1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Aggregate Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "CGObjCRuntime.h" 17 #include "clang/AST/ASTContext.h" 18 #include "clang/AST/DeclCXX.h" 19 #include "clang/AST/StmtVisitor.h" 20 #include "llvm/Constants.h" 21 #include "llvm/Function.h" 22 #include "llvm/GlobalVariable.h" 23 #include "llvm/Intrinsics.h" 24 using namespace clang; 25 using namespace CodeGen; 26 27 //===----------------------------------------------------------------------===// 28 // Aggregate Expression Emitter 29 //===----------------------------------------------------------------------===// 30 31 namespace { 32 class AggExprEmitter : public StmtVisitor<AggExprEmitter> { 33 CodeGenFunction &CGF; 34 CGBuilderTy &Builder; 35 AggValueSlot Dest; 36 bool IgnoreResult; 37 38 ReturnValueSlot getReturnValueSlot() const { 39 // If the destination slot requires garbage collection, we can't 40 // use the real return value slot, because we have to use the GC 41 // API. 42 if (Dest.requiresGCollection()) return ReturnValueSlot(); 43 44 return ReturnValueSlot(Dest.getAddr(), Dest.isVolatile()); 45 } 46 47 AggValueSlot EnsureSlot(QualType T) { 48 if (!Dest.isIgnored()) return Dest; 49 return CGF.CreateAggTemp(T, "agg.tmp.ensured"); 50 } 51 52 public: 53 AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest, 54 bool ignore) 55 : CGF(cgf), Builder(CGF.Builder), Dest(Dest), 56 IgnoreResult(ignore) { 57 } 58 59 //===--------------------------------------------------------------------===// 60 // Utilities 61 //===--------------------------------------------------------------------===// 62 63 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 64 /// represents a value lvalue, this method emits the address of the lvalue, 65 /// then loads the result into DestPtr. 66 void EmitAggLoadOfLValue(const Expr *E); 67 68 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 69 void EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore = false); 70 void EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore = false); 71 72 void EmitGCMove(const Expr *E, RValue Src); 73 74 bool TypeRequiresGCollection(QualType T); 75 76 //===--------------------------------------------------------------------===// 77 // Visitor Methods 78 //===--------------------------------------------------------------------===// 79 80 void VisitStmt(Stmt *S) { 81 CGF.ErrorUnsupported(S, "aggregate expression"); 82 } 83 void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); } 84 void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); } 85 86 // l-values. 87 void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); } 88 void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); } 89 void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); } 90 void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); } 91 void VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 92 EmitAggLoadOfLValue(E); 93 } 94 void VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 95 EmitAggLoadOfLValue(E); 96 } 97 void VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) { 98 EmitAggLoadOfLValue(E); 99 } 100 void VisitPredefinedExpr(const PredefinedExpr *E) { 101 EmitAggLoadOfLValue(E); 102 } 103 104 // Operators. 105 void VisitCastExpr(CastExpr *E); 106 void VisitCallExpr(const CallExpr *E); 107 void VisitStmtExpr(const StmtExpr *E); 108 void VisitBinaryOperator(const BinaryOperator *BO); 109 void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO); 110 void VisitBinAssign(const BinaryOperator *E); 111 void VisitBinComma(const BinaryOperator *E); 112 113 void VisitObjCMessageExpr(ObjCMessageExpr *E); 114 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 115 EmitAggLoadOfLValue(E); 116 } 117 void VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E); 118 119 void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO); 120 void VisitChooseExpr(const ChooseExpr *CE); 121 void VisitInitListExpr(InitListExpr *E); 122 void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E); 123 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 124 Visit(DAE->getExpr()); 125 } 126 void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E); 127 void VisitCXXConstructExpr(const CXXConstructExpr *E); 128 void VisitExprWithCleanups(ExprWithCleanups *E); 129 void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E); 130 void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); } 131 132 void VisitOpaqueValueExpr(OpaqueValueExpr *E); 133 134 void VisitVAArgExpr(VAArgExpr *E); 135 136 void EmitInitializationToLValue(Expr *E, LValue Address, QualType T); 137 void EmitNullInitializationToLValue(LValue Address, QualType T); 138 // case Expr::ChooseExprClass: 139 void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); } 140 }; 141 } // end anonymous namespace. 