1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Aggregate Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCXXABI.h" 16 #include "CGObjCRuntime.h" 17 #include "CodeGenModule.h" 18 #include "ConstantEmitter.h" 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/DeclCXX.h" 21 #include "clang/AST/DeclTemplate.h" 22 #include "clang/AST/StmtVisitor.h" 23 #include "llvm/IR/Constants.h" 24 #include "llvm/IR/Function.h" 25 #include "llvm/IR/GlobalVariable.h" 26 #include "llvm/IR/Intrinsics.h" 27 #include "llvm/IR/IntrinsicInst.h" 28 using namespace clang; 29 using namespace CodeGen; 30 31 //===----------------------------------------------------------------------===// 32 // Aggregate Expression Emitter 33 //===----------------------------------------------------------------------===// 34 35 namespace { 36 class AggExprEmitter : public StmtVisitor<AggExprEmitter> { 37 CodeGenFunction &CGF; 38 CGBuilderTy &Builder; 39 AggValueSlot Dest; 40 bool IsResultUnused; 41 42 AggValueSlot EnsureSlot(QualType T) { 43 if (!Dest.isIgnored()) return Dest; 44 return CGF.CreateAggTemp(T, "agg.tmp.ensured"); 45 } 46 void EnsureDest(QualType T) { 47 if (!Dest.isIgnored()) return; 48 Dest = CGF.CreateAggTemp(T, "agg.tmp.ensured"); 49 } 50 51 // Calls `Fn` with a valid return value slot, potentially creating a temporary 52 // to do so. If a temporary is created, an appropriate copy into `Dest` will 53 // be emitted, as will lifetime markers. 54 // 55 // The given function should take a ReturnValueSlot, and return an RValue that 56 // points to said slot. 57 void withReturnValueSlot(const Expr *E, 58 llvm::function_ref<RValue(ReturnValueSlot)> Fn); 59 60 public: 61 AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest, bool IsResultUnused) 62 : CGF(cgf), Builder(CGF.Builder), Dest(Dest), 63 IsResultUnused(IsResultUnused) { } 64 65 //===--------------------------------------------------------------------===// 66 // Utilities 67 //===--------------------------------------------------------------------===// 68 69 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 70 /// represents a value lvalue, this method emits the address of the lvalue, 71 /// then loads the result into DestPtr. 72 void EmitAggLoadOfLValue(const Expr *E); 73 74 enum ExprValueKind { 75 EVK_RValue, 76 EVK_NonRValue 77 }; 78 79 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 80 /// SrcIsRValue is true if source comes from an RValue. 81 void EmitFinalDestCopy(QualType type, const LValue &src, 82 ExprValueKind SrcValueKind = EVK_NonRValue); 83 void EmitFinalDestCopy(QualType type, RValue src); 84 void EmitCopy(QualType type, const AggValueSlot &dest, 85 const AggValueSlot &src); 86 87 void EmitMoveFromReturnSlot(const Expr *E, RValue Src); 88 89 void EmitArrayInit(Address DestPtr, llvm::ArrayType *AType, 90 QualType ArrayQTy, InitListExpr *E); 91 92 AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) { 93 if (CGF.getLangOpts().getGC() && TypeRequiresGCollection(T)) 94 return AggValueSlot::NeedsGCBarriers; 95 return AggValueSlot::DoesNotNeedGCBarriers; 96 } 97 98 bool TypeRequiresGCollection(QualType T); 99 100 //===--------------------------------------------------------------------===// 101 // Visitor Methods 102 //===--------------------------------------------------------------------===// 103 104 void Visit(Expr *E) { 105 ApplyDebugLocation DL(CGF, E); 106 StmtVisitor<AggExprEmitter>::Visit(E); 107 } 108 109 void VisitStmt(Stmt *S) { 110 CGF.ErrorUnsupported(S, "aggregate expression"); 111 } 112 void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); } 113 void VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 114 Visit(GE->getResultExpr()); 115 } 116 void VisitCoawaitExpr(CoawaitExpr *E) { 117 CGF.EmitCoawaitExpr(*E, Dest, IsResultUnused); 118 } 119 void VisitCoyieldExpr(CoyieldExpr *E) { 120 CGF.EmitCoyieldExpr(*E, Dest, IsResultUnused); 121 } 122 void VisitUnaryCoawait(UnaryOperator *E) { Visit(E->getSubExpr()); } 123 void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); } 124 void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 125 return Visit(E->getReplacement()); 126 } 127 128 // l-values. 129 void VisitDeclRefExpr(DeclRefExpr *E) { EmitAggLoadOfLValue(E); } 130 void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); } 131 void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); } 132 void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); } 133 void VisitCompoundLiteralExpr(CompoundLiteralExpr *E); 134 void VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 135 EmitAggLoadOfLValue(E); 136 } 137 void VisitPredefinedExpr(const PredefinedExpr *E) { 138 EmitAggLoadOfLValue(E); 139 } 140 141 // Operators. 142 void VisitCastExpr(CastExpr *E); 143 void VisitCallExpr(const CallExpr *E); 144 void VisitStmtExpr(const StmtExpr *E); 145 void VisitBinaryOperator(const BinaryOperator *BO); 146 void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO); 147 void VisitBinAssign(const BinaryOperator *E); 148 void VisitBinComma(const BinaryOperator *E); 149 void VisitBinCmp(const BinaryOperator *E); 150 151 void VisitObjCMessageExpr(ObjCMessageExpr *E); 152 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 153 EmitAggLoadOfLValue(E); 154 } 155 156 void VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E); 157 void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO); 158 void VisitChooseExpr(const ChooseExpr *CE); 159 void VisitInitListExpr(InitListExpr *E); 160 void VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E, 161 llvm::Value *outerBegin = nullptr); 162 void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E); 163 void VisitNoInitExpr(NoInitExpr *E) { } // Do nothing. 164 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 165 Visit(DAE->getExpr()); 166 } 167 void VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 168 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF); 169 Visit(DIE->getExpr()); 170 } 171 void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E); 172 void VisitCXXConstructExpr(const CXXConstructExpr *E); 173 void VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E); 174 void VisitLambdaExpr(LambdaExpr *E); 175 void VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E); 176 void VisitExprWithCleanups(ExprWithCleanups *E); 177 void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E); 178 void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); } 179 void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E); 180 void VisitOpaqueValueExpr(OpaqueValueExpr *E); 181 182 void VisitPseudoObjectExpr(PseudoObjectExpr *E) { 183 if (E->isGLValue()) { 184 LValue LV = CGF.EmitPseudoObjectLValue(E); 185 return EmitFinalDestCopy(E->getType(), LV); 186 } 187 188 CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType())); 189 } 190 191 void VisitVAArgExpr(VAArgExpr *E); 192 193 void EmitInitializationToLValue(Expr *E, LValue Address); 194 void EmitNullInitializationToLValue(LValue Address); 195 // case Expr::ChooseExprClass: 196 void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); } 197 void VisitAtomicExpr(AtomicExpr *E) { 198 RValue Res = CGF.EmitAtomicExpr(E); 199 EmitFinalDestCopy(E->getType(), Res); 200 } 201 }; 202 } // end anonymous namespace. 203 204 //===----------------------------------------------------------------------===// 205 // Utilities 206 //===----------------------------------------------------------------------===// 207 208 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 209 /// represents a value lvalue, this method emits the address of the lvalue, 210 /// then loads the result into DestPtr. 211 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) { 212 LValue LV = CGF.EmitLValue(E); 213 214 // If the type of the l-value is atomic, then do an atomic load. 215 if (LV.getType()->isAtomicType() || CGF.LValueIsSuitableForInlineAtomic(LV)) { 216 CGF.EmitAtomicLoad(LV, E->getExprLoc(), Dest); 217 return; 218 } 219 220 EmitFinalDestCopy(E->getType(), LV); 221 } 222 223 /// True if the given aggregate type requires special GC API calls. 224 bool AggExprEmitter::TypeRequiresGCollection(QualType T) { 225 // Only record types have members that might require garbage collection. 226 const RecordType *RecordTy = T->getAs<RecordType>(); 227 if (!RecordTy) return false; 228 229 // Don't mess with non-trivial C++ types. 230 RecordDecl *Record = RecordTy->getDecl(); 231 if (isa<CXXRecordDecl>(Record) && 232 (cast<CXXRecordDecl>(Record)->hasNonTrivialCopyConstructor() || 233 !cast<CXXRecordDecl>(Record)->hasTrivialDestructor())) 234 return false; 235 236 // Check whether the type has an object member. 237 return Record->hasObjectMember(); 238 } 239 240 void AggExprEmitter::withReturnValueSlot( 241 const Expr *E, llvm::function_ref<RValue(ReturnValueSlot)> EmitCall) { 242 QualType RetTy = E->getType(); 243 bool RequiresDestruction = 244 Dest.isIgnored() && 245 RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct; 246 247 // If it makes no observable difference, save a memcpy + temporary. 248 // 249 // We need to always provide our own temporary if destruction is required. 