1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Aggregate Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "CGObjCRuntime.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/StmtVisitor.h"
20 #include "llvm/Constants.h"
21 #include "llvm/Function.h"
22 #include "llvm/GlobalVariable.h"
23 #include "llvm/Intrinsics.h"
24 using namespace clang;
25 using namespace CodeGen;
26 
27 //===----------------------------------------------------------------------===//
28 //                        Aggregate Expression Emitter
29 //===----------------------------------------------------------------------===//
30 
31 namespace  {
32 class AggExprEmitter : public StmtVisitor<AggExprEmitter> {
33   CodeGenFunction &CGF;
34   CGBuilderTy &Builder;
35   AggValueSlot Dest;
36   bool IgnoreResult;
37 
38   ReturnValueSlot getReturnValueSlot() const {
39     // If the destination slot requires garbage collection, we can't
40     // use the real return value slot, because we have to use the GC
41     // API.
42     if (Dest.requiresGCollection()) return ReturnValueSlot();
43 
44     return ReturnValueSlot(Dest.getAddr(), Dest.isVolatile());
45   }
46 
47   AggValueSlot EnsureSlot(QualType T) {
48     if (!Dest.isIgnored()) return Dest;
49     return CGF.CreateAggTemp(T, "agg.tmp.ensured");
50   }
51 
52 public:
53   AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest,
54                  bool ignore)
55     : CGF(cgf), Builder(CGF.Builder), Dest(Dest),
56       IgnoreResult(ignore) {
57   }
58 
59   //===--------------------------------------------------------------------===//
60   //                               Utilities
61   //===--------------------------------------------------------------------===//
62 
63   /// EmitAggLoadOfLValue - Given an expression with aggregate type that
64   /// represents a value lvalue, this method emits the address of the lvalue,
65   /// then loads the result into DestPtr.
66   void EmitAggLoadOfLValue(const Expr *E);
67 
68   /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
69   void EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore = false);
70   void EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore = false);
71 
72   void EmitGCMove(const Expr *E, RValue Src);
73 
74   bool TypeRequiresGCollection(QualType T);
75 
76   //===--------------------------------------------------------------------===//
77   //                            Visitor Methods
78   //===--------------------------------------------------------------------===//
79 
80   void VisitStmt(Stmt *S) {
81     CGF.ErrorUnsupported(S, "aggregate expression");
82   }
83   void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
84   void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
85 
86   // l-values.
87   void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); }
88   void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
89   void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
90   void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
91   void VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
92     EmitAggLoadOfLValue(E);
93   }
94   void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
95     EmitAggLoadOfLValue(E);
96   }
97   void VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
98     EmitAggLoadOfLValue(E);
99   }
100   void VisitPredefinedExpr(const PredefinedExpr *E) {
101     EmitAggLoadOfLValue(E);
102   }
103 
104   // Operators.
105   void VisitCastExpr(CastExpr *E);
106   void VisitCallExpr(const CallExpr *E);
107   void VisitStmtExpr(const StmtExpr *E);
108   void VisitBinaryOperator(const BinaryOperator *BO);
109   void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO);
110   void VisitBinAssign(const BinaryOperator *E);
111   void VisitBinComma(const BinaryOperator *E);
112 
113   void VisitObjCMessageExpr(ObjCMessageExpr *E);
114   void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
115     EmitAggLoadOfLValue(E);
116   }
117   void VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E);
118 
119   void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
120   void VisitChooseExpr(const ChooseExpr *CE);
121   void VisitInitListExpr(InitListExpr *E);
122   void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E);
123   void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
124     Visit(DAE->getExpr());
125   }
126   void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E);
127   void VisitCXXConstructExpr(const CXXConstructExpr *E);
128   void VisitExprWithCleanups(ExprWithCleanups *E);
129   void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E);
130   void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); }
131 
132   void VisitOpaqueValueExpr(OpaqueValueExpr *E);
133 
134   void VisitVAArgExpr(VAArgExpr *E);
135 
136   void EmitInitializationToLValue(Expr *E, LValue Address, QualType T);
137   void EmitNullInitializationToLValue(LValue Address, QualType T);
138   //  case Expr::ChooseExprClass:
139   void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); }
140 };
141 }  // end anonymous namespace.
