1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Aggregate Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "CGObjCRuntime.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/StmtVisitor.h"
20 #include "llvm/Constants.h"
21 #include "llvm/Function.h"
22 #include "llvm/GlobalVariable.h"
23 #include "llvm/Intrinsics.h"
24 using namespace clang;
25 using namespace CodeGen;
26 
27 //===----------------------------------------------------------------------===//
28 //                        Aggregate Expression Emitter
29 //===----------------------------------------------------------------------===//
30 
31 namespace  {
32 class AggExprEmitter : public StmtVisitor<AggExprEmitter> {
33   CodeGenFunction &CGF;
34   CGBuilderTy &Builder;
35   AggValueSlot Dest;
36   bool IgnoreResult;
37 
38   /// We want to use 'dest' as the return slot except under two
39   /// conditions:
40   ///   - The destination slot requires garbage collection, so we
41   ///     need to use the GC API.
42   ///   - The destination slot is potentially aliased.
43   bool shouldUseDestForReturnSlot() const {
44     return !(Dest.requiresGCollection() || Dest.isPotentiallyAliased());
45   }
46 
47   ReturnValueSlot getReturnValueSlot() const {
48     if (!shouldUseDestForReturnSlot())
49       return ReturnValueSlot();
50 
51     return ReturnValueSlot(Dest.getAddr(), Dest.isVolatile());
52   }
53 
54   AggValueSlot EnsureSlot(QualType T) {
55     if (!Dest.isIgnored()) return Dest;
56     return CGF.CreateAggTemp(T, "agg.tmp.ensured");
57   }
58 
59 public:
60   AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest,
61                  bool ignore)
62     : CGF(cgf), Builder(CGF.Builder), Dest(Dest),
63       IgnoreResult(ignore) {
64   }
65 
66   //===--------------------------------------------------------------------===//
67   //                               Utilities
68   //===--------------------------------------------------------------------===//
69 
70   /// EmitAggLoadOfLValue - Given an expression with aggregate type that
71   /// represents a value lvalue, this method emits the address of the lvalue,
72   /// then loads the result into DestPtr.
73   void EmitAggLoadOfLValue(const Expr *E);
74 
75   /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
76   void EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore = false);
77   void EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore = false,
78                          unsigned Alignment = 0);
79 
80   void EmitMoveFromReturnSlot(const Expr *E, RValue Src);
81 
82   AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) {
83     if (CGF.getLangOptions().getGC() && TypeRequiresGCollection(T))
84       return AggValueSlot::NeedsGCBarriers;
85     return AggValueSlot::DoesNotNeedGCBarriers;
86   }
87 
88   bool TypeRequiresGCollection(QualType T);
89 
90   //===--------------------------------------------------------------------===//
91   //                            Visitor Methods
92   //===--------------------------------------------------------------------===//
93 
94   void VisitStmt(Stmt *S) {
95     CGF.ErrorUnsupported(S, "aggregate expression");
96   }
97   void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
98   void VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
99     Visit(GE->getResultExpr());
100   }
101   void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
102   void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
103     return Visit(E->getReplacement());
104   }
105 
106   // l-values.
107   void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); }
108   void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
109   void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
110   void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
111   void VisitCompoundLiteralExpr(CompoundLiteralExpr *E);
112   void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
113     EmitAggLoadOfLValue(E);
114   }
115   void VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
116     EmitAggLoadOfLValue(E);
117   }
118   void VisitPredefinedExpr(const PredefinedExpr *E) {
119     EmitAggLoadOfLValue(E);
120   }
121 
122   // Operators.
123   void VisitCastExpr(CastExpr *E);
124   void VisitCallExpr(const CallExpr *E);
125   void VisitStmtExpr(const StmtExpr *E);
126   void VisitBinaryOperator(const BinaryOperator *BO);
127   void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO);
128   void VisitBinAssign(const BinaryOperator *E);
129   void VisitBinComma(const BinaryOperator *E);
130 
131   void VisitObjCMessageExpr(ObjCMessageExpr *E);
132   void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
133     EmitAggLoadOfLValue(E);
134   }
135 
136   void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
137   void VisitChooseExpr(const ChooseExpr *CE);
138   void VisitInitListExpr(InitListExpr *E);
139   void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E);
140   void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
141     Visit(DAE->getExpr());
142   }
143   void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E);
144   void VisitCXXConstructExpr(const CXXConstructExpr *E);
145   void VisitExprWithCleanups(ExprWithCleanups *E);
146   void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E);
147   void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); }
148   void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E);
149   void VisitOpaqueValueExpr(OpaqueValueExpr *E);
150   void VisitLambdaExpr(LambdaExpr *E) { EmitAggLoadOfLValue(E); }
151 
152   void VisitPseudoObjectExpr(PseudoObjectExpr *E) {
153     if (E->isGLValue()) {
154       LValue LV = CGF.EmitPseudoObjectLValue(E);
155       return EmitFinalDestCopy(E, LV);
156     }
157 
158     CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType()));
159   }
160 
161   void VisitVAArgExpr(VAArgExpr *E);
162 
163   void EmitInitializationToLValue(Expr *E, LValue Address);
164   void EmitNullInitializationToLValue(LValue Address);
165   //  case Expr::ChooseExprClass:
166   void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); }
167   void VisitAtomicExpr(AtomicExpr *E) {
168     CGF.EmitAtomicExpr(E, EnsureSlot(E->getType()).getAddr());
169   }
170 };
171 }  // end anonymous namespace.