250 // Otherwise, EmitCall will emit its own, notice that it's "unused", and end 251 // its lifetime before we have the chance to emit a proper destructor call. 252 bool UseTemp = Dest.isPotentiallyAliased() || Dest.requiresGCollection() || 253 (RequiresDestruction && !Dest.getAddress().isValid()); 254 255 Address RetAddr = Address::invalid(); 256 Address RetAllocaAddr = Address::invalid(); 257 258 EHScopeStack::stable_iterator LifetimeEndBlock; 259 llvm::Value *LifetimeSizePtr = nullptr; 260 llvm::IntrinsicInst *LifetimeStartInst = nullptr; 261 if (!UseTemp) { 262 RetAddr = Dest.getAddress(); 263 } else { 264 RetAddr = CGF.CreateMemTemp(RetTy, "tmp", &RetAllocaAddr); 265 uint64_t Size = 266 CGF.CGM.getDataLayout().getTypeAllocSize(CGF.ConvertTypeForMem(RetTy)); 267 LifetimeSizePtr = CGF.EmitLifetimeStart(Size, RetAllocaAddr.getPointer()); 268 if (LifetimeSizePtr) { 269 LifetimeStartInst = 270 cast<llvm::IntrinsicInst>(std::prev(Builder.GetInsertPoint())); 271 assert(LifetimeStartInst->getIntrinsicID() == 272 llvm::Intrinsic::lifetime_start && 273 "Last insertion wasn't a lifetime.start?"); 274 275 CGF.pushFullExprCleanup<CodeGenFunction::CallLifetimeEnd>( 276 NormalEHLifetimeMarker, RetAllocaAddr, LifetimeSizePtr); 277 LifetimeEndBlock = CGF.EHStack.stable_begin(); 278 } 279 } 280 281 RValue Src = 282 EmitCall(ReturnValueSlot(RetAddr, Dest.isVolatile(), IsResultUnused)); 283 284 if (RequiresDestruction) 285 CGF.pushDestroy(RetTy.isDestructedType(), Src.getAggregateAddress(), RetTy); 286 287 if (!UseTemp) 288 return; 289 290 assert(Dest.getPointer() != Src.getAggregatePointer()); 291 EmitFinalDestCopy(E->getType(), Src); 292 293 if (!RequiresDestruction && LifetimeStartInst) { 294 // If there's no dtor to run, the copy was the last use of our temporary. 295 // Since we're not guaranteed to be in an ExprWithCleanups, clean up 296 // eagerly. 297 CGF.DeactivateCleanupBlock(LifetimeEndBlock, LifetimeStartInst); 298 CGF.EmitLifetimeEnd(LifetimeSizePtr, RetAllocaAddr.getPointer()); 299 } 300 } 301 302 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 303 void AggExprEmitter::EmitFinalDestCopy(QualType type, RValue src) { 304 assert(src.isAggregate() && "value must be aggregate value!"); 305 LValue srcLV = CGF.MakeAddrLValue(src.getAggregateAddress(), type); 306 EmitFinalDestCopy(type, srcLV, EVK_RValue); 307 } 308 309 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 310 void AggExprEmitter::EmitFinalDestCopy(QualType type, const LValue &src, 311 ExprValueKind SrcValueKind) { 312 // If Dest is ignored, then we're evaluating an aggregate expression 313 // in a context that doesn't care about the result. Note that loads 314 // from volatile l-values force the existence of a non-ignored 315 // destination. 316 if (Dest.isIgnored()) 317 return; 318 319 // Copy non-trivial C structs here. 320 LValue DstLV = CGF.MakeAddrLValue( 321 Dest.getAddress(), Dest.isVolatile() ? type.withVolatile() : type); 322 323 if (SrcValueKind == EVK_RValue) { 324 if (type.isNonTrivialToPrimitiveDestructiveMove() == QualType::PCK_Struct) { 325 if (Dest.isPotentiallyAliased()) 326 CGF.callCStructMoveAssignmentOperator(DstLV, src); 327 else 328 CGF.callCStructMoveConstructor(DstLV, src); 329 return; 330 } 331 } else { 332 if (type.isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) { 333 if (Dest.isPotentiallyAliased()) 334 CGF.callCStructCopyAssignmentOperator(DstLV, src); 335 else 336 CGF.callCStructCopyConstructor(DstLV, src); 337 return; 338 } 339 } 340 341 AggValueSlot srcAgg = 342 AggValueSlot::forLValue(src, AggValueSlot::IsDestructed, 343 needsGC(type), AggValueSlot::IsAliased, 344 AggValueSlot::MayOverlap); 345 EmitCopy(type, Dest, srcAgg); 346 } 347 348 /// Perform a copy from the source into the destination. 349 /// 350 /// \param type - the type of the aggregate being copied; qualifiers are 351 /// ignored 352 void AggExprEmitter::EmitCopy(QualType type, const AggValueSlot &dest, 353 const AggValueSlot &src) { 354 if (dest.requiresGCollection()) { 355 CharUnits sz = dest.getPreferredSize(CGF.getContext(), type); 356 llvm::Value *size = llvm::ConstantInt::get(CGF.SizeTy, sz.getQuantity()); 357 CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, 358 dest.getAddress(), 359 src.getAddress(), 360 size); 361 return; 362 } 363 364 // If the result of the assignment is used, copy the LHS there also. 365 // It's volatile if either side is. Use the minimum alignment of 366 // the two sides. 367 LValue DestLV = CGF.MakeAddrLValue(dest.getAddress(), type); 368 LValue SrcLV = CGF.MakeAddrLValue(src.getAddress(), type); 369 CGF.EmitAggregateCopy(DestLV, SrcLV, type, dest.mayOverlap(), 370 dest.isVolatile() || src.isVolatile()); 371 } 372 373 /// Emit the initializer for a std::initializer_list initialized with a 374 /// real initializer list. 375 void 376 AggExprEmitter::VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E) { 377 // Emit an array containing the elements. The array is externally destructed 378 // if the std::initializer_list object is. 379 ASTContext &Ctx = CGF.getContext(); 380 LValue Array = CGF.EmitLValue(E->getSubExpr()); 381 assert(Array.isSimple() && "initializer_list array not a simple lvalue"); 382 Address ArrayPtr = Array.getAddress(); 383 384 const ConstantArrayType *ArrayType = 385 Ctx.getAsConstantArrayType(E->getSubExpr()->getType()); 386 assert(ArrayType && "std::initializer_list constructed from non-array"); 387 388 // FIXME: Perform the checks on the field types in SemaInit. 389 RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl(); 390 RecordDecl::field_iterator Field = Record->field_begin(); 391 if (Field == Record->field_end()) { 392 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 393 return; 394 } 395 396 // Start pointer. 397 if (!Field->getType()->isPointerType() || 398 !Ctx.hasSameType(Field->getType()->getPointeeType(), 399 ArrayType->getElementType())) { 400 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 401 return; 402 } 403 404 AggValueSlot Dest = EnsureSlot(E->getType()); 405 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType()); 406 LValue Start = CGF.EmitLValueForFieldInitialization(DestLV, *Field); 407 llvm::Value *Zero = llvm::ConstantInt::get(CGF.PtrDiffTy, 0); 408 llvm::Value *IdxStart[] = { Zero, Zero }; 409 llvm::Value *ArrayStart = 410 Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxStart, "arraystart"); 411 CGF.EmitStoreThroughLValue(RValue::get(ArrayStart), Start); 412 ++Field; 413 414 if (Field == Record->field_end()) { 415 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 416 return; 417 } 418 419 llvm::Value *Size = Builder.getInt(ArrayType->getSize()); 420 LValue EndOrLength = CGF.EmitLValueForFieldInitialization(DestLV, *Field); 421 if (Field->getType()->isPointerType() && 422 Ctx.hasSameType(Field->getType()->getPointeeType(), 423 ArrayType->getElementType())) { 424 // End pointer. 425 llvm::Value *IdxEnd[] = { Zero, Size }; 426 llvm::Value *ArrayEnd = 427 Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxEnd, "arrayend"); 428 CGF.EmitStoreThroughLValue(RValue::get(ArrayEnd), EndOrLength); 429 } else if (Ctx.hasSameType(Field->getType(), Ctx.getSizeType())) { 430 // Length. 431 CGF.EmitStoreThroughLValue(RValue::get(Size), EndOrLength); 432 } else { 433 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 434 return; 435 } 436 } 437 438 /// Determine if E is a trivial array filler, that is, one that is 439 /// equivalent to zero-initialization. 440 static bool isTrivialFiller(Expr *E) { 441 if (!E) 442 return true; 443 444 if (isa<ImplicitValueInitExpr>(E)) 445 return true; 446 447 if (auto *ILE = dyn_cast<InitListExpr>(E)) { 448 if (ILE->getNumInits()) 449 return false; 450 return isTrivialFiller(ILE->getArrayFiller()); 451 } 452 453 if (auto *Cons = dyn_cast_or_null<CXXConstructExpr>(E)) 454 return Cons->getConstructor()->isDefaultConstructor() && 455 Cons->getConstructor()->isTrivial(); 456 457 // FIXME: Are there other cases where we can avoid emitting an initializer? 458 return false; 459 } 460 461 /// Emit initialization of an array from an initializer list. 462 void AggExprEmitter::EmitArrayInit(Address DestPtr, llvm::ArrayType *AType, 463 QualType ArrayQTy, InitListExpr *E) { 464 uint64_t NumInitElements = E->getNumInits(); 465 466 uint64_t NumArrayElements = AType->getNumElements(); 467 assert(NumInitElements <= NumArrayElements); 468 469 QualType elementType = 470 CGF.getContext().getAsArrayType(ArrayQTy)->getElementType(); 471 472 // DestPtr is an array*. Construct an elementType* by drilling 473 // down a level. 474 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 475 llvm::Value *indices[] = { zero, zero }; 476 llvm::Value *begin = 477 Builder.CreateInBoundsGEP(DestPtr.getPointer(), indices, "arrayinit.begin"); 478 479 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType); 480 CharUnits elementAlign = 481 DestPtr.getAlignment().alignmentOfArrayElement(elementSize); 482 483 // Consider initializing the array by copying from a global. For this to be 484 // more efficient than per-element initialization, the size of the elements 485 // with explicit initializers should be large enough. 