142 
143 //===----------------------------------------------------------------------===//
144 //                                Utilities
145 //===----------------------------------------------------------------------===//
146 
147 /// EmitAggLoadOfLValue - Given an expression with aggregate type that
148 /// represents a value lvalue, this method emits the address of the lvalue,
149 /// then loads the result into DestPtr.
150 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
151   LValue LV = CGF.EmitLValue(E);
152   EmitFinalDestCopy(E, LV);
153 }
154 
155 /// \brief True if the given aggregate type requires special GC API calls.
156 bool AggExprEmitter::TypeRequiresGCollection(QualType T) {
157   // Only record types have members that might require garbage collection.
158   const RecordType *RecordTy = T->getAs<RecordType>();
159   if (!RecordTy) return false;
160 
161   // Don't mess with non-trivial C++ types.
162   RecordDecl *Record = RecordTy->getDecl();
163   if (isa<CXXRecordDecl>(Record) &&
164       (!cast<CXXRecordDecl>(Record)->hasTrivialCopyConstructor() ||
165        !cast<CXXRecordDecl>(Record)->hasTrivialDestructor()))
166     return false;
167 
168   // Check whether the type has an object member.
169   return Record->hasObjectMember();
170 }
171 
172 /// \brief Perform the final move to DestPtr if RequiresGCollection is set.
173 ///
174 /// The idea is that you do something like this:
175 ///   RValue Result = EmitSomething(..., getReturnValueSlot());
176 ///   EmitGCMove(E, Result);
177 /// If GC doesn't interfere, this will cause the result to be emitted
178 /// directly into the return value slot.  If GC does interfere, a final
179 /// move will be performed.
180 void AggExprEmitter::EmitGCMove(const Expr *E, RValue Src) {
181   if (Dest.requiresGCollection()) {
182     std::pair<uint64_t, unsigned> TypeInfo =
183       CGF.getContext().getTypeInfo(E->getType());
184     unsigned long size = TypeInfo.first/8;
185     const llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType());
186     llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size);
187     CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, Dest.getAddr(),
188                                                     Src.getAggregateAddr(),
189                                                     SizeVal);
190   }
191 }
192 
193 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
194 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore) {
195   assert(Src.isAggregate() && "value must be aggregate value!");
196 
197   // If Dest is ignored, then we're evaluating an aggregate expression
198   // in a context (like an expression statement) that doesn't care
199   // about the result.  C says that an lvalue-to-rvalue conversion is
200   // performed in these cases; C++ says that it is not.  In either
201   // case, we don't actually need to do anything unless the value is
202   // volatile.
203   if (Dest.isIgnored()) {
204     if (!Src.isVolatileQualified() ||
205         CGF.CGM.getLangOptions().CPlusPlus ||
206         (IgnoreResult && Ignore))
207       return;
208 
209     // If the source is volatile, we must read from it; to do that, we need
210     // some place to put it.
211     Dest = CGF.CreateAggTemp(E->getType(), "agg.tmp");
212   }
213 
214   if (Dest.requiresGCollection()) {
215     std::pair<uint64_t, unsigned> TypeInfo =
216     CGF.getContext().getTypeInfo(E->getType());
217     unsigned long size = TypeInfo.first/8;
218     const llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType());
219     llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size);
220     CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF,
221                                                       Dest.getAddr(),
222                                                       Src.getAggregateAddr(),
223                                                       SizeVal);
224     return;
225   }
226   // If the result of the assignment is used, copy the LHS there also.
227   // FIXME: Pass VolatileDest as well.  I think we also need to merge volatile
228   // from the source as well, as we can't eliminate it if either operand
229   // is volatile, unless copy has volatile for both source and destination..
230   CGF.EmitAggregateCopy(Dest.getAddr(), Src.getAggregateAddr(), E->getType(),
231                         Dest.isVolatile()|Src.isVolatileQualified());
232 }
233 
234 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
235 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore) {
236   assert(Src.isSimple() && "Can't have aggregate bitfield, vector, etc");
237 
238   EmitFinalDestCopy(E, RValue::getAggregate(Src.getAddress(),
239                                             Src.isVolatileQualified()),
240                     Ignore);
241 }
242 
243 //===----------------------------------------------------------------------===//
244 //                            Visitor Methods
245 //===----------------------------------------------------------------------===//
246 
247 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) {
248   EmitFinalDestCopy(e, CGF.getOpaqueLValueMapping(e));
249 }
250 
251 void AggExprEmitter::VisitCastExpr(CastExpr *E) {
252   if (Dest.isIgnored() && E->getCastKind() != CK_Dynamic) {
253     Visit(E->getSubExpr());
254     return;
255   }
256 
257   switch (E->getCastKind()) {
258   case CK_Dynamic: {
259     assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?");
260     LValue LV = CGF.EmitCheckedLValue(E->getSubExpr());
261     // FIXME: Do we also need to handle property references here?
