);
1140   if (NumNonZeroBytes*4 > TypeInfo.first)
1141     return;
1142 
1143   // Okay, it seems like a good idea to use an initial memset, emit the call.
1144   llvm::Constant *SizeVal = CGF.Builder.getInt64(TypeInfo.first.getQuantity());
1145   CharUnits Align = TypeInfo.second;
1146 
1147   llvm::Value *Loc = Slot.getAddr();
1148 
1149   Loc = CGF.Builder.CreateBitCast(Loc, CGF.Int8PtrTy);
1150   CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal,
1151                            Align.getQuantity(), false);
1152 
1153   // Tell the AggExprEmitter that the slot is known zero.
1154   Slot.setZeroed();
1155 }
1156 
1157 
1158 
1159 
1160 /// EmitAggExpr - Emit the computation of the specified expression of aggregate
1161 /// type.  The result is computed into DestPtr.  Note that if DestPtr is null,
1162 /// the value of the aggregate expression is not needed.  If VolatileDest is
1163 /// true, DestPtr cannot be 0.
1164 ///
1165 /// \param IsInitializer - true if this evaluation is initializing an
1166 /// object whose lifetime is already being managed.
1167 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot,
1168                                   bool IgnoreResult) {
1169   assert(E && hasAggregateLLVMType(E->getType()) &&
1170          "Invalid aggregate expression to emit");
1171   assert((Slot.getAddr() != 0 || Slot.isIgnored()) &&
1172          "slot has bits but no address");
1173 
1174   // Optimize the slot if possible.
1175   CheckAggExprForMemSetUse(Slot, E, *this);
1176 
1177   AggExprEmitter(*this, Slot, IgnoreResult).Visit(const_cast<Expr*>(E));
1178 }
1179 
1180 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) {
1181   assert(hasAggregateLLVMType(E->getType()) && "Invalid argument!");
1182   llvm::Value *Temp = CreateMemTemp(E->getType());
1183   LValue LV = MakeAddrLValue(Temp, E->getType());
1184   EmitAggExpr(E, AggValueSlot::forLValue(LV, AggValueSlot::IsNotDestructed,
1185                                          AggValueSlot::DoesNotNeedGCBarriers,
1186                                          AggValueSlot::IsNotAliased));
1187   return LV;
1188 }
1189 
1190 void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr,
1191                                         llvm::Value *SrcPtr, QualType Ty,
1192                                         bool isVolatile, unsigned Alignment) {
1193   assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
1194 
1195   if (getContext().getLangOpts().CPlusPlus) {
1196     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1197       CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
1198       assert((Record->hasTrivialCopyConstructor() ||
1199               Record->hasTrivialCopyAssignment() ||
1200               Record->hasTrivialMoveConstructor() ||
1201               Record->hasTrivialMoveAssignment()) &&
1202              "Trying to aggregate-copy a type without a trivial copy "
1203              "constructor or assignment operator");
1204       // Ignore empty classes in C++.
1205       if (Record->isEmpty())
1206         return;
1207     }
1208   }
1209 
1210   // Aggregate assignment turns into llvm.memcpy.  This is almost valid per
1211   // C99 6.5.16.1p3, which states "If the value being stored in an object is
1212   // read from another object that overlaps in anyway the storage of the first
1213   // object, then the overlap shall be exact and the two objects shall have
1214   // qualified or unqualified versions of a compatible type."
1215   //
1216   // memcpy is not defined if the source and destination pointers are exactly
1217   // equal, but other compilers do this optimization, and almost every memcpy
1218   // implementation handles this case safely.  If there is a libc that does not
1219   // safely handle this, we can add a target hook.
1220 
1221   // Get size and alignment info for this aggregate.
1222   std::pair<CharUnits, CharUnits> TypeInfo =
1223     getContext().getTypeInfoInChars(Ty);
1224 
1225   if (!Alignment)
1226     Alignment = TypeInfo.second.getQuantity();
1227 
1228   // FIXME: Handle variable sized types.
1229 
1230   // FIXME: If we have a volatile struct, the optimizer can remove what might
1231   // appear to be `extra' memory ops:
1232   //
1233   // volatile struct { int i; } a, b;
1234   //
1235   // int main() {
1236   //   a = b;
1237   //   a = b;
1238   // }
1239   //
1240   // we need to use a different call here.  We use isVolatile to indicate when
1241   // either the source or the destination is volatile.