142 143 //===----------------------------------------------------------------------===// 144 // Utilities 145 //===----------------------------------------------------------------------===// 146 147 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 148 /// represents a value lvalue, this method emits the address of the lvalue, 149 /// then loads the result into DestPtr. 150 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) { 151 LValue LV = CGF.EmitLValue(E); 152 EmitFinalDestCopy(E, LV); 153 } 154 155 /// \brief True if the given aggregate type requires special GC API calls. 156 bool AggExprEmitter::TypeRequiresGCollection(QualType T) { 157 // Only record types have members that might require garbage collection. 158 const RecordType *RecordTy = T->getAs<RecordType>(); 159 if (!RecordTy) return false; 160 161 // Don't mess with non-trivial C++ types. 162 RecordDecl *Record = RecordTy->getDecl(); 163 if (isa<CXXRecordDecl>(Record) && 164 (!cast<CXXRecordDecl>(Record)->hasTrivialCopyConstructor() || 165 !cast<CXXRecordDecl>(Record)->hasTrivialDestructor())) 166 return false; 167 168 // Check whether the type has an object member. 169 return Record->hasObjectMember(); 170 } 171 172 /// \brief Perform the final move to DestPtr if RequiresGCollection is set. 173 /// 174 /// The idea is that you do something like this: 175 /// RValue Result = EmitSomething(..., getReturnValueSlot()); 176 /// EmitGCMove(E, Result); 177 /// If GC doesn't interfere, this will cause the result to be emitted 178 /// directly into the return value slot. If GC does interfere, a final 179 /// move will be performed. 180 void AggExprEmitter::EmitGCMove(const Expr *E, RValue Src) { 181 if (Dest.requiresGCollection()) { 182 std::pair<uint64_t, unsigned> TypeInfo = 183 CGF.getContext().getTypeInfo(E->getType()); 184 unsigned long size = TypeInfo.first/8; 185 const llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType()); 186 llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size); 187 CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, Dest.getAddr(), 188 Src.getAggregateAddr(), 189 SizeVal); 190 } 191 } 192 193 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 194 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore) { 195 assert(Src.isAggregate() && "value must be aggregate value!"); 196 197 // If Dest is ignored, then we're evaluating an aggregate expression 198 // in a context (like an expression statement) that doesn't care 199 // about the result. C says that an lvalue-to-rvalue conversion is 200 // performed in these cases; C++ says that it is not. In either 201 // case, we don't actually need to do anything unless the value is 202 // volatile. 203 if (Dest.isIgnored()) { 204 if (!Src.isVolatileQualified() || 205 CGF.CGM.getLangOptions().CPlusPlus || 206 (IgnoreResult && Ignore)) 207 return; 208 209 // If the source is volatile, we must read from it; to do that, we need 210 // some place to put it. 211 Dest = CGF.CreateAggTemp(E->getType(), "agg.tmp"); 212 } 213 214 if (Dest.requiresGCollection()) { 215 std::pair<uint64_t, unsigned> TypeInfo = 216 CGF.getContext().getTypeInfo(E->getType()); 217 unsigned long size = TypeInfo.first/8; 218 const llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType()); 219 llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size); 220 CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, 221 Dest.getAddr(), 222 Src.getAggregateAddr(), 223 SizeVal); 224 return; 225 } 226 // If the result of the assignment is used, copy the LHS there also. 227 // FIXME: Pass VolatileDest as well. I think we also need to merge volatile 228 // from the source as well, as we can't eliminate it if either operand 229 // is volatile, unless copy has volatile for both source and destination.. 