1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Aggregate Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/DeclCXX.h"
18 #include "clang/AST/StmtVisitor.h"
19 #include "llvm/Constants.h"
20 #include "llvm/Function.h"
21 #include "llvm/GlobalVariable.h"
22 #include "llvm/Support/Compiler.h"
23 #include "llvm/Intrinsics.h"
24 using namespace clang;
25 using namespace CodeGen;
26 
27 //===----------------------------------------------------------------------===//
28 //                        Aggregate Expression Emitter
29 //===----------------------------------------------------------------------===//
30 
31 namespace  {
32 class VISIBILITY_HIDDEN AggExprEmitter : public StmtVisitor<AggExprEmitter> {
33   CodeGenFunction &CGF;
34   CGBuilderTy &Builder;
35   llvm::Value *DestPtr;
36   bool VolatileDest;
37   bool IgnoreResult;
38 
39 public:
40   AggExprEmitter(CodeGenFunction &cgf, llvm::Value *destPtr, bool v,
41                  bool ignore)
42     : CGF(cgf), Builder(CGF.Builder),
43       DestPtr(destPtr), VolatileDest(v), IgnoreResult(ignore) {
44   }
45 
46   //===--------------------------------------------------------------------===//
47   //                               Utilities
48   //===--------------------------------------------------------------------===//
49 
50   /// EmitAggLoadOfLValue - Given an expression with aggregate type that
51   /// represents a value lvalue, this method emits the address of the lvalue,
52   /// then loads the result into DestPtr.
53   void EmitAggLoadOfLValue(const Expr *E);
54 
55   /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
56   void EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore = false);
57   void EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore = false);
58 
59   //===--------------------------------------------------------------------===//
60   //                            Visitor Methods
61   //===--------------------------------------------------------------------===//
62 
63   void VisitStmt(Stmt *S) {
64     CGF.ErrorUnsupported(S, "aggregate expression");
65   }
66   void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
67   void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
68 
69   // l-values.
70   void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); }
71   void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
72   void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
73   void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
74   void VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
75     EmitAggLoadOfLValue(E);
76   }
77   void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
78     EmitAggLoadOfLValue(E);
79   }
80   void VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
81     EmitAggLoadOfLValue(E);
82   }
83   void VisitPredefinedExpr(const PredefinedExpr *E) {
84     EmitAggLoadOfLValue(E);
85   }
86 
87   // Operators.
88   void VisitCStyleCastExpr(CStyleCastExpr *E);
89   void VisitImplicitCastExpr(ImplicitCastExpr *E);
90   void VisitCallExpr(const CallExpr *E);
91   void VisitStmtExpr(const StmtExpr *E);
92   void VisitBinaryOperator(const BinaryOperator *BO);
93   void VisitBinAssign(const BinaryOperator *E);
94   void VisitBinComma(const BinaryOperator *E);
95 
96   void VisitObjCMessageExpr(ObjCMessageExpr *E);
97   void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
98     EmitAggLoadOfLValue(E);
99   }
100   void VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E);
101   void VisitObjCKVCRefExpr(ObjCKVCRefExpr *E);
102 
103   void VisitConditionalOperator(const ConditionalOperator *CO);
104   void VisitInitListExpr(InitListExpr *E);
105   void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
106     Visit(DAE->getExpr());
107   }
108   void VisitCXXConstructExpr(const CXXConstructExpr *E);
109   void VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E);
110 
111   void VisitVAArgExpr(VAArgExpr *E);
112 
113   void EmitInitializationToLValue(Expr *E, LValue Address);
114   void EmitNullInitializationToLValue(LValue Address, QualType T);
115   //  case Expr::ChooseExprClass:
116 
117 };
118 }  // end anonymous namespace.
119 
120 //===----------------------------------------------------------------------===//
121 //                                Utilities
122 //===----------------------------------------------------------------------===//
123 
124 /// EmitAggLoadOfLValue - Given an expression with aggregate type that
125 /// represents a value lvalue, this method emits the address of the lvalue,
126 /// then loads the result into DestPtr.
127 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
128   LValue LV = CGF.EmitLValue(E);
129   EmitFinalDestCopy(E, LV);
130 }
131 
132 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
133 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore) {
134   assert(Src.isAggregate() && "value must be aggregate value!");
135 
136   // If the result is ignored, don't copy from the value.