262     if (LV.isSimple())
263       CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E));
264     else
265       CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast");
266 
267     if (!Dest.isIgnored())
268       CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination");
269     break;
270   }
271 
272   case CK_ToUnion: {
273     // GCC union extension
274     QualType Ty = E->getSubExpr()->getType();
275     QualType PtrTy = CGF.getContext().getPointerType(Ty);
276     llvm::Value *CastPtr = Builder.CreateBitCast(Dest.getAddr(),
277                                                  CGF.ConvertType(PtrTy));
278     EmitInitializationToLValue(E->getSubExpr(), CGF.MakeAddrLValue(CastPtr, Ty),
279                                Ty);
280     break;
281   }
282 
283   case CK_DerivedToBase:
284   case CK_BaseToDerived:
285   case CK_UncheckedDerivedToBase: {
286     assert(0 && "cannot perform hierarchy conversion in EmitAggExpr: "
287                 "should have been unpacked before we got here");
288     break;
289   }
290 
291   case CK_GetObjCProperty: {
292     LValue LV = CGF.EmitLValue(E->getSubExpr());
293     assert(LV.isPropertyRef());
294     RValue RV = CGF.EmitLoadOfPropertyRefLValue(LV, getReturnValueSlot());
295     EmitGCMove(E, RV);
296     break;
297   }
298 
299   case CK_LValueToRValue: // hope for downstream optimization
300   case CK_NoOp:
301   case CK_UserDefinedConversion:
302   case CK_ConstructorConversion:
303     assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(),
304                                                    E->getType()) &&
305            "Implicit cast types must be compatible");
306     Visit(E->getSubExpr());
307     break;
308 
309   case CK_LValueBitCast:
310     llvm_unreachable("should not be emitting lvalue bitcast as rvalue");
311     break;
312 
313   case CK_Dependent:
314   case CK_BitCast:
315   case CK_ArrayToPointerDecay:
316   case CK_FunctionToPointerDecay:
317   case CK_NullToPointer:
318   case CK_NullToMemberPointer:
319   case CK_BaseToDerivedMemberPointer:
320   case CK_DerivedToBaseMemberPointer:
321   case CK_MemberPointerToBoolean:
322   case CK_IntegralToPointer:
323   case CK_PointerToIntegral:
324   case CK_PointerToBoolean:
325   case CK_ToVoid:
326   case CK_VectorSplat:
327   case CK_IntegralCast:
328   case CK_IntegralToBoolean:
329   case CK_IntegralToFloating:
330   case CK_FloatingToIntegral:
331   case CK_FloatingToBoolean:
332   case CK_FloatingCast:
333   case CK_AnyPointerToObjCPointerCast:
334   case CK_AnyPointerToBlockPointerCast:
335   case CK_ObjCObjectLValueCast:
336   case CK_FloatingRealToComplex:
337   case CK_FloatingComplexToReal:
338   case CK_FloatingComplexToBoolean:
339   case CK_FloatingComplexCast:
340   case CK_FloatingComplexToIntegralComplex:
341   case CK_IntegralRealToComplex:
342   case CK_IntegralComplexToReal:
343   case CK_IntegralComplexToBoolean:
344   case CK_IntegralComplexCast:
345   case CK_IntegralComplexToFloatingComplex:
346     llvm_unreachable("cast kind invalid for aggregate types");
347   }
348 }
349 
350 void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
351   if (E->getCallReturnType()->isReferenceType()) {
352     EmitAggLoadOfLValue(E);
353     return;
354   }
355 
356   RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot());
357   EmitGCMove(E, RV);
358 }
359 
360 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
361   RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot());
362   EmitGCMove(E, RV);
363 }
364 
365 void AggExprEmitter::VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
366   llvm_unreachable("direct property access not surrounded by "
367                    "lvalue-to-rvalue cast");
368 }
369 
370 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
371   CGF.EmitIgnoredExpr(E->getLHS());
372   Visit(E->getRHS());
373 }
374 
375 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
376   CodeGenFunction::StmtExprEvaluation eval(CGF);
377   CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest);
378 }
379 
380 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
381   if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI)
382     VisitPointerToDataMemberBinaryOperator(E);
383   else
384     CGF.ErrorUnsupported(E, "aggregate binary expression");
385 }
386 
387 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator(
388                                                     const BinaryOperator *E) {
389   LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E);
390   EmitFinalDestCopy(E, LV);
391 }
392 
393 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
394   // For an assignment to work, the value on the right has
395   // to be compatible with the value on the left.