486 if (NumInitElements * elementSize.getQuantity() > 16 && 487 elementType.isTriviallyCopyableType(CGF.getContext())) { 488 CodeGen::CodeGenModule &CGM = CGF.CGM; 489 ConstantEmitter Emitter(CGM); 490 LangAS AS = ArrayQTy.getAddressSpace(); 491 if (llvm::Constant *C = Emitter.tryEmitForInitializer(E, AS, ArrayQTy)) { 492 auto GV = new llvm::GlobalVariable( 493 CGM.getModule(), C->getType(), 494 CGM.isTypeConstant(ArrayQTy, /* ExcludeCtorDtor= */ true), 495 llvm::GlobalValue::PrivateLinkage, C, "constinit", 496 /* InsertBefore= */ nullptr, llvm::GlobalVariable::NotThreadLocal, 497 CGM.getContext().getTargetAddressSpace(AS)); 498 Emitter.finalize(GV); 499 CharUnits Align = CGM.getContext().getTypeAlignInChars(ArrayQTy); 500 GV->setAlignment(Align.getQuantity()); 501 EmitFinalDestCopy(ArrayQTy, CGF.MakeAddrLValue(GV, ArrayQTy, Align)); 502 return; 503 } 504 } 505 506 // Exception safety requires us to destroy all the 507 // already-constructed members if an initializer throws. 508 // For that, we'll need an EH cleanup. 509 QualType::DestructionKind dtorKind = elementType.isDestructedType(); 510 Address endOfInit = Address::invalid(); 511 EHScopeStack::stable_iterator cleanup; 512 llvm::Instruction *cleanupDominator = nullptr; 513 if (CGF.needsEHCleanup(dtorKind)) { 514 // In principle we could tell the cleanup where we are more 515 // directly, but the control flow can get so varied here that it 516 // would actually be quite complex. Therefore we go through an 517 // alloca. 518 endOfInit = CGF.CreateTempAlloca(begin->getType(), CGF.getPointerAlign(), 519 "arrayinit.endOfInit"); 520 cleanupDominator = Builder.CreateStore(begin, endOfInit); 521 CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType, 522 elementAlign, 523 CGF.getDestroyer(dtorKind)); 524 cleanup = CGF.EHStack.stable_begin(); 525 526 // Otherwise, remember that we didn't need a cleanup. 527 } else { 528 dtorKind = QualType::DK_none; 529 } 530 531 llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1); 532 533 // The 'current element to initialize'. The invariants on this 534 // variable are complicated. Essentially, after each iteration of 535 // the loop, it points to the last initialized element, except 536 // that it points to the beginning of the array before any 537 // elements have been initialized. 538 llvm::Value *element = begin; 539 540 // Emit the explicit initializers. 541 for (uint64_t i = 0; i != NumInitElements; ++i) { 542 // Advance to the next element. 543 if (i > 0) { 544 element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element"); 545 546 // Tell the cleanup that it needs to destroy up to this 547 // element. TODO: some of these stores can be trivially 548 // observed to be unnecessary. 549 if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit); 550 } 551 552 LValue elementLV = 553 CGF.MakeAddrLValue(Address(element, elementAlign), elementType); 554 EmitInitializationToLValue(E->getInit(i), elementLV); 555 } 556 557 // Check whether there's a non-trivial array-fill expression. 558 Expr *filler = E->getArrayFiller(); 559 bool hasTrivialFiller = isTrivialFiller(filler); 560 561 // Any remaining elements need to be zero-initialized, possibly 562 // using the filler expression. We can skip this if the we're 563 // emitting to zeroed memory. 564 if (NumInitElements != NumArrayElements && 565 !(Dest.isZeroed() && hasTrivialFiller && 566 CGF.getTypes().isZeroInitializable(elementType))) { 567 568 // Use an actual loop. This is basically 569 // do { *array++ = filler; } while (array != end); 570 571 // Advance to the start of the rest of the array. 572 if (NumInitElements) { 573 element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start"); 574 if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit); 575 } 576 577 // Compute the end of the array. 578 llvm::Value *end = Builder.CreateInBoundsGEP(begin, 579 llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements), 580 "arrayinit.end"); 581 582 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 583 llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body"); 584 585 // Jump into the body. 586 CGF.EmitBlock(bodyBB); 587 llvm::PHINode *currentElement = 588 Builder.CreatePHI(element->getType(), 2, "arrayinit.cur"); 589 currentElement->addIncoming(element, entryBB); 590 591 // Emit the actual filler expression. 592 { 593 // C++1z [class.temporary]p5: 594 // when a default constructor is called to initialize an element of 595 // an array with no corresponding initializer [...] the destruction of 596 // every temporary created in a default argument is sequenced before 597 // the construction of the next array element, if any 598 CodeGenFunction::RunCleanupsScope CleanupsScope(CGF); 599 LValue elementLV = 600 CGF.MakeAddrLValue(Address(currentElement, elementAlign), elementType); 601 if (filler) 602 EmitInitializationToLValue(filler, elementLV); 603 else 604 EmitNullInitializationToLValue(elementLV); 605 } 606 607 // Move on to the next element. 608 llvm::Value *nextElement = 609 Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next"); 610 611 // Tell the EH cleanup that we finished with the last element. 612 if (endOfInit.isValid()) Builder.CreateStore(nextElement, endOfInit); 613 614 // Leave the loop if we're done. 615 llvm::Value *done = Builder.CreateICmpEQ(nextElement, end, 616 "arrayinit.done"); 617 llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end"); 618 Builder.CreateCondBr(done, endBB, bodyBB); 619 currentElement->addIncoming(nextElement, Builder.GetInsertBlock()); 620 621 CGF.EmitBlock(endBB); 622 } 623 624 // Leave the partial-array cleanup if we entered one. 625 if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator); 626 } 627 628 //===----------------------------------------------------------------------===// 629 // Visitor Methods 630 //===----------------------------------------------------------------------===// 631 632 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){ 633 Visit(E->GetTemporaryExpr()); 634 } 635 636 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) { 637 // If this is a unique OVE, just visit its source expression. 638 if (e->isUnique()) 639 Visit(e->getSourceExpr()); 640 else 641 EmitFinalDestCopy(e->getType(), CGF.getOrCreateOpaqueLValueMapping(e)); 642 } 643 644 void 645 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 646 if (Dest.isPotentiallyAliased() && 647 E->getType().isPODType(CGF.getContext())) { 648 // For a POD type, just emit a load of the lvalue + a copy, because our 649 // compound literal might alias the destination. 650 EmitAggLoadOfLValue(E); 651 return; 652 } 653 654 AggValueSlot Slot = EnsureSlot(E->getType()); 655 CGF.EmitAggExpr(E->getInitializer(), Slot); 656 } 657 658 /// Attempt to look through various unimportant expressions to find a 659 /// cast of the given kind. 660 static Expr *findPeephole(Expr *op, CastKind kind) { 661 while (true) { 662 op = op->IgnoreParens(); 663 if (CastExpr *castE = dyn_cast<CastExpr>(op)) { 664 if (castE->getCastKind() == kind) 665 return castE->getSubExpr(); 666 if (castE->getCastKind() == CK_NoOp) 667 continue; 668 } 669 return nullptr; 670 } 671 } 672 673 void AggExprEmitter::VisitCastExpr(CastExpr *E) { 674 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E)) 675 CGF.CGM.EmitExplicitCastExprType(ECE, &CGF); 676 switch (E->getCastKind()) { 677 case CK_Dynamic: { 678 // FIXME: Can this actually happen? We have no test coverage for it. 679 assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?"); 680 LValue LV = CGF.EmitCheckedLValue(E->getSubExpr(), 681 CodeGenFunction::TCK_Load); 682 // FIXME: Do we also need to handle property references here? 683 if (LV.isSimple()) 684 CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E)); 685 else 686 CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast"); 687 688 if (!Dest.isIgnored()) 689 CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination"); 690 break; 691 } 692 693 case CK_ToUnion: { 694 // Evaluate even if the destination is ignored. 695 if (Dest.isIgnored()) { 696 CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(), 697 /*ignoreResult=*/true); 698 break; 699 } 700 701 // GCC union extension 702 QualType Ty = E->getSubExpr()->getType(); 703 Address CastPtr = 704 Builder.CreateElementBitCast(Dest.getAddress(), CGF.ConvertType(Ty)); 705 EmitInitializationToLValue(E->getSubExpr(), 706 CGF.MakeAddrLValue(CastPtr, Ty)); 707 break; 708 } 709 710 case CK_DerivedToBase: 711 case CK_BaseToDerived: 712 case CK_UncheckedDerivedToBase: { 713 llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: " 714 "should have been unpacked before we got here"); 715 } 716 717 case CK_NonAtomicToAtomic: 718 case CK_AtomicToNonAtomic: { 719 bool isToAtomic = (E->getCastKind() == CK_NonAtomicToAtomic); 720 721 // Determine the atomic and value types. 722 QualType atomicType = E->getSubExpr()->getType(); 723 QualType valueType = E->getType(); 724 if (isToAtomic) std::swap(atomicType, valueType); 725 726 assert(atomicType->isAtomicType()); 727 assert(CGF.getContext().hasSameUnqualifiedType(valueType, 728 atomicType->castAs<AtomicType>()->getValueType())); 729 730 // Just recurse normally if we're ignoring the result or the 731 // atomic type doesn't change representation. 