230 CGF.EmitAggregateCopy(Dest.getAddr(), Src.getAggregateAddr(), E->getType(), 231 Dest.isVolatile()|Src.isVolatileQualified()); 232 } 233 234 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 235 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore) { 236 assert(Src.isSimple() && "Can't have aggregate bitfield, vector, etc"); 237 238 EmitFinalDestCopy(E, RValue::getAggregate(Src.getAddress(), 239 Src.isVolatileQualified()), 240 Ignore); 241 } 242 243 //===----------------------------------------------------------------------===// 244 // Visitor Methods 245 //===----------------------------------------------------------------------===// 246 247 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) { 248 EmitFinalDestCopy(e, CGF.getOpaqueLValueMapping(e)); 249 } 250 251 void AggExprEmitter::VisitCastExpr(CastExpr *E) { 252 if (Dest.isIgnored() && E->getCastKind() != CK_Dynamic) { 253 Visit(E->getSubExpr()); 254 return; 255 } 256 257 switch (E->getCastKind()) { 258 case CK_Dynamic: { 259 assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?"); 260 LValue LV = CGF.EmitCheckedLValue(E->getSubExpr()); 261 // FIXME: Do we also need to handle property references here? 262 if (LV.isSimple()) 263 CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E)); 264 else 265 CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast"); 266 267 if (!Dest.isIgnored()) 268 CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination"); 269 break; 270 } 271 272 case CK_ToUnion: { 273 // GCC union extension 274 QualType Ty = E->getSubExpr()->getType(); 275 QualType PtrTy = CGF.getContext().getPointerType(Ty); 276 llvm::Value *CastPtr = Builder.CreateBitCast(Dest.getAddr(), 277 CGF.ConvertType(PtrTy)); 278 EmitInitializationToLValue(E->getSubExpr(), CGF.MakeAddrLValue(CastPtr, Ty), 279 Ty); 280 break; 281 } 282 283 case CK_DerivedToBase: 284 case CK_BaseToDerived: 285 case CK_UncheckedDerivedToBase: { 286 assert(0 && "cannot perform hierarchy conversion in EmitAggExpr: " 287 "should have been unpacked before we got here"); 288 break; 289 } 290 291 case CK_GetObjCProperty: { 292 LValue LV = CGF.EmitLValue(E->getSubExpr()); 293 assert(LV.isPropertyRef()); 294 RValue RV = CGF.EmitLoadOfPropertyRefLValue(LV, getReturnValueSlot()); 295 EmitGCMove(E, RV); 296 break; 297 } 298 299 case CK_LValueToRValue: // hope for downstream optimization 300 case CK_NoOp: 301 case CK_UserDefinedConversion: 302 case CK_ConstructorConversion: 303 assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(), 304 E->getType()) && 305 "Implicit cast types must be compatible"); 306 Visit(E->getSubExpr()); 307 break; 308 309 case CK_LValueBitCast: 310 llvm_unreachable("should not be emitting lvalue bitcast as rvalue"); 311 break; 312 313 case CK_Dependent: 314 case CK_BitCast: 315 case CK_ArrayToPointerDecay: 316 case CK_FunctionToPointerDecay: 317 case CK_NullToPointer: 318 case CK_NullToMemberPointer: 319 case CK_BaseToDerivedMemberPointer: 320 case CK_DerivedToBaseMemberPointer: 321 case CK_MemberPointerToBoolean: 322 case CK_IntegralToPointer: 323 case CK_PointerToIntegral: 324 case CK_PointerToBoolean: 325 case CK_ToVoid: 326 case CK_VectorSplat: 327 case CK_IntegralCast: 328 case CK_IntegralToBoolean: 329 case CK_IntegralToFloating: 330 case CK_FloatingToIntegral: 331 case CK_FloatingToBoolean: 332 case CK_FloatingCast: 333 case CK_AnyPointerToObjCPointerCast: 334 case CK_AnyPointerToBlockPointerCast: 335 case CK_ObjCObjectLValueCast: 336 case CK_FloatingRealToComplex: 337 case CK_FloatingComplexToReal: 338 case CK_FloatingComplexToBoolean: 339 case CK_FloatingComplexCast: 340 case CK_FloatingComplexToIntegralComplex: 341 case CK_IntegralRealToComplex: 342 case CK_IntegralComplexToReal: 343 case CK_IntegralComplexToBoolean: 344 case CK_IntegralComplexCast: 345 case CK_IntegralComplexToFloatingComplex: 346 llvm_unreachable("cast kind invalid for aggregate types"); 347 } 348 } 349 350 void AggExprEmitter::VisitCallExpr(const CallExpr *E) { 351 if (E->getCallReturnType()->isReferenceType()) { 352 EmitAggLoadOfLValue(E); 353 return; 354 } 355 356 RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot()); 357 EmitGCMove(E, RV); 358 } 359 360 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) { 361 RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot()); 362 EmitGCMove(E, RV); 363 } 364 365 void AggExprEmitter::VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) { 366 llvm_unreachable("direct property access not surrounded by " 367 "lvalue-to-rvalue cast"); 368 } 369 370 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) { 371 CGF.EmitIgnoredExpr(E->getLHS()); 