396   assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
397                                                  E->getRHS()->getType())
398          && "Invalid assignment");
399 
400   // FIXME:  __block variables need the RHS evaluated first!
401   LValue LHS = CGF.EmitLValue(E->getLHS());
402 
403   // We have to special case property setters, otherwise we must have
404   // a simple lvalue (no aggregates inside vectors, bitfields).
405   if (LHS.isPropertyRef()) {
406     const ObjCPropertyRefExpr *RE = LHS.getPropertyRefExpr();
407     QualType ArgType = RE->getSetterArgType();
408     RValue Src;
409     if (ArgType->isReferenceType())
410       Src = CGF.EmitReferenceBindingToExpr(E->getRHS(), 0);
411     else {
412       AggValueSlot Slot = EnsureSlot(E->getRHS()->getType());
413       CGF.EmitAggExpr(E->getRHS(), Slot);
414       Src = Slot.asRValue();
415     }
416     CGF.EmitStoreThroughPropertyRefLValue(Src, LHS);
417   } else {
418     bool GCollection = false;
419     if (CGF.getContext().getLangOptions().getGCMode())
420       GCollection = TypeRequiresGCollection(E->getLHS()->getType());
421 
422     // Codegen the RHS so that it stores directly into the LHS.
423     AggValueSlot LHSSlot = AggValueSlot::forLValue(LHS, true,
424                                                    GCollection);
425     CGF.EmitAggExpr(E->getRHS(), LHSSlot, false);
426     EmitFinalDestCopy(E, LHS, true);
427   }
428 }
429 
430 void AggExprEmitter::
431 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
432   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
433   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
434   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
435 
436   // Bind the common expression if necessary.
437   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
438 
439   CodeGenFunction::ConditionalEvaluation eval(CGF);
440   CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock);
441 
442   // Save whether the destination's lifetime is externally managed.
443   bool DestLifetimeManaged = Dest.isLifetimeExternallyManaged();
444 
445   eval.begin(CGF);
446   CGF.EmitBlock(LHSBlock);
447   Visit(E->getTrueExpr());
448   eval.end(CGF);
449 
450   assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!");
451   CGF.Builder.CreateBr(ContBlock);
452 
453   // If the result of an agg expression is unused, then the emission
454   // of the LHS might need to create a destination slot.  That's fine
455   // with us, and we can safely emit the RHS into the same slot, but
456   // we shouldn't claim that its lifetime is externally managed.
457   Dest.setLifetimeExternallyManaged(DestLifetimeManaged);
458 
459   eval.begin(CGF);
460   CGF.EmitBlock(RHSBlock);
461   Visit(E->getFalseExpr());
462   eval.end(CGF);
463 
464   CGF.EmitBlock(ContBlock);
465 }
466 
467 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) {
468   Visit(CE->getChosenSubExpr(CGF.getContext()));
469 }
470 
471 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
472   llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
473   llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
474 
475   if (!ArgPtr) {
476     CGF.ErrorUnsupported(VE, "aggregate va_arg expression");
477     return;
478   }
479 
480   EmitFinalDestCopy(VE, CGF.MakeAddrLValue(ArgPtr, VE->getType()));
481 }
482 
483 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
484   // Ensure that we have a slot, but if we already do, remember
485   // whether its lifetime was externally managed.
486   bool WasManaged = Dest.isLifetimeExternallyManaged();
487   Dest = EnsureSlot(E->getType());
488   Dest.setLifetimeExternallyManaged();
489 
490   Visit(E->getSubExpr());
491 
492   // Set up the temporary's destructor if its lifetime wasn't already
493   // being managed.