172 
173 //===----------------------------------------------------------------------===//
174 //                                Utilities
175 //===----------------------------------------------------------------------===//
176 
177 /// EmitAggLoadOfLValue - Given an expression with aggregate type that
178 /// represents a value lvalue, this method emits the address of the lvalue,
179 /// then loads the result into DestPtr.
180 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
181   LValue LV = CGF.EmitLValue(E);
182   EmitFinalDestCopy(E, LV);
183 }
184 
185 /// \brief True if the given aggregate type requires special GC API calls.
186 bool AggExprEmitter::TypeRequiresGCollection(QualType T) {
187   // Only record types have members that might require garbage collection.
188   const RecordType *RecordTy = T->getAs<RecordType>();
189   if (!RecordTy) return false;
190 
191   // Don't mess with non-trivial C++ types.
192   RecordDecl *Record = RecordTy->getDecl();
193   if (isa<CXXRecordDecl>(Record) &&
194       (!cast<CXXRecordDecl>(Record)->hasTrivialCopyConstructor() ||
195        !cast<CXXRecordDecl>(Record)->hasTrivialDestructor()))
196     return false;
197 
198   // Check whether the type has an object member.
199   return Record->hasObjectMember();
200 }
201 
202 /// \brief Perform the final move to DestPtr if for some reason
203 /// getReturnValueSlot() didn't use it directly.
204 ///
205 /// The idea is that you do something like this:
206 ///   RValue Result = EmitSomething(..., getReturnValueSlot());
207 ///   EmitMoveFromReturnSlot(E, Result);
208 ///
209 /// If nothing interferes, this will cause the result to be emitted
210 /// directly into the return value slot.  Otherwise, a final move
211 /// will be performed.
212 void AggExprEmitter::EmitMoveFromReturnSlot(const Expr *E, RValue Src) {
213   if (shouldUseDestForReturnSlot()) {
214     // Logically, Dest.getAddr() should equal Src.getAggregateAddr().
215     // The possibility of undef rvalues complicates that a lot,
216     // though, so we can't really assert.
217     return;
218   }
219 
220   // Otherwise, do a final copy,
221   assert(Dest.getAddr() != Src.getAggregateAddr());
222   EmitFinalDestCopy(E, Src, /*Ignore*/ true);
223 }
224 
225 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
226 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore,
227                                        unsigned Alignment) {
228   assert(Src.isAggregate() && "value must be aggregate value!");
229 
230   // If Dest is ignored, then we're evaluating an aggregate expression
231   // in a context (like an expression statement) that doesn't care
232   // about the result.  C says that an lvalue-to-rvalue conversion is
233   // performed in these cases; C++ says that it is not.  In either
234   // case, we don't actually need to do anything unless the value is
235   // volatile.
236   if (Dest.isIgnored()) {
237     if (!Src.isVolatileQualified() ||
238         CGF.CGM.getLangOptions().CPlusPlus ||
239         (IgnoreResult && Ignore))
240       return;
241 
242     // If the source is volatile, we must read from it; to do that, we need
243     // some place to put it.
244     Dest = CGF.CreateAggTemp(E->getType(), "agg.tmp");
245   }
246 
247   if (Dest.requiresGCollection()) {
248     CharUnits size = CGF.getContext().getTypeSizeInChars(E->getType());
249     llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType());
250     llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity());
251     CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF,
252                                                       Dest.getAddr(),
253                                                       Src.getAggregateAddr(),
254                                                       SizeVal);
255     return;
256   }
257   // If the result of the assignment is used, copy the LHS there also.
258   // FIXME: Pass VolatileDest as well.  I think we also need to merge volatile
259   // from the source as well, as we can't eliminate it if either operand
260   // is volatile, unless copy has volatile for both source and destination..
261   CGF.EmitAggregateCopy(Dest.getAddr(), Src.getAggregateAddr(), E->getType(),
262                         Dest.isVolatile()|Src.isVolatileQualified(),
263                         Alignment);
264 }
265 
266 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
267 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore) {
268   assert(Src.isSimple() && "Can't have aggregate bitfield, vector, etc");
269 
270   CharUnits Alignment = std::min(Src.getAlignment(), Dest.getAlignment());
271   EmitFinalDestCopy(E, Src.asAggregateRValue(), Ignore, Alignment.getQuantity());
272 }
273 
274 //===----------------------------------------------------------------------===//
275 //                            Visitor Methods
276 //===----------------------------------------------------------------------===//
277 
278 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){
279   Visit(E->GetTemporaryExpr());
280 }
281 
282 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) {
283   EmitFinalDestCopy(e, CGF.getOpaqueLValueMapping(e));
284 }
285 
286 void
287 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
288   if (E->getType().isPODType(CGF.getContext())) {
289     // For a POD type, just emit a load of the lvalue + a copy, because our
290     // compound literal might alias the destination.
291     // FIXME: This is a band-aid; the real problem appears to be in our handling
292     // of assignments, where we store directly into the LHS without checking
293     // whether anything in the RHS aliases.
