1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Aggregate Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/StmtVisitor.h"
18 #include "llvm/Constants.h"
19 #include "llvm/Function.h"
20 #include "llvm/GlobalVariable.h"
21 #include "llvm/Support/Compiler.h"
22 #include "llvm/Intrinsics.h"
23 using namespace clang;
24 using namespace CodeGen;
25 
26 //===----------------------------------------------------------------------===//
27 //                        Aggregate Expression Emitter
28 //===----------------------------------------------------------------------===//
29 
30 namespace  {
31 class VISIBILITY_HIDDEN AggExprEmitter : public StmtVisitor<AggExprEmitter> {
32   CodeGenFunction &CGF;
33   llvm::IRBuilder<> &Builder;
34   llvm::Value *DestPtr;
35   bool VolatileDest;
36 public:
37   AggExprEmitter(CodeGenFunction &cgf, llvm::Value *destPtr, bool volatileDest)
38     : CGF(cgf), Builder(CGF.Builder),
39       DestPtr(destPtr), VolatileDest(volatileDest) {
40   }
41 
42   //===--------------------------------------------------------------------===//
43   //                               Utilities
44   //===--------------------------------------------------------------------===//
45 
46   /// EmitAggLoadOfLValue - Given an expression with aggregate type that
47   /// represents a value lvalue, this method emits the address of the lvalue,
48   /// then loads the result into DestPtr.
49   void EmitAggLoadOfLValue(const Expr *E);
50 
51   void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr,
52                          QualType EltTy);
53 
54   void EmitAggregateClear(llvm::Value *DestPtr, QualType Ty);
55 
56   void EmitNonConstInit(InitListExpr *E);
57 
58   //===--------------------------------------------------------------------===//
59   //                            Visitor Methods
60   //===--------------------------------------------------------------------===//
61 
62   void VisitStmt(Stmt *S) {
63     CGF.ErrorUnsupported(S, "aggregate expression");
64   }
65   void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
66 
67   // l-values.
68   void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); }
69   void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
70   void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
71   void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
72   void VisitCompoundLiteralExpr(CompoundLiteralExpr *E)
73       { EmitAggLoadOfLValue(E); }
74 
75   void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
76     EmitAggLoadOfLValue(E);
77   }
78 
79   // Operators.
80   //  case Expr::UnaryOperatorClass:
81   //  case Expr::CastExprClass:
82   void VisitImplicitCastExpr(ImplicitCastExpr *E);
83   void VisitCallExpr(const CallExpr *E);
84   void VisitStmtExpr(const StmtExpr *E);
85   void VisitBinaryOperator(const BinaryOperator *BO);
86   void VisitBinAssign(const BinaryOperator *E);
87   void VisitOverloadExpr(const OverloadExpr *E);
88   void VisitBinComma(const BinaryOperator *E);
89 
90   void VisitObjCMessageExpr(ObjCMessageExpr *E);
91   void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
92     EmitAggLoadOfLValue(E);
93   }
94   void VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E);
95 
96   void VisitConditionalOperator(const ConditionalOperator *CO);
97   void VisitInitListExpr(InitListExpr *E);
98   void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
99     Visit(DAE->getExpr());
100   }
101   void VisitVAArgExpr(VAArgExpr *E);
102 
103   void EmitInitializationToLValue(Expr *E, LValue Address);
104   void EmitNullInitializationToLValue(LValue Address, QualType T);
105   //  case Expr::ChooseExprClass:
106 
107 };
108 }  // end anonymous namespace.
109 
110 //===----------------------------------------------------------------------===//
111 //                                Utilities
112 //===----------------------------------------------------------------------===//
113 
114 void AggExprEmitter::EmitAggregateClear(llvm::Value *DestPtr, QualType Ty) {
115   assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
116 
117   // Aggregate assignment turns into llvm.memset.
118   const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
119   if (DestPtr->getType() != BP)
120     DestPtr = Builder.CreateBitCast(DestPtr, BP, "tmp");
121 
122   // Get size and alignment info for this aggregate.