732 if (Dest.isIgnored() || !CGF.CGM.isPaddedAtomicType(atomicType)) { 733 return Visit(E->getSubExpr()); 734 } 735 736 CastKind peepholeTarget = 737 (isToAtomic ? CK_AtomicToNonAtomic : CK_NonAtomicToAtomic); 738 739 // These two cases are reverses of each other; try to peephole them. 740 if (Expr *op = findPeephole(E->getSubExpr(), peepholeTarget)) { 741 assert(CGF.getContext().hasSameUnqualifiedType(op->getType(), 742 E->getType()) && 743 "peephole significantly changed types?"); 744 return Visit(op); 745 } 746 747 // If we're converting an r-value of non-atomic type to an r-value 748 // of atomic type, just emit directly into the relevant sub-object. 749 if (isToAtomic) { 750 AggValueSlot valueDest = Dest; 751 if (!valueDest.isIgnored() && CGF.CGM.isPaddedAtomicType(atomicType)) { 752 // Zero-initialize. (Strictly speaking, we only need to initialize 753 // the padding at the end, but this is simpler.) 754 if (!Dest.isZeroed()) 755 CGF.EmitNullInitialization(Dest.getAddress(), atomicType); 756 757 // Build a GEP to refer to the subobject. 758 Address valueAddr = 759 CGF.Builder.CreateStructGEP(valueDest.getAddress(), 0, 760 CharUnits()); 761 valueDest = AggValueSlot::forAddr(valueAddr, 762 valueDest.getQualifiers(), 763 valueDest.isExternallyDestructed(), 764 valueDest.requiresGCollection(), 765 valueDest.isPotentiallyAliased(), 766 AggValueSlot::DoesNotOverlap, 767 AggValueSlot::IsZeroed); 768 } 769 770 CGF.EmitAggExpr(E->getSubExpr(), valueDest); 771 return; 772 } 773 774 // Otherwise, we're converting an atomic type to a non-atomic type. 775 // Make an atomic temporary, emit into that, and then copy the value out. 776 AggValueSlot atomicSlot = 777 CGF.CreateAggTemp(atomicType, "atomic-to-nonatomic.temp"); 778 CGF.EmitAggExpr(E->getSubExpr(), atomicSlot); 779 780 Address valueAddr = 781 Builder.CreateStructGEP(atomicSlot.getAddress(), 0, CharUnits()); 782 RValue rvalue = RValue::getAggregate(valueAddr, atomicSlot.isVolatile()); 783 return EmitFinalDestCopy(valueType, rvalue); 784 } 785 786 case CK_LValueToRValue: 787 // If we're loading from a volatile type, force the destination 788 // into existence. 789 if (E->getSubExpr()->getType().isVolatileQualified()) { 790 EnsureDest(E->getType()); 791 return Visit(E->getSubExpr()); 792 } 793 794 LLVM_FALLTHROUGH; 795 796 case CK_NoOp: 797 case CK_UserDefinedConversion: 798 case CK_ConstructorConversion: 799 assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(), 800 E->getType()) && 801 "Implicit cast types must be compatible"); 802 Visit(E->getSubExpr()); 803 break; 804 805 case CK_LValueBitCast: 806 llvm_unreachable("should not be emitting lvalue bitcast as rvalue"); 807 808 case CK_Dependent: 809 case CK_BitCast: 810 case CK_ArrayToPointerDecay: 811 case CK_FunctionToPointerDecay: 812 case CK_NullToPointer: 813 case CK_NullToMemberPointer: 814 case CK_BaseToDerivedMemberPointer: 815 case CK_DerivedToBaseMemberPointer: 816 case CK_MemberPointerToBoolean: 817 case CK_ReinterpretMemberPointer: 818 case CK_IntegralToPointer: 819 case CK_PointerToIntegral: 820 case CK_PointerToBoolean: 821 case CK_ToVoid: 822 case CK_VectorSplat: 823 case CK_IntegralCast: 824 case CK_BooleanToSignedIntegral: 825 case CK_IntegralToBoolean: 826 case CK_IntegralToFloating: 827 case CK_FloatingToIntegral: 828 case CK_FloatingToBoolean: 829 case CK_FloatingCast: 830 case CK_CPointerToObjCPointerCast: 831 case CK_BlockPointerToObjCPointerCast: 832 case CK_AnyPointerToBlockPointerCast: 833 case CK_ObjCObjectLValueCast: 834 case CK_FloatingRealToComplex: 835 case CK_FloatingComplexToReal: 836 case CK_FloatingComplexToBoolean: 837 case CK_FloatingComplexCast: 838 case CK_FloatingComplexToIntegralComplex: 839 case CK_IntegralRealToComplex: 840 case CK_IntegralComplexToReal: 841 case CK_IntegralComplexToBoolean: 842 case CK_IntegralComplexCast: 843 case CK_IntegralComplexToFloatingComplex: 844 case CK_ARCProduceObject: 845 case CK_ARCConsumeObject: 846 case CK_ARCReclaimReturnedObject: 847 case CK_ARCExtendBlockObject: 848 case CK_CopyAndAutoreleaseBlockObject: 849 case CK_BuiltinFnToFnPtr: 850 case CK_ZeroToOCLEvent: 851 case CK_ZeroToOCLQueue: 852 case CK_AddressSpaceConversion: 853 case CK_IntToOCLSampler: 854 llvm_unreachable("cast kind invalid for aggregate types"); 855 } 856 } 857 858 void AggExprEmitter::VisitCallExpr(const CallExpr *E) { 859 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) { 860 EmitAggLoadOfLValue(E); 861 return; 862 } 863 864 withReturnValueSlot(E, [&](ReturnValueSlot Slot) { 865 return CGF.EmitCallExpr(E, Slot); 866 }); 867 } 868 869 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) { 870 withReturnValueSlot(E, [&](ReturnValueSlot Slot) { 871 return CGF.EmitObjCMessageExpr(E, Slot); 872 }); 873 } 874 875 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) { 876 CGF.EmitIgnoredExpr(E->getLHS()); 877 Visit(E->getRHS()); 878 } 879 880 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) { 881 CodeGenFunction::StmtExprEvaluation eval(CGF); 882 CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest); 883 } 884 885 enum CompareKind { 886 CK_Less, 887 CK_Greater, 888 CK_Equal, 889 }; 890 891 static llvm::Value *EmitCompare(CGBuilderTy &Builder, CodeGenFunction &CGF, 892 const BinaryOperator *E, llvm::Value *LHS, 893 llvm::Value *RHS, CompareKind Kind, 894 const char *NameSuffix = "") { 895 QualType ArgTy = E->getLHS()->getType(); 896 if (const ComplexType *CT = ArgTy->getAs<ComplexType>()) 897 ArgTy = CT->getElementType(); 898 899 if (const auto *MPT = ArgTy->getAs<MemberPointerType>()) { 900 assert(Kind == CK_Equal && 901 "member pointers may only be compared for equality"); 902 return CGF.CGM.getCXXABI().EmitMemberPointerComparison( 903 CGF, LHS, RHS, MPT, /*IsInequality*/ false); 904 } 905 906 // Compute the comparison instructions for the specified comparison kind. 907 struct CmpInstInfo { 908 const char *Name; 909 llvm::CmpInst::Predicate FCmp; 910 llvm::CmpInst::Predicate SCmp; 911 llvm::CmpInst::Predicate UCmp; 912 }; 913 CmpInstInfo InstInfo = [&]() -> CmpInstInfo { 914 using FI = llvm::FCmpInst; 915 using II = llvm::ICmpInst; 916 switch (Kind) { 917 case CK_Less: 918 return {"cmp.lt", FI::FCMP_OLT, II::ICMP_SLT, II::ICMP_ULT}; 919 case CK_Greater: 920 return {"cmp.gt", FI::FCMP_OGT, II::ICMP_SGT, II::ICMP_UGT}; 921 case CK_Equal: 922 return {"cmp.eq", FI::FCMP_OEQ, II::ICMP_EQ, II::ICMP_EQ}; 923 } 924 llvm_unreachable("Unrecognised CompareKind enum"); 925 }(); 926 927 if (ArgTy->hasFloatingRepresentation()) 928 return Builder.CreateFCmp(InstInfo.FCmp, LHS, RHS, 929 llvm::Twine(InstInfo.Name) + NameSuffix); 930 if (ArgTy->isIntegralOrEnumerationType() || ArgTy->isPointerType()) { 931 auto Inst = 932 ArgTy->hasSignedIntegerRepresentation() ? InstInfo.SCmp : InstInfo.UCmp; 933 return Builder.CreateICmp(Inst, LHS, RHS, 934 llvm::Twine(InstInfo.Name) + NameSuffix); 935 } 936 937 llvm_unreachable("unsupported aggregate binary expression should have " 938 "already been handled"); 939 } 940 941 void AggExprEmitter::VisitBinCmp(const BinaryOperator *E) { 942 using llvm::BasicBlock; 943 using llvm::PHINode; 944 using llvm::Value; 945 assert(CGF.getContext().hasSameType(E->getLHS()->getType(), 946 E->getRHS()->getType())); 947 const ComparisonCategoryInfo &CmpInfo = 948 CGF.getContext().CompCategories.getInfoForType(E->getType()); 949 assert(CmpInfo.Record->isTriviallyCopyable() && 950 "cannot copy non-trivially copyable aggregate"); 951 952 QualType ArgTy = E->getLHS()->getType(); 953 954 // TODO: Handle comparing these types. 955 if (ArgTy->isVectorType()) 956 return CGF.ErrorUnsupported( 957 E, "aggregate three-way comparison with vector arguments"); 958 if (!ArgTy->isIntegralOrEnumerationType() && !ArgTy->isRealFloatingType() && 959 !ArgTy->isNullPtrType() && !ArgTy->isPointerType() && 960 !ArgTy->isMemberPointerType() && !ArgTy->isAnyComplexType()) { 961 return CGF.ErrorUnsupported(E, "aggregate three-way comparison"); 962 } 963 bool IsComplex = ArgTy->isAnyComplexType(); 964 965 // Evaluate the operands to the expression and extract their values. 