294     EmitAggLoadOfLValue(E);
295     return;
296   }
297 
298   AggValueSlot Slot = EnsureSlot(E->getType());
299   CGF.EmitAggExpr(E->getInitializer(), Slot);
300 }
301 
302 
303 void AggExprEmitter::VisitCastExpr(CastExpr *E) {
304   switch (E->getCastKind()) {
305   case CK_Dynamic: {
306     assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?");
307     LValue LV = CGF.EmitCheckedLValue(E->getSubExpr());
308     // FIXME: Do we also need to handle property references here?
309     if (LV.isSimple())
310       CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E));
311     else
312       CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast");
313 
314     if (!Dest.isIgnored())
315       CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination");
316     break;
317   }
318 
319   case CK_ToUnion: {
320     if (Dest.isIgnored()) break;
321 
322     // GCC union extension
323     QualType Ty = E->getSubExpr()->getType();
324     QualType PtrTy = CGF.getContext().getPointerType(Ty);
325     llvm::Value *CastPtr = Builder.CreateBitCast(Dest.getAddr(),
326                                                  CGF.ConvertType(PtrTy));
327     EmitInitializationToLValue(E->getSubExpr(),
328                                CGF.MakeAddrLValue(CastPtr, Ty));
329     break;
330   }
331 
332   case CK_DerivedToBase:
333   case CK_BaseToDerived:
334   case CK_UncheckedDerivedToBase: {
335     llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: "
336                 "should have been unpacked before we got here");
337   }
338 
339   case CK_LValueToRValue: // hope for downstream optimization
340   case CK_NoOp:
341   case CK_AtomicToNonAtomic:
342   case CK_NonAtomicToAtomic:
343   case CK_UserDefinedConversion:
344   case CK_ConstructorConversion:
345     assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(),
346                                                    E->getType()) &&
347            "Implicit cast types must be compatible");
348     Visit(E->getSubExpr());
349     break;
350 
351   case CK_LValueBitCast:
352     llvm_unreachable("should not be emitting lvalue bitcast as rvalue");
353 
354   case CK_Dependent:
355   case CK_BitCast:
356   case CK_ArrayToPointerDecay:
357   case CK_FunctionToPointerDecay:
358   case CK_NullToPointer:
359   case CK_NullToMemberPointer:
360   case CK_BaseToDerivedMemberPointer:
361   case CK_DerivedToBaseMemberPointer:
362   case CK_MemberPointerToBoolean:
363   case CK_IntegralToPointer:
364   case CK_PointerToIntegral:
365   case CK_PointerToBoolean:
366   case CK_ToVoid:
367   case CK_VectorSplat:
368   case CK_IntegralCast:
369   case CK_IntegralToBoolean:
370   case CK_IntegralToFloating:
371   case CK_FloatingToIntegral:
372   case CK_FloatingToBoolean:
373   case CK_FloatingCast:
374   case CK_CPointerToObjCPointerCast:
375   case CK_BlockPointerToObjCPointerCast:
376   case CK_AnyPointerToBlockPointerCast:
377   case CK_ObjCObjectLValueCast:
378   case CK_FloatingRealToComplex:
379   case CK_FloatingComplexToReal:
380   case CK_FloatingComplexToBoolean:
381   case CK_FloatingComplexCast:
382   case CK_FloatingComplexToIntegralComplex:
383   case CK_IntegralRealToComplex:
384   case CK_IntegralComplexToReal:
385   case CK_IntegralComplexToBoolean:
386   case CK_IntegralComplexCast:
387   case CK_IntegralComplexToFloatingComplex:
388   case CK_ARCProduceObject:
389   case CK_ARCConsumeObject:
390   case CK_ARCReclaimReturnedObject:
391   case CK_ARCExtendBlockObject:
392     llvm_unreachable("cast kind invalid for aggregate types");
393   }
394 }
395 
396 void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
397   if (E->getCallReturnType()->isReferenceType()) {
398     EmitAggLoadOfLValue(E);
399     return;
400   }
401 
402   RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot());
403   EmitMoveFromReturnSlot(E, RV);
404 }
405 
406 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
407   RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot());
408   EmitMoveFromReturnSlot(E, RV);
409 }
410 
411 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
412   CGF.EmitIgnoredExpr(E->getLHS());
413   Visit(E->getRHS());
414 }
415 
416 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
417   CodeGenFunction::StmtExprEvaluation eval(CGF);
418   CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest);
419 }
420 
421 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
422   if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI)
423     VisitPointerToDataMemberBinaryOperator(E);
424   else
425     CGF.ErrorUnsupported(E, "aggregate binary expression");
426 }
427 
428 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator(
429                                                     const BinaryOperator *E) {
430   LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E);
431   EmitFinalDestCopy(E, LV);
432 }
433 
434 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
435   // For an assignment to work, the value on the right has
436   // to be compatible with the value on the left.
437   assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
438                                                  E->getRHS()->getType())
439          && "Invalid assignment");
440 
441   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->getLHS()))
442     if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
443       if (VD->hasAttr<BlocksAttr>() &&
444           E->getRHS()->HasSideEffects(CGF.getContext())) {
445         // When __block variable on LHS, the RHS must be evaluated first
446         // as it may change the 'forwarding' field via call to Block_copy.
447         LValue RHS = CGF.EmitLValue(E->getRHS());
448         LValue LHS = CGF.EmitLValue(E->getLHS());
449         Dest = AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed,
450                                        needsGC(E->getLHS()->getType()),
451                                        AggValueSlot::IsAliased);
452         EmitFinalDestCopy(E, RHS, true);
453         return;
454       }
455 
456   LValue LHS = CGF.EmitLValue(E->getLHS());
457 
458   // Codegen the RHS so that it stores directly into the LHS.