372 Visit(E->getRHS()); 373 } 374 375 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) { 376 CodeGenFunction::StmtExprEvaluation eval(CGF); 377 CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest); 378 } 379 380 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) { 381 if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI) 382 VisitPointerToDataMemberBinaryOperator(E); 383 else 384 CGF.ErrorUnsupported(E, "aggregate binary expression"); 385 } 386 387 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator( 388 const BinaryOperator *E) { 389 LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E); 390 EmitFinalDestCopy(E, LV); 391 } 392 393 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) { 394 // For an assignment to work, the value on the right has 395 // to be compatible with the value on the left. 396 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), 397 E->getRHS()->getType()) 398 && "Invalid assignment"); 399 400 // FIXME: __block variables need the RHS evaluated first! 401 LValue LHS = CGF.EmitLValue(E->getLHS()); 402 403 // We have to special case property setters, otherwise we must have 404 // a simple lvalue (no aggregates inside vectors, bitfields). 405 if (LHS.isPropertyRef()) { 406 const ObjCPropertyRefExpr *RE = LHS.getPropertyRefExpr(); 407 QualType ArgType = RE->getSetterArgType(); 408 RValue Src; 409 if (ArgType->isReferenceType()) 410 Src = CGF.EmitReferenceBindingToExpr(E->getRHS(), 0); 411 else { 412 AggValueSlot Slot = EnsureSlot(E->getRHS()->getType()); 413 CGF.EmitAggExpr(E->getRHS(), Slot); 414 Src = Slot.asRValue(); 415 } 416 CGF.EmitStoreThroughPropertyRefLValue(Src, LHS); 417 } else { 418 bool GCollection = false; 419 if (CGF.getContext().getLangOptions().getGCMode()) 420 GCollection = TypeRequiresGCollection(E->getLHS()->getType()); 421 422 // Codegen the RHS so that it stores directly into the LHS. 423 AggValueSlot LHSSlot = AggValueSlot::forLValue(LHS, true, 424 GCollection); 425 CGF.EmitAggExpr(E->getRHS(), LHSSlot, false); 426 EmitFinalDestCopy(E, LHS, true); 427 } 428 } 429 430 void AggExprEmitter:: 431 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 432 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 433 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 434 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 435 436 // Bind the common expression if necessary. 437 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 438 439 CodeGenFunction::ConditionalEvaluation eval(CGF); 440 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock); 441 442 // Save whether the destination's lifetime is externally managed. 443 bool DestLifetimeManaged = Dest.isLifetimeExternallyManaged(); 444 445 eval.begin(CGF); 446 CGF.EmitBlock(LHSBlock); 447 Visit(E->getTrueExpr()); 448 eval.end(CGF); 449 450 assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!"); 451 CGF.Builder.CreateBr(ContBlock); 452 453 // If the result of an agg expression is unused, then the emission 454 // of the LHS might need to create a destination slot. That's fine 455 // with us, and we can safely emit the RHS into the same slot, but 456 // we shouldn't claim that its lifetime is externally managed. 457 Dest.setLifetimeExternallyManaged(DestLifetimeManaged); 458 459 eval.begin(CGF); 460 CGF.EmitBlock(RHSBlock); 461 Visit(E->getFalseExpr()); 462 eval.end(CGF); 463 464 CGF.EmitBlock(ContBlock); 465 } 466 467 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) { 468 Visit(CE->getChosenSubExpr(CGF.getContext())); 469 } 470 471 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 472 llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr()); 473 llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType()); 474 475 if (!ArgPtr) { 476 CGF.ErrorUnsupported(VE, "aggregate va_arg expression"); 477 return; 478 } 479 480 EmitFinalDestCopy(VE, CGF.MakeAddrLValue(ArgPtr, VE->getType())); 481 } 482 483 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 484 // Ensure that we have a slot, but if we already do, remember 485 // whether its lifetime was externally managed. 486 bool WasManaged = Dest.isLifetimeExternallyManaged(); 487 Dest = EnsureSlot(E->getType()); 488 Dest.setLifetimeExternallyManaged(); 489 490 Visit(E->getSubExpr()); 491 492 // Set up the temporary's destructor if its lifetime wasn't already 493 // being managed. 