1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Aggregate Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "CGObjCRuntime.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/StmtVisitor.h"
20 #include "llvm/Constants.h"
21 #include "llvm/Function.h"
22 #include "llvm/GlobalVariable.h"
23 #include "llvm/Intrinsics.h"
24 using namespace clang;
25 using namespace CodeGen;
26 
27 //===----------------------------------------------------------------------===//
28 //                        Aggregate Expression Emitter
29 //===----------------------------------------------------------------------===//
30 
31 namespace  {
32 class AggExprEmitter : public StmtVisitor<AggExprEmitter> {
33   CodeGenFunction &CGF;
34   CGBuilderTy &Builder;
35   llvm::Value *DestPtr;
36   bool VolatileDest;
37   bool IgnoreResult;
38   bool IsInitializer;
39   bool RequiresGCollection;
40 
41   ReturnValueSlot getReturnValueSlot() const {
42     return ReturnValueSlot(DestPtr, VolatileDest);
43   }
44 public:
45   AggExprEmitter(CodeGenFunction &cgf, llvm::Value *destPtr, bool v,
46                  bool ignore, bool isinit, bool requiresGCollection)
47     : CGF(cgf), Builder(CGF.Builder),
48       DestPtr(destPtr), VolatileDest(v), IgnoreResult(ignore),
49       IsInitializer(isinit), RequiresGCollection(requiresGCollection) {
50   }
51 
52   //===--------------------------------------------------------------------===//
53   //                               Utilities
54   //===--------------------------------------------------------------------===//
55 
56   /// EmitAggLoadOfLValue - Given an expression with aggregate type that
57   /// represents a value lvalue, this method emits the address of the lvalue,
58   /// then loads the result into DestPtr.
59   void EmitAggLoadOfLValue(const Expr *E);
60 
61   /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
62   void EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore = false);
63   void EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore = false);
64 
65   //===--------------------------------------------------------------------===//
66   //                            Visitor Methods
67   //===--------------------------------------------------------------------===//
68 
69   void VisitStmt(Stmt *S) {
70     CGF.ErrorUnsupported(S, "aggregate expression");
71   }
72   void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
73   void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
74 
75   // l-values.
76   void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); }
77   void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
78   void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
79   void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
80   void VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
81     EmitAggLoadOfLValue(E);
82   }
83   void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
84     EmitAggLoadOfLValue(E);
85   }
86   void VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
87     EmitAggLoadOfLValue(E);
88   }
89   void VisitPredefinedExpr(const PredefinedExpr *E) {
90     EmitAggLoadOfLValue(E);
91   }
92 
93   // Operators.
94   void VisitCastExpr(CastExpr *E);
95   void VisitCallExpr(const CallExpr *E);
96   void VisitStmtExpr(const StmtExpr *E);
97   void VisitBinaryOperator(const BinaryOperator *BO);
98   void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO);
99   void VisitBinAssign(const BinaryOperator *E);
100   void VisitBinComma(const BinaryOperator *E);
101   void VisitUnaryAddrOf(const UnaryOperator *E);
102 
103   void VisitObjCMessageExpr(ObjCMessageExpr *E);
104   void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
105     EmitAggLoadOfLValue(E);
106   }
107   void VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E);
108   void VisitObjCImplicitSetterGetterRefExpr(ObjCImplicitSetterGetterRefExpr *E);
109 
110   void VisitConditionalOperator(const ConditionalOperator *CO);
111   void VisitChooseExpr(const ChooseExpr *CE);
112   void VisitInitListExpr(InitListExpr *E);
113   void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E);
114   void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
115     Visit(DAE->getExpr());
116   }
117   void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E);
118   void VisitCXXConstructExpr(const CXXConstructExpr *E);
119   void VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E);
120   void VisitCXXZeroInitValueExpr(CXXZeroInitValueExpr *E);
121   void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); }
122 
123   void VisitVAArgExpr(VAArgExpr *E);
124 
125   void EmitInitializationToLValue(Expr *E, LValue Address, QualType T);
126   void EmitNullInitializationToLValue(LValue Address, QualType T);
127   //  case Expr::ChooseExprClass:
128   void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); }
129 };
130 }  // end anonymous namespace.