137   if (DestPtr == 0) {
138     if (!Src.isVolatileQualified() || (IgnoreResult && Ignore))
139       return;
140     // If the source is volatile, we must read from it; to do that, we need
141     // some place to put it.
142     DestPtr = CGF.CreateTempAlloca(CGF.ConvertType(E->getType()), "agg.tmp");
143   }
144 
145   // If the result of the assignment is used, copy the LHS there also.
146   // FIXME: Pass VolatileDest as well.  I think we also need to merge volatile
147   // from the source as well, as we can't eliminate it if either operand
148   // is volatile, unless copy has volatile for both source and destination..
149   CGF.EmitAggregateCopy(DestPtr, Src.getAggregateAddr(), E->getType(),
150                         VolatileDest|Src.isVolatileQualified());
151 }
152 
153 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
154 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore) {
155   assert(Src.isSimple() && "Can't have aggregate bitfield, vector, etc");
156 
157   EmitFinalDestCopy(E, RValue::getAggregate(Src.getAddress(),
158                                             Src.isVolatileQualified()),
159                     Ignore);
160 }
161 
162 //===----------------------------------------------------------------------===//
163 //                            Visitor Methods
164 //===----------------------------------------------------------------------===//
165 
166 void AggExprEmitter::VisitCStyleCastExpr(CStyleCastExpr *E) {
167   // GCC union extension
168   if (E->getType()->isUnionType()) {
169     RecordDecl *SD = E->getType()->getAsRecordType()->getDecl();
170     LValue FieldLoc = CGF.EmitLValueForField(DestPtr,
171                                              *SD->field_begin(CGF.getContext()),
172                                              true, 0);
173     EmitInitializationToLValue(E->getSubExpr(), FieldLoc);
174     return;
175   }
176 
177   Visit(E->getSubExpr());
178 }
179 
180 void AggExprEmitter::VisitImplicitCastExpr(ImplicitCastExpr *E) {
181   assert(CGF.getContext().typesAreCompatible(
182                           E->getSubExpr()->getType().getUnqualifiedType(),
183                           E->getType().getUnqualifiedType()) &&
184          "Implicit cast types must be compatible");
185   Visit(E->getSubExpr());
186 }
187 
188 void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
189   if (E->getCallReturnType()->isReferenceType()) {
190     EmitAggLoadOfLValue(E);
191     return;
192   }
193 
194   RValue RV = CGF.EmitCallExpr(E);
195   EmitFinalDestCopy(E, RV);
196 }
197 
198 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
199   RValue RV = CGF.EmitObjCMessageExpr(E);
200   EmitFinalDestCopy(E, RV);
201 }
202 
203 void AggExprEmitter::VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
204   RValue RV = CGF.EmitObjCPropertyGet(E);
205   EmitFinalDestCopy(E, RV);
206 }
207 
208 void AggExprEmitter::VisitObjCKVCRefExpr(ObjCKVCRefExpr *E) {
209   RValue RV = CGF.EmitObjCPropertyGet(E);
210   EmitFinalDestCopy(E, RV);
211 }
212 
213 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
214   CGF.EmitAnyExpr(E->getLHS());
215   CGF.EmitAggExpr(E->getRHS(), DestPtr, VolatileDest);
216 }
217 
218 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
219   CGF.EmitCompoundStmt(*E->getSubStmt(), true, DestPtr, VolatileDest);
220 }
221 
222 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
223   CGF.ErrorUnsupported(E, "aggregate binary expression");
224 }
225 
226 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
227   // For an assignment to work, the value on the right has
228   // to be compatible with the value on the left.
229   assert(CGF.getContext().typesAreCompatible(
230              E->getLHS()->getType().getUnqualifiedType(),
231              E->getRHS()->getType().getUnqualifiedType())
232          && "Invalid assignment");
233   LValue LHS = CGF.EmitLValue(E->getLHS());
234 
235   // We have to special case property setters, otherwise we must have
236   // a simple lvalue (no aggregates inside vectors, bitfields).
