1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Aggregate Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "clang/AST/ASTContext.h" 17 #include "clang/AST/DeclCXX.h" 18 #include "clang/AST/StmtVisitor.h" 19 #include "llvm/Constants.h" 20 #include "llvm/Function.h" 21 #include "llvm/GlobalVariable.h" 22 #include "llvm/Support/Compiler.h" 23 #include "llvm/Intrinsics.h" 24 using namespace clang; 25 using namespace CodeGen; 26 27 //===----------------------------------------------------------------------===// 28 // Aggregate Expression Emitter 29 //===----------------------------------------------------------------------===// 30 31 namespace { 32 class VISIBILITY_HIDDEN AggExprEmitter : public StmtVisitor<AggExprEmitter> { 33 CodeGenFunction &CGF; 34 CGBuilderTy &Builder; 35 llvm::Value *DestPtr; 36 bool VolatileDest; 37 bool IgnoreResult; 38 39 public: 40 AggExprEmitter(CodeGenFunction &cgf, llvm::Value *destPtr, bool v, 41 bool ignore) 42 : CGF(cgf), Builder(CGF.Builder), 43 DestPtr(destPtr), VolatileDest(v), IgnoreResult(ignore) { 44 } 45 46 //===--------------------------------------------------------------------===// 47 // Utilities 48 //===--------------------------------------------------------------------===// 49 50 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 51 /// represents a value lvalue, this method emits the address of the lvalue, 52 /// then loads the result into DestPtr. 53 void EmitAggLoadOfLValue(const Expr *E); 54 55 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 56 void EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore = false); 57 void EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore = false); 58 59 //===--------------------------------------------------------------------===// 60 // Visitor Methods 61 //===--------------------------------------------------------------------===// 62 63 void VisitStmt(Stmt *S) { 64 CGF.ErrorUnsupported(S, "aggregate expression"); 65 } 66 void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); } 67 void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); } 68 69 // l-values. 70 void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); } 71 void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); } 72 void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); } 73 void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); } 74 void VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 75 EmitAggLoadOfLValue(E); 76 } 77 void VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 78 EmitAggLoadOfLValue(E); 79 } 80 void VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) { 81 EmitAggLoadOfLValue(E); 82 } 83 void VisitPredefinedExpr(const PredefinedExpr *E) { 84 EmitAggLoadOfLValue(E); 85 } 86 87 // Operators. 88 void VisitCStyleCastExpr(CStyleCastExpr *E); 89 void VisitImplicitCastExpr(ImplicitCastExpr *E); 90 void VisitCallExpr(const CallExpr *E); 91 void VisitStmtExpr(const StmtExpr *E); 92 void VisitBinaryOperator(const BinaryOperator *BO); 93 void VisitBinAssign(const BinaryOperator *E); 94 void VisitBinComma(const BinaryOperator *E); 95 96 void VisitObjCMessageExpr(ObjCMessageExpr *E); 97 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 98 EmitAggLoadOfLValue(E); 99 } 100 void VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E); 101 void VisitObjCKVCRefExpr(ObjCKVCRefExpr *E); 102 103 void VisitConditionalOperator(const ConditionalOperator *CO); 104 void VisitInitListExpr(InitListExpr *E); 105 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 106 Visit(DAE->getExpr()); 107 } 108 void VisitCXXConstructExpr(const CXXConstructExpr *E); 109 void VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E); 110 111 void VisitVAArgExpr(VAArgExpr *E); 112 113 void EmitInitializationToLValue(Expr *E, LValue Address); 114 void EmitNullInitializationToLValue(LValue Address, QualType T); 115 // case Expr::ChooseExprClass: 116 117 }; 118 } // end anonymous namespace. 