131 
132 //===----------------------------------------------------------------------===//
133 //                                Utilities
134 //===----------------------------------------------------------------------===//
135 
136 /// EmitAggLoadOfLValue - Given an expression with aggregate type that
137 /// represents a value lvalue, this method emits the address of the lvalue,
138 /// then loads the result into DestPtr.
139 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
140   LValue LV = CGF.EmitLValue(E);
141   EmitFinalDestCopy(E, LV);
142 }
143 
144 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
145 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore) {
146   assert(Src.isAggregate() && "value must be aggregate value!");
147 
148   // If the result is ignored, don't copy from the value.
149   if (DestPtr == 0) {
150     if (!Src.isVolatileQualified() || (IgnoreResult && Ignore))
151       return;
152     // If the source is volatile, we must read from it; to do that, we need
153     // some place to put it.
154     DestPtr = CGF.CreateMemTemp(E->getType(), "agg.tmp");
155   }
156 
157   if (RequiresGCollection) {
158     CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF,
159                                               DestPtr, Src.getAggregateAddr(),
160                                               E->getType());
161     return;
162   }
163   // If the result of the assignment is used, copy the LHS there also.
164   // FIXME: Pass VolatileDest as well.  I think we also need to merge volatile
165   // from the source as well, as we can't eliminate it if either operand
166   // is volatile, unless copy has volatile for both source and destination..
167   CGF.EmitAggregateCopy(DestPtr, Src.getAggregateAddr(), E->getType(),
168                         VolatileDest|Src.isVolatileQualified());
169 }
170 
171 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
172 void AggExprEmitter::EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore) {
173   assert(Src.isSimple() && "Can't have aggregate bitfield, vector, etc");
174 
175   EmitFinalDestCopy(E, RValue::getAggregate(Src.getAddress(),
176                                             Src.isVolatileQualified()),
177                     Ignore);
178 }
179 
180 //===----------------------------------------------------------------------===//
181 //                            Visitor Methods
182 //===----------------------------------------------------------------------===//
183 
184 void AggExprEmitter::VisitCastExpr(CastExpr *E) {
185   if (!DestPtr && E->getCastKind() != CastExpr::CK_Dynamic) {
186     Visit(E->getSubExpr());
187     return;
188   }
189 
190   switch (E->getCastKind()) {
191   default: assert(0 && "Unhandled cast kind!");
192 
193   case CastExpr::CK_Dynamic: {
194     assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?");
195     LValue LV = CGF.EmitCheckedLValue(E->getSubExpr());
196     // FIXME: Do we also need to handle property references here?
197     if (LV.isSimple())
198       CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E));
199     else
200       CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast");
201 
202     if (DestPtr)
203       CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination");
204     break;
205   }
206 
207   case CastExpr::CK_ToUnion: {
208     // GCC union extension
209     QualType PtrTy =
210     CGF.getContext().getPointerType(E->getSubExpr()->getType());
211     llvm::Value *CastPtr = Builder.CreateBitCast(DestPtr,
212                                                  CGF.ConvertType(PtrTy));
213     EmitInitializationToLValue(E->getSubExpr(),
214                                LValue::MakeAddr(CastPtr, Qualifiers()),
215                                E->getSubExpr()->getType());
216     break;
217   }
218 
219   // FIXME: Remove the CK_Unknown check here.
220   case CastExpr::CK_Unknown:
221   case CastExpr::CK_NoOp:
222   case CastExpr::CK_UserDefinedConversion:
223   case CastExpr::CK_ConstructorConversion:
224     assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(),
225                                                    E->getType()) &&
226            "Implicit cast types must be compatible");
227     Visit(E->getSubExpr());
228     break;
229 
230   case CastExpr::CK_NullToMemberPointer: {
231     // If the subexpression's type is the C++0x nullptr_t, emit the
232     // subexpression, which may have side effects.