237   if (LHS.isPropertyRef()) {
238     llvm::Value *AggLoc = DestPtr;
239     if (!AggLoc)
240       AggLoc = CGF.CreateTempAlloca(CGF.ConvertType(E->getRHS()->getType()));
241     CGF.EmitAggExpr(E->getRHS(), AggLoc, VolatileDest);
242     CGF.EmitObjCPropertySet(LHS.getPropertyRefExpr(),
243                             RValue::getAggregate(AggLoc, VolatileDest));
244   }
245   else if (LHS.isKVCRef()) {
246     llvm::Value *AggLoc = DestPtr;
247     if (!AggLoc)
248       AggLoc = CGF.CreateTempAlloca(CGF.ConvertType(E->getRHS()->getType()));
249     CGF.EmitAggExpr(E->getRHS(), AggLoc, VolatileDest);
250     CGF.EmitObjCPropertySet(LHS.getKVCRefExpr(),
251                             RValue::getAggregate(AggLoc, VolatileDest));
252   } else {
253     // Codegen the RHS so that it stores directly into the LHS.
254     CGF.EmitAggExpr(E->getRHS(), LHS.getAddress(), LHS.isVolatileQualified());
255     EmitFinalDestCopy(E, LHS, true);
256   }
257 }
258 
259 void AggExprEmitter::VisitConditionalOperator(const ConditionalOperator *E) {
260   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
261   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
262   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
263 
264   llvm::Value *Cond = CGF.EvaluateExprAsBool(E->getCond());
265   Builder.CreateCondBr(Cond, LHSBlock, RHSBlock);
266 
267   CGF.EmitBlock(LHSBlock);
268 
269   // Handle the GNU extension for missing LHS.
270   assert(E->getLHS() && "Must have LHS for aggregate value");
271 
272   Visit(E->getLHS());
273   CGF.EmitBranch(ContBlock);
274 
275   CGF.EmitBlock(RHSBlock);
276 
277   Visit(E->getRHS());
278   CGF.EmitBranch(ContBlock);
279 
280   CGF.EmitBlock(ContBlock);
281 }
282 
283 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
284   llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
285   llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
286 
287   if (!ArgPtr) {
288     CGF.ErrorUnsupported(VE, "aggregate va_arg expression");
289     return;
290   }
291 
292   EmitFinalDestCopy(VE, LValue::MakeAddr(ArgPtr, 0));
293 }
294 
295 void
296 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) {
297   llvm::Value *V = DestPtr;
298 
299   if (!V) {
300     assert(isa<CXXTempVarDecl>(E->getVarDecl()) &&
301            "Must have a temp var decl when there's no destination!");
302 
303     V = CGF.CreateTempAlloca(CGF.ConvertType(E->getVarDecl()->getType()),
304                              "tmpvar");
305   }
306 
307   CGF.EmitCXXConstructExpr(V, E);
308 }
309 
310 void AggExprEmitter::VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E) {
311   // FIXME: Do something with the temporaries!
312   Visit(E->getSubExpr());
313 }
314 
315 void AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV) {
316   // FIXME: Are initializers affected by volatile?
317   if (isa<ImplicitValueInitExpr>(E)) {
318     EmitNullInitializationToLValue(LV, E->getType());
319   } else if (E->getType()->isComplexType()) {
320     CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false);
321   } else if (CGF.hasAggregateLLVMType(E->getType())) {
322     CGF.EmitAnyExpr(E, LV.getAddress(), false);
323   } else {
324     CGF.EmitStoreThroughLValue(CGF.EmitAnyExpr(E), LV, E->getType());
325   }
326 }
327 
328 void AggExprEmitter::EmitNullInitializationToLValue(LValue LV, QualType T) {
329   if (!CGF.hasAggregateLLVMType(T)) {
330     // For non-aggregates, we can store zero
331     llvm::Value *Null = llvm::Constant::getNullValue(CGF.ConvertType(T));
332     CGF.EmitStoreThroughLValue(RValue::get(Null), LV, T);
333   } else {
334     // Otherwise, just memset the whole thing to zero.  This is legal
335     // because in LLVM, all default initializers are guaranteed to have a
336     // bit pattern of all zeros.
337     // FIXME: That isn't true for member pointers!
338     // There's a potential optimization opportunity in combining
339     // memsets; that would be easy for arrays, but relatively
340     // difficult for structures with the current code.