119 120 //===----------------------------------------------------------------------===// 121 // Utilities 122 //===----------------------------------------------------------------------===// 123 124 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 125 /// represents a value lvalue, this method emits the address of the lvalue, 126 /// then loads the result into DestPtr. 127 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) { 128 LValue LV = CGF.EmitLValue(E); 129 EmitFinalDestCopy(E, LV); 130 } 131 132 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 133 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore) { 134 assert(Src.isAggregate() && "value must be aggregate value!"); 135 136 // If the result is ignored, don't copy from the value. 137 if (DestPtr == 0) { 138 if (!Src.isVolatileQualified() || (IgnoreResult && Ignore)) 139 return; 140 // If the source is volatile, we must read from it; to do that, we need 141 // some place to put it. 142 DestPtr = CGF.CreateTempAlloca(CGF.ConvertType(E->getType()), "agg.tmp"); 143 } 144 145 // If the result of the assignment is used, copy the LHS there also. 146 // FIXME: Pass VolatileDest as well. I think we also need to merge volatile 147 // from the source as well, as we can't eliminate it if either operand 148 // is volatile, unless copy has volatile for both source and destination.. 149 CGF.EmitAggregateCopy(DestPtr, Src.getAggregateAddr(), E->getType(), 150 VolatileDest|Src.isVolatileQualified()); 151 } 152 153 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 154 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore) { 155 assert(Src.isSimple() && "Can't have aggregate bitfield, vector, etc"); 156 157 EmitFinalDestCopy(E, RValue::getAggregate(Src.getAddress(), 158 Src.isVolatileQualified()), 159 Ignore); 160 } 161 162 //===----------------------------------------------------------------------===// 163 // Visitor Methods 164 //===----------------------------------------------------------------------===// 165 166 void AggExprEmitter::VisitCStyleCastExpr(CStyleCastExpr *E) { 167 // GCC union extension 168 if (E->getType()->isUnionType()) { 169 RecordDecl *SD = E->getType()->getAsRecordType()->getDecl(); 170 LValue FieldLoc = CGF.EmitLValueForField(DestPtr, 171 *SD->field_begin(CGF.getContext()), 172 true, 0); 173 EmitInitializationToLValue(E->getSubExpr(), FieldLoc); 174 return; 175 } 176 177 Visit(E->getSubExpr()); 178 } 179 180 void AggExprEmitter::VisitImplicitCastExpr(ImplicitCastExpr *E) { 181 assert(CGF.getContext().typesAreCompatible( 182 E->getSubExpr()->getType().getUnqualifiedType(), 183 E->getType().getUnqualifiedType()) && 184 "Implicit cast types must be compatible"); 185 Visit(E->getSubExpr()); 186 } 187 188 void AggExprEmitter::VisitCallExpr(const CallExpr *E) { 189 if (E->getCallReturnType()->isReferenceType()) { 190 EmitAggLoadOfLValue(E); 191 return; 192 } 193 194 RValue RV = CGF.EmitCallExpr(E); 195 EmitFinalDestCopy(E, RV); 196 } 197 198 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) { 199 RValue RV = CGF.EmitObjCMessageExpr(E); 200 EmitFinalDestCopy(E, RV); 201 } 202 203 void AggExprEmitter::VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) { 204 RValue RV = CGF.EmitObjCPropertyGet(E); 205 EmitFinalDestCopy(E, RV); 206 } 207 208 void AggExprEmitter::VisitObjCKVCRefExpr(ObjCKVCRefExpr *E) { 209 RValue RV = CGF.EmitObjCPropertyGet(E); 210 EmitFinalDestCopy(E, RV); 211 } 212 213 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) { 214 CGF.EmitAnyExpr(E->getLHS()); 215 CGF.EmitAggExpr(E->getRHS(), DestPtr, VolatileDest); 216 } 217 218 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) { 219 CGF.EmitCompoundStmt(*E->getSubStmt(), true, DestPtr, VolatileDest); 220 } 221 222 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) { 223 CGF.ErrorUnsupported(E, "aggregate binary expression"); 224 } 225 226 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) { 227 // For an assignment to work, the value on the right has 228 // to be compatible with the value on the left. 229 assert(CGF.getContext().typesAreCompatible( 230 E->getLHS()->getType().getUnqualifiedType(), 231 E->getRHS()->getType().getUnqualifiedType()) 232 && "Invalid assignment"); 233 LValue LHS = CGF.EmitLValue(E->getLHS()); 234 235 // We have to special case property setters, otherwise we must have 236 // a simple lvalue (no aggregates inside vectors, bitfields). 