966 auto EmitOperand = [&](Expr *E) -> std::pair<Value *, Value *> { 967 RValue RV = CGF.EmitAnyExpr(E); 968 if (RV.isScalar()) 969 return {RV.getScalarVal(), nullptr}; 970 if (RV.isAggregate()) 971 return {RV.getAggregatePointer(), nullptr}; 972 assert(RV.isComplex()); 973 return RV.getComplexVal(); 974 }; 975 auto LHSValues = EmitOperand(E->getLHS()), 976 RHSValues = EmitOperand(E->getRHS()); 977 978 auto EmitCmp = [&](CompareKind K) { 979 Value *Cmp = EmitCompare(Builder, CGF, E, LHSValues.first, RHSValues.first, 980 K, IsComplex ? ".r" : ""); 981 if (!IsComplex) 982 return Cmp; 983 assert(K == CompareKind::CK_Equal); 984 Value *CmpImag = EmitCompare(Builder, CGF, E, LHSValues.second, 985 RHSValues.second, K, ".i"); 986 return Builder.CreateAnd(Cmp, CmpImag, "and.eq"); 987 }; 988 auto EmitCmpRes = [&](const ComparisonCategoryInfo::ValueInfo *VInfo) { 989 return Builder.getInt(VInfo->getIntValue()); 990 }; 991 992 Value *Select; 993 if (ArgTy->isNullPtrType()) { 994 Select = EmitCmpRes(CmpInfo.getEqualOrEquiv()); 995 } else if (CmpInfo.isEquality()) { 996 Select = Builder.CreateSelect( 997 EmitCmp(CK_Equal), EmitCmpRes(CmpInfo.getEqualOrEquiv()), 998 EmitCmpRes(CmpInfo.getNonequalOrNonequiv()), "sel.eq"); 999 } else if (!CmpInfo.isPartial()) { 1000 Value *SelectOne = 1001 Builder.CreateSelect(EmitCmp(CK_Less), EmitCmpRes(CmpInfo.getLess()), 1002 EmitCmpRes(CmpInfo.getGreater()), "sel.lt"); 1003 Select = Builder.CreateSelect(EmitCmp(CK_Equal), 1004 EmitCmpRes(CmpInfo.getEqualOrEquiv()), 1005 SelectOne, "sel.eq"); 1006 } else { 1007 Value *SelectEq = Builder.CreateSelect( 1008 EmitCmp(CK_Equal), EmitCmpRes(CmpInfo.getEqualOrEquiv()), 1009 EmitCmpRes(CmpInfo.getUnordered()), "sel.eq"); 1010 Value *SelectGT = Builder.CreateSelect(EmitCmp(CK_Greater), 1011 EmitCmpRes(CmpInfo.getGreater()), 1012 SelectEq, "sel.gt"); 1013 Select = Builder.CreateSelect( 1014 EmitCmp(CK_Less), EmitCmpRes(CmpInfo.getLess()), SelectGT, "sel.lt"); 1015 } 1016 // Create the return value in the destination slot. 1017 EnsureDest(E->getType()); 1018 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType()); 1019 1020 // Emit the address of the first (and only) field in the comparison category 1021 // type, and initialize it from the constant integer value selected above. 1022 LValue FieldLV = CGF.EmitLValueForFieldInitialization( 1023 DestLV, *CmpInfo.Record->field_begin()); 1024 CGF.EmitStoreThroughLValue(RValue::get(Select), FieldLV, /*IsInit*/ true); 1025 1026 // All done! The result is in the Dest slot. 1027 } 1028 1029 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) { 1030 if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI) 1031 VisitPointerToDataMemberBinaryOperator(E); 1032 else 1033 CGF.ErrorUnsupported(E, "aggregate binary expression"); 1034 } 1035 1036 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator( 1037 const BinaryOperator *E) { 1038 LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E); 1039 EmitFinalDestCopy(E->getType(), LV); 1040 } 1041 1042 /// Is the value of the given expression possibly a reference to or 1043 /// into a __block variable? 1044 static bool isBlockVarRef(const Expr *E) { 1045 // Make sure we look through parens. 1046 E = E->IgnoreParens(); 1047 1048 // Check for a direct reference to a __block variable. 1049 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { 1050 const VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl()); 1051 return (var && var->hasAttr<BlocksAttr>()); 1052 } 1053 1054 // More complicated stuff. 1055 1056 // Binary operators. 1057 if (const BinaryOperator *op = dyn_cast<BinaryOperator>(E)) { 1058 // For an assignment or pointer-to-member operation, just care 1059 // about the LHS. 1060 if (op->isAssignmentOp() || op->isPtrMemOp()) 1061 return isBlockVarRef(op->getLHS()); 1062 1063 // For a comma, just care about the RHS. 1064 if (op->getOpcode() == BO_Comma) 1065 return isBlockVarRef(op->getRHS()); 1066 1067 // FIXME: pointer arithmetic? 1068 return false; 1069 1070 // Check both sides of a conditional operator. 1071 } else if (const AbstractConditionalOperator *op 1072 = dyn_cast<AbstractConditionalOperator>(E)) { 1073 return isBlockVarRef(op->getTrueExpr()) 1074 || isBlockVarRef(op->getFalseExpr()); 1075 1076 // OVEs are required to support BinaryConditionalOperators. 1077 } else if (const OpaqueValueExpr *op 1078 = dyn_cast<OpaqueValueExpr>(E)) { 1079 if (const Expr *src = op->getSourceExpr()) 1080 return isBlockVarRef(src); 1081 1082 // Casts are necessary to get things like (*(int*)&var) = foo(). 1083 // We don't really care about the kind of cast here, except 1084 // we don't want to look through l2r casts, because it's okay 1085 // to get the *value* in a __block variable. 1086 } else if (const CastExpr *cast = dyn_cast<CastExpr>(E)) { 1087 if (cast->getCastKind() == CK_LValueToRValue) 1088 return false; 1089 return isBlockVarRef(cast->getSubExpr()); 1090 1091 // Handle unary operators. Again, just aggressively look through 1092 // it, ignoring the operation. 1093 } else if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E)) { 1094 return isBlockVarRef(uop->getSubExpr()); 1095 1096 // Look into the base of a field access. 1097 } else if (const MemberExpr *mem = dyn_cast<MemberExpr>(E)) { 1098 return isBlockVarRef(mem->getBase()); 1099 1100 // Look into the base of a subscript. 1101 } else if (const ArraySubscriptExpr *sub = dyn_cast<ArraySubscriptExpr>(E)) { 1102 return isBlockVarRef(sub->getBase()); 1103 } 1104 1105 return false; 1106 } 1107 1108 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) { 1109 // For an assignment to work, the value on the right has 1110 // to be compatible with the value on the left. 1111 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), 1112 E->getRHS()->getType()) 1113 && "Invalid assignment"); 1114 1115 // If the LHS might be a __block variable, and the RHS can 1116 // potentially cause a block copy, we need to evaluate the RHS first 1117 // so that the assignment goes the right place. 1118 // This is pretty semantically fragile. 1119 if (isBlockVarRef(E->getLHS()) && 1120 E->getRHS()->HasSideEffects(CGF.getContext())) { 1121 // Ensure that we have a destination, and evaluate the RHS into that. 1122 EnsureDest(E->getRHS()->getType()); 1123 Visit(E->getRHS()); 1124 1125 // Now emit the LHS and copy into it. 1126 LValue LHS = CGF.EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 1127 1128 // That copy is an atomic copy if the LHS is atomic. 1129 if (LHS.getType()->isAtomicType() || 1130 CGF.LValueIsSuitableForInlineAtomic(LHS)) { 1131 CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false); 1132 return; 1133 } 1134 1135 EmitCopy(E->getLHS()->getType(), 1136 AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed, 1137 needsGC(E->getLHS()->getType()), 1138 AggValueSlot::IsAliased, 1139 AggValueSlot::MayOverlap), 1140 Dest); 1141 return; 1142 } 1143 1144 LValue LHS = CGF.EmitLValue(E->getLHS()); 1145 1146 // If we have an atomic type, evaluate into the destination and then 1147 // do an atomic copy. 1148 if (LHS.getType()->isAtomicType() || 1149 CGF.LValueIsSuitableForInlineAtomic(LHS)) { 1150 EnsureDest(E->getRHS()->getType()); 1151 Visit(E->getRHS()); 1152 CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false); 1153 return; 1154 } 1155 1156 // Codegen the RHS so that it stores directly into the LHS. 1157 AggValueSlot LHSSlot = 1158 AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed, 1159 needsGC(E->getLHS()->getType()), 1160 AggValueSlot::IsAliased, 1161 AggValueSlot::MayOverlap); 1162 // A non-volatile aggregate destination might have volatile member. 1163 if (!LHSSlot.isVolatile() && 1164 CGF.hasVolatileMember(E->getLHS()->getType())) 1165 LHSSlot.setVolatile(true); 1166 1167 CGF.EmitAggExpr(E->getRHS(), LHSSlot); 1168 1169 // Copy into the destination if the assignment isn't ignored. 1170 EmitFinalDestCopy(E->getType(), LHS); 1171 } 1172 1173 void AggExprEmitter:: 1174 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 1175 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 1176 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 1177 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 1178 1179 // Bind the common expression if necessary. 1180 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 1181 1182 CodeGenFunction::ConditionalEvaluation eval(CGF); 1183 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock, 1184 CGF.getProfileCount(E)); 1185 1186 // Save whether the destination's lifetime is externally managed. 1187 bool isExternallyDestructed = Dest.isExternallyDestructed(); 1188 1189 eval.begin(CGF); 1190 CGF.EmitBlock(LHSBlock); 1191 CGF.incrementProfileCounter(E); 1192 Visit(E->getTrueExpr()); 1193 eval.end(CGF); 1194 1195 assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!"); 1196 CGF.Builder.CreateBr(ContBlock); 1197 1198 // If the result of an agg expression is unused, then the emission 1199 // of the LHS might need to create a destination slot. That's fine 1200 // with us, and we can safely emit the RHS into the same slot, but 1201 // we shouldn't claim that it's already being destructed. 1202 Dest.setExternallyDestructed(isExternallyDestructed); 1203 1204 eval.begin(CGF); 1205 CGF.EmitBlock(RHSBlock); 1206 Visit(E->getFalseExpr()); 1207 eval.end(CGF); 1208 1209 CGF.EmitBlock(ContBlock); 1210 } 1211 1212 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) { 1213 Visit(CE->getChosenSubExpr()); 1214 } 1215 1216 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 1217 Address ArgValue = Address::invalid(); 1218 Address ArgPtr = CGF.EmitVAArg(VE, ArgValue); 1219 1220 // If EmitVAArg fails, emit an error. 1221 if (!ArgPtr.isValid()) { 1222 CGF.ErrorUnsupported(VE, "aggregate va_arg expression"); 1223 return; 1224 } 1225 1226 EmitFinalDestCopy(VE->getType(), CGF.MakeAddrLValue(ArgPtr, VE->getType())); 1227 } 1228 1229 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 1230 // Ensure that we have a slot, but if we already do, remember 1231 // whether it was externally destructed. 