233     if (E->getSubExpr()->getType()->isNullPtrType())
234       Visit(E->getSubExpr());
235 
236     const llvm::Type *PtrDiffTy =
237       CGF.ConvertType(CGF.getContext().getPointerDiffType());
238 
239     llvm::Value *NullValue = llvm::Constant::getNullValue(PtrDiffTy);
240     llvm::Value *Ptr = Builder.CreateStructGEP(DestPtr, 0, "ptr");
241     Builder.CreateStore(NullValue, Ptr, VolatileDest);
242 
243     llvm::Value *Adj = Builder.CreateStructGEP(DestPtr, 1, "adj");
244     Builder.CreateStore(NullValue, Adj, VolatileDest);
245 
246     break;
247   }
248 
249   case CastExpr::CK_BitCast: {
250     // This must be a member function pointer cast.
251     Visit(E->getSubExpr());
252     break;
253   }
254 
255   case CastExpr::CK_DerivedToBaseMemberPointer:
256   case CastExpr::CK_BaseToDerivedMemberPointer: {
257     QualType SrcType = E->getSubExpr()->getType();
258 
259     llvm::Value *Src = CGF.CreateMemTemp(SrcType, "tmp");
260     CGF.EmitAggExpr(E->getSubExpr(), Src, SrcType.isVolatileQualified());
261 
262     llvm::Value *SrcPtr = Builder.CreateStructGEP(Src, 0, "src.ptr");
263     SrcPtr = Builder.CreateLoad(SrcPtr);
264 
265     llvm::Value *SrcAdj = Builder.CreateStructGEP(Src, 1, "src.adj");
266     SrcAdj = Builder.CreateLoad(SrcAdj);
267 
268     llvm::Value *DstPtr = Builder.CreateStructGEP(DestPtr, 0, "dst.ptr");
269     Builder.CreateStore(SrcPtr, DstPtr, VolatileDest);
270 
271     llvm::Value *DstAdj = Builder.CreateStructGEP(DestPtr, 1, "dst.adj");
272 
273     // Now See if we need to update the adjustment.
274     const CXXRecordDecl *BaseDecl =
275       cast<CXXRecordDecl>(SrcType->getAs<MemberPointerType>()->
276                           getClass()->getAs<RecordType>()->getDecl());
277     const CXXRecordDecl *DerivedDecl =
278       cast<CXXRecordDecl>(E->getType()->getAs<MemberPointerType>()->
279                           getClass()->getAs<RecordType>()->getDecl());
280     if (E->getCastKind() == CastExpr::CK_DerivedToBaseMemberPointer)
281       std::swap(DerivedDecl, BaseDecl);
282 
283     if (llvm::Constant *Adj =
284           CGF.CGM.GetNonVirtualBaseClassOffset(DerivedDecl, E->getBasePath())) {
285       if (E->getCastKind() == CastExpr::CK_DerivedToBaseMemberPointer)
286         SrcAdj = Builder.CreateSub(SrcAdj, Adj, "adj");
287       else
288         SrcAdj = Builder.CreateAdd(SrcAdj, Adj, "adj");
289     }
290 
291     Builder.CreateStore(SrcAdj, DstAdj, VolatileDest);
292     break;
293   }
294   }
295 }
296 
297 void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
298   if (E->getCallReturnType()->isReferenceType()) {
299     EmitAggLoadOfLValue(E);
300     return;
301   }
302 
303   // If the struct doesn't require GC, we can just pass the destination
304   // directly to EmitCall.
305   if (!RequiresGCollection) {
306     CGF.EmitCallExpr(E, getReturnValueSlot());
307     return;
308   }
309 
310   RValue RV = CGF.EmitCallExpr(E);
311   EmitFinalDestCopy(E, RV);
312 }
313 
314 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
315   CGF.EmitObjCMessageExpr(E, getReturnValueSlot());
316 }
317 
318 void AggExprEmitter::VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
319   CGF.EmitObjCPropertyGet(E, getReturnValueSlot());
320 }
321 
322 void AggExprEmitter::VisitObjCImplicitSetterGetterRefExpr(
323                                    ObjCImplicitSetterGetterRefExpr *E) {
324   CGF.EmitObjCPropertyGet(E, getReturnValueSlot());
325 }
326 
327 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
328   CGF.EmitAnyExpr(E->getLHS(), 0, false, true);
329   CGF.EmitAggExpr(E->getRHS(), DestPtr, VolatileDest,
330                   /*IgnoreResult=*/false, IsInitializer);
331 }
332 
333 void AggExprEmitter::VisitUnaryAddrOf(const UnaryOperator *E) {
334   // We have a member function pointer.