459   AggValueSlot LHSSlot =
460     AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed,
461                             needsGC(E->getLHS()->getType()),
462                             AggValueSlot::IsAliased);
463   CGF.EmitAggExpr(E->getRHS(), LHSSlot, false);
464   EmitFinalDestCopy(E, LHS, true);
465 }
466 
467 void AggExprEmitter::
468 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
469   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
470   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
471   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
472 
473   // Bind the common expression if necessary.
474   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
475 
476   CodeGenFunction::ConditionalEvaluation eval(CGF);
477   CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock);
478 
479   // Save whether the destination's lifetime is externally managed.
480   bool isExternallyDestructed = Dest.isExternallyDestructed();
481 
482   eval.begin(CGF);
483   CGF.EmitBlock(LHSBlock);
484   Visit(E->getTrueExpr());
485   eval.end(CGF);
486 
487   assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!");
488   CGF.Builder.CreateBr(ContBlock);
489 
490   // If the result of an agg expression is unused, then the emission
491   // of the LHS might need to create a destination slot.  That's fine
492   // with us, and we can safely emit the RHS into the same slot, but
493   // we shouldn't claim that it's already being destructed.
494   Dest.setExternallyDestructed(isExternallyDestructed);
495 
496   eval.begin(CGF);
497   CGF.EmitBlock(RHSBlock);
498   Visit(E->getFalseExpr());
499   eval.end(CGF);
500 
501   CGF.EmitBlock(ContBlock);
502 }
503 
504 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) {
505   Visit(CE->getChosenSubExpr(CGF.getContext()));
506 }
507 
508 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
509   llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
510   llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
511 
512   if (!ArgPtr) {
513     CGF.ErrorUnsupported(VE, "aggregate va_arg expression");
514     return;
515   }
516 
517   EmitFinalDestCopy(VE, CGF.MakeAddrLValue(ArgPtr, VE->getType()));
518 }
519 
520 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
521   // Ensure that we have a slot, but if we already do, remember
522   // whether it was externally destructed.
523   bool wasExternallyDestructed = Dest.isExternallyDestructed();
524   Dest = EnsureSlot(E->getType());
525 
526   // We're going to push a destructor if there isn't already one.
527   Dest.setExternallyDestructed();
528 
529   Visit(E->getSubExpr());
530 
531   // Push that destructor we promised.
532   if (!wasExternallyDestructed)
533     CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddr());
534 }
535 
536 void
537 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) {
538   AggValueSlot Slot = EnsureSlot(E->getType());
539   CGF.EmitCXXConstructExpr(E, Slot);
540 }
541 
542 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
543   CGF.enterFullExpression(E);
544   CodeGenFunction::RunCleanupsScope cleanups(CGF);
545   Visit(E->getSubExpr());
546 }
547 
548 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
549   QualType T = E->getType();
550   AggValueSlot Slot = EnsureSlot(T);
551   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T));
552 }
553 
554 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
555   QualType T = E->getType();
556   AggValueSlot Slot = EnsureSlot(T);
557   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T));
558 }
559 
560 /// isSimpleZero - If emitting this value will obviously just cause a store of
561 /// zero to memory, return true.  This can return false if uncertain, so it just
562 /// handles simple cases.
563 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) {
564   E = E->IgnoreParens();
565 
566   // 0
567   if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E))
568     return IL->getValue() == 0;
569   // +0.0
570   if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E))
571     return FL->getValue().isPosZero();
572   // int()
573   if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) &&
574       CGF.getTypes().isZeroInitializable(E->getType()))
575     return true;
576   // (int*)0 - Null pointer expressions.
577   if (const CastExpr *ICE = dyn_cast<CastExpr>(E))
578     return ICE->getCastKind() == CK_NullToPointer;
579   // '\0'
580   if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E))
581     return CL->getValue() == 0;
582 
583   // Otherwise, hard case: conservatively return false.
584   return false;
585 }
586 
587 
588 void
589 AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV) {
590   QualType type = LV.getType();
591   // FIXME: Ignore result?
592   // FIXME: Are initializers affected by volatile?
593   if (Dest.isZeroed() && isSimpleZero(E, CGF)) {
594     // Storing "i32 0" to a zero'd memory location is a noop.
595   } else if (isa<ImplicitValueInitExpr>(E)) {
596     EmitNullInitializationToLValue(LV);
597   } else if (type->isReferenceType()) {
598     RValue RV = CGF.EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0);
599     CGF.EmitStoreThroughLValue(RV, LV);
600   } else if (type->isAnyComplexType()) {
601     CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false);
602   } else if (CGF.hasAggregateLLVMType(type)) {
603     CGF.EmitAggExpr(E, AggValueSlot::forLValue(LV,
604                                                AggValueSlot::IsDestructed,
605                                       AggValueSlot::DoesNotNeedGCBarriers,
606                                                AggValueSlot::IsNotAliased,
607                                                Dest.isZeroed()));
608   } else if (LV.isSimple()) {
609     CGF.EmitScalarInit(E, /*D=*/0, LV, /*Captured=*/false);
610   } else {
611     CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV);
612   }
613 }
614 
615 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) {
616   QualType type = lv.getType();
617 
618   // If the destination slot is already zeroed out before the aggregate is
619   // copied into it, we don't have to emit any zeros here.