1232 bool wasExternallyDestructed = Dest.isExternallyDestructed(); 1233 EnsureDest(E->getType()); 1234 1235 // We're going to push a destructor if there isn't already one. 1236 Dest.setExternallyDestructed(); 1237 1238 Visit(E->getSubExpr()); 1239 1240 // Push that destructor we promised. 1241 if (!wasExternallyDestructed) 1242 CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddress()); 1243 } 1244 1245 void 1246 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) { 1247 AggValueSlot Slot = EnsureSlot(E->getType()); 1248 CGF.EmitCXXConstructExpr(E, Slot); 1249 } 1250 1251 void AggExprEmitter::VisitCXXInheritedCtorInitExpr( 1252 const CXXInheritedCtorInitExpr *E) { 1253 AggValueSlot Slot = EnsureSlot(E->getType()); 1254 CGF.EmitInheritedCXXConstructorCall( 1255 E->getConstructor(), E->constructsVBase(), Slot.getAddress(), 1256 E->inheritedFromVBase(), E); 1257 } 1258 1259 void 1260 AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) { 1261 AggValueSlot Slot = EnsureSlot(E->getType()); 1262 CGF.EmitLambdaExpr(E, Slot); 1263 } 1264 1265 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) { 1266 CGF.enterFullExpression(E); 1267 CodeGenFunction::RunCleanupsScope cleanups(CGF); 1268 Visit(E->getSubExpr()); 1269 } 1270 1271 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) { 1272 QualType T = E->getType(); 1273 AggValueSlot Slot = EnsureSlot(T); 1274 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T)); 1275 } 1276 1277 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) { 1278 QualType T = E->getType(); 1279 AggValueSlot Slot = EnsureSlot(T); 1280 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T)); 1281 } 1282 1283 /// isSimpleZero - If emitting this value will obviously just cause a store of 1284 /// zero to memory, return true. This can return false if uncertain, so it just 1285 /// handles simple cases. 1286 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) { 1287 E = E->IgnoreParens(); 1288 1289 // 0 1290 if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) 1291 return IL->getValue() == 0; 1292 // +0.0 1293 if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E)) 1294 return FL->getValue().isPosZero(); 1295 // int() 1296 if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) && 1297 CGF.getTypes().isZeroInitializable(E->getType())) 1298 return true; 1299 // (int*)0 - Null pointer expressions. 1300 if (const CastExpr *ICE = dyn_cast<CastExpr>(E)) 1301 return ICE->getCastKind() == CK_NullToPointer && 1302 CGF.getTypes().isPointerZeroInitializable(E->getType()); 1303 // '\0' 1304 if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) 1305 return CL->getValue() == 0; 1306 1307 // Otherwise, hard case: conservatively return false. 1308 return false; 1309 } 1310 1311 1312 void 1313 AggExprEmitter::EmitInitializationToLValue(Expr *E, LValue LV) { 1314 QualType type = LV.getType(); 1315 // FIXME: Ignore result? 1316 // FIXME: Are initializers affected by volatile? 1317 if (Dest.isZeroed() && isSimpleZero(E, CGF)) { 1318 // Storing "i32 0" to a zero'd memory location is a noop. 1319 return; 1320 } else if (isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) { 1321 return EmitNullInitializationToLValue(LV); 1322 } else if (isa<NoInitExpr>(E)) { 1323 // Do nothing. 1324 return; 1325 } else if (type->isReferenceType()) { 1326 RValue RV = CGF.EmitReferenceBindingToExpr(E); 1327 return CGF.EmitStoreThroughLValue(RV, LV); 1328 } 1329 1330 switch (CGF.getEvaluationKind(type)) { 1331 case TEK_Complex: 1332 CGF.EmitComplexExprIntoLValue(E, LV, /*isInit*/ true); 1333 return; 1334 case TEK_Aggregate: 1335 CGF.EmitAggExpr(E, AggValueSlot::forLValue(LV, 1336 AggValueSlot::IsDestructed, 1337 AggValueSlot::DoesNotNeedGCBarriers, 1338 AggValueSlot::IsNotAliased, 1339 AggValueSlot::MayOverlap, 1340 Dest.isZeroed())); 1341 return; 1342 case TEK_Scalar: 1343 if (LV.isSimple()) { 1344 CGF.EmitScalarInit(E, /*D=*/nullptr, LV, /*Captured=*/false); 1345 } else { 1346 CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV); 1347 } 1348 return; 1349 } 1350 llvm_unreachable("bad evaluation kind"); 1351 } 1352 1353 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) { 1354 QualType type = lv.getType(); 1355 1356 // If the destination slot is already zeroed out before the aggregate is 1357 // copied into it, we don't have to emit any zeros here. 1358 if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type)) 1359 return; 1360 1361 if (CGF.hasScalarEvaluationKind(type)) { 1362 // For non-aggregates, we can store the appropriate null constant. 1363 llvm::Value *null = CGF.CGM.EmitNullConstant(type); 1364 // Note that the following is not equivalent to 1365 // EmitStoreThroughBitfieldLValue for ARC types. 1366 if (lv.isBitField()) { 1367 CGF.EmitStoreThroughBitfieldLValue(RValue::get(null), lv); 1368 } else { 1369 assert(lv.isSimple()); 1370 CGF.EmitStoreOfScalar(null, lv, /* isInitialization */ true); 1371 } 1372 } else { 1373 // There's a potential optimization opportunity in combining 1374 // memsets; that would be easy for arrays, but relatively 1375 // difficult for structures with the current code. 1376 CGF.EmitNullInitialization(lv.getAddress(), lv.getType()); 1377 } 1378 } 1379 1380 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) { 1381 #if 0 1382 // FIXME: Assess perf here? Figure out what cases are worth optimizing here 1383 // (Length of globals? Chunks of zeroed-out space?). 1384 // 1385 // If we can, prefer a copy from a global; this is a lot less code for long 1386 // globals, and it's easier for the current optimizers to analyze. 1387 if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) { 1388 llvm::GlobalVariable* GV = 1389 new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true, 1390 llvm::GlobalValue::InternalLinkage, C, ""); 1391 EmitFinalDestCopy(E->getType(), CGF.MakeAddrLValue(GV, E->getType())); 1392 return; 1393 } 1394 #endif 1395 if (E->hadArrayRangeDesignator()) 1396 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 1397 1398 if (E->isTransparent()) 1399 return Visit(E->getInit(0)); 1400 1401 AggValueSlot Dest = EnsureSlot(E->getType()); 1402 1403 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType()); 1404 1405 // Handle initialization of an array. 1406 if (E->getType()->isArrayType()) { 1407 auto AType = cast<llvm::ArrayType>(Dest.getAddress().getElementType()); 1408 EmitArrayInit(Dest.getAddress(), AType, E->getType(), E); 1409 return; 1410 } 1411 1412 assert(E->getType()->isRecordType() && "Only support structs/unions here!"); 1413 1414 // Do struct initialization; this code just sets each individual member 1415 // to the approprate value. This makes bitfield support automatic; 1416 // the disadvantage is that the generated code is more difficult for 1417 // the optimizer, especially with bitfields. 1418 unsigned NumInitElements = E->getNumInits(); 1419 RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl(); 1420 1421 // We'll need to enter cleanup scopes in case any of the element 1422 // initializers throws an exception. 1423 SmallVector<EHScopeStack::stable_iterator, 16> cleanups; 1424 llvm::Instruction *cleanupDominator = nullptr; 1425 1426 unsigned curInitIndex = 0; 1427 1428 // Emit initialization of base classes. 1429 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(record)) { 1430 assert(E->getNumInits() >= CXXRD->getNumBases() && 1431 "missing initializer for base class"); 1432 for (auto &Base : CXXRD->bases()) { 1433 assert(!Base.isVirtual() && "should not see vbases here"); 1434 auto *BaseRD = Base.getType()->getAsCXXRecordDecl(); 1435 Address V = CGF.GetAddressOfDirectBaseInCompleteClass( 1436 Dest.getAddress(), CXXRD, BaseRD, 1437 /*isBaseVirtual*/ false); 1438 AggValueSlot AggSlot = AggValueSlot::forAddr( 1439 V, Qualifiers(), 1440 AggValueSlot::IsDestructed, 1441 AggValueSlot::DoesNotNeedGCBarriers, 1442 AggValueSlot::IsNotAliased, 1443 CGF.overlapForBaseInit(CXXRD, BaseRD, Base.isVirtual())); 1444 CGF.EmitAggExpr(E->getInit(curInitIndex++), AggSlot); 1445 1446 if (QualType::DestructionKind dtorKind = 1447 Base.getType().isDestructedType()) { 1448 CGF.pushDestroy(dtorKind, V, Base.getType()); 1449 cleanups.push_back(CGF.EHStack.stable_begin()); 1450 } 1451 } 1452 } 1453 1454 // Prepare a 'this' for CXXDefaultInitExprs. 1455 CodeGenFunction::FieldConstructionScope FCS(CGF, Dest.getAddress()); 1456 1457 if (record->isUnion()) { 1458 // Only initialize one field of a union. The field itself is 1459 // specified by the initializer list. 1460 if (!E->getInitializedFieldInUnion()) { 1461 // Empty union; we have nothing to do. 1462 1463 #ifndef NDEBUG 1464 // Make sure that it's really an empty and not a failure of 1465 // semantic analysis. 