494   if (!WasManaged)
495     CGF.EmitCXXTemporary(E->getTemporary(), Dest.getAddr());
496 }
497 
498 void
499 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) {
500   AggValueSlot Slot = EnsureSlot(E->getType());
501   CGF.EmitCXXConstructExpr(E, Slot);
502 }
503 
504 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
505   CGF.EmitExprWithCleanups(E, Dest);
506 }
507 
508 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
509   QualType T = E->getType();
510   AggValueSlot Slot = EnsureSlot(T);
511   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T), T);
512 }
513 
514 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
515   QualType T = E->getType();
516   AggValueSlot Slot = EnsureSlot(T);
517   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T), T);
518 }
519 
520 /// isSimpleZero - If emitting this value will obviously just cause a store of
521 /// zero to memory, return true.  This can return false if uncertain, so it just
522 /// handles simple cases.
523 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) {
524   // (0)
525   if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
526     return isSimpleZero(PE->getSubExpr(), CGF);
527   // 0
528   if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E))
529     return IL->getValue() == 0;
530   // +0.0
531   if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E))
532     return FL->getValue().isPosZero();
533   // int()
534   if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) &&
535       CGF.getTypes().isZeroInitializable(E->getType()))
536     return true;
537   // (int*)0 - Null pointer expressions.
538   if (const CastExpr *ICE = dyn_cast<CastExpr>(E))
539     return ICE->getCastKind() == CK_NullToPointer;
540   // '\0'
541   if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E))
542     return CL->getValue() == 0;
543 
544   // Otherwise, hard case: conservatively return false.
545   return false;
546 }
547 
548 
549 void
550 AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV, QualType T) {
551   // FIXME: Ignore result?
552   // FIXME: Are initializers affected by volatile?
553   if (Dest.isZeroed() && isSimpleZero(E, CGF)) {
554     // Storing "i32 0" to a zero'd memory location is a noop.
555   } else if (isa<ImplicitValueInitExpr>(E)) {
556     EmitNullInitializationToLValue(LV, T);
557   } else if (T->isReferenceType()) {
558     RValue RV = CGF.EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0);
559     CGF.EmitStoreThroughLValue(RV, LV, T);
560   } else if (T->isAnyComplexType()) {
561     CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false);
562   } else if (CGF.hasAggregateLLVMType(T)) {
563     CGF.EmitAggExpr(E, AggValueSlot::forAddr(LV.getAddress(), false, true,
564                                              false, Dest.isZeroed()));
565   } else {
566     CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV, T);
567   }
568 }
569 
570 void AggExprEmitter::EmitNullInitializationToLValue(LValue LV, QualType T) {
571   // If the destination slot is already zeroed out before the aggregate is
572   // copied into it, we don't have to emit any zeros here.
573   if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(T))
574     return;
575 
576   if (!CGF.hasAggregateLLVMType(T)) {
577     // For non-aggregates, we can store zero
578     llvm::Value *Null = llvm::Constant::getNullValue(CGF.ConvertType(T));
579     CGF.EmitStoreThroughLValue(RValue::get(Null), LV, T);
580   } else {
581     // There's a potential optimization opportunity in combining
582     // memsets; that would be easy for arrays, but relatively
583     // difficult for structures with the current code.
584     CGF.EmitNullInitialization(LV.getAddress(), T);
585   }
586 }
587 
588 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
589 #if 0
590   // FIXME: Assess perf here?  Figure out what cases are worth optimizing here
591   // (Length of globals? Chunks of zeroed-out space?).
592   //
593   // If we can, prefer a copy from a global; this is a lot less code for long
594   // globals, and it's easier for the current optimizers to analyze.
595   if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) {
596     llvm::GlobalVariable* GV =
597     new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true,
598                              llvm::GlobalValue::InternalLinkage, C, "");
599     EmitFinalDestCopy(E, CGF.MakeAddrLValue(GV, E->getType()));
600     return;
601   }
602 #endif
603   if (E->hadArrayRangeDesignator())
604     CGF.ErrorUnsupported(E, "GNU array range designator extension");
605 
606   llvm::Value *DestPtr = Dest.getAddr();
607 
608   // Handle initialization of an array.