1242 
1243   llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType());
1244   llvm::Type *DBP =
1245     llvm::Type::getInt8PtrTy(getLLVMContext(), DPT->getAddressSpace());
1246   DestPtr = Builder.CreateBitCast(DestPtr, DBP);
1247 
1248   llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType());
1249   llvm::Type *SBP =
1250     llvm::Type::getInt8PtrTy(getLLVMContext(), SPT->getAddressSpace());
1251   SrcPtr = Builder.CreateBitCast(SrcPtr, SBP);
1252 
1253   // Don't do any of the memmove_collectable tests if GC isn't set.
1254   if (CGM.getLangOpts().getGC() == LangOptions::NonGC) {
1255     // fall through
1256   } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
1257     RecordDecl *Record = RecordTy->getDecl();
1258     if (Record->hasObjectMember()) {
1259       CharUnits size = TypeInfo.first;
1260       llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
1261       llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity());
1262       CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
1263                                                     SizeVal);
1264       return;
1265     }
1266   } else if (Ty->isArrayType()) {
1267     QualType BaseType = getContext().getBaseElementType(Ty);
1268     if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
1269       if (RecordTy->getDecl()->hasObjectMember()) {
1270         CharUnits size = TypeInfo.first;
1271         llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
1272         llvm::Value *SizeVal =
1273           llvm::ConstantInt::get(SizeTy, size.getQuantity());
1274         CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
1275                                                       SizeVal);
1276         return;
1277       }
1278     }
1279   }
1280 
1281   Builder.CreateMemCpy(DestPtr, SrcPtr,
1282                        llvm::ConstantInt::get(IntPtrTy,
1283                                               TypeInfo.first.getQuantity()),
1284                        Alignment, isVolatile);
1285 }
1286 
1287 void CodeGenFunction::MaybeEmitStdInitializerListCleanup(llvm::Value *loc,
1288                                                          const Expr *init) {
1289   const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(init);
1290   if (cleanups)
1291     init = cleanups->getSubExpr();
1292 
1293   if (isa<InitListExpr>(init) &&
1294       cast<InitListExpr>(init)->initializesStdInitializerList()) {
1295     // We initialized this std::initializer_list with an initializer list.
1296     // A backing array was created. Push a cleanup for it.
1297     EmitStdInitializerListCleanup(loc, cast<InitListExpr>(init));
1298   }
1299 }
1300 
1301 static void EmitRecursiveStdInitializerListCleanup(CodeGenFunction &CGF,
1302                                                    llvm::Value *arrayStart,
1303                                                    const InitListExpr *init) {
1304   // Check if there are any recursive cleanups to do, i.e. if we have
1305   //   std::initializer_list<std::initializer_list<obj>> list = {{obj()}};
1306   // then we need to destroy the inner array as well.
1307   for (unsigned i = 0, e = init->getNumInits(); i != e; ++i) {
1308     const InitListExpr *subInit = dyn_cast<InitListExpr>(init->getInit(i));
1309     if (!subInit || !subInit->initializesStdInitializerList())
1310       continue;
1311 
1312     // This one needs to be destroyed. Get the address of the std::init_list.
1313     llvm::Value *offset = llvm::ConstantInt::get(CGF.SizeTy, i);
1314     llvm::Value *loc = CGF.Builder.CreateInBoundsGEP(arrayStart, offset,
1315                                                  "std.initlist");
1316     CGF.EmitStdInitializerListCleanup(loc, subInit);
1317   }
1318 }
1319 
1320 void CodeGenFunction::EmitStdInitializerListCleanup(llvm::Value *loc,
1321                                                     const InitListExpr *init) {
1322   ASTContext &ctx = getContext();
1323   QualType element = GetStdInitializerListElementType(init->getType());
1324   unsigned numInits = init->getNumInits();
1325   llvm::APInt size(ctx.getTypeSize(ctx.getSizeType()), numInits);
1326   QualType array =ctx.getConstantArrayType(element, size, ArrayType::Normal, 0);
1327   QualType arrayPtr = ctx.getPointerType(array);
1328   llvm::Type *arrayPtrType = ConvertType(arrayPtr);
1329 
1330   // lvalue is the location of a std::initializer_list, which as its first
1331   // element has a pointer to the array we want to destroy.
1332   llvm::Value *startPointer = Builder.CreateStructGEP(loc, 0, "startPointer");
1333   llvm::Value *startAddress = Builder.CreateLoad(startPointer, "startAddress");
1334 
1335   ::EmitRecursiveStdInitializerListCleanup(*this, startAddress, init);
1336 
1337   llvm::Value *arrayAddress =
1338       Builder.CreateBitCast(startAddress, arrayPtrType, "arrayAddress");
1339   ::EmitStdInitializerListCleanup(*this, array, arrayAddress, init);
1340 }
1341