237 if (LHS.isPropertyRef()) { 238 llvm::Value *AggLoc = DestPtr; 239 if (!AggLoc) 240 AggLoc = CGF.CreateTempAlloca(CGF.ConvertType(E->getRHS()->getType())); 241 CGF.EmitAggExpr(E->getRHS(), AggLoc, VolatileDest); 242 CGF.EmitObjCPropertySet(LHS.getPropertyRefExpr(), 243 RValue::getAggregate(AggLoc, VolatileDest)); 244 } 245 else if (LHS.isKVCRef()) { 246 llvm::Value *AggLoc = DestPtr; 247 if (!AggLoc) 248 AggLoc = CGF.CreateTempAlloca(CGF.ConvertType(E->getRHS()->getType())); 249 CGF.EmitAggExpr(E->getRHS(), AggLoc, VolatileDest); 250 CGF.EmitObjCPropertySet(LHS.getKVCRefExpr(), 251 RValue::getAggregate(AggLoc, VolatileDest)); 252 } else { 253 // Codegen the RHS so that it stores directly into the LHS. 254 CGF.EmitAggExpr(E->getRHS(), LHS.getAddress(), LHS.isVolatileQualified()); 255 EmitFinalDestCopy(E, LHS, true); 256 } 257 } 258 259 void AggExprEmitter::VisitConditionalOperator(const ConditionalOperator *E) { 260 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 261 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 262 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 263 264 llvm::Value *Cond = CGF.EvaluateExprAsBool(E->getCond()); 265 Builder.CreateCondBr(Cond, LHSBlock, RHSBlock); 266 267 CGF.EmitBlock(LHSBlock); 268 269 // Handle the GNU extension for missing LHS. 270 assert(E->getLHS() && "Must have LHS for aggregate value"); 271 272 Visit(E->getLHS()); 273 CGF.EmitBranch(ContBlock); 274 275 CGF.EmitBlock(RHSBlock); 276 277 Visit(E->getRHS()); 278 CGF.EmitBranch(ContBlock); 279 280 CGF.EmitBlock(ContBlock); 281 } 282 283 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 284 llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr()); 285 llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType()); 286 287 if (!ArgPtr) { 288 CGF.ErrorUnsupported(VE, "aggregate va_arg expression"); 289 return; 290 } 291 292 EmitFinalDestCopy(VE, LValue::MakeAddr(ArgPtr, 0)); 293 } 294 295 void 296 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) { 297 llvm::Value *V = DestPtr; 298 299 if (!V) { 300 assert(isa<CXXTempVarDecl>(E->getVarDecl()) && 301 "Must have a temp var decl when there's no destination!"); 302 303 V = CGF.CreateTempAlloca(CGF.ConvertType(E->getVarDecl()->getType()), 304 "tmpvar"); 305 } 306 307 CGF.EmitCXXConstructExpr(V, E); 308 } 309 310 void AggExprEmitter::VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E) { 311 // FIXME: Do something with the temporaries! 312 Visit(E->getSubExpr()); 313 } 314 315 void AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV) { 316 // FIXME: Are initializers affected by volatile? 317 if (isa<ImplicitValueInitExpr>(E)) { 318 EmitNullInitializationToLValue(LV, E->getType()); 319 } else if (E->getType()->isComplexType()) { 320 CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false); 321 } else if (CGF.hasAggregateLLVMType(E->getType())) { 322 CGF.EmitAnyExpr(E, LV.getAddress(), false); 323 } else { 324 CGF.EmitStoreThroughLValue(CGF.EmitAnyExpr(E), LV, E->getType()); 325 } 326 } 327 328 void AggExprEmitter::EmitNullInitializationToLValue(LValue LV, QualType T) { 329 if (!CGF.hasAggregateLLVMType(T)) { 330 // For non-aggregates, we can store zero 331 llvm::Value *Null = llvm::Constant::getNullValue(CGF.ConvertType(T)); 332 CGF.EmitStoreThroughLValue(RValue::get(Null), LV, T); 333 } else { 334 // Otherwise, just memset the whole thing to zero. This is legal 335 // because in LLVM, all default initializers are guaranteed to have a 336 // bit pattern of all zeros. 337 // FIXME: That isn't true for member pointers! 