341     CGF.EmitMemSetToZero(LV.getAddress(), T);
342   }
343 }
344 
345 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
346 #if 0
347   // FIXME: Disabled while we figure out what to do about
348   // test/CodeGen/bitfield.c
349   //
350   // If we can, prefer a copy from a global; this is a lot less code for long
351   // globals, and it's easier for the current optimizers to analyze.
352   // FIXME: Should we really be doing this? Should we try to avoid cases where
353   // we emit a global with a lot of zeros?  Should we try to avoid short
354   // globals?
355   if (E->isConstantInitializer(CGF.getContext(), 0)) {
356     llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, &CGF);
357     llvm::GlobalVariable* GV =
358     new llvm::GlobalVariable(C->getType(), true,
359                              llvm::GlobalValue::InternalLinkage,
360                              C, "", &CGF.CGM.getModule(), 0);
361     EmitFinalDestCopy(E, LValue::MakeAddr(GV, 0));
362     return;
363   }
364 #endif
365   if (E->hadArrayRangeDesignator()) {
366     CGF.ErrorUnsupported(E, "GNU array range designator extension");
367   }
368 
369   // Handle initialization of an array.
370   if (E->getType()->isArrayType()) {
371     const llvm::PointerType *APType =
372       cast<llvm::PointerType>(DestPtr->getType());
373     const llvm::ArrayType *AType =
374       cast<llvm::ArrayType>(APType->getElementType());
375 
376     uint64_t NumInitElements = E->getNumInits();
377 
378     if (E->getNumInits() > 0) {
379       QualType T1 = E->getType();
380       QualType T2 = E->getInit(0)->getType();
381       if (CGF.getContext().getCanonicalType(T1).getUnqualifiedType() ==
382           CGF.getContext().getCanonicalType(T2).getUnqualifiedType()) {
383         EmitAggLoadOfLValue(E->getInit(0));
384         return;
385       }
386     }
387 
388     uint64_t NumArrayElements = AType->getNumElements();
389     QualType ElementType = CGF.getContext().getCanonicalType(E->getType());
390     ElementType = CGF.getContext().getAsArrayType(ElementType)->getElementType();
391 
392     unsigned CVRqualifier = ElementType.getCVRQualifiers();
393 
394     for (uint64_t i = 0; i != NumArrayElements; ++i) {
395       llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array");
396       if (i < NumInitElements)
397         EmitInitializationToLValue(E->getInit(i),
398                                    LValue::MakeAddr(NextVal, CVRqualifier));
399       else
400         EmitNullInitializationToLValue(LValue::MakeAddr(NextVal, CVRqualifier),
401                                        ElementType);
402     }
403     return;
404   }
405 
406   assert(E->getType()->isRecordType() && "Only support structs/unions here!");
407 
408   // Do struct initialization; this code just sets each individual member
409   // to the approprate value.  This makes bitfield support automatic;
410   // the disadvantage is that the generated code is more difficult for
411   // the optimizer, especially with bitfields.
412   unsigned NumInitElements = E->getNumInits();
413   RecordDecl *SD = E->getType()->getAsRecordType()->getDecl();
414   unsigned CurInitVal = 0;
415 
416   if (E->getType()->isUnionType()) {
417     // Only initialize one field of a union. The field itself is
418     // specified by the initializer list.
419     if (!E->getInitializedFieldInUnion()) {
420       // Empty union; we have nothing to do.
421 
422 #ifndef NDEBUG
423       // Make sure that it's really an empty and not a failure of
424       // semantic analysis.
425       for (RecordDecl::field_iterator Field = SD->field_begin(CGF.getContext()),
426                                    FieldEnd = SD->field_end(CGF.getContext());
427            Field != FieldEnd; ++Field)
428         assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed");
429 #endif
430       return;
431     }
432 
433     // FIXME: volatility
434     FieldDecl *Field = E->getInitializedFieldInUnion();
435     LValue FieldLoc = CGF.EmitLValueForField(DestPtr, Field, true, 0);
436 
437     if (NumInitElements) {
438       // Store the initializer into the field
439       EmitInitializationToLValue(E->getInit(0), FieldLoc);
440     } else {
441       // Default-initialize to null
442       EmitNullInitializationToLValue(FieldLoc, Field->getType());
443     }
444 
445     return;
446   }
447 
448   // Here we iterate over the fields; this makes it simpler to both
449   // default-initialize fields and skip over unnamed fields.