609   if (E->getType()->isArrayType()) {
610     const llvm::PointerType *APType =
611       cast<llvm::PointerType>(DestPtr->getType());
612     const llvm::ArrayType *AType =
613       cast<llvm::ArrayType>(APType->getElementType());
614 
615     uint64_t NumInitElements = E->getNumInits();
616 
617     if (E->getNumInits() > 0) {
618       QualType T1 = E->getType();
619       QualType T2 = E->getInit(0)->getType();
620       if (CGF.getContext().hasSameUnqualifiedType(T1, T2)) {
621         EmitAggLoadOfLValue(E->getInit(0));
622         return;
623       }
624     }
625 
626     uint64_t NumArrayElements = AType->getNumElements();
627     QualType ElementType = CGF.getContext().getCanonicalType(E->getType());
628     ElementType = CGF.getContext().getAsArrayType(ElementType)->getElementType();
629 
630     // FIXME: were we intentionally ignoring address spaces and GC attributes?
631 
632     for (uint64_t i = 0; i != NumArrayElements; ++i) {
633       // If we're done emitting initializers and the destination is known-zeroed
634       // then we're done.
635       if (i == NumInitElements &&
636           Dest.isZeroed() &&
637           CGF.getTypes().isZeroInitializable(ElementType))
638         break;
639 
640       llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array");
641       LValue LV = CGF.MakeAddrLValue(NextVal, ElementType);
642 
643       if (i < NumInitElements)
644         EmitInitializationToLValue(E->getInit(i), LV, ElementType);
645       else
646         EmitNullInitializationToLValue(LV, ElementType);
647 
648       // If the GEP didn't get used because of a dead zero init or something
649       // else, clean it up for -O0 builds and general tidiness.
650       if (llvm::GetElementPtrInst *GEP =
651             dyn_cast<llvm::GetElementPtrInst>(NextVal))
652         if (GEP->use_empty())
653           GEP->eraseFromParent();
654     }
655     return;
656   }
657 
658   assert(E->getType()->isRecordType() && "Only support structs/unions here!");
659 
660   // Do struct initialization; this code just sets each individual member
661   // to the approprate value.  This makes bitfield support automatic;
662   // the disadvantage is that the generated code is more difficult for
663   // the optimizer, especially with bitfields.
664   unsigned NumInitElements = E->getNumInits();
665   RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl();
666 
667   if (E->getType()->isUnionType()) {
668     // Only initialize one field of a union. The field itself is
669     // specified by the initializer list.
670     if (!E->getInitializedFieldInUnion()) {
671       // Empty union; we have nothing to do.
672 
673 #ifndef NDEBUG
674       // Make sure that it's really an empty and not a failure of
675       // semantic analysis.
676       for (RecordDecl::field_iterator Field = SD->field_begin(),
677                                    FieldEnd = SD->field_end();
678            Field != FieldEnd; ++Field)
679         assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed");
680 #endif
681       return;
682     }
683 
684     // FIXME: volatility
685     FieldDecl *Field = E->getInitializedFieldInUnion();
686 
687     LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestPtr, Field, 0);
688     if (NumInitElements) {
689       // Store the initializer into the field
690       EmitInitializationToLValue(E->getInit(0), FieldLoc, Field->getType());
691     } else {
692       // Default-initialize to null.
693       EmitNullInitializationToLValue(FieldLoc, Field->getType());
694     }
695 
696     return;
697   }
698 
699   // Here we iterate over the fields; this makes it simpler to both
700   // default-initialize fields and skip over unnamed fields.
701   unsigned CurInitVal = 0;
702   for (RecordDecl::field_iterator Field = SD->field_begin(),
703                                FieldEnd = SD->field_end();
704        Field != FieldEnd; ++Field) {
705     // We're done once we hit the flexible array member
706     if (Field->getType()->isIncompleteArrayType())
707       break;
708 
709     if (Field->isUnnamedBitfield())
710       continue;
711 
712     // Don't emit GEP before a noop store of zero.
713     if (CurInitVal == NumInitElements && Dest.isZeroed() &&
714         CGF.getTypes().isZeroInitializable(E->getType()))
715       break;
716 
717     // FIXME: volatility
718     LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestPtr, *Field, 0);
719     // We never generate write-barries for initialized fields.
720     FieldLoc.setNonGC(true);
721 
722     if (CurInitVal < NumInitElements) {
723       // Store the initializer into the field.
724       EmitInitializationToLValue(E->getInit(CurInitVal++), FieldLoc,
725                                  Field->getType());
726     } else {
727       // We're out of initalizers; default-initialize to null
728       EmitNullInitializationToLValue(FieldLoc, Field->getType());
729     }
730 
731     // If the GEP didn't get used because of a dead zero init or something
732     // else, clean it up for -O0 builds and general tidiness.