338 // There's a potential optimization opportunity in combining 339 // memsets; that would be easy for arrays, but relatively 340 // difficult for structures with the current code. 341 CGF.EmitMemSetToZero(LV.getAddress(), T); 342 } 343 } 344 345 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) { 346 #if 0 347 // FIXME: Disabled while we figure out what to do about 348 // test/CodeGen/bitfield.c 349 // 350 // If we can, prefer a copy from a global; this is a lot less code for long 351 // globals, and it's easier for the current optimizers to analyze. 352 // FIXME: Should we really be doing this? Should we try to avoid cases where 353 // we emit a global with a lot of zeros? Should we try to avoid short 354 // globals? 355 if (E->isConstantInitializer(CGF.getContext(), 0)) { 356 llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, &CGF); 357 llvm::GlobalVariable* GV = 358 new llvm::GlobalVariable(C->getType(), true, 359 llvm::GlobalValue::InternalLinkage, 360 C, "", &CGF.CGM.getModule(), 0); 361 EmitFinalDestCopy(E, LValue::MakeAddr(GV, 0)); 362 return; 363 } 364 #endif 365 if (E->hadArrayRangeDesignator()) { 366 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 367 } 368 369 // Handle initialization of an array. 370 if (E->getType()->isArrayType()) { 371 const llvm::PointerType *APType = 372 cast<llvm::PointerType>(DestPtr->getType()); 373 const llvm::ArrayType *AType = 374 cast<llvm::ArrayType>(APType->getElementType()); 375 376 uint64_t NumInitElements = E->getNumInits(); 377 378 if (E->getNumInits() > 0) { 379 QualType T1 = E->getType(); 380 QualType T2 = E->getInit(0)->getType(); 381 if (CGF.getContext().getCanonicalType(T1).getUnqualifiedType() == 382 CGF.getContext().getCanonicalType(T2).getUnqualifiedType()) { 383 EmitAggLoadOfLValue(E->getInit(0)); 384 return; 385 } 386 } 387 388 uint64_t NumArrayElements = AType->getNumElements(); 389 QualType ElementType = CGF.getContext().getCanonicalType(E->getType()); 390 ElementType = CGF.getContext().getAsArrayType(ElementType)->getElementType(); 391 392 unsigned CVRqualifier = ElementType.getCVRQualifiers(); 393 394 for (uint64_t i = 0; i != NumArrayElements; ++i) { 395 llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array"); 396 if (i < NumInitElements) 397 EmitInitializationToLValue(E->getInit(i), 398 LValue::MakeAddr(NextVal, CVRqualifier)); 399 else 400 EmitNullInitializationToLValue(LValue::MakeAddr(NextVal, CVRqualifier), 401 ElementType); 402 } 403 return; 404 } 405 406 assert(E->getType()->isRecordType() && "Only support structs/unions here!"); 407 408 // Do struct initialization; this code just sets each individual member 409 // to the approprate value. This makes bitfield support automatic; 410 // the disadvantage is that the generated code is more difficult for 411 // the optimizer, especially with bitfields. 412 unsigned NumInitElements = E->getNumInits(); 413 RecordDecl *SD = E->getType()->getAsRecordType()->getDecl(); 414 unsigned CurInitVal = 0; 415 416 if (E->getType()->isUnionType()) { 417 // Only initialize one field of a union. The field itself is 418 // specified by the initializer list. 419 if (!E->getInitializedFieldInUnion()) { 420 // Empty union; we have nothing to do. 421 422 #ifndef NDEBUG 423 // Make sure that it's really an empty and not a failure of 424 // semantic analysis. 425 for (RecordDecl::field_iterator Field = SD->field_begin(CGF.getContext()), 426 FieldEnd = SD->field_end(CGF.getContext()); 427 Field != FieldEnd; ++Field) 428 assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed"); 429 #endif 430 return; 431 } 432 433 // FIXME: volatility 434 FieldDecl *Field = E->getInitializedFieldInUnion(); 435 LValue FieldLoc = CGF.EmitLValueForField(DestPtr, Field, true, 0); 436 437 if (NumInitElements) { 438 // Store the initializer into the field 439 EmitInitializationToLValue(E->getInit(0), FieldLoc); 440 } else { 441 // Default-initialize to null 442 EmitNullInitializationToLValue(FieldLoc, Field->getType()); 443 } 444 445 return; 446 } 447 448 // Here we iterate over the fields; this makes it simpler to both 449 // default-initialize fields and skip over unnamed fields. 