123   std::pair<uint64_t, unsigned> TypeInfo = CGF.getContext().getTypeInfo(Ty);
124 
125   // FIXME: Handle variable sized types.
126   const llvm::Type *IntPtr = llvm::IntegerType::get(CGF.LLVMPointerWidth);
127 
128   Builder.CreateCall4(CGF.CGM.getMemSetFn(),
129                       DestPtr,
130                       llvm::ConstantInt::getNullValue(llvm::Type::Int8Ty),
131                       // TypeInfo.first describes size in bits.
132                       llvm::ConstantInt::get(IntPtr, TypeInfo.first/8),
133                       llvm::ConstantInt::get(llvm::Type::Int32Ty,
134                                              TypeInfo.second/8));
135 }
136 
137 void AggExprEmitter::EmitAggregateCopy(llvm::Value *DestPtr,
138                                        llvm::Value *SrcPtr, QualType Ty) {
139   assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
140 
141   // Aggregate assignment turns into llvm.memmove.
142   const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
143   if (DestPtr->getType() != BP)
144     DestPtr = Builder.CreateBitCast(DestPtr, BP, "tmp");
145   if (SrcPtr->getType() != BP)
146     SrcPtr = Builder.CreateBitCast(SrcPtr, BP, "tmp");
147 
148   // Get size and alignment info for this aggregate.
149   std::pair<uint64_t, unsigned> TypeInfo = CGF.getContext().getTypeInfo(Ty);
150 
151   // FIXME: Handle variable sized types.
152   const llvm::Type *IntPtr = llvm::IntegerType::get(CGF.LLVMPointerWidth);
153 
154   Builder.CreateCall4(CGF.CGM.getMemMoveFn(),
155                       DestPtr, SrcPtr,
156                       // TypeInfo.first describes size in bits.
157                       llvm::ConstantInt::get(IntPtr, TypeInfo.first/8),
158                       llvm::ConstantInt::get(llvm::Type::Int32Ty,
159                                              TypeInfo.second/8));
160 }
161 
162 
163 /// EmitAggLoadOfLValue - Given an expression with aggregate type that
164 /// represents a value lvalue, this method emits the address of the lvalue,
165 /// then loads the result into DestPtr.
166 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
167   LValue LV = CGF.EmitLValue(E);
168   assert(LV.isSimple() && "Can't have aggregate bitfield, vector, etc");
169   llvm::Value *SrcPtr = LV.getAddress();
170 
171   // If the result is ignored, don't copy from the value.
172   if (DestPtr == 0)
173     // FIXME: If the source is volatile, we must read from it.
174     return;
175 
176   EmitAggregateCopy(DestPtr, SrcPtr, E->getType());
177 }
178 
179 //===----------------------------------------------------------------------===//
180 //                            Visitor Methods
181 //===----------------------------------------------------------------------===//
182 
183 void AggExprEmitter::VisitImplicitCastExpr(ImplicitCastExpr *E) {
184   assert(CGF.getContext().typesAreCompatible(
185                           E->getSubExpr()->getType().getUnqualifiedType(),
186                           E->getType().getUnqualifiedType()) &&
187          "Implicit cast types must be compatible");
188   Visit(E->getSubExpr());
189 }
190 
191 void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
192   RValue RV = CGF.EmitCallExpr(E);
193   assert(RV.isAggregate() && "Return value must be aggregate value!");
194 
195   // If the result is ignored, don't copy from the value.
196   if (DestPtr == 0)
197     // FIXME: If the source is volatile, we must read from it.
198     return;
199 
200   EmitAggregateCopy(DestPtr, RV.getAggregateAddr(), E->getType());
201 }
202 
203 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
204   RValue RV = CGF.EmitObjCMessageExpr(E);
205   assert(RV.isAggregate() && "Return value must be aggregate value!");
206 
207   // If the result is ignored, don't copy from the value.
208   if (DestPtr == 0)
209     // FIXME: If the source is volatile, we must read from it.