494 if (!WasManaged) 495 CGF.EmitCXXTemporary(E->getTemporary(), Dest.getAddr()); 496 } 497 498 void 499 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) { 500 AggValueSlot Slot = EnsureSlot(E->getType()); 501 CGF.EmitCXXConstructExpr(E, Slot); 502 } 503 504 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) { 505 CGF.EmitExprWithCleanups(E, Dest); 506 } 507 508 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) { 509 QualType T = E->getType(); 510 AggValueSlot Slot = EnsureSlot(T); 511 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T), T); 512 } 513 514 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) { 515 QualType T = E->getType(); 516 AggValueSlot Slot = EnsureSlot(T); 517 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T), T); 518 } 519 520 /// isSimpleZero - If emitting this value will obviously just cause a store of 521 /// zero to memory, return true. This can return false if uncertain, so it just 522 /// handles simple cases. 523 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) { 524 // (0) 525 if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) 526 return isSimpleZero(PE->getSubExpr(), CGF); 527 // 0 528 if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) 529 return IL->getValue() == 0; 530 // +0.0 531 if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E)) 532 return FL->getValue().isPosZero(); 533 // int() 534 if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) && 535 CGF.getTypes().isZeroInitializable(E->getType())) 536 return true; 537 // (int*)0 - Null pointer expressions. 538 if (const CastExpr *ICE = dyn_cast<CastExpr>(E)) 539 return ICE->getCastKind() == CK_NullToPointer; 540 // '\0' 541 if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) 542 return CL->getValue() == 0; 543 544 // Otherwise, hard case: conservatively return false. 545 return false; 546 } 547 548 549 void 550 AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV, QualType T) { 551 // FIXME: Ignore result? 552 // FIXME: Are initializers affected by volatile? 553 if (Dest.isZeroed() && isSimpleZero(E, CGF)) { 554 // Storing "i32 0" to a zero'd memory location is a noop. 555 } else if (isa<ImplicitValueInitExpr>(E)) { 556 EmitNullInitializationToLValue(LV, T); 557 } else if (T->isReferenceType()) { 558 RValue RV = CGF.EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0); 559 CGF.EmitStoreThroughLValue(RV, LV, T); 560 } else if (T->isAnyComplexType()) { 561 CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false); 562 } else if (CGF.hasAggregateLLVMType(T)) { 563 CGF.EmitAggExpr(E, AggValueSlot::forAddr(LV.getAddress(), false, true, 564 false, Dest.isZeroed())); 565 } else { 566 CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV, T); 567 } 568 } 569 570 void AggExprEmitter::EmitNullInitializationToLValue(LValue LV, QualType T) { 571 // If the destination slot is already zeroed out before the aggregate is 572 // copied into it, we don't have to emit any zeros here. 573 if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(T)) 574 return; 575 576 if (!CGF.hasAggregateLLVMType(T)) { 577 // For non-aggregates, we can store zero 578 llvm::Value *Null = llvm::Constant::getNullValue(CGF.ConvertType(T)); 579 CGF.EmitStoreThroughLValue(RValue::get(Null), LV, T); 580 } else { 581 // There's a potential optimization opportunity in combining 582 // memsets; that would be easy for arrays, but relatively 583 // difficult for structures with the current code. 584 CGF.EmitNullInitialization(LV.getAddress(), T); 585 } 586 } 587 588 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) { 589 #if 0 590 // FIXME: Assess perf here? Figure out what cases are worth optimizing here 591 // (Length of globals? Chunks of zeroed-out space?). 592 // 593 // If we can, prefer a copy from a global; this is a lot less code for long 594 // globals, and it's easier for the current optimizers to analyze. 595 if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) { 596 llvm::GlobalVariable* GV = 597 new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true, 598 llvm::GlobalValue::InternalLinkage, C, ""); 599 EmitFinalDestCopy(E, CGF.MakeAddrLValue(GV, E->getType())); 600 return; 601 } 602 #endif 603 if (E->hadArrayRangeDesignator()) 604 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 605 606 llvm::Value *DestPtr = Dest.getAddr(); 607 608 // Handle initialization of an array. 