733     if (FieldLoc.isSimple())
734       if (llvm::GetElementPtrInst *GEP =
735             dyn_cast<llvm::GetElementPtrInst>(FieldLoc.getAddress()))
736         if (GEP->use_empty())
737           GEP->eraseFromParent();
738   }
739 }
740 
741 //===----------------------------------------------------------------------===//
742 //                        Entry Points into this File
743 //===----------------------------------------------------------------------===//
744 
745 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of
746 /// non-zero bytes that will be stored when outputting the initializer for the
747 /// specified initializer expression.
748 static uint64_t GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) {
749   if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
750     return GetNumNonZeroBytesInInit(PE->getSubExpr(), CGF);
751 
752   // 0 and 0.0 won't require any non-zero stores!
753   if (isSimpleZero(E, CGF)) return 0;
754 
755   // If this is an initlist expr, sum up the size of sizes of the (present)
756   // elements.  If this is something weird, assume the whole thing is non-zero.
757   const InitListExpr *ILE = dyn_cast<InitListExpr>(E);
758   if (ILE == 0 || !CGF.getTypes().isZeroInitializable(ILE->getType()))
759     return CGF.getContext().getTypeSize(E->getType())/8;
760 
761   // InitListExprs for structs have to be handled carefully.  If there are
762   // reference members, we need to consider the size of the reference, not the
763   // referencee.  InitListExprs for unions and arrays can't have references.
764   if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
765     if (!RT->isUnionType()) {
766       RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl();
767       uint64_t NumNonZeroBytes = 0;
768 
769       unsigned ILEElement = 0;
770       for (RecordDecl::field_iterator Field = SD->field_begin(),
771            FieldEnd = SD->field_end(); Field != FieldEnd; ++Field) {
772         // We're done once we hit the flexible array member or run out of
773         // InitListExpr elements.
774         if (Field->getType()->isIncompleteArrayType() ||
775             ILEElement == ILE->getNumInits())
776           break;
777         if (Field->isUnnamedBitfield())
778           continue;
779 
780         const Expr *E = ILE->getInit(ILEElement++);
781 
782         // Reference values are always non-null and have the width of a pointer.
783         if (Field->getType()->isReferenceType())
784           NumNonZeroBytes += CGF.getContext().Target.getPointerWidth(0);
785         else
786           NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF);
787       }
788 
789       return NumNonZeroBytes;
790     }
791   }
792 
793 
794   uint64_t NumNonZeroBytes = 0;
795   for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
796     NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF);
797   return NumNonZeroBytes;
798 }
799 
800 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of
801 /// zeros in it, emit a memset and avoid storing the individual zeros.
802 ///
803 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E,
804                                      CodeGenFunction &CGF) {
805   // If the slot is already known to be zeroed, nothing to do.  Don't mess with
806   // volatile stores.
807   if (Slot.isZeroed() || Slot.isVolatile() || Slot.getAddr() == 0) return;
808 
809   // If the type is 16-bytes or smaller, prefer individual stores over memset.
810   std::pair<uint64_t, unsigned> TypeInfo =
811     CGF.getContext().getTypeInfo(E->getType());
812   if (TypeInfo.first/8 <= 16)
813     return;
814 
815   // Check to see if over 3/4 of the initializer are known to be zero.  If so,
816   // we prefer to emit memset + individual stores for the rest.
817   uint64_t NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF);
818   if (NumNonZeroBytes*4 > TypeInfo.first/8)
819     return;
820 
821   // Okay, it seems like a good idea to use an initial memset, emit the call.
822   llvm::Constant *SizeVal = CGF.Builder.getInt64(TypeInfo.first/8);
823   unsigned Align = TypeInfo.second/8;
824 
825   llvm::Value *Loc = Slot.getAddr();
826   const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
827 
828   Loc = CGF.Builder.CreateBitCast(Loc, BP);
829   CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, Align, false);
830 
831   // Tell the AggExprEmitter that the slot is known zero.
832   Slot.setZeroed();
833 }
834 
835 
836 
837 
838 /// EmitAggExpr - Emit the computation of the specified expression of aggregate
839 /// type.  The result is computed into DestPtr.  Note that if DestPtr is null,
840 /// the value of the aggregate expression is not needed.  If VolatileDest is
841 /// true, DestPtr cannot be 0.