210     return;
211 
212   EmitAggregateCopy(DestPtr, RV.getAggregateAddr(), E->getType());
213 }
214 
215 void AggExprEmitter::VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
216   RValue RV = CGF.EmitObjCPropertyGet(E);
217   assert(RV.isAggregate() && "Return value must be aggregate value!");
218 
219   // If the result is ignored, don't copy from the value.
220   if (DestPtr == 0)
221     // FIXME: If the source is volatile, we must read from it.
222     return;
223 
224   EmitAggregateCopy(DestPtr, RV.getAggregateAddr(), E->getType());
225 }
226 
227 void AggExprEmitter::VisitOverloadExpr(const OverloadExpr *E) {
228   RValue RV = CGF.EmitCallExpr(E->getFn(), E->arg_begin(),
229                                E->arg_end(CGF.getContext()));
230 
231   assert(RV.isAggregate() && "Return value must be aggregate value!");
232 
233   // If the result is ignored, don't copy from the value.
234   if (DestPtr == 0)
235     // FIXME: If the source is volatile, we must read from it.
236     return;
237 
238   EmitAggregateCopy(DestPtr, RV.getAggregateAddr(), E->getType());
239 }
240 
241 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
242   CGF.EmitAnyExpr(E->getLHS());
243   CGF.EmitAggExpr(E->getRHS(), DestPtr, false);
244 }
245 
246 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
247   CGF.EmitCompoundStmt(*E->getSubStmt(), true, DestPtr, VolatileDest);
248 }
249 
250 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
251   CGF.ErrorUnsupported(E, "aggregate binary expression");
252 }
253 
254 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
255   // For an assignment to work, the value on the right has
256   // to be compatible with the value on the left.
257   assert(CGF.getContext().typesAreCompatible(
258              E->getLHS()->getType().getUnqualifiedType(),
259              E->getRHS()->getType().getUnqualifiedType())
260          && "Invalid assignment");
261   LValue LHS = CGF.EmitLValue(E->getLHS());
262 
263   // We have to special case property setters, otherwise we must have
264   // a simple lvalue (no aggregates inside vectors, bitfields).
265   if (LHS.isPropertyRef()) {
266     // FIXME: Volatility?
267     llvm::Value *AggLoc = DestPtr;
268     if (!AggLoc)
269       AggLoc = CGF.CreateTempAlloca(CGF.ConvertType(E->getRHS()->getType()));
270     CGF.EmitAggExpr(E->getRHS(), AggLoc, false);
271     CGF.EmitObjCPropertySet(LHS.getPropertyRefExpr(),
272                             RValue::getAggregate(AggLoc));
273   } else {
274     // Codegen the RHS so that it stores directly into the LHS.
275     CGF.EmitAggExpr(E->getRHS(), LHS.getAddress(), false /*FIXME: VOLATILE LHS*/);
276 
277     if (DestPtr == 0)
278       return;
279 
280     // If the result of the assignment is used, copy the RHS there also.
281     EmitAggregateCopy(DestPtr, LHS.getAddress(), E->getType());
282   }
283 }
284 
285 void AggExprEmitter::VisitConditionalOperator(const ConditionalOperator *E) {
286   llvm::BasicBlock *LHSBlock = llvm::BasicBlock::Create("cond.?");
287   llvm::BasicBlock *RHSBlock = llvm::BasicBlock::Create("cond.:");
288   llvm::BasicBlock *ContBlock = llvm::BasicBlock::Create("cond.cont");
289 
290   llvm::Value *Cond = CGF.EvaluateExprAsBool(E->getCond());
291   Builder.CreateCondBr(Cond, LHSBlock, RHSBlock);
292 
293   CGF.EmitBlock(LHSBlock);
294 
295   // Handle the GNU extension for missing LHS.