609 if (E->getType()->isArrayType()) { 610 const llvm::PointerType *APType = 611 cast<llvm::PointerType>(DestPtr->getType()); 612 const llvm::ArrayType *AType = 613 cast<llvm::ArrayType>(APType->getElementType()); 614 615 uint64_t NumInitElements = E->getNumInits(); 616 617 if (E->getNumInits() > 0) { 618 QualType T1 = E->getType(); 619 QualType T2 = E->getInit(0)->getType(); 620 if (CGF.getContext().hasSameUnqualifiedType(T1, T2)) { 621 EmitAggLoadOfLValue(E->getInit(0)); 622 return; 623 } 624 } 625 626 uint64_t NumArrayElements = AType->getNumElements(); 627 QualType ElementType = CGF.getContext().getCanonicalType(E->getType()); 628 ElementType = CGF.getContext().getAsArrayType(ElementType)->getElementType(); 629 630 // FIXME: were we intentionally ignoring address spaces and GC attributes? 631 632 for (uint64_t i = 0; i != NumArrayElements; ++i) { 633 // If we're done emitting initializers and the destination is known-zeroed 634 // then we're done. 635 if (i == NumInitElements && 636 Dest.isZeroed() && 637 CGF.getTypes().isZeroInitializable(ElementType)) 638 break; 639 640 llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array"); 641 LValue LV = CGF.MakeAddrLValue(NextVal, ElementType); 642 643 if (i < NumInitElements) 644 EmitInitializationToLValue(E->getInit(i), LV, ElementType); 645 else 646 EmitNullInitializationToLValue(LV, ElementType); 647 648 // If the GEP didn't get used because of a dead zero init or something 649 // else, clean it up for -O0 builds and general tidiness. 650 if (llvm::GetElementPtrInst *GEP = 651 dyn_cast<llvm::GetElementPtrInst>(NextVal)) 652 if (GEP->use_empty()) 653 GEP->eraseFromParent(); 654 } 655 return; 656 } 657 658 assert(E->getType()->isRecordType() && "Only support structs/unions here!"); 659 660 // Do struct initialization; this code just sets each individual member 661 // to the approprate value. This makes bitfield support automatic; 662 // the disadvantage is that the generated code is more difficult for 663 // the optimizer, especially with bitfields. 664 unsigned NumInitElements = E->getNumInits(); 665 RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl(); 666 667 if (E->getType()->isUnionType()) { 668 // Only initialize one field of a union. The field itself is 669 // specified by the initializer list. 670 if (!E->getInitializedFieldInUnion()) { 671 // Empty union; we have nothing to do. 672 673 #ifndef NDEBUG 674 // Make sure that it's really an empty and not a failure of 675 // semantic analysis. 676 for (RecordDecl::field_iterator Field = SD->field_begin(), 677 FieldEnd = SD->field_end(); 678 Field != FieldEnd; ++Field) 679 assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed"); 680 #endif 681 return; 682 } 683 684 // FIXME: volatility 685 FieldDecl *Field = E->getInitializedFieldInUnion(); 686 687 LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestPtr, Field, 0); 688 if (NumInitElements) { 689 // Store the initializer into the field 690 EmitInitializationToLValue(E->getInit(0), FieldLoc, Field->getType()); 691 } else { 692 // Default-initialize to null. 693 EmitNullInitializationToLValue(FieldLoc, Field->getType()); 694 } 695 696 return; 697 } 698 699 // Here we iterate over the fields; this makes it simpler to both 700 // default-initialize fields and skip over unnamed fields. 701 unsigned CurInitVal = 0; 702 for (RecordDecl::field_iterator Field = SD->field_begin(), 703 FieldEnd = SD->field_end(); 704 Field != FieldEnd; ++Field) { 705 // We're done once we hit the flexible array member 706 if (Field->getType()->isIncompleteArrayType()) 707 break; 708 709 if (Field->isUnnamedBitfield()) 710 continue; 711 712 // Don't emit GEP before a noop store of zero. 713 if (CurInitVal == NumInitElements && Dest.isZeroed() && 714 CGF.getTypes().isZeroInitializable(E->getType())) 715 break; 716 717 // FIXME: volatility 718 LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestPtr, *Field, 0); 719 // We never generate write-barries for initialized fields. 720 FieldLoc.setNonGC(true); 721 722 if (CurInitVal < NumInitElements) { 723 // Store the initializer into the field. 724 EmitInitializationToLValue(E->getInit(CurInitVal++), FieldLoc, 725 Field->getType()); 726 } else { 727 // We're out of initalizers; default-initialize to null 728 EmitNullInitializationToLValue(FieldLoc, Field->getType()); 729 } 730 731 // If the GEP didn't get used because of a dead zero init or something 732 // else, clean it up for -O0 builds and general tidiness. 