842 ///
843 /// \param IsInitializer - true if this evaluation is initializing an
844 /// object whose lifetime is already being managed.
845 //
846 // FIXME: Take Qualifiers object.
847 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot,
848                                   bool IgnoreResult) {
849   assert(E && hasAggregateLLVMType(E->getType()) &&
850          "Invalid aggregate expression to emit");
851   assert((Slot.getAddr() != 0 || Slot.isIgnored()) &&
852          "slot has bits but no address");
853 
854   // Optimize the slot if possible.
855   CheckAggExprForMemSetUse(Slot, E, *this);
856 
857   AggExprEmitter(*this, Slot, IgnoreResult).Visit(const_cast<Expr*>(E));
858 }
859 
860 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) {
861   assert(hasAggregateLLVMType(E->getType()) && "Invalid argument!");
862   llvm::Value *Temp = CreateMemTemp(E->getType());
863   LValue LV = MakeAddrLValue(Temp, E->getType());
864   EmitAggExpr(E, AggValueSlot::forAddr(Temp, LV.isVolatileQualified(), false));
865   return LV;
866 }
867 
868 void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr,
869                                         llvm::Value *SrcPtr, QualType Ty,
870                                         bool isVolatile) {
871   assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
872 
873   if (getContext().getLangOptions().CPlusPlus) {
874     if (const RecordType *RT = Ty->getAs<RecordType>()) {
875       CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
876       assert((Record->hasTrivialCopyConstructor() ||
877               Record->hasTrivialCopyAssignment()) &&
878              "Trying to aggregate-copy a type without a trivial copy "
879              "constructor or assignment operator");
880       // Ignore empty classes in C++.
881       if (Record->isEmpty())
882         return;
883     }
884   }
885 
886   // Aggregate assignment turns into llvm.memcpy.  This is almost valid per
887   // C99 6.5.16.1p3, which states "If the value being stored in an object is
888   // read from another object that overlaps in anyway the storage of the first
889   // object, then the overlap shall be exact and the two objects shall have
890   // qualified or unqualified versions of a compatible type."
891   //
892   // memcpy is not defined if the source and destination pointers are exactly
893   // equal, but other compilers do this optimization, and almost every memcpy
894   // implementation handles this case safely.  If there is a libc that does not
895   // safely handle this, we can add a target hook.
896 
897   // Get size and alignment info for this aggregate.
898   std::pair<uint64_t, unsigned> TypeInfo = getContext().getTypeInfo(Ty);
899 
900   // FIXME: Handle variable sized types.
901 
902   // FIXME: If we have a volatile struct, the optimizer can remove what might
903   // appear to be `extra' memory ops:
904   //
905   // volatile struct { int i; } a, b;
906   //
907   // int main() {
908   //   a = b;
909   //   a = b;
910   // }
911   //
912   // we need to use a different call here.  We use isVolatile to indicate when
913   // either the source or the destination is volatile.
914 
915   const llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType());
916   const llvm::Type *DBP =
917     llvm::Type::getInt8PtrTy(getLLVMContext(), DPT->getAddressSpace());
918   DestPtr = Builder.CreateBitCast(DestPtr, DBP, "tmp");
919 
920   const llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType());
921   const llvm::Type *SBP =
922     llvm::Type::getInt8PtrTy(getLLVMContext(), SPT->getAddressSpace());
923   SrcPtr = Builder.CreateBitCast(SrcPtr, SBP, "tmp");
924 
925   if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
926     RecordDecl *Record = RecordTy->getDecl();
927     if (Record->hasObjectMember()) {
928       unsigned long size = TypeInfo.first/8;
929       const llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
930       llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size);
931       CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
932                                                     SizeVal);
933       return;
934     }
935   } else if (getContext().getAsArrayType(Ty)) {
936     QualType BaseType = getContext().getBaseElementType(Ty);
937     if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
938       if (RecordTy->getDecl()->hasObjectMember()) {
939         unsigned long size = TypeInfo.first/8;
940         const llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
941         llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size);
942         CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
943                                                       SizeVal);
944         return;
945       }
946     }
947   }
948 
949   Builder.CreateMemCpy(DestPtr, SrcPtr,
950                        llvm::ConstantInt::get(IntPtrTy, TypeInfo.first/8),
951                        TypeInfo.second/8, isVolatile);
952 }
953