335   const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
336   (void) MPT;
337   assert(MPT->getPointeeType()->isFunctionProtoType() &&
338          "Unexpected member pointer type!");
339 
340   // The creation of member function pointers has no side effects; if
341   // there is no destination pointer, we have nothing to do.
342   if (!DestPtr)
343     return;
344 
345   const DeclRefExpr *DRE = cast<DeclRefExpr>(E->getSubExpr());
346   const CXXMethodDecl *MD =
347     cast<CXXMethodDecl>(DRE->getDecl())->getCanonicalDecl();
348 
349   const llvm::Type *PtrDiffTy =
350     CGF.ConvertType(CGF.getContext().getPointerDiffType());
351 
352 
353   llvm::Value *DstPtr = Builder.CreateStructGEP(DestPtr, 0, "dst.ptr");
354   llvm::Value *FuncPtr;
355 
356   if (MD->isVirtual()) {
357     int64_t Index = CGF.CGM.getVTables().getMethodVTableIndex(MD);
358 
359     // FIXME: We shouldn't use / 8 here.
360     uint64_t PointerWidthInBytes =
361       CGF.CGM.getContext().Target.getPointerWidth(0) / 8;
362 
363     // Itanium C++ ABI 2.3:
364     //   For a non-virtual function, this field is a simple function pointer.
365     //   For a virtual function, it is 1 plus the virtual table offset
366     //   (in bytes) of the function, represented as a ptrdiff_t.
367     FuncPtr = llvm::ConstantInt::get(PtrDiffTy,
368                                      (Index * PointerWidthInBytes) + 1);
369   } else {
370     const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
371     const llvm::Type *Ty =
372       CGF.CGM.getTypes().GetFunctionType(CGF.CGM.getTypes().getFunctionInfo(MD),
373                                          FPT->isVariadic());
374     llvm::Constant *Fn = CGF.CGM.GetAddrOfFunction(MD, Ty);
375     FuncPtr = llvm::ConstantExpr::getPtrToInt(Fn, PtrDiffTy);
376   }
377   Builder.CreateStore(FuncPtr, DstPtr, VolatileDest);
378 
379   llvm::Value *AdjPtr = Builder.CreateStructGEP(DestPtr, 1, "dst.adj");
380 
381   // The adjustment will always be 0.
382   Builder.CreateStore(llvm::ConstantInt::get(PtrDiffTy, 0), AdjPtr,
383                       VolatileDest);
384 }
385 
386 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
387   CGF.EmitCompoundStmt(*E->getSubStmt(), true, DestPtr, VolatileDest);
388 }
389 
390 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
391   if (E->getOpcode() == BinaryOperator::PtrMemD ||
392       E->getOpcode() == BinaryOperator::PtrMemI)
393     VisitPointerToDataMemberBinaryOperator(E);
394   else
395     CGF.ErrorUnsupported(E, "aggregate binary expression");
396 }
397 
398 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator(
399                                                     const BinaryOperator *E) {
400   LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E);
401   EmitFinalDestCopy(E, LV);
402 }
403 
404 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
405   // For an assignment to work, the value on the right has
406   // to be compatible with the value on the left.
407   assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
408                                                  E->getRHS()->getType())
409          && "Invalid assignment");
410   LValue LHS = CGF.EmitLValue(E->getLHS());
411 
412   // We have to special case property setters, otherwise we must have
413   // a simple lvalue (no aggregates inside vectors, bitfields).