620   if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type))
621     return;
622 
623   if (!CGF.hasAggregateLLVMType(type)) {
624     // For non-aggregates, we can store zero
625     llvm::Value *null = llvm::Constant::getNullValue(CGF.ConvertType(type));
626     CGF.EmitStoreThroughLValue(RValue::get(null), lv);
627   } else {
628     // There's a potential optimization opportunity in combining
629     // memsets; that would be easy for arrays, but relatively
630     // difficult for structures with the current code.
631     CGF.EmitNullInitialization(lv.getAddress(), lv.getType());
632   }
633 }
634 
635 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
636 #if 0
637   // FIXME: Assess perf here?  Figure out what cases are worth optimizing here
638   // (Length of globals? Chunks of zeroed-out space?).
639   //
640   // If we can, prefer a copy from a global; this is a lot less code for long
641   // globals, and it's easier for the current optimizers to analyze.
642   if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) {
643     llvm::GlobalVariable* GV =
644     new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true,
645                              llvm::GlobalValue::InternalLinkage, C, "");
646     EmitFinalDestCopy(E, CGF.MakeAddrLValue(GV, E->getType()));
647     return;
648   }
649 #endif
650   if (E->hadArrayRangeDesignator())
651     CGF.ErrorUnsupported(E, "GNU array range designator extension");
652 
653   llvm::Value *DestPtr = Dest.getAddr();
654 
655   // Handle initialization of an array.
656   if (E->getType()->isArrayType()) {
657     llvm::PointerType *APType =
658       cast<llvm::PointerType>(DestPtr->getType());
659     llvm::ArrayType *AType =
660       cast<llvm::ArrayType>(APType->getElementType());
661 
662     uint64_t NumInitElements = E->getNumInits();
663 
664     if (E->getNumInits() > 0) {
665       QualType T1 = E->getType();
666       QualType T2 = E->getInit(0)->getType();
667       if (CGF.getContext().hasSameUnqualifiedType(T1, T2)) {
668         EmitAggLoadOfLValue(E->getInit(0));
669         return;
670       }
671     }
672 
673     uint64_t NumArrayElements = AType->getNumElements();
674     assert(NumInitElements <= NumArrayElements);
675 
676     QualType elementType = E->getType().getCanonicalType();
677     elementType = CGF.getContext().getQualifiedType(
678                     cast<ArrayType>(elementType)->getElementType(),
679                     elementType.getQualifiers() + Dest.getQualifiers());
680 
681     // DestPtr is an array*.  Construct an elementType* by drilling
682     // down a level.
683     llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
684     llvm::Value *indices[] = { zero, zero };
685     llvm::Value *begin =
686       Builder.CreateInBoundsGEP(DestPtr, indices, "arrayinit.begin");
687 
688     // Exception safety requires us to destroy all the
689     // already-constructed members if an initializer throws.
690     // For that, we'll need an EH cleanup.
691     QualType::DestructionKind dtorKind = elementType.isDestructedType();
692     llvm::AllocaInst *endOfInit = 0;
693     EHScopeStack::stable_iterator cleanup;
694     llvm::Instruction *cleanupDominator = 0;
695     if (CGF.needsEHCleanup(dtorKind)) {
696       // In principle we could tell the cleanup where we are more
697       // directly, but the control flow can get so varied here that it
698       // would actually be quite complex.  Therefore we go through an
699       // alloca.
700       endOfInit = CGF.CreateTempAlloca(begin->getType(),
701                                        "arrayinit.endOfInit");
702       cleanupDominator = Builder.CreateStore(begin, endOfInit);
703       CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType,
704                                            CGF.getDestroyer(dtorKind));
705       cleanup = CGF.EHStack.stable_begin();
706 
707     // Otherwise, remember that we didn't need a cleanup.
708     } else {
709       dtorKind = QualType::DK_none;
710     }
711 
712     llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1);
713 
714     // The 'current element to initialize'.  The invariants on this
715     // variable are complicated.  Essentially, after each iteration of
716     // the loop, it points to the last initialized element, except
717     // that it points to the beginning of the array before any
718     // elements have been initialized.
719     llvm::Value *element = begin;
720 
721     // Emit the explicit initializers.
722     for (uint64_t i = 0; i != NumInitElements; ++i) {
723       // Advance to the next element.
724       if (i > 0) {
725         element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element");
726 
727         // Tell the cleanup that it needs to destroy up to this
728         // element.  TODO: some of these stores can be trivially
729         // observed to be unnecessary.
730         if (endOfInit) Builder.CreateStore(element, endOfInit);
731       }
732 
733       LValue elementLV = CGF.MakeAddrLValue(element, elementType);
734       EmitInitializationToLValue(E->getInit(i), elementLV);
735     }
736 
737     // Check whether there's a non-trivial array-fill expression.
738     // Note that this will be a CXXConstructExpr even if the element
739     // type is an array (or array of array, etc.) of class type.
740     Expr *filler = E->getArrayFiller();
741     bool hasTrivialFiller = true;
742     if (CXXConstructExpr *cons = dyn_cast_or_null<CXXConstructExpr>(filler)) {
743       assert(cons->getConstructor()->isDefaultConstructor());
744       hasTrivialFiller = cons->getConstructor()->isTrivial();
745     }
746 
747     // Any remaining elements need to be zero-initialized, possibly
748     // using the filler expression.  We can skip this if the we're
749     // emitting to zeroed memory.