733 if (FieldLoc.isSimple()) 734 if (llvm::GetElementPtrInst *GEP = 735 dyn_cast<llvm::GetElementPtrInst>(FieldLoc.getAddress())) 736 if (GEP->use_empty()) 737 GEP->eraseFromParent(); 738 } 739 } 740 741 //===----------------------------------------------------------------------===// 742 // Entry Points into this File 743 //===----------------------------------------------------------------------===// 744 745 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of 746 /// non-zero bytes that will be stored when outputting the initializer for the 747 /// specified initializer expression. 748 static uint64_t GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) { 749 if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) 750 return GetNumNonZeroBytesInInit(PE->getSubExpr(), CGF); 751 752 // 0 and 0.0 won't require any non-zero stores! 753 if (isSimpleZero(E, CGF)) return 0; 754 755 // If this is an initlist expr, sum up the size of sizes of the (present) 756 // elements. If this is something weird, assume the whole thing is non-zero. 757 const InitListExpr *ILE = dyn_cast<InitListExpr>(E); 758 if (ILE == 0 || !CGF.getTypes().isZeroInitializable(ILE->getType())) 759 return CGF.getContext().getTypeSize(E->getType())/8; 760 761 // InitListExprs for structs have to be handled carefully. If there are 762 // reference members, we need to consider the size of the reference, not the 763 // referencee. InitListExprs for unions and arrays can't have references. 764 if (const RecordType *RT = E->getType()->getAs<RecordType>()) { 765 if (!RT->isUnionType()) { 766 RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl(); 767 uint64_t NumNonZeroBytes = 0; 768 769 unsigned ILEElement = 0; 770 for (RecordDecl::field_iterator Field = SD->field_begin(), 771 FieldEnd = SD->field_end(); Field != FieldEnd; ++Field) { 772 // We're done once we hit the flexible array member or run out of 773 // InitListExpr elements. 774 if (Field->getType()->isIncompleteArrayType() || 775 ILEElement == ILE->getNumInits()) 776 break; 777 if (Field->isUnnamedBitfield()) 778 continue; 779 780 const Expr *E = ILE->getInit(ILEElement++); 781 782 // Reference values are always non-null and have the width of a pointer. 783 if (Field->getType()->isReferenceType()) 784 NumNonZeroBytes += CGF.getContext().Target.getPointerWidth(0); 785 else 786 NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF); 787 } 788 789 return NumNonZeroBytes; 790 } 791 } 792 793 794 uint64_t NumNonZeroBytes = 0; 795 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) 796 NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF); 797 return NumNonZeroBytes; 798 } 799 800 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of 801 /// zeros in it, emit a memset and avoid storing the individual zeros. 802 /// 803 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E, 804 CodeGenFunction &CGF) { 805 // If the slot is already known to be zeroed, nothing to do. Don't mess with 806 // volatile stores. 807 if (Slot.isZeroed() || Slot.isVolatile() || Slot.getAddr() == 0) return; 808 809 // If the type is 16-bytes or smaller, prefer individual stores over memset. 810 std::pair<uint64_t, unsigned> TypeInfo = 811 CGF.getContext().getTypeInfo(E->getType()); 812 if (TypeInfo.first/8 <= 16) 813 return; 814 815 // Check to see if over 3/4 of the initializer are known to be zero. If so, 816 // we prefer to emit memset + individual stores for the rest. 817 uint64_t NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF); 818 if (NumNonZeroBytes*4 > TypeInfo.first/8) 819 return; 820 821 // Okay, it seems like a good idea to use an initial memset, emit the call. 822 llvm::Constant *SizeVal = CGF.Builder.getInt64(TypeInfo.first/8); 823 unsigned Align = TypeInfo.second/8; 824 825 llvm::Value *Loc = Slot.getAddr(); 826 const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext()); 827 828 Loc = CGF.Builder.CreateBitCast(Loc, BP); 829 CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, Align, false); 830 831 // Tell the AggExprEmitter that the slot is known zero. 832 Slot.setZeroed(); 833 } 834 835 836 837 838 /// EmitAggExpr - Emit the computation of the specified expression of aggregate 839 /// type. The result is computed into DestPtr. Note that if DestPtr is null, 840 /// the value of the aggregate expression is not needed. If VolatileDest is 841 /// true, DestPtr cannot be 0. 