414   if (LHS.isPropertyRef()) {
415     llvm::Value *AggLoc = DestPtr;
416     if (!AggLoc)
417       AggLoc = CGF.CreateMemTemp(E->getRHS()->getType());
418     CGF.EmitAggExpr(E->getRHS(), AggLoc, VolatileDest);
419     CGF.EmitObjCPropertySet(LHS.getPropertyRefExpr(),
420                             RValue::getAggregate(AggLoc, VolatileDest));
421   } else if (LHS.isKVCRef()) {
422     llvm::Value *AggLoc = DestPtr;
423     if (!AggLoc)
424       AggLoc = CGF.CreateMemTemp(E->getRHS()->getType());
425     CGF.EmitAggExpr(E->getRHS(), AggLoc, VolatileDest);
426     CGF.EmitObjCPropertySet(LHS.getKVCRefExpr(),
427                             RValue::getAggregate(AggLoc, VolatileDest));
428   } else {
429     bool RequiresGCollection = false;
430     if (CGF.getContext().getLangOptions().NeXTRuntime) {
431       QualType LHSTy = E->getLHS()->getType();
432       if (const RecordType *FDTTy = LHSTy.getTypePtr()->getAs<RecordType>())
433         RequiresGCollection = FDTTy->getDecl()->hasObjectMember();
434     }
435     // Codegen the RHS so that it stores directly into the LHS.
436     CGF.EmitAggExpr(E->getRHS(), LHS.getAddress(), LHS.isVolatileQualified(),
437                     false, false, RequiresGCollection);
438     EmitFinalDestCopy(E, LHS, true);
439   }
440 }
441 
442 void AggExprEmitter::VisitConditionalOperator(const ConditionalOperator *E) {
443   if (!E->getLHS()) {
444     CGF.ErrorUnsupported(E, "conditional operator with missing LHS");
445     return;
446   }
447 
448   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
449   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
450   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
451 
452   CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock);
453 
454   CGF.BeginConditionalBranch();
455   CGF.EmitBlock(LHSBlock);
456 
457   // Handle the GNU extension for missing LHS.
458   assert(E->getLHS() && "Must have LHS for aggregate value");
459 
460   Visit(E->getLHS());
461   CGF.EndConditionalBranch();
462   CGF.EmitBranch(ContBlock);
463 
464   CGF.BeginConditionalBranch();
465   CGF.EmitBlock(RHSBlock);
466 
467   Visit(E->getRHS());
468   CGF.EndConditionalBranch();
469   CGF.EmitBranch(ContBlock);
470 
471   CGF.EmitBlock(ContBlock);
472 }
473 
474 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) {
475   Visit(CE->getChosenSubExpr(CGF.getContext()));
476 }
477 
478 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
479   llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
480   llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
481 
482   if (!ArgPtr) {
483     CGF.ErrorUnsupported(VE, "aggregate va_arg expression");
484     return;
485   }
486 
487   EmitFinalDestCopy(VE, LValue::MakeAddr(ArgPtr, Qualifiers()));
488 }
489 
490 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
491   llvm::Value *Val = DestPtr;
492 
493   if (!Val) {
494     // Create a temporary variable.
495     Val = CGF.CreateMemTemp(E->getType(), "tmp");
496 
497     // FIXME: volatile
498     CGF.EmitAggExpr(E->getSubExpr(), Val, false);
499   } else
500     Visit(E->getSubExpr());
501 
502   // Don't make this a live temporary if we're emitting an initializer expr.
503   if (!IsInitializer)
504     CGF.PushCXXTemporary(E->getTemporary(), Val);
505 }
506 
507 void
508 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) {
509   llvm::Value *Val = DestPtr;
510 
511   if (!Val) {
512     // Create a temporary variable.
513     Val = CGF.CreateMemTemp(E->getType(), "tmp");
514   }
515 
516   if (E->requiresZeroInitialization())
517     EmitNullInitializationToLValue(LValue::MakeAddr(Val,
518                                                     // FIXME: Qualifiers()?
519                                                  E->getType().getQualifiers()),
520                                    E->getType());
521 
522   CGF.EmitCXXConstructExpr(Val, E);
523 }
524 
525 void AggExprEmitter::VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E) {
526   llvm::Value *Val = DestPtr;
527 
528   CGF.EmitCXXExprWithTemporaries(E, Val, VolatileDest, IsInitializer);
529 }
530 
531 void AggExprEmitter::VisitCXXZeroInitValueExpr(CXXZeroInitValueExpr *E) {
532   llvm::Value *Val = DestPtr;
533 
534   if (!Val) {
535     // Create a temporary variable.