450 for (RecordDecl::field_iterator Field = SD->field_begin(CGF.getContext()), 451 FieldEnd = SD->field_end(CGF.getContext()); 452 Field != FieldEnd; ++Field) { 453 // We're done once we hit the flexible array member 454 if (Field->getType()->isIncompleteArrayType()) 455 break; 456 457 if (Field->isUnnamedBitfield()) 458 continue; 459 460 // FIXME: volatility 461 LValue FieldLoc = CGF.EmitLValueForField(DestPtr, *Field, false, 0); 462 // We never generate write-barries for initialized fields. 463 LValue::SetObjCNonGC(FieldLoc, true); 464 if (CurInitVal < NumInitElements) { 465 // Store the initializer into the field 466 EmitInitializationToLValue(E->getInit(CurInitVal++), FieldLoc); 467 } else { 468 // We're out of initalizers; default-initialize to null 469 EmitNullInitializationToLValue(FieldLoc, Field->getType()); 470 } 471 } 472 } 473 474 //===----------------------------------------------------------------------===// 475 // Entry Points into this File 476 //===----------------------------------------------------------------------===// 477 478 /// EmitAggExpr - Emit the computation of the specified expression of aggregate 479 /// type. The result is computed into DestPtr. Note that if DestPtr is null, 480 /// the value of the aggregate expression is not needed. If VolatileDest is 481 /// true, DestPtr cannot be 0. 482 void CodeGenFunction::EmitAggExpr(const Expr *E, llvm::Value *DestPtr, 483 bool VolatileDest, bool IgnoreResult) { 484 assert(E && hasAggregateLLVMType(E->getType()) && 485 "Invalid aggregate expression to emit"); 486 assert ((DestPtr != 0 || VolatileDest == false) 487 && "volatile aggregate can't be 0"); 488 489 AggExprEmitter(*this, DestPtr, VolatileDest, IgnoreResult) 490 .Visit(const_cast<Expr*>(E)); 491 } 492 493 void CodeGenFunction::EmitAggregateClear(llvm::Value *DestPtr, QualType Ty) { 494 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 495 496 EmitMemSetToZero(DestPtr, Ty); 497 } 498 499 void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr, 500 llvm::Value *SrcPtr, QualType Ty, 501 bool isVolatile) { 502 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 503 504 // Aggregate assignment turns into llvm.memcpy. This is almost valid per 505 // C99 6.5.16.1p3, which states "If the value being stored in an object is 506 // read from another object that overlaps in anyway the storage of the first 507 // object, then the overlap shall be exact and the two objects shall have 508 // qualified or unqualified versions of a compatible type." 509 // 510 // memcpy is not defined if the source and destination pointers are exactly 511 // equal, but other compilers do this optimization, and almost every memcpy 512 // implementation handles this case safely. If there is a libc that does not 513 // safely handle this, we can add a target hook. 514 const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 515 if (DestPtr->getType() != BP) 516 DestPtr = Builder.CreateBitCast(DestPtr, BP, "tmp"); 517 if (SrcPtr->getType() != BP) 518 SrcPtr = Builder.CreateBitCast(SrcPtr, BP, "tmp"); 519 520 // Get size and alignment info for this aggregate. 521 std::pair<uint64_t, unsigned> TypeInfo = getContext().getTypeInfo(Ty); 522 523 // FIXME: Handle variable sized types. 524 const llvm::Type *IntPtr = llvm::IntegerType::get(LLVMPointerWidth); 525 526 // FIXME: If we have a volatile struct, the optimizer can remove what might 527 // appear to be `extra' memory ops: 528 // 529 // volatile struct { int i; } a, b; 530 // 531 // int main() { 532 // a = b; 533 // a = b; 534 // } 535 // 536 // we need to use a differnt call here. We use isVolatile to indicate when 537 // either the source or the destination is volatile. 538 Builder.CreateCall4(CGM.getMemCpyFn(), 539 DestPtr, SrcPtr, 540 // TypeInfo.first describes size in bits. 541 llvm::ConstantInt::get(IntPtr, TypeInfo.first/8), 542 llvm::ConstantInt::get(llvm::Type::Int32Ty, 543 TypeInfo.second/8)); 544 } 545