750     if (NumInitElements != NumArrayElements &&
751         !(Dest.isZeroed() && hasTrivialFiller &&
752           CGF.getTypes().isZeroInitializable(elementType))) {
753 
754       // Use an actual loop.  This is basically
755       //   do { *array++ = filler; } while (array != end);
756 
757       // Advance to the start of the rest of the array.
758       if (NumInitElements) {
759         element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start");
760         if (endOfInit) Builder.CreateStore(element, endOfInit);
761       }
762 
763       // Compute the end of the array.
764       llvm::Value *end = Builder.CreateInBoundsGEP(begin,
765                         llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements),
766                                                    "arrayinit.end");
767 
768       llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
769       llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
770 
771       // Jump into the body.
772       CGF.EmitBlock(bodyBB);
773       llvm::PHINode *currentElement =
774         Builder.CreatePHI(element->getType(), 2, "arrayinit.cur");
775       currentElement->addIncoming(element, entryBB);
776 
777       // Emit the actual filler expression.
778       LValue elementLV = CGF.MakeAddrLValue(currentElement, elementType);
779       if (filler)
780         EmitInitializationToLValue(filler, elementLV);
781       else
782         EmitNullInitializationToLValue(elementLV);
783 
784       // Move on to the next element.
785       llvm::Value *nextElement =
786         Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next");
787 
788       // Tell the EH cleanup that we finished with the last element.
789       if (endOfInit) Builder.CreateStore(nextElement, endOfInit);
790 
791       // Leave the loop if we're done.
792       llvm::Value *done = Builder.CreateICmpEQ(nextElement, end,
793                                                "arrayinit.done");
794       llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
795       Builder.CreateCondBr(done, endBB, bodyBB);
796       currentElement->addIncoming(nextElement, Builder.GetInsertBlock());
797 
798       CGF.EmitBlock(endBB);
799     }
800 
801     // Leave the partial-array cleanup if we entered one.
802     if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator);
803 
804     return;
805   }
806 
807   assert(E->getType()->isRecordType() && "Only support structs/unions here!");
808 
809   // Do struct initialization; this code just sets each individual member
810   // to the approprate value.  This makes bitfield support automatic;
811   // the disadvantage is that the generated code is more difficult for
812   // the optimizer, especially with bitfields.
813   unsigned NumInitElements = E->getNumInits();
814   RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl();
815 
816   if (record->isUnion()) {
817     // Only initialize one field of a union. The field itself is
818     // specified by the initializer list.
819     if (!E->getInitializedFieldInUnion()) {
820       // Empty union; we have nothing to do.
821 
822 #ifndef NDEBUG
823       // Make sure that it's really an empty and not a failure of
824       // semantic analysis.
825       for (RecordDecl::field_iterator Field = record->field_begin(),
826                                    FieldEnd = record->field_end();
827            Field != FieldEnd; ++Field)
828         assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed");
829 #endif
830       return;
831     }
832 
833     // FIXME: volatility
834     FieldDecl *Field = E->getInitializedFieldInUnion();
835 
836     LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestPtr, Field, 0);
837     if (NumInitElements) {
838       // Store the initializer into the field
839       EmitInitializationToLValue(E->getInit(0), FieldLoc);
840     } else {
841       // Default-initialize to null.
842       EmitNullInitializationToLValue(FieldLoc);
843     }
844 
845     return;
846   }
847 
848   // We'll need to enter cleanup scopes in case any of the member
849   // initializers throw an exception.
850   SmallVector<EHScopeStack::stable_iterator, 16> cleanups;
851   llvm::Instruction *cleanupDominator = 0;
852 
853   // Here we iterate over the fields; this makes it simpler to both
854   // default-initialize fields and skip over unnamed fields.
855   unsigned curInitIndex = 0;
856   for (RecordDecl::field_iterator field = record->field_begin(),
857                                fieldEnd = record->field_end();
858        field != fieldEnd; ++field) {
859     // We're done once we hit the flexible array member.
860     if (field->getType()->isIncompleteArrayType())
861       break;
862 
863     // Always skip anonymous bitfields.
864     if (field->isUnnamedBitfield())
865       continue;
866 
867     // We're done if we reach the end of the explicit initializers, we
868     // have a zeroed object, and the rest of the fields are
869     // zero-initializable.
870     if (curInitIndex == NumInitElements && Dest.isZeroed() &&
871         CGF.getTypes().isZeroInitializable(E->getType()))
872       break;
873 
874     // FIXME: volatility
875     LValue LV = CGF.EmitLValueForFieldInitialization(DestPtr, *field, 0);
876     // We never generate write-barries for initialized fields.
877     LV.setNonGC(true);
878 
879     if (curInitIndex < NumInitElements) {
880       // Store the initializer into the field.
881       EmitInitializationToLValue(E->getInit(curInitIndex++), LV);
882     } else {
883       // We're out of initalizers; default-initialize to null
884       EmitNullInitializationToLValue(LV);
885     }
886 
887     // Push a destructor if necessary.
888     // FIXME: if we have an array of structures, all explicitly
889     // initialized, we can end up pushing a linear number of cleanups.