296   assert(E->getLHS() && "Must have LHS for aggregate value");
297 
298   Visit(E->getLHS());
299   Builder.CreateBr(ContBlock);
300   LHSBlock = Builder.GetInsertBlock();
301 
302   CGF.EmitBlock(RHSBlock);
303 
304   Visit(E->getRHS());
305   Builder.CreateBr(ContBlock);
306   RHSBlock = Builder.GetInsertBlock();
307 
308   CGF.EmitBlock(ContBlock);
309 }
310 
311 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
312   llvm::Value *ArgValue = CGF.EmitLValue(VE->getSubExpr()).getAddress();
313   llvm::Value *V = Builder.CreateVAArg(ArgValue, CGF.ConvertType(VE->getType()));
314   if (DestPtr)
315     // FIXME: volatility
316     Builder.CreateStore(V, DestPtr);
317 }
318 
319 void AggExprEmitter::EmitNonConstInit(InitListExpr *E) {
320 
321   const llvm::PointerType *APType =
322     cast<llvm::PointerType>(DestPtr->getType());
323   const llvm::Type *DestType = APType->getElementType();
324 
325   if (const llvm::ArrayType *AType = dyn_cast<llvm::ArrayType>(DestType)) {
326     unsigned NumInitElements = E->getNumInits();
327 
328     unsigned i;
329     for (i = 0; i != NumInitElements; ++i) {
330       llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array");
331       Expr *Init = E->getInit(i);
332       if (isa<InitListExpr>(Init))
333         CGF.EmitAggExpr(Init, NextVal, VolatileDest);
334       else
335         // FIXME: volatility
336         Builder.CreateStore(CGF.EmitScalarExpr(Init), NextVal);
337     }
338 
339     // Emit remaining default initializers
340     unsigned NumArrayElements = AType->getNumElements();
341     QualType QType = E->getInit(0)->getType();
342     const llvm::Type *EType = AType->getElementType();
343     for (/*Do not initialize i*/; i < NumArrayElements; ++i) {
344       llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array");
345       if (EType->isSingleValueType())
346         // FIXME: volatility
347         Builder.CreateStore(llvm::Constant::getNullValue(EType), NextVal);
348       else
349         EmitAggregateClear(NextVal, QType);
350     }
351   } else
352     assert(false && "Invalid initializer");
353 }
354 
355 void AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV) {
356   // FIXME: Are initializers affected by volatile?
357   if (E->getType()->isComplexType()) {
358     CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false);
359   } else if (CGF.hasAggregateLLVMType(E->getType())) {
360     CGF.EmitAnyExpr(E, LV.getAddress(), false);
361   } else {
362     CGF.EmitStoreThroughLValue(CGF.EmitAnyExpr(E), LV, E->getType());
363   }
364 }
365 
366 void AggExprEmitter::EmitNullInitializationToLValue(LValue LV, QualType T) {
367   if (!CGF.hasAggregateLLVMType(T)) {
368     // For non-aggregates, we can store zero
369     llvm::Value *Null = llvm::Constant::getNullValue(CGF.ConvertType(T));
370     CGF.EmitStoreThroughLValue(RValue::get(Null), LV, T);
371   } else {
372     // Otherwise, just memset the whole thing to zero.  This is legal
373     // because in LLVM, all default initializers are guaranteed to have a
374     // bit pattern of all zeros.
375     // There's a potential optimization opportunity in combining
376     // memsets; that would be easy for arrays, but relatively
377     // difficult for structures with the current code.
378     llvm::Value *MemSet = CGF.CGM.getIntrinsic(llvm::Intrinsic::memset_i64);
379     uint64_t Size = CGF.getContext().getTypeSize(T);
380 
381     const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
382     llvm::Value* DestPtr = Builder.CreateBitCast(LV.getAddress(), BP, "tmp");
383     Builder.CreateCall4(MemSet, DestPtr,
384                         llvm::ConstantInt::get(llvm::Type::Int8Ty, 0),
385                         llvm::ConstantInt::get(llvm::Type::Int64Ty, Size/8),
386                         llvm::ConstantInt::get(llvm::Type::Int32Ty, 0));
387   }
388 }
389 
390 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
391   // FIXME: For constant expressions, call into const expr emitter so
392   // that we can emit a memcpy instead of storing the individual
393   // members.  This is purely for perf; both codepaths lead to
394   // equivalent (although not necessarily identical) code.  It's worth
395   // noting that LLVM keeps on getting smarter, though, so it might
396   // not be worth bothering.
397 
398   // Handle initialization of an array.