1466 for (const auto *Field : record->fields()) 1467 assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed"); 1468 #endif 1469 return; 1470 } 1471 1472 // FIXME: volatility 1473 FieldDecl *Field = E->getInitializedFieldInUnion(); 1474 1475 LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestLV, Field); 1476 if (NumInitElements) { 1477 // Store the initializer into the field 1478 EmitInitializationToLValue(E->getInit(0), FieldLoc); 1479 } else { 1480 // Default-initialize to null. 1481 EmitNullInitializationToLValue(FieldLoc); 1482 } 1483 1484 return; 1485 } 1486 1487 // Here we iterate over the fields; this makes it simpler to both 1488 // default-initialize fields and skip over unnamed fields. 1489 for (const auto *field : record->fields()) { 1490 // We're done once we hit the flexible array member. 1491 if (field->getType()->isIncompleteArrayType()) 1492 break; 1493 1494 // Always skip anonymous bitfields. 1495 if (field->isUnnamedBitfield()) 1496 continue; 1497 1498 // We're done if we reach the end of the explicit initializers, we 1499 // have a zeroed object, and the rest of the fields are 1500 // zero-initializable. 1501 if (curInitIndex == NumInitElements && Dest.isZeroed() && 1502 CGF.getTypes().isZeroInitializable(E->getType())) 1503 break; 1504 1505 1506 LValue LV = CGF.EmitLValueForFieldInitialization(DestLV, field); 1507 // We never generate write-barries for initialized fields. 1508 LV.setNonGC(true); 1509 1510 if (curInitIndex < NumInitElements) { 1511 // Store the initializer into the field. 1512 EmitInitializationToLValue(E->getInit(curInitIndex++), LV); 1513 } else { 1514 // We're out of initializers; default-initialize to null 1515 EmitNullInitializationToLValue(LV); 1516 } 1517 1518 // Push a destructor if necessary. 1519 // FIXME: if we have an array of structures, all explicitly 1520 // initialized, we can end up pushing a linear number of cleanups. 1521 bool pushedCleanup = false; 1522 if (QualType::DestructionKind dtorKind 1523 = field->getType().isDestructedType()) { 1524 assert(LV.isSimple()); 1525 if (CGF.needsEHCleanup(dtorKind)) { 1526 if (!cleanupDominator) 1527 cleanupDominator = CGF.Builder.CreateAlignedLoad( 1528 CGF.Int8Ty, 1529 llvm::Constant::getNullValue(CGF.Int8PtrTy), 1530 CharUnits::One()); // placeholder 1531 1532 CGF.pushDestroy(EHCleanup, LV.getAddress(), field->getType(), 1533 CGF.getDestroyer(dtorKind), false); 1534 cleanups.push_back(CGF.EHStack.stable_begin()); 1535 pushedCleanup = true; 1536 } 1537 } 1538 1539 // If the GEP didn't get used because of a dead zero init or something 1540 // else, clean it up for -O0 builds and general tidiness. 1541 if (!pushedCleanup && LV.isSimple()) 1542 if (llvm::GetElementPtrInst *GEP = 1543 dyn_cast<llvm::GetElementPtrInst>(LV.getPointer())) 1544 if (GEP->use_empty()) 1545 GEP->eraseFromParent(); 1546 } 1547 1548 // Deactivate all the partial cleanups in reverse order, which 1549 // generally means popping them. 1550 for (unsigned i = cleanups.size(); i != 0; --i) 1551 CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator); 1552 1553 // Destroy the placeholder if we made one. 1554 if (cleanupDominator) 1555 cleanupDominator->eraseFromParent(); 1556 } 1557 1558 void AggExprEmitter::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E, 1559 llvm::Value *outerBegin) { 1560 // Emit the common subexpression. 1561 CodeGenFunction::OpaqueValueMapping binding(CGF, E->getCommonExpr()); 1562 1563 Address destPtr = EnsureSlot(E->getType()).getAddress(); 1564 uint64_t numElements = E->getArraySize().getZExtValue(); 1565 1566 if (!numElements) 1567 return; 1568 1569 // destPtr is an array*. Construct an elementType* by drilling down a level. 1570 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 1571 llvm::Value *indices[] = {zero, zero}; 1572 llvm::Value *begin = Builder.CreateInBoundsGEP(destPtr.getPointer(), indices, 1573 "arrayinit.begin"); 1574 1575 // Prepare to special-case multidimensional array initialization: we avoid 1576 // emitting multiple destructor loops in that case. 1577 if (!outerBegin) 1578 outerBegin = begin; 1579 ArrayInitLoopExpr *InnerLoop = dyn_cast<ArrayInitLoopExpr>(E->getSubExpr()); 1580 1581 QualType elementType = 1582 CGF.getContext().getAsArrayType(E->getType())->getElementType(); 1583 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType); 1584 CharUnits elementAlign = 1585 destPtr.getAlignment().alignmentOfArrayElement(elementSize); 1586 1587 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 1588 llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body"); 1589 1590 // Jump into the body. 1591 CGF.EmitBlock(bodyBB); 1592 llvm::PHINode *index = 1593 Builder.CreatePHI(zero->getType(), 2, "arrayinit.index"); 1594 index->addIncoming(zero, entryBB); 1595 llvm::Value *element = Builder.CreateInBoundsGEP(begin, index); 1596 1597 // Prepare for a cleanup. 1598 QualType::DestructionKind dtorKind = elementType.isDestructedType(); 1599 EHScopeStack::stable_iterator cleanup; 1600 if (CGF.needsEHCleanup(dtorKind) && !InnerLoop) { 1601 if (outerBegin->getType() != element->getType()) 1602 outerBegin = Builder.CreateBitCast(outerBegin, element->getType()); 1603 CGF.pushRegularPartialArrayCleanup(outerBegin, element, elementType, 1604 elementAlign, 1605 CGF.getDestroyer(dtorKind)); 1606 cleanup = CGF.EHStack.stable_begin(); 1607 } else { 1608 dtorKind = QualType::DK_none; 1609 } 1610 1611 // Emit the actual filler expression. 1612 { 1613 // Temporaries created in an array initialization loop are destroyed 1614 // at the end of each iteration. 1615 CodeGenFunction::RunCleanupsScope CleanupsScope(CGF); 1616 CodeGenFunction::ArrayInitLoopExprScope Scope(CGF, index); 1617 LValue elementLV = 1618 CGF.MakeAddrLValue(Address(element, elementAlign), elementType); 1619 1620 if (InnerLoop) { 1621 // If the subexpression is an ArrayInitLoopExpr, share its cleanup. 1622 auto elementSlot = AggValueSlot::forLValue( 1623 elementLV, AggValueSlot::IsDestructed, 1624 AggValueSlot::DoesNotNeedGCBarriers, 1625 AggValueSlot::IsNotAliased, 1626 AggValueSlot::DoesNotOverlap); 1627 AggExprEmitter(CGF, elementSlot, false) 1628 .VisitArrayInitLoopExpr(InnerLoop, outerBegin); 1629 } else 1630 EmitInitializationToLValue(E->getSubExpr(), elementLV); 1631 } 1632 1633 // Move on to the next element. 1634 llvm::Value *nextIndex = Builder.CreateNUWAdd( 1635 index, llvm::ConstantInt::get(CGF.SizeTy, 1), "arrayinit.next"); 1636 index->addIncoming(nextIndex, Builder.GetInsertBlock()); 1637 1638 // Leave the loop if we're done. 1639 llvm::Value *done = Builder.CreateICmpEQ( 1640 nextIndex, llvm::ConstantInt::get(CGF.SizeTy, numElements), 1641 "arrayinit.done"); 1642 llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end"); 1643 Builder.CreateCondBr(done, endBB, bodyBB); 1644 1645 CGF.EmitBlock(endBB); 1646 1647 // Leave the partial-array cleanup if we entered one. 1648 if (dtorKind) 1649 CGF.DeactivateCleanupBlock(cleanup, index); 1650 } 1651 1652 void AggExprEmitter::VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E) { 1653 AggValueSlot Dest = EnsureSlot(E->getType()); 1654 1655 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType()); 1656 EmitInitializationToLValue(E->getBase(), DestLV); 1657 VisitInitListExpr(E->getUpdater()); 1658 } 1659 1660 //===----------------------------------------------------------------------===// 1661 // Entry Points into this File 1662 //===----------------------------------------------------------------------===// 1663 1664 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of 1665 /// non-zero bytes that will be stored when outputting the initializer for the 1666 /// specified initializer expression. 1667 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) { 1668 E = E->IgnoreParens(); 1669 1670 // 0 and 0.0 won't require any non-zero stores! 1671 if (isSimpleZero(E, CGF)) return CharUnits::Zero(); 1672 1673 // If this is an initlist expr, sum up the size of sizes of the (present) 1674 // elements. If this is something weird, assume the whole thing is non-zero. 1675 const InitListExpr *ILE = dyn_cast<InitListExpr>(E); 1676 while (ILE && ILE->isTransparent()) 1677 ILE = dyn_cast<InitListExpr>(ILE->getInit(0)); 1678 if (!ILE || !CGF.getTypes().isZeroInitializable(ILE->getType())) 1679 return CGF.getContext().getTypeSizeInChars(E->getType()); 1680 1681 // InitListExprs for structs have to be handled carefully. If there are 1682 // reference members, we need to consider the size of the reference, not the 1683 // referencee. InitListExprs for unions and arrays can't have references. 1684 if (const RecordType *RT = E->getType()->getAs<RecordType>()) { 1685 if (!RT->isUnionType()) { 1686 RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl(); 1687 CharUnits NumNonZeroBytes = CharUnits::Zero(); 1688 1689 unsigned ILEElement = 0; 1690 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(SD)) 1691 while (ILEElement != CXXRD->getNumBases()) 1692 NumNonZeroBytes += 1693 GetNumNonZeroBytesInInit(ILE->getInit(ILEElement++), CGF); 1694 for (const auto *Field : SD->fields()) { 1695 // We're done once we hit the flexible array member or run out of 1696 // InitListExpr elements. 1697 if (Field->getType()->isIncompleteArrayType() || 1698 ILEElement == ILE->getNumInits()) 1699 break; 1700 if (Field->isUnnamedBitfield()) 1701 continue; 1702 1703 const Expr *E = ILE->getInit(ILEElement++); 1704 1705 // Reference values are always non-null and have the width of a pointer. 