890     bool pushedCleanup = false;
891     if (QualType::DestructionKind dtorKind
892           = field->getType().isDestructedType()) {
893       assert(LV.isSimple());
894       if (CGF.needsEHCleanup(dtorKind)) {
895         if (!cleanupDominator)
896           cleanupDominator = CGF.Builder.CreateUnreachable(); // placeholder
897 
898         CGF.pushDestroy(EHCleanup, LV.getAddress(), field->getType(),
899                         CGF.getDestroyer(dtorKind), false);
900         cleanups.push_back(CGF.EHStack.stable_begin());
901         pushedCleanup = true;
902       }
903     }
904 
905     // If the GEP didn't get used because of a dead zero init or something
906     // else, clean it up for -O0 builds and general tidiness.
907     if (!pushedCleanup && LV.isSimple())
908       if (llvm::GetElementPtrInst *GEP =
909             dyn_cast<llvm::GetElementPtrInst>(LV.getAddress()))
910         if (GEP->use_empty())
911           GEP->eraseFromParent();
912   }
913 
914   // Deactivate all the partial cleanups in reverse order, which
915   // generally means popping them.
916   for (unsigned i = cleanups.size(); i != 0; --i)
917     CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator);
918 
919   // Destroy the placeholder if we made one.
920   if (cleanupDominator)
921     cleanupDominator->eraseFromParent();
922 }
923 
924 //===----------------------------------------------------------------------===//
925 //                        Entry Points into this File
926 //===----------------------------------------------------------------------===//
927 
928 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of
929 /// non-zero bytes that will be stored when outputting the initializer for the
930 /// specified initializer expression.
931 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) {
932   E = E->IgnoreParens();
933 
934   // 0 and 0.0 won't require any non-zero stores!
935   if (isSimpleZero(E, CGF)) return CharUnits::Zero();
936 
937   // If this is an initlist expr, sum up the size of sizes of the (present)
938   // elements.  If this is something weird, assume the whole thing is non-zero.
939   const InitListExpr *ILE = dyn_cast<InitListExpr>(E);
940   if (ILE == 0 || !CGF.getTypes().isZeroInitializable(ILE->getType()))
941     return CGF.getContext().getTypeSizeInChars(E->getType());
942 
943   // InitListExprs for structs have to be handled carefully.  If there are
944   // reference members, we need to consider the size of the reference, not the
945   // referencee.  InitListExprs for unions and arrays can't have references.
946   if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
947     if (!RT->isUnionType()) {
948       RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl();
949       CharUnits NumNonZeroBytes = CharUnits::Zero();
950 
951       unsigned ILEElement = 0;
952       for (RecordDecl::field_iterator Field = SD->field_begin(),
953            FieldEnd = SD->field_end(); Field != FieldEnd; ++Field) {
954         // We're done once we hit the flexible array member or run out of
955         // InitListExpr elements.
956         if (Field->getType()->isIncompleteArrayType() ||
957             ILEElement == ILE->getNumInits())
958           break;
959         if (Field->isUnnamedBitfield())
960           continue;
961 
962         const Expr *E = ILE->getInit(ILEElement++);
963 
964         // Reference values are always non-null and have the width of a pointer.
965         if (Field->getType()->isReferenceType())
966           NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits(
967               CGF.getContext().getTargetInfo().getPointerWidth(0));
968         else
969           NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF);
970       }
971 
972       return NumNonZeroBytes;
973     }
974   }
975 
976 
977   CharUnits NumNonZeroBytes = CharUnits::Zero();
978   for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
979     NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF);
980   return NumNonZeroBytes;
981 }
982 
983 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of
984 /// zeros in it, emit a memset and avoid storing the individual zeros.
985 ///
986 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E,
987                                      CodeGenFunction &CGF) {
988   // If the slot is already known to be zeroed, nothing to do.  Don't mess with
989   // volatile stores.
990   if (Slot.isZeroed() || Slot.isVolatile() || Slot.getAddr() == 0) return;
991 
992   // C++ objects with a user-declared constructor don't need zero'ing.
993   if (CGF.getContext().getLangOptions().CPlusPlus)
994     if (const RecordType *RT = CGF.getContext()
995                        .getBaseElementType(E->getType())->getAs<RecordType>()) {
996       const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
997       if (RD->hasUserDeclaredConstructor())
998         return;
999     }
1000 
1001   // If the type is 16-bytes or smaller, prefer individual stores over memset.
1002   std::pair<CharUnits, CharUnits> TypeInfo =
1003     CGF.getContext().getTypeInfoInChars(E->getType());
1004   if (TypeInfo.first <= CharUnits::fromQuantity(16))
1005     return;
1006 
1007   // Check to see if over 3/4 of the initializer are known to be zero.  If so,
1008   // we prefer to emit memset + individual stores for the rest.
1009   CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF);
1010   if (NumNonZeroBytes*4 > TypeInfo.first)
1011     return;
1012 
1013   // Okay, it seems like a good idea to use an initial memset, emit the call.
1014   llvm::Constant *SizeVal = CGF.Builder.getInt64(TypeInfo.first.getQuantity());
1015   CharUnits Align = TypeInfo.second;
1016 
1017   llvm::Value *Loc = Slot.getAddr();
1018 
1019   Loc = CGF.Builder.CreateBitCast(Loc, CGF.Int8PtrTy);
1020   CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal,
1021                            Align.getQuantity(), false);
1022 
1023   // Tell the AggExprEmitter that the slot is known zero.