536     Val = CGF.CreateMemTemp(E->getType(), "tmp");
537   }
538   LValue LV = LValue::MakeAddr(Val, Qualifiers());
539   EmitNullInitializationToLValue(LV, E->getType());
540 }
541 
542 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
543   llvm::Value *Val = DestPtr;
544 
545   if (!Val) {
546     // Create a temporary variable.
547     Val = CGF.CreateMemTemp(E->getType(), "tmp");
548   }
549   LValue LV = LValue::MakeAddr(Val, Qualifiers());
550   EmitNullInitializationToLValue(LV, E->getType());
551 }
552 
553 void
554 AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV, QualType T) {
555   // FIXME: Ignore result?
556   // FIXME: Are initializers affected by volatile?
557   if (isa<ImplicitValueInitExpr>(E)) {
558     EmitNullInitializationToLValue(LV, T);
559   } else if (T->isReferenceType()) {
560     RValue RV = CGF.EmitReferenceBindingToExpr(E, /*IsInitializer=*/false);
561     CGF.EmitStoreThroughLValue(RV, LV, T);
562   } else if (T->isAnyComplexType()) {
563     CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false);
564   } else if (CGF.hasAggregateLLVMType(T)) {
565     CGF.EmitAnyExpr(E, LV.getAddress(), false);
566   } else {
567     CGF.EmitStoreThroughLValue(CGF.EmitAnyExpr(E), LV, T);
568   }
569 }
570 
571 void AggExprEmitter::EmitNullInitializationToLValue(LValue LV, QualType T) {
572   if (!CGF.hasAggregateLLVMType(T)) {
573     // For non-aggregates, we can store zero
574     llvm::Value *Null = llvm::Constant::getNullValue(CGF.ConvertType(T));
575     CGF.EmitStoreThroughLValue(RValue::get(Null), LV, T);
576   } else {
577     // Otherwise, just memset the whole thing to zero.  This is legal
578     // because in LLVM, all default initializers are guaranteed to have a
579     // bit pattern of all zeros.
580     // FIXME: That isn't true for member pointers!
581     // There's a potential optimization opportunity in combining
582     // memsets; that would be easy for arrays, but relatively
583     // difficult for structures with the current code.
584     CGF.EmitMemSetToZero(LV.getAddress(), T);
585   }
586 }
587 
588 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
589 #if 0
590   // FIXME: Assess perf here?  Figure out what cases are worth optimizing here
591   // (Length of globals? Chunks of zeroed-out space?).
592   //
593   // If we can, prefer a copy from a global; this is a lot less code for long
594   // globals, and it's easier for the current optimizers to analyze.
595   if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) {
596     llvm::GlobalVariable* GV =
597     new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true,
598                              llvm::GlobalValue::InternalLinkage, C, "");
599     EmitFinalDestCopy(E, LValue::MakeAddr(GV, Qualifiers()));
600     return;
601   }
602 #endif
603   if (E->hadArrayRangeDesignator()) {
604     CGF.ErrorUnsupported(E, "GNU array range designator extension");
605   }
606 
607   // Handle initialization of an array.
608   if (E->getType()->isArrayType()) {
609     const llvm::PointerType *APType =
610       cast<llvm::PointerType>(DestPtr->getType());
611     const llvm::ArrayType *AType =
612       cast<llvm::ArrayType>(APType->getElementType());
613 
614     uint64_t NumInitElements = E->getNumInits();
615 
616     if (E->getNumInits() > 0) {
617       QualType T1 = E->getType();
618       QualType T2 = E->getInit(0)->getType();
619       if (CGF.getContext().hasSameUnqualifiedType(T1, T2)) {
620         EmitAggLoadOfLValue(E->getInit(0));
621         return;
622       }
623     }
624 
625     uint64_t NumArrayElements = AType->getNumElements();
626     QualType ElementType = CGF.getContext().getCanonicalType(E->getType());
627     ElementType = CGF.getContext().getAsArrayType(ElementType)->getElementType();
628 
629     // FIXME: were we intentionally ignoring address spaces and GC attributes?