399   if (E->getType()->isArrayType()) {
400     const llvm::PointerType *APType =
401       cast<llvm::PointerType>(DestPtr->getType());
402     const llvm::ArrayType *AType =
403       cast<llvm::ArrayType>(APType->getElementType());
404 
405     uint64_t NumInitElements = E->getNumInits();
406 
407     if (E->getNumInits() > 0) {
408       QualType T1 = E->getType();
409       QualType T2 = E->getInit(0)->getType();
410       if (CGF.getContext().getCanonicalType(T1).getUnqualifiedType() ==
411           CGF.getContext().getCanonicalType(T2).getUnqualifiedType()) {
412         EmitAggLoadOfLValue(E->getInit(0));
413         return;
414       }
415     }
416 
417     uint64_t NumArrayElements = AType->getNumElements();
418     QualType ElementType = CGF.getContext().getCanonicalType(E->getType());
419     ElementType =CGF.getContext().getAsArrayType(ElementType)->getElementType();
420 
421     unsigned CVRqualifier = ElementType.getCVRQualifiers();
422 
423     for (uint64_t i = 0; i != NumArrayElements; ++i) {
424       llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array");
425       if (i < NumInitElements)
426         EmitInitializationToLValue(E->getInit(i),
427                                    LValue::MakeAddr(NextVal, CVRqualifier));
428       else
429         EmitNullInitializationToLValue(LValue::MakeAddr(NextVal, CVRqualifier),
430                                        ElementType);
431     }
432     return;
433   }
434 
435   assert(E->getType()->isRecordType() && "Only support structs/unions here!");
436 
437   // Do struct initialization; this code just sets each individual member
438   // to the approprate value.  This makes bitfield support automatic;
439   // the disadvantage is that the generated code is more difficult for
440   // the optimizer, especially with bitfields.
441   unsigned NumInitElements = E->getNumInits();
442   RecordDecl *SD = E->getType()->getAsRecordType()->getDecl();
443   unsigned NumMembers = SD->getNumMembers() - SD->hasFlexibleArrayMember();
444   unsigned CurInitVal = 0;
445   bool isUnion = E->getType()->isUnionType();
446 
447   // Here we iterate over the fields; this makes it simpler to both
448   // default-initialize fields and skip over unnamed fields.
449   for (unsigned CurFieldNo = 0; CurFieldNo != NumMembers; ++CurFieldNo) {
450     FieldDecl *CurField = SD->getMember(CurFieldNo);
451     if (CurField->getIdentifier() == 0) {
452       // Initializers can't initialize unnamed fields, e.g. "int : 20;"
453       continue;
454     }
455     // FIXME: volatility
456     LValue FieldLoc = CGF.EmitLValueForField(DestPtr, CurField, isUnion,0);
457     if (CurInitVal < NumInitElements) {
458       // Store the initializer into the field
459       // This will probably have to get a bit smarter when we support
460       // designators in initializers
461       EmitInitializationToLValue(E->getInit(CurInitVal++), FieldLoc);
462     } else {
463       // We're out of initalizers; default-initialize to null
464       EmitNullInitializationToLValue(FieldLoc, CurField->getType());
465     }
466 
467     // Unions only initialize one field.
468     // (things can get weird with designators, but they aren't
469     // supported yet.)
470     if (E->getType()->isUnionType())
471       break;
472   }
473 }
474 
475 //===----------------------------------------------------------------------===//
476 //                        Entry Points into this File
477 //===----------------------------------------------------------------------===//
478 
479 /// EmitAggExpr - Emit the computation of the specified expression of
480 /// aggregate type.  The result is computed into DestPtr.  Note that if
481 /// DestPtr is null, the value of the aggregate expression is not needed.
482 void CodeGenFunction::EmitAggExpr(const Expr *E, llvm::Value *DestPtr,
483                                   bool VolatileDest) {
484   assert(E && hasAggregateLLVMType(E->getType()) &&
485          "Invalid aggregate expression to emit");
486 
487   AggExprEmitter(*this, DestPtr, VolatileDest).Visit(const_cast<Expr*>(E));
488 }
489