842 /// 843 /// \param IsInitializer - true if this evaluation is initializing an 844 /// object whose lifetime is already being managed. 845 // 846 // FIXME: Take Qualifiers object. 847 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot, 848 bool IgnoreResult) { 849 assert(E && hasAggregateLLVMType(E->getType()) && 850 "Invalid aggregate expression to emit"); 851 assert((Slot.getAddr() != 0 || Slot.isIgnored()) && 852 "slot has bits but no address"); 853 854 // Optimize the slot if possible. 855 CheckAggExprForMemSetUse(Slot, E, *this); 856 857 AggExprEmitter(*this, Slot, IgnoreResult).Visit(const_cast<Expr*>(E)); 858 } 859 860 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) { 861 assert(hasAggregateLLVMType(E->getType()) && "Invalid argument!"); 862 llvm::Value *Temp = CreateMemTemp(E->getType()); 863 LValue LV = MakeAddrLValue(Temp, E->getType()); 864 EmitAggExpr(E, AggValueSlot::forAddr(Temp, LV.isVolatileQualified(), false)); 865 return LV; 866 } 867 868 void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr, 869 llvm::Value *SrcPtr, QualType Ty, 870 bool isVolatile) { 871 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 872 873 if (getContext().getLangOptions().CPlusPlus) { 874 if (const RecordType *RT = Ty->getAs<RecordType>()) { 875 CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl()); 876 assert((Record->hasTrivialCopyConstructor() || 877 Record->hasTrivialCopyAssignment()) && 878 "Trying to aggregate-copy a type without a trivial copy " 879 "constructor or assignment operator"); 880 // Ignore empty classes in C++. 881 if (Record->isEmpty()) 882 return; 883 } 884 } 885 886 // Aggregate assignment turns into llvm.memcpy. This is almost valid per 887 // C99 6.5.16.1p3, which states "If the value being stored in an object is 888 // read from another object that overlaps in anyway the storage of the first 889 // object, then the overlap shall be exact and the two objects shall have 890 // qualified or unqualified versions of a compatible type." 891 // 892 // memcpy is not defined if the source and destination pointers are exactly 893 // equal, but other compilers do this optimization, and almost every memcpy 894 // implementation handles this case safely. If there is a libc that does not 895 // safely handle this, we can add a target hook. 896 897 // Get size and alignment info for this aggregate. 898 std::pair<uint64_t, unsigned> TypeInfo = getContext().getTypeInfo(Ty); 899 900 // FIXME: Handle variable sized types. 901 902 // FIXME: If we have a volatile struct, the optimizer can remove what might 903 // appear to be `extra' memory ops: 904 // 905 // volatile struct { int i; } a, b; 906 // 907 // int main() { 908 // a = b; 909 // a = b; 910 // } 911 // 912 // we need to use a different call here. We use isVolatile to indicate when 913 // either the source or the destination is volatile. 914 915 const llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType()); 916 const llvm::Type *DBP = 917 llvm::Type::getInt8PtrTy(getLLVMContext(), DPT->getAddressSpace()); 918 DestPtr = Builder.CreateBitCast(DestPtr, DBP, "tmp"); 919 920 const llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType()); 921 const llvm::Type *SBP = 922 llvm::Type::getInt8PtrTy(getLLVMContext(), SPT->getAddressSpace()); 923 SrcPtr = Builder.CreateBitCast(SrcPtr, SBP, "tmp"); 924 925 if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 926 RecordDecl *Record = RecordTy->getDecl(); 927 if (Record->hasObjectMember()) { 928 unsigned long size = TypeInfo.first/8; 929 const llvm::Type *SizeTy = ConvertType(getContext().getSizeType()); 930 llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size); 931 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 932 SizeVal); 933 return; 934 } 935 } else if (getContext().getAsArrayType(Ty)) { 936 QualType BaseType = getContext().getBaseElementType(Ty); 937 if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) { 938 if (RecordTy->getDecl()->hasObjectMember()) { 939 unsigned long size = TypeInfo.first/8; 940 const llvm::Type *SizeTy = ConvertType(getContext().getSizeType()); 941 llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size); 942 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 943 SizeVal); 944 return; 945 } 946 } 947 } 948 949 Builder.CreateMemCpy(DestPtr, SrcPtr, 950 llvm::ConstantInt::get(IntPtrTy, TypeInfo.first/8), 951 TypeInfo.second/8, isVolatile); 952 } 953