630     Qualifiers Quals = CGF.MakeQualifiers(ElementType);
631 
632     for (uint64_t i = 0; i != NumArrayElements; ++i) {
633       llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array");
634       if (i < NumInitElements)
635         EmitInitializationToLValue(E->getInit(i),
636                                    LValue::MakeAddr(NextVal, Quals),
637                                    ElementType);
638       else
639         EmitNullInitializationToLValue(LValue::MakeAddr(NextVal, Quals),
640                                        ElementType);
641     }
642     return;
643   }
644 
645   assert(E->getType()->isRecordType() && "Only support structs/unions here!");
646 
647   // Do struct initialization; this code just sets each individual member
648   // to the approprate value.  This makes bitfield support automatic;
649   // the disadvantage is that the generated code is more difficult for
650   // the optimizer, especially with bitfields.
651   unsigned NumInitElements = E->getNumInits();
652   RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl();
653   unsigned CurInitVal = 0;
654 
655   if (E->getType()->isUnionType()) {
656     // Only initialize one field of a union. The field itself is
657     // specified by the initializer list.
658     if (!E->getInitializedFieldInUnion()) {
659       // Empty union; we have nothing to do.
660 
661 #ifndef NDEBUG
662       // Make sure that it's really an empty and not a failure of
663       // semantic analysis.
664       for (RecordDecl::field_iterator Field = SD->field_begin(),
665                                    FieldEnd = SD->field_end();
666            Field != FieldEnd; ++Field)
667         assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed");
668 #endif
669       return;
670     }
671 
672     // FIXME: volatility
673     FieldDecl *Field = E->getInitializedFieldInUnion();
674     LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestPtr, Field, 0);
675 
676     if (NumInitElements) {
677       // Store the initializer into the field
678       EmitInitializationToLValue(E->getInit(0), FieldLoc, Field->getType());
679     } else {
680       // Default-initialize to null
681       EmitNullInitializationToLValue(FieldLoc, Field->getType());
682     }
683 
684     return;
685   }
686 
687   // If we're initializing the whole aggregate, just do it in place.
688   // FIXME: This is a hack around an AST bug (PR6537).
689   if (NumInitElements == 1 && E->getType() == E->getInit(0)->getType()) {
690     EmitInitializationToLValue(E->getInit(0),
691                                LValue::MakeAddr(DestPtr, Qualifiers()),
692                                E->getType());
693     return;
694   }
695 
696 
697   // Here we iterate over the fields; this makes it simpler to both
698   // default-initialize fields and skip over unnamed fields.
699   for (RecordDecl::field_iterator Field = SD->field_begin(),
700                                FieldEnd = SD->field_end();
701        Field != FieldEnd; ++Field) {
702     // We're done once we hit the flexible array member
703     if (Field->getType()->isIncompleteArrayType())
704       break;
705 
706     if (Field->isUnnamedBitfield())
707       continue;
708 
709     // FIXME: volatility
710     LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestPtr, *Field, 0);
711     // We never generate write-barries for initialized fields.
712     LValue::SetObjCNonGC(FieldLoc, true);
713     if (CurInitVal < NumInitElements) {
714       // Store the initializer into the field.
715       EmitInitializationToLValue(E->getInit(CurInitVal++), FieldLoc,
716                                  Field->getType());
717     } else {
718       // We're out of initalizers; default-initialize to null
719       EmitNullInitializationToLValue(FieldLoc, Field->getType());
720     }
721   }
722 }
723 
724 //===----------------------------------------------------------------------===//
725 //                        Entry Points into this File
726 //===----------------------------------------------------------------------===//
727 
728 /// EmitAggExpr - Emit the computation of the specified expression of aggregate
729 /// type.  The result is computed into DestPtr.  Note that if DestPtr is null,
730 /// the value of the aggregate expression is not needed.  If VolatileDest is
731 /// true, DestPtr cannot be 0.
732 //
733 // FIXME: Take Qualifiers object.