450   for (RecordDecl::field_iterator Field = SD->field_begin(CGF.getContext()),
451                                FieldEnd = SD->field_end(CGF.getContext());
452        Field != FieldEnd; ++Field) {
453     // We're done once we hit the flexible array member
454     if (Field->getType()->isIncompleteArrayType())
455       break;
456 
457     if (Field->isUnnamedBitfield())
458       continue;
459 
460     // FIXME: volatility
461     LValue FieldLoc = CGF.EmitLValueForField(DestPtr, *Field, false, 0);
462     // We never generate write-barries for initialized fields.
463     LValue::SetObjCNonGC(FieldLoc, true);
464     if (CurInitVal < NumInitElements) {
465       // Store the initializer into the field
466       EmitInitializationToLValue(E->getInit(CurInitVal++), FieldLoc);
467     } else {
468       // We're out of initalizers; default-initialize to null
469       EmitNullInitializationToLValue(FieldLoc, Field->getType());
470     }
471   }
472 }
473 
474 //===----------------------------------------------------------------------===//
475 //                        Entry Points into this File
476 //===----------------------------------------------------------------------===//
477 
478 /// EmitAggExpr - Emit the computation of the specified expression of aggregate
479 /// type.  The result is computed into DestPtr.  Note that if DestPtr is null,
480 /// the value of the aggregate expression is not needed.  If VolatileDest is
481 /// true, DestPtr cannot be 0.
482 void CodeGenFunction::EmitAggExpr(const Expr *E, llvm::Value *DestPtr,
483                                   bool VolatileDest, bool IgnoreResult) {
484   assert(E && hasAggregateLLVMType(E->getType()) &&
485          "Invalid aggregate expression to emit");
486   assert ((DestPtr != 0 || VolatileDest == false)
487           && "volatile aggregate can't be 0");
488 
489   AggExprEmitter(*this, DestPtr, VolatileDest, IgnoreResult)
490     .Visit(const_cast<Expr*>(E));
491 }
492 
493 void CodeGenFunction::EmitAggregateClear(llvm::Value *DestPtr, QualType Ty) {
494   assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
495 
496   EmitMemSetToZero(DestPtr, Ty);
497 }
498 
499 void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr,
500                                         llvm::Value *SrcPtr, QualType Ty,
501                                         bool isVolatile) {
502   assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
503 
504   // Aggregate assignment turns into llvm.memcpy.  This is almost valid per
505   // C99 6.5.16.1p3, which states "If the value being stored in an object is
506   // read from another object that overlaps in anyway the storage of the first
507   // object, then the overlap shall be exact and the two objects shall have
508   // qualified or unqualified versions of a compatible type."
509   //
510   // memcpy is not defined if the source and destination pointers are exactly
511   // equal, but other compilers do this optimization, and almost every memcpy
512   // implementation handles this case safely.  If there is a libc that does not
513   // safely handle this, we can add a target hook.
514   const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
515   if (DestPtr->getType() != BP)
516     DestPtr = Builder.CreateBitCast(DestPtr, BP, "tmp");
517   if (SrcPtr->getType() != BP)
518     SrcPtr = Builder.CreateBitCast(SrcPtr, BP, "tmp");
519 
520   // Get size and alignment info for this aggregate.
521   std::pair<uint64_t, unsigned> TypeInfo = getContext().getTypeInfo(Ty);
522 
523   // FIXME: Handle variable sized types.
524   const llvm::Type *IntPtr = llvm::IntegerType::get(LLVMPointerWidth);
525 
526   // FIXME: If we have a volatile struct, the optimizer can remove what might
527   // appear to be `extra' memory ops:
528   //
529   // volatile struct { int i; } a, b;
530   //
531   // int main() {
532   //   a = b;
533   //   a = b;
534   // }
535   //
536   // we need to use a differnt call here.  We use isVolatile to indicate when
537   // either the source or the destination is volatile.
538   Builder.CreateCall4(CGM.getMemCpyFn(),
539                       DestPtr, SrcPtr,
540                       // TypeInfo.first describes size in bits.
541                       llvm::ConstantInt::get(IntPtr, TypeInfo.first/8),
542                       llvm::ConstantInt::get(llvm::Type::Int32Ty,
543                                              TypeInfo.second/8));
544 }
545