1706 if (Field->getType()->isReferenceType()) 1707 NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits( 1708 CGF.getTarget().getPointerWidth(0)); 1709 else 1710 NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF); 1711 } 1712 1713 return NumNonZeroBytes; 1714 } 1715 } 1716 1717 1718 CharUnits NumNonZeroBytes = CharUnits::Zero(); 1719 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) 1720 NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF); 1721 return NumNonZeroBytes; 1722 } 1723 1724 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of 1725 /// zeros in it, emit a memset and avoid storing the individual zeros. 1726 /// 1727 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E, 1728 CodeGenFunction &CGF) { 1729 // If the slot is already known to be zeroed, nothing to do. Don't mess with 1730 // volatile stores. 1731 if (Slot.isZeroed() || Slot.isVolatile() || !Slot.getAddress().isValid()) 1732 return; 1733 1734 // C++ objects with a user-declared constructor don't need zero'ing. 1735 if (CGF.getLangOpts().CPlusPlus) 1736 if (const RecordType *RT = CGF.getContext() 1737 .getBaseElementType(E->getType())->getAs<RecordType>()) { 1738 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1739 if (RD->hasUserDeclaredConstructor()) 1740 return; 1741 } 1742 1743 // If the type is 16-bytes or smaller, prefer individual stores over memset. 1744 CharUnits Size = Slot.getPreferredSize(CGF.getContext(), E->getType()); 1745 if (Size <= CharUnits::fromQuantity(16)) 1746 return; 1747 1748 // Check to see if over 3/4 of the initializer are known to be zero. If so, 1749 // we prefer to emit memset + individual stores for the rest. 1750 CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF); 1751 if (NumNonZeroBytes*4 > Size) 1752 return; 1753 1754 // Okay, it seems like a good idea to use an initial memset, emit the call. 1755 llvm::Constant *SizeVal = CGF.Builder.getInt64(Size.getQuantity()); 1756 1757 Address Loc = Slot.getAddress(); 1758 Loc = CGF.Builder.CreateElementBitCast(Loc, CGF.Int8Ty); 1759 CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, false); 1760 1761 // Tell the AggExprEmitter that the slot is known zero. 1762 Slot.setZeroed(); 1763 } 1764 1765 1766 1767 1768 /// EmitAggExpr - Emit the computation of the specified expression of aggregate 1769 /// type. The result is computed into DestPtr. Note that if DestPtr is null, 1770 /// the value of the aggregate expression is not needed. If VolatileDest is 1771 /// true, DestPtr cannot be 0. 1772 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot) { 1773 assert(E && hasAggregateEvaluationKind(E->getType()) && 1774 "Invalid aggregate expression to emit"); 1775 assert((Slot.getAddress().isValid() || Slot.isIgnored()) && 1776 "slot has bits but no address"); 1777 1778 // Optimize the slot if possible. 1779 CheckAggExprForMemSetUse(Slot, E, *this); 1780 1781 AggExprEmitter(*this, Slot, Slot.isIgnored()).Visit(const_cast<Expr*>(E)); 1782 } 1783 1784 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) { 1785 assert(hasAggregateEvaluationKind(E->getType()) && "Invalid argument!"); 1786 Address Temp = CreateMemTemp(E->getType()); 1787 LValue LV = MakeAddrLValue(Temp, E->getType()); 1788 EmitAggExpr(E, AggValueSlot::forLValue(LV, AggValueSlot::IsNotDestructed, 1789 AggValueSlot::DoesNotNeedGCBarriers, 1790 AggValueSlot::IsNotAliased, 1791 AggValueSlot::DoesNotOverlap)); 1792 return LV; 1793 } 1794 1795 AggValueSlot::Overlap_t CodeGenFunction::overlapForBaseInit( 1796 const CXXRecordDecl *RD, const CXXRecordDecl *BaseRD, bool IsVirtual) { 1797 // Virtual bases are initialized first, in address order, so there's never 1798 // any overlap during their initialization. 1799 // 1800 // FIXME: Under P0840, this is no longer true: the tail padding of a vbase 1801 // of a field could be reused by a vbase of a containing class. 1802 if (IsVirtual) 1803 return AggValueSlot::DoesNotOverlap; 1804 1805 // If the base class is laid out entirely within the nvsize of the derived 1806 // class, its tail padding cannot yet be initialized, so we can issue 1807 // stores at the full width of the base class. 1808 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 1809 if (Layout.getBaseClassOffset(BaseRD) + 1810 getContext().getASTRecordLayout(BaseRD).getSize() <= 1811 Layout.getNonVirtualSize()) 1812 return AggValueSlot::DoesNotOverlap; 1813 1814 // The tail padding may contain values we need to preserve. 1815 return AggValueSlot::MayOverlap; 1816 } 1817 1818 void CodeGenFunction::EmitAggregateCopy(LValue Dest, LValue Src, QualType Ty, 1819 AggValueSlot::Overlap_t MayOverlap, 1820 bool isVolatile) { 1821 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 1822 1823 Address DestPtr = Dest.getAddress(); 1824 Address SrcPtr = Src.getAddress(); 1825 1826 if (getLangOpts().CPlusPlus) { 1827 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1828 CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl()); 1829 assert((Record->hasTrivialCopyConstructor() || 1830 Record->hasTrivialCopyAssignment() || 1831 Record->hasTrivialMoveConstructor() || 1832 Record->hasTrivialMoveAssignment() || 1833 Record->isUnion()) && 1834 "Trying to aggregate-copy a type without a trivial copy/move " 1835 "constructor or assignment operator"); 1836 // Ignore empty classes in C++. 1837 if (Record->isEmpty()) 1838 return; 1839 } 1840 } 1841 1842 // Aggregate assignment turns into llvm.memcpy. This is almost valid per 1843 // C99 6.5.16.1p3, which states "If the value being stored in an object is 1844 // read from another object that overlaps in anyway the storage of the first 1845 // object, then the overlap shall be exact and the two objects shall have 1846 // qualified or unqualified versions of a compatible type." 1847 // 1848 // memcpy is not defined if the source and destination pointers are exactly 1849 // equal, but other compilers do this optimization, and almost every memcpy 1850 // implementation handles this case safely. If there is a libc that does not 1851 // safely handle this, we can add a target hook. 1852 1853 // Get data size info for this aggregate. Don't copy the tail padding if this 1854 // might be a potentially-overlapping subobject, since the tail padding might 1855 // be occupied by a different object. Otherwise, copying it is fine. 1856 std::pair<CharUnits, CharUnits> TypeInfo; 1857 if (MayOverlap) 1858 TypeInfo = getContext().getTypeInfoDataSizeInChars(Ty); 1859 else 1860 TypeInfo = getContext().getTypeInfoInChars(Ty); 1861 1862 llvm::Value *SizeVal = nullptr; 1863 if (TypeInfo.first.isZero()) { 1864 // But note that getTypeInfo returns 0 for a VLA. 1865 if (auto *VAT = dyn_cast_or_null<VariableArrayType>( 1866 getContext().getAsArrayType(Ty))) { 1867 QualType BaseEltTy; 1868 SizeVal = emitArrayLength(VAT, BaseEltTy, DestPtr); 1869 TypeInfo = getContext().getTypeInfoInChars(BaseEltTy); 1870 assert(!TypeInfo.first.isZero()); 1871 SizeVal = Builder.CreateNUWMul( 1872 SizeVal, 1873 llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity())); 1874 } 1875 } 1876 if (!SizeVal) { 1877 SizeVal = llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity()); 1878 } 1879 1880 // FIXME: If we have a volatile struct, the optimizer can remove what might 1881 // appear to be `extra' memory ops: 1882 // 1883 // volatile struct { int i; } a, b; 1884 // 1885 // int main() { 1886 // a = b; 1887 // a = b; 1888 // } 1889 // 1890 // we need to use a different call here. We use isVolatile to indicate when 1891 // either the source or the destination is volatile. 1892 1893 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1894 SrcPtr = Builder.CreateElementBitCast(SrcPtr, Int8Ty); 1895 1896 // Don't do any of the memmove_collectable tests if GC isn't set. 1897 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) { 1898 // fall through 1899 } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 1900 RecordDecl *Record = RecordTy->getDecl(); 1901 if (Record->hasObjectMember()) { 1902 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 1903 SizeVal); 1904 return; 1905 } 1906 } else if (Ty->isArrayType()) { 1907 QualType BaseType = getContext().getBaseElementType(Ty); 1908 if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) { 1909 if (RecordTy->getDecl()->hasObjectMember()) { 1910 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 1911 SizeVal); 1912 return; 1913 } 1914 } 1915 } 1916 1917 auto Inst = Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, isVolatile); 1918 1919 // Determine the metadata to describe the position of any padding in this 1920 // memcpy, as well as the TBAA tags for the members of the struct, in case 1921 // the optimizer wishes to expand it in to scalar memory operations. 1922 if (llvm::MDNode *TBAAStructTag = CGM.getTBAAStructInfo(Ty)) 1923 Inst->setMetadata(llvm::LLVMContext::MD_tbaa_struct, TBAAStructTag); 1924 1925 if (CGM.getCodeGenOpts().NewStructPathTBAA) { 1926 TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForMemoryTransfer( 1927 Dest.getTBAAInfo(), Src.getTBAAInfo()); 1928 CGM.DecorateInstructionWithTBAA(Inst, TBAAInfo); 1929 } 1930 } 1931