1024   Slot.setZeroed();
1025 }
1026 
1027 
1028 
1029 
1030 /// EmitAggExpr - Emit the computation of the specified expression of aggregate
1031 /// type.  The result is computed into DestPtr.  Note that if DestPtr is null,
1032 /// the value of the aggregate expression is not needed.  If VolatileDest is
1033 /// true, DestPtr cannot be 0.
1034 ///
1035 /// \param IsInitializer - true if this evaluation is initializing an
1036 /// object whose lifetime is already being managed.
1037 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot,
1038                                   bool IgnoreResult) {
1039   assert(E && hasAggregateLLVMType(E->getType()) &&
1040          "Invalid aggregate expression to emit");
1041   assert((Slot.getAddr() != 0 || Slot.isIgnored()) &&
1042          "slot has bits but no address");
1043 
1044   // Optimize the slot if possible.
1045   CheckAggExprForMemSetUse(Slot, E, *this);
1046 
1047   AggExprEmitter(*this, Slot, IgnoreResult).Visit(const_cast<Expr*>(E));
1048 }
1049 
1050 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) {
1051   assert(hasAggregateLLVMType(E->getType()) && "Invalid argument!");
1052   llvm::Value *Temp = CreateMemTemp(E->getType());
1053   LValue LV = MakeAddrLValue(Temp, E->getType());
1054   EmitAggExpr(E, AggValueSlot::forLValue(LV, AggValueSlot::IsNotDestructed,
1055                                          AggValueSlot::DoesNotNeedGCBarriers,
1056                                          AggValueSlot::IsNotAliased));
1057   return LV;
1058 }
1059 
1060 void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr,
1061                                         llvm::Value *SrcPtr, QualType Ty,
1062                                         bool isVolatile, unsigned Alignment) {
1063   assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
1064 
1065   if (getContext().getLangOptions().CPlusPlus) {
1066     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1067       CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
1068       assert((Record->hasTrivialCopyConstructor() ||
1069               Record->hasTrivialCopyAssignment() ||
1070               Record->hasTrivialMoveConstructor() ||
1071               Record->hasTrivialMoveAssignment()) &&
1072              "Trying to aggregate-copy a type without a trivial copy "
1073              "constructor or assignment operator");
1074       // Ignore empty classes in C++.
1075       if (Record->isEmpty())
1076         return;
1077     }
1078   }
1079 
1080   // Aggregate assignment turns into llvm.memcpy.  This is almost valid per
1081   // C99 6.5.16.1p3, which states "If the value being stored in an object is
1082   // read from another object that overlaps in anyway the storage of the first
1083   // object, then the overlap shall be exact and the two objects shall have
1084   // qualified or unqualified versions of a compatible type."
1085   //
1086   // memcpy is not defined if the source and destination pointers are exactly
1087   // equal, but other compilers do this optimization, and almost every memcpy
1088   // implementation handles this case safely.  If there is a libc that does not
1089   // safely handle this, we can add a target hook.
1090 
1091   // Get size and alignment info for this aggregate.
1092   std::pair<CharUnits, CharUnits> TypeInfo =
1093     getContext().getTypeInfoInChars(Ty);
1094 
1095   if (!Alignment)
1096     Alignment = TypeInfo.second.getQuantity();
1097 
1098   // FIXME: Handle variable sized types.
1099 
1100   // FIXME: If we have a volatile struct, the optimizer can remove what might
1101   // appear to be `extra' memory ops:
1102   //
1103   // volatile struct { int i; } a, b;
1104   //
1105   // int main() {
1106   //   a = b;
1107   //   a = b;
1108   // }
1109   //
1110   // we need to use a different call here.  We use isVolatile to indicate when
1111   // either the source or the destination is volatile.
1112 
1113   llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType());
1114   llvm::Type *DBP =
1115     llvm::Type::getInt8PtrTy(getLLVMContext(), DPT->getAddressSpace());
1116   DestPtr = Builder.CreateBitCast(DestPtr, DBP);
1117 
1118   llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType());
1119   llvm::Type *SBP =
1120     llvm::Type::getInt8PtrTy(getLLVMContext(), SPT->getAddressSpace());
1121   SrcPtr = Builder.CreateBitCast(SrcPtr, SBP);
1122 
1123   // Don't do any of the memmove_collectable tests if GC isn't set.
1124   if (CGM.getLangOptions().getGC() == LangOptions::NonGC) {
1125     // fall through
1126   } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
1127     RecordDecl *Record = RecordTy->getDecl();
1128     if (Record->hasObjectMember()) {
1129       CharUnits size = TypeInfo.first;
1130       llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
1131       llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity());
1132       CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
1133                                                     SizeVal);
1134       return;
1135     }
1136   } else if (Ty->isArrayType()) {
1137     QualType BaseType = getContext().getBaseElementType(Ty);
1138     if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
1139       if (RecordTy->getDecl()->hasObjectMember()) {
1140         CharUnits size = TypeInfo.first;
1141         llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
1142         llvm::Value *SizeVal =
1143           llvm::ConstantInt::get(SizeTy, size.getQuantity());
1144         CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
1145                                                       SizeVal);
1146         return;
1147       }
1148     }
1149   }
1150 
1151   Builder.CreateMemCpy(DestPtr, SrcPtr,
1152                        llvm::ConstantInt::get(IntPtrTy,
1153                                               TypeInfo.first.getQuantity()),
1154                        Alignment, isVolatile);
1155 }
1156