734 void CodeGenFunction::EmitAggExpr(const Expr *E, llvm::Value *DestPtr,
735                                   bool VolatileDest, bool IgnoreResult,
736                                   bool IsInitializer,
737                                   bool RequiresGCollection) {
738   assert(E && hasAggregateLLVMType(E->getType()) &&
739          "Invalid aggregate expression to emit");
740   assert ((DestPtr != 0 || VolatileDest == false)
741           && "volatile aggregate can't be 0");
742 
743   AggExprEmitter(*this, DestPtr, VolatileDest, IgnoreResult, IsInitializer,
744                  RequiresGCollection)
745     .Visit(const_cast<Expr*>(E));
746 }
747 
748 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) {
749   assert(hasAggregateLLVMType(E->getType()) && "Invalid argument!");
750   Qualifiers Q = MakeQualifiers(E->getType());
751   llvm::Value *Temp = CreateMemTemp(E->getType());
752   EmitAggExpr(E, Temp, Q.hasVolatile());
753   return LValue::MakeAddr(Temp, Q);
754 }
755 
756 void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr,
757                                         llvm::Value *SrcPtr, QualType Ty,
758                                         bool isVolatile) {
759   assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
760 
761   if (getContext().getLangOptions().CPlusPlus) {
762     if (const RecordType *RT = Ty->getAs<RecordType>()) {
763       CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
764       assert((Record->hasTrivialCopyConstructor() ||
765               Record->hasTrivialCopyAssignment()) &&
766              "Trying to aggregate-copy a type without a trivial copy "
767              "constructor or assignment operator");
768       // Ignore empty classes in C++.
769       if (Record->isEmpty())
770         return;
771     }
772   }
773 
774   // Aggregate assignment turns into llvm.memcpy.  This is almost valid per
775   // C99 6.5.16.1p3, which states "If the value being stored in an object is
776   // read from another object that overlaps in anyway the storage of the first
777   // object, then the overlap shall be exact and the two objects shall have
778   // qualified or unqualified versions of a compatible type."
779   //
780   // memcpy is not defined if the source and destination pointers are exactly
781   // equal, but other compilers do this optimization, and almost every memcpy
782   // implementation handles this case safely.  If there is a libc that does not
783   // safely handle this, we can add a target hook.
784   const llvm::Type *BP = llvm::Type::getInt8PtrTy(VMContext);
785   if (DestPtr->getType() != BP)
786     DestPtr = Builder.CreateBitCast(DestPtr, BP, "tmp");
787   if (SrcPtr->getType() != BP)
788     SrcPtr = Builder.CreateBitCast(SrcPtr, BP, "tmp");
789 
790   // Get size and alignment info for this aggregate.
791   std::pair<uint64_t, unsigned> TypeInfo = getContext().getTypeInfo(Ty);
792 
793   // FIXME: Handle variable sized types.
794   const llvm::Type *IntPtr =
795           llvm::IntegerType::get(VMContext, LLVMPointerWidth);
796 
797   // FIXME: If we have a volatile struct, the optimizer can remove what might
798   // appear to be `extra' memory ops:
799   //
800   // volatile struct { int i; } a, b;
801   //
802   // int main() {
803   //   a = b;
804   //   a = b;
805   // }
806   //
807   // we need to use a different call here.  We use isVolatile to indicate when
808   // either the source or the destination is volatile.
809   const llvm::Type *I1Ty = llvm::Type::getInt1Ty(VMContext);
810   const llvm::Type *I8Ty = llvm::Type::getInt8Ty(VMContext);
811   const llvm::Type *I32Ty = llvm::Type::getInt32Ty(VMContext);
812 
813   const llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType());
814   const llvm::Type *DBP = llvm::PointerType::get(I8Ty, DPT->getAddressSpace());
815   if (DestPtr->getType() != DBP)
816     DestPtr = Builder.CreateBitCast(DestPtr, DBP, "tmp");
817 
818   const llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType());
819   const llvm::Type *SBP = llvm::PointerType::get(I8Ty, SPT->getAddressSpace());
820   if (SrcPtr->getType() != SBP)
821     SrcPtr = Builder.CreateBitCast(SrcPtr, SBP, "tmp");
822 
823   Builder.CreateCall5(CGM.getMemCpyFn(DestPtr->getType(), SrcPtr->getType(),
824                                       IntPtr),
825                       DestPtr, SrcPtr,
826                       // TypeInfo.first describes size in bits.
827                       llvm::ConstantInt::get(IntPtr, TypeInfo.first/8),
828                       llvm::ConstantInt::get(I32Ty,  TypeInfo.second/8),
829                       llvm::ConstantInt